• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Analysis of Pneumonia Model via Efficient Computing Techniques

    2022-03-14 09:27:36KamaledinAbodayehAliRazaMuhammadRafiqMuhammadShoaibArifMuhammadNaveedZunirZebSyedZaheerAbbasKiranShahzadiSanaSarwarQasimNaveedBadarUlZamanandMuhammadMohsin
    Computers Materials&Continua 2022年3期

    Kamaledin Abodayeh,Ali Raza*,Muhammad Rafiq,Muhammad Shoaib Arif,Muhammad Naveed,Zunir Zeb,Syed Zaheer Abbas,Kiran Shahzadi,Sana Sarwar,Qasim Naveed,Badar Ul Zaman and Muhammad Mohsin

    1Department of Mathematics and General Sciences,Prince Sultan University Riyadh,66833,Saudi Arabia

    2Department of Mathematics,Govt.Maulana Zafar Ali Khan Graduate College Wazirabad,52000,Punjab Higher Education Department(PHED),Lahore,54000,Pakistan

    3Department of Mathematics,National College of Business Administration and Economics Lahore,54660,Pakistan

    4Department of Mathematics,Faculty of Sciences,University of Central Punjab,Lahore,54500,Pakistan

    5Department of Mathematics,Air University,Islamabad,44000,Pakistan

    6Department of Mathematics,Technische Universitat Chemnitz,62 09111,Germany

    Abstract: Pneumonia is a highly transmissible disease in children.According to the World Health Organization(WHO),the most affected regions include south Asia and sub-Saharan Africa.Worldwide,15%of pediatric deaths can be attributed to pneumonia.Computing techniques have a significant role in science, engineering, and many other fields.In this study, we focused on the efficiency of numerical techniques via computer programs.We studied the dynamics of the pneumonia-like infections of epidemic models using numerical techniques.We discuss two types of analysis:dynamical and numerical.The dynamical analysis included positivity,boundedness,local stability,reproduction number,and equilibria of the model.We also discuss well-known computing techniques including Euler,Runge Kutta,and non-standard finite difference(NSFD)for the model.The non-standard finite difference(NSFD)technique shows convergence to the true equilibrium points of the model for any time step size.However, Euler and Runge Kutta do not work well over large time intervals.Computing techniques are the suitable tool for crosschecking the theoretical analysis of the model.

    Keywords: Pneumonia disease; epidemic model; computing techniques; convergence analysis

    1 Introduction

    Pneumonia is a disease of the lungs that can cause minor to severe illness in people of different ages.The swelling of the lungs that occurs during pneumonia is most commonly caused by infection with bacteria or molds.There are also a few noninfectious types of pneumonia.These are caused by inhaling contaminated materials into the lungs.Most pneumococcal poisons are insignificant,but some of them are harmful,causing such issues as brain damage and hearing problems.Meningitis is the most severe disease caused by pneumococcal pneumonia,and it is more common in children who are less than five years old and it can cause long-term disease in individuals over 50 years old.Bacteria are a main and major cause of pneumococcal disease and blood-borne infection.About 1%of children under five years old with this infection die.The chance of death from pneumococcal pneumonia is also higher among the elderly.About 5%of people with pneumonia die,but the ratio is higher among the elderly.Pneumococcal pneumonia can be asymptomatic if there are no bacteria or cold weather during that period.Pneumococcal pneumonia can cause swelling of the throat, necessitating ear tubes in some children.Symptoms of pneumococcal pneumonia can include greenish,yellow,or bloody liquid produced during coughing, weakness, profuse sweating, difficulty breathing, severe headache, and severe chest pain.Symptoms tend to worsen when the patient is hungry or exhausted.In 2014,Mochan et al.[1] dynamically described the interhost immune response to bacterial pneumonia infection in murine strains in a simple ordinary differential equation model.In 2014,Drusano et al.[2]reported the effects of granulocytes in the eradication of bacterial pathogens,and there was no antimicrobial therapy involved in this work.In 2015,Ndelwa et al.[3]produced a dynamic mathematical model for the transmission of pneumonia with screening and medication and analyzed it to assess transmission and effects.In 2015,Kosasih et al.[4]analyzed a mathematical model of cough sounds using waveletbased crackle detection work for rapid diagnosis of bacterial pneumonia in children.In 2016,Cesar et al.[5] mathematically estimated fine particulate matter in a model and evaluated medications for pneumonia and asthma among children.In 2016,Marchello et al.[6]listed atypical bacterial pathogens as the main causes of such lower respiratory diseases as coughs,bronchitis,and CAP.In 2017,Cheng et al.mathematically and dynamically evaluated an IAV-SP model.A quantitative risk-assessment framework was established to improve respiratory health due to COPD [7].In 2017, Kosasih et al.[8] provided a simple mathematical model showing the analysis of measurements for clinical diagnosis of pneumonia among children.In 2017,Tilahun et al.proposed a deterministic nonlinear mathematical model and analyzed optical control strategies for bacterial pneumonia.Results are shown graphically [9].In 2018, Raj et al.[10] analyzed the classification of asthma and pneumonia based upon mathematical features of cough sounds among poorer segments of the population.In 2018, Kizito et al.presented a mathematical model that shows the control of pneumonia spread by bacteria.It also gave the dynamics of treatment and formulation of vaccines[11].In 2018,Mbabazi et al.[12]investigated a nonlinear mathematical model that modeled intra-host co-infection influenza A virus and pneumonia.In 2018, Tilahun et al.[13] proposed a co-infection model for pneumoniatyphoid and mathematically analyzed their characteristic relationship for the development of medical strategies.In 2019, Tilahun et al.described a model of pneumonia-meningitis co-infection with the help of ordinary differential equations and theorems.It explained different techniques for disease clearance[14].In 2020,Naveed et al.[15]reported a dynamic analysis of coronavirus while assessing the sensitivity of model parameters.In 2019,Kosasih et al.[16]explained the main cause of pneumonia affecting children in early childhood in poor regions of the world.In 2019,Tilahun et al.[17]analyzed a co-infection mathematical model for the bacterial disease of pneumonia and meningitis.In 2019,Mbabazi et al.[18] proposed a mathematical model of pneumococcal pneumonia with time delays and performed Hopf-bifurcation analysis.In 2020, Otoo et al.[19] analyzed a model of pneumonia spread by bacteria.The analysis determined the effects of vaccination on control of this disease.In 2020,Zephaniah et al.[20]presented the dynamics of a mathematical model of pneumonia,showing the result graphically.In 2019, Raza et al.[21] described the stochastic dynamics of gonorrhea-like infections.In 2020, Jung et al.[22] demonstrated the observations using different clinical tests and showed the cause of disease,a novel pathogen.Many mathematical models are studied with different techniques,as shown in previous works[23-27].Well-known mathematical models can be investigated with the help of efficient techniques[28-39].The rest of the paper is organized as follows.In Sections 2-4, we investigate the dynamic analysis of the model.Section 5 explains the well-known computer methods used on this model.The last two sections present the results,discussion,and conclusion.

    2 Formulation of Pneumonia Model

    For any arbitrary time t,the parameters and variables of pneumonia disease described as follows:S(t):represents the susceptible,who is at risk of acquiring infection pneumonia,C(t):represents the carrier individuals carrying the pneumonia bacteria and can transfer the infection,I(t):represents the infective individuals that are capable of transmitting the infection to individuals at risk,R(t):represents the individuals who have been recovered after the treatment of Pneumonia,μ:represents the natural mortality rate of individuals per capita,Λ:represents the recruitment rate into susceptible population per capita,θ:represents the proportion of susceptible individuals who joins the carriers,σ:represents the disease induced mortality rate birth rate of human population per capita,β:represents the recovery rate of carriers per capita,α: represents the infection force of susceptible individuals,τ: represents the recovery rate of individuals who are infected of Pneumonia per capita,π: represents the rate of developing symptoms by carriers,η: represents the rate of treated individuals becoming susceptible,γ: represents the rate of susceptible individuals getting vaccinated,ω: represents the rate of treated individuals having vaccinated,ω:represents the coefficient of transmission for the carrier subgroup,δ: represents the rate of transmission,p: represents the probability that shows a contact is efficient enough to cause infection,k:represents the rate of contact.The governing equations of the model are as follows:

    2.1 Fundamental Properties of Model

    We consider all parameters positive and show that the solution is bounded inΨ={(S,C,I,R)?0 ≤N≤=S+C+I+R.

    Lemma 1:The initial values{S(0),C(0),I(0),R(0)}∈Ψ,then the solution set{S(t),C(t),I(t),R(t)}is positive of allt≥0.

    Proof:From Eq.(1),we have

    So,S ≥0 similarly shows that for Eqs.(2)-(4)

    Lemma 2:The solution of the model equation in(1-4)are bounded inΨfor allt≥0.

    Proof:Firstly,adding the Eqs.(1)-(4)as follows:

    whereN0is the initial condition ofN,

    So,limt→∞Sup N(t)≤.This show that 0 ≤N≤andN=S+C+I+R,then all variable is bounded inΨ.

    2.2 Steady States of Pneumonia Model

    3 Reproduction Number of Pneumonia Model

    The next-generation matrix method is presented for the system(1-4).We calculate two types of matrices like transmission and transition after assuming the disease-free equilibrium as follows:

    whereKa=(μ+β+π),Kb=τ+μ+σ.

    The spectral radius of the model is denoted by.

    4 Local Stability

    Theorem:The disease-free equilibrium of model (1-4) is locally asymptotically stable if the reproduction number is less than one and unstable if it is greater than one.

    Proof:To prove the local asymptotically stable disease-free equilibrium, we take the Jacobian matrix of SCIR Model of pneumonia model at disease-free equilibrium.To show that trace is less than zero and a determinant greater than zero.

    where,Ka=(μ+β+π),Kb=τ+μ+σ.

    trace(J)=-μ-Ka-Kb-(μ+η)=-(2μ+Ka+Kb+η)〈0, det(J)=-μ(-KaKb(μ+η))〉0.where-(2μ+Ka+Kb+η <0).

    Be not be negative andδ[Ka (1-θ)+θ(ωKb+π)]is positive and alsoKaKb >0 and we note that determinant(J)also positive,which is-μ(-KaKb(μ+η)) >0,thus we have

    The above discussion is about the matrixJ, a trace is less than zero and a determinant greater than zero.So,the disease-free equilibrium point is locally asymptotically stable ifR0<1.

    Theorem:If the reproduction number is greater than one, then the endemic equilibrium of the model Eqs.(1)-(4)is locally asymptotically stable inΨ.

    Proof:The Jacobian matrix at endemic equilibrium is as follows:

    whereKa=(μ+β+π),Kb=τ+μ+σ.

    P(λ)=λ4+c1λ3+c2λ2+c3λ+c4

    wherec1= 2μ+η+Ka+Kb+α1,c2=(η+μ)(Ka+Kb+α1+μ)+KaKb+(α1+μ)(Ka+Kb),c3=KaKb(η+μ)+(Ka+Kb)(α1+μ)(η+μ)+KaKb(α1+μ)+ητα1(1-θ)+ηβθα1,c4=KaKb(α1+μ)(η+μ)+ηα1τθπ+ηKaα1τ(1-θ)+α1Kaηβθ.

    By using Routh Hurwitz method for order 4thas follows:

    The endemic equilibrium is locally asymptotically stable for the reproduction number greater than one if

    5 Computing Techniques

    In this section,we present the well-known techniques like Euler,Runge Kutta,and non-standard finite difference for the system(1-4)as follows:

    5.1 Euler Technique

    The system(1-4)is described under Euler technique,as follows:

    where the time step is represented by h.

    5.2 Runge-Kutta Technique

    The system(1-4)is described under Runge Kutta technique,as follows:

    Stage 1:

    N1=h[-βCn+τIn-(μ+η)Rn]

    Stage 2:

    Stage 3:

    Stage 4:

    N4=h[β(Cn+N3)+τ(In+M3)-(μ+η)(Rn+L3)].

    Final stage:

    where the time step is represented by h.

    3 Non-standard Finite Difference Technique

    The system(1-4)is described under NSFD technique,as follows:

    where the time step is represented by h.

    5.4 Convergence Analysis

    Theorem:The computing technique of the proposed system(10-13)is stable for anyn≥0 if the absolute eigenvalues are less than one[40].

    Proof:We considerF1,F2,F3,andF4from Eqs.(10)-(13),as follows:

    The Jacobian matrix is defined as

    The eigenvalues of the Jacobian matrix are

    Lemma 3:For the quadratic equationλ2-- P1λ+ P2= 0 ,|λi|<1, i = 1, 2,if and only if the following conditions are satisfied:

    (i).1+P1+P2>0

    (ii).1-P1+P2>0

    (iii).P2<1.

    5.5 Computing Results

    In this section,we investigate the computing results for the said model with the help of computer software and the scientific literature presented in Tab.1 as follows:

    Table 1: Values of parameters

    Figure 1:Combined graphical behaviors for DFE and EE at different subpopulations of the pneumonia disease(a)subpopulations for DFE at any time t(b)subpopulations for EE at any time t

    Figure 2:Euler method for the behavior of infected individuals at different time-step sizes(a)infected individuals at h=0.01(b)infected individuals at h=0.8

    Figure 3: Runge Kutta method for the behavior of carrier individuals at different time-step sizes (a)carrier individuals at h=0.01(b)carrier individuals at h=0.9

    Figure 4:NSFD method for the behavior of carrier individuals at different time-step sizes(a)carrier individuals at h=0.01.(b)carrier individuals at h=100

    5.6 Comparison Section

    Figure 5:Combined graphical behaviors of NSFD with Euler and Runge Kutta methods at different time-step sizes(a)infective individuals for EE at h=0.01(Euler and NSFD)(b)infective individuals for EE at h = 3 (Euler and NSFD) (c) infective individuals for EE at h = 0.01(Runge Kutta and NSFD)(d)infective individuals for EE at h=3(Runge Kutta and NSFD)

    6 Results and Discussion

    We present the solution to the system (1-4) via Matlab ordinary differential equations-45 at disease-free and endemic equilibria of the model in Figs.1a and 1b.Also,the solutions of the system(5-8) via the Euler method at different time step sizes are in Figs.2a and 2b.The solution of the system(9)via the Runge Kutta method at different time step sizes is in Figs.3a and 3b.In the same,we plot the solutions of the system (10-13) via the NSFD method in Figs.4a and 4b.In Figs.5a-5d, the comparison section shows the investigation of computer methods such as Euler and Runge Kutta with NSFD approximations.Here,we observe that Euler and Runge Kutta show negativity and unboundedness and violate the dynamical properties of the model.However,our proposed numerical approximation is reliable, inexpensive, independent of the time step, and an efficient computational method.

    7 Conclusion

    We here investigated analyses of pneumonia infections via well-known computing techniques.Computer results of epidemic models are an authentic tool to cross-check the dynamical analysis of the model.For the sake of computational analysis, Euler, Runge Kutta, and the non-standard finite difference techniques(NSFD)are presented.Throughout the analysis,we observe that Euler and Runge Kutta are time-dependent techniques.Even when we increase the duration of the time step,these techniques violate such dynamic properties as positivity, boundedness, and dynamical consistency.However,NSFD is always convergent and independent of the size of the time step.These things could be observed from the comparison section.This idea could be extended to different types of disease modeling.

    Acknowledgement:We thank LetPub (www.letpub.com) for its linguistic assistance during the preparation of this manuscript.

    Funding Statement:The authors received no specific funding for this study.

    Conflicts of Interest:The authors declare that they have no conflicts of interest to report regarding the present study.

    亚洲中文字幕一区二区三区有码在线看| 国产亚洲精品久久久com| 麻豆精品久久久久久蜜桃| 黄色欧美视频在线观看| 欧美日韩综合久久久久久| 日本色播在线视频| 美女xxoo啪啪120秒动态图| 亚洲av免费高清在线观看| 国产久久久一区二区三区| 免费看光身美女| 日本五十路高清| 婷婷色综合大香蕉| 国产精品,欧美在线| 天堂动漫精品| 九九久久精品国产亚洲av麻豆| 一进一出好大好爽视频| 天堂√8在线中文| 我要看日韩黄色一级片| av在线播放精品| 国产成人影院久久av| 国产成人aa在线观看| 在线免费观看不下载黄p国产| 久久精品国产99精品国产亚洲性色| 精品99又大又爽又粗少妇毛片| 午夜久久久久精精品| 国产激情偷乱视频一区二区| 成人高潮视频无遮挡免费网站| 免费看a级黄色片| 亚洲av成人av| 日韩 亚洲 欧美在线| 欧美最黄视频在线播放免费| 大型黄色视频在线免费观看| a级毛片a级免费在线| 精品人妻熟女av久视频| 亚洲丝袜综合中文字幕| 国产成人精品久久久久久| 国产私拍福利视频在线观看| 最近在线观看免费完整版| 国产aⅴ精品一区二区三区波| 国产黄片美女视频| 亚洲一级一片aⅴ在线观看| 少妇猛男粗大的猛烈进出视频 | 亚洲欧美精品综合久久99| 亚洲性久久影院| 免费看a级黄色片| 我要看日韩黄色一级片| 人妻久久中文字幕网| 免费看光身美女| 婷婷色综合大香蕉| 午夜老司机福利剧场| 久久精品国产亚洲av天美| 婷婷亚洲欧美| 日本 av在线| 少妇猛男粗大的猛烈进出视频 | .国产精品久久| 久久这里只有精品中国| 午夜免费激情av| 国产aⅴ精品一区二区三区波| 九九在线视频观看精品| 99在线人妻在线中文字幕| 国产精品嫩草影院av在线观看| 国产高清三级在线| 精品一区二区三区人妻视频| 久久久久久大精品| 国产v大片淫在线免费观看| 免费看光身美女| www日本黄色视频网| 亚洲七黄色美女视频| 色av中文字幕| 在线a可以看的网站| 国产蜜桃级精品一区二区三区| 六月丁香七月| 日韩大尺度精品在线看网址| 国产精品综合久久久久久久免费| 免费看美女性在线毛片视频| 女的被弄到高潮叫床怎么办| 国产毛片a区久久久久| 一a级毛片在线观看| 毛片一级片免费看久久久久| 十八禁国产超污无遮挡网站| ponron亚洲| 九九热线精品视视频播放| 少妇熟女欧美另类| 又黄又爽又免费观看的视频| 国产高清激情床上av| 美女内射精品一级片tv| 国内精品久久久久精免费| 一区二区三区高清视频在线| 黄色视频,在线免费观看| 国产视频内射| 日韩国内少妇激情av| 久久国产乱子免费精品| 99riav亚洲国产免费| 亚洲av成人精品一区久久| 人妻夜夜爽99麻豆av| 女生性感内裤真人,穿戴方法视频| 欧美xxxx性猛交bbbb| 91在线观看av| 婷婷六月久久综合丁香| 俺也久久电影网| 中文字幕久久专区| 日韩一本色道免费dvd| 91久久精品国产一区二区三区| 在线看三级毛片| 亚洲欧美成人精品一区二区| 午夜福利18| 日本爱情动作片www.在线观看 | 久久久久久久久久黄片| 国产中年淑女户外野战色| 亚洲欧美成人精品一区二区| 男女做爰动态图高潮gif福利片| 一区二区三区免费毛片| 日韩一区二区视频免费看| 神马国产精品三级电影在线观看| 我要搜黄色片| 久久久久精品国产欧美久久久| 日本黄色视频三级网站网址| 日韩强制内射视频| 亚洲不卡免费看| 日本黄色视频三级网站网址| 美女xxoo啪啪120秒动态图| 女的被弄到高潮叫床怎么办| 亚洲人成网站在线播放欧美日韩| 国产一区二区在线av高清观看| 国产中年淑女户外野战色| 久久精品国产亚洲av涩爱 | 性插视频无遮挡在线免费观看| 精品久久久久久久久久久久久| 精品一区二区三区视频在线观看免费| 少妇的逼好多水| 非洲黑人性xxxx精品又粗又长| 精品少妇黑人巨大在线播放 | av中文乱码字幕在线| 最近中文字幕高清免费大全6| 亚洲国产精品久久男人天堂| 日本免费一区二区三区高清不卡| 黄色视频,在线免费观看| 成熟少妇高潮喷水视频| 亚洲成人久久性| 免费不卡的大黄色大毛片视频在线观看 | 亚洲天堂国产精品一区在线| 午夜视频国产福利| 亚洲电影在线观看av| www日本黄色视频网| 中文字幕熟女人妻在线| 春色校园在线视频观看| 亚洲精品乱码久久久v下载方式| 欧美日本视频| 22中文网久久字幕| 一进一出好大好爽视频| 岛国在线免费视频观看| 国产视频内射| 看片在线看免费视频| 国产成人精品久久久久久| 亚洲av美国av| 色视频www国产| 国产成人freesex在线 | 国产精品亚洲美女久久久| 搡女人真爽免费视频火全软件 | 亚洲精品一卡2卡三卡4卡5卡| 亚州av有码| 秋霞在线观看毛片| 日本成人三级电影网站| 中文字幕熟女人妻在线| 又黄又爽又刺激的免费视频.| 精品人妻偷拍中文字幕| 国产精品久久久久久av不卡| 亚洲精华国产精华液的使用体验 | 99久久无色码亚洲精品果冻| 中文字幕久久专区| 精品国产三级普通话版| 99热6这里只有精品| 白带黄色成豆腐渣| 成人特级av手机在线观看| 亚洲精品456在线播放app| 国产亚洲精品久久久久久毛片| 九色成人免费人妻av| 国产69精品久久久久777片| 免费av不卡在线播放| 精品久久久久久久久av| 久久久久久久久久久丰满| 久久热精品热| 97热精品久久久久久| 真人做人爱边吃奶动态| 国产精品久久久久久精品电影| 久久午夜亚洲精品久久| 国产成人a区在线观看| 亚洲人成网站在线观看播放| 亚洲精品456在线播放app| 久久久久免费精品人妻一区二区| 久久热精品热| 亚洲精品国产成人久久av| 夜夜夜夜夜久久久久| 亚洲欧美日韩东京热| av国产免费在线观看| а√天堂www在线а√下载| 成年av动漫网址| 国产黄片美女视频| 亚洲欧美日韩无卡精品| 久久久精品94久久精品| 99久国产av精品国产电影| 看黄色毛片网站| 日韩人妻高清精品专区| 久久久久久久午夜电影| 久99久视频精品免费| 中文在线观看免费www的网站| 99久久九九国产精品国产免费| 精华霜和精华液先用哪个| 久久韩国三级中文字幕| 91精品国产九色| 老熟妇乱子伦视频在线观看| 国产精品av视频在线免费观看| 久久久久国内视频| 女人被狂操c到高潮| 麻豆一二三区av精品| 国产精品久久久久久久电影| 久久精品夜夜夜夜夜久久蜜豆| av在线播放精品| 人妻久久中文字幕网| 特级一级黄色大片| 久久人人精品亚洲av| 午夜a级毛片| a级毛片a级免费在线| 亚洲精品国产av成人精品 | 国产黄片美女视频| 婷婷六月久久综合丁香| 午夜老司机福利剧场| 天堂影院成人在线观看| 亚洲电影在线观看av| 噜噜噜噜噜久久久久久91| 欧洲精品卡2卡3卡4卡5卡区| 国产精品无大码| 日韩亚洲欧美综合| 在线观看66精品国产| 乱人视频在线观看| 国产午夜精品论理片| 亚洲av免费在线观看| 老司机午夜福利在线观看视频| 身体一侧抽搐| 国产成人影院久久av| 搞女人的毛片| 国产一区亚洲一区在线观看| 国产美女午夜福利| 久久久久久久久久成人| 波多野结衣高清无吗| a级毛片免费高清观看在线播放| 亚洲欧美日韩高清专用| 亚洲av成人精品一区久久| 国产免费一级a男人的天堂| 亚洲精品色激情综合| 精品欧美国产一区二区三| 精品国内亚洲2022精品成人| 成人毛片a级毛片在线播放| 九九热线精品视视频播放| 欧美色欧美亚洲另类二区| 两性午夜刺激爽爽歪歪视频在线观看| 免费看a级黄色片| 嫩草影院新地址| 九九爱精品视频在线观看| 欧美区成人在线视频| 黑人高潮一二区| 亚洲欧美清纯卡通| 成人美女网站在线观看视频| 欧美日韩一区二区视频在线观看视频在线 | 免费看美女性在线毛片视频| 老司机午夜福利在线观看视频| 大香蕉久久网| 久久久成人免费电影| 男插女下体视频免费在线播放| 亚洲三级黄色毛片| 天天躁夜夜躁狠狠久久av| 久久久精品欧美日韩精品| 性欧美人与动物交配| 大香蕉久久网| 国产精品免费一区二区三区在线| 国产国拍精品亚洲av在线观看| 久久久久久久久大av| 性插视频无遮挡在线免费观看| 成年av动漫网址| 波野结衣二区三区在线| 高清日韩中文字幕在线| 日韩亚洲欧美综合| 久久久久久久久中文| 亚洲美女黄片视频| 99国产精品一区二区蜜桃av| 亚洲美女搞黄在线观看 | 国产精品三级大全| 麻豆av噜噜一区二区三区| 国产探花极品一区二区| 色噜噜av男人的天堂激情| 狠狠狠狠99中文字幕| 亚洲国产精品国产精品| 3wmmmm亚洲av在线观看| 亚洲欧美精品综合久久99| 蜜臀久久99精品久久宅男| av女优亚洲男人天堂| 熟女电影av网| 久久久久九九精品影院| 国产高清不卡午夜福利| 六月丁香七月| av福利片在线观看| 一区二区三区免费毛片| 亚洲专区国产一区二区| 嫩草影院入口| 婷婷精品国产亚洲av| 最近中文字幕高清免费大全6| 亚洲精华国产精华液的使用体验 | 精品人妻熟女av久视频| 国产精品综合久久久久久久免费| av女优亚洲男人天堂| 夜夜看夜夜爽夜夜摸| 一个人观看的视频www高清免费观看| 国产伦在线观看视频一区| 91久久精品国产一区二区三区| 精品国内亚洲2022精品成人| 少妇的逼好多水| 久久久久久久亚洲中文字幕| 日韩三级伦理在线观看| 天堂网av新在线| 91麻豆精品激情在线观看国产| 精品99又大又爽又粗少妇毛片| 亚洲国产精品sss在线观看| 在线看三级毛片| 大型黄色视频在线免费观看| 国产欧美日韩一区二区精品| 尾随美女入室| 精品一区二区免费观看| 熟女人妻精品中文字幕| 99久久九九国产精品国产免费| 麻豆国产97在线/欧美| 久久久久性生活片| 欧美最新免费一区二区三区| 日韩欧美三级三区| 欧美色欧美亚洲另类二区| 免费无遮挡裸体视频| 国产精品一区二区三区四区久久| 久久人人爽人人片av| 免费无遮挡裸体视频| 精品久久久久久久久av| 亚洲久久久久久中文字幕| 国产高潮美女av| 69人妻影院| 国产色爽女视频免费观看| 久久欧美精品欧美久久欧美| 国产高清有码在线观看视频| 国产色爽女视频免费观看| 日本五十路高清| 男插女下体视频免费在线播放| 内射极品少妇av片p| 国产成年人精品一区二区| 久久人人爽人人片av| 黄色日韩在线| 日韩强制内射视频| 真实男女啪啪啪动态图| 2021天堂中文幕一二区在线观| 最近中文字幕高清免费大全6| 淫妇啪啪啪对白视频| 2021天堂中文幕一二区在线观| 男人的好看免费观看在线视频| 真人做人爱边吃奶动态| 男人舔女人下体高潮全视频| 简卡轻食公司| 亚洲色图av天堂| 99在线人妻在线中文字幕| 免费黄网站久久成人精品| 天天躁夜夜躁狠狠久久av| 久久午夜福利片| 中文资源天堂在线| www日本黄色视频网| 亚洲欧美清纯卡通| 免费看光身美女| 麻豆国产97在线/欧美| 国产aⅴ精品一区二区三区波| 国产精品无大码| 国产欧美日韩一区二区精品| 99久久九九国产精品国产免费| 综合色av麻豆| 国产乱人偷精品视频| 亚洲av中文av极速乱| 久久天躁狠狠躁夜夜2o2o| 国产亚洲精品综合一区在线观看| 一进一出好大好爽视频| 麻豆av噜噜一区二区三区| 三级国产精品欧美在线观看| 日本a在线网址| 久久久久免费精品人妻一区二区| 亚洲成人久久性| 午夜福利在线观看免费完整高清在 | 国产亚洲欧美98| 三级男女做爰猛烈吃奶摸视频| 日韩强制内射视频| 蜜桃亚洲精品一区二区三区| 国产乱人视频| 国产精华一区二区三区| 天天一区二区日本电影三级| 免费高清视频大片| 老女人水多毛片| 美女大奶头视频| 亚洲欧美日韩高清专用| 免费av不卡在线播放| 男女之事视频高清在线观看| 啦啦啦观看免费观看视频高清| 久久精品久久久久久噜噜老黄 | 国内少妇人妻偷人精品xxx网站| 久久天躁狠狠躁夜夜2o2o| 欧美激情国产日韩精品一区| 免费高清视频大片| 一级av片app| 国产三级中文精品| 精品人妻熟女av久视频| 看十八女毛片水多多多| 校园人妻丝袜中文字幕| 日日摸夜夜添夜夜添av毛片| 日韩av免费高清视频| 国产高清三级在线| 人人妻人人澡人人看| 国产淫片久久久久久久久| 国产成人精品久久久久久| 黄色怎么调成土黄色| 18+在线观看网站| 免费久久久久久久精品成人欧美视频 | 欧美最新免费一区二区三区| 高清不卡的av网站| 国产一区二区三区综合在线观看 | 久久国产乱子免费精品| 少妇 在线观看| 久久人妻熟女aⅴ| 日日爽夜夜爽网站| 国产淫语在线视频| 一级毛片 在线播放| 三上悠亚av全集在线观看 | 自线自在国产av| 观看av在线不卡| 少妇熟女欧美另类| 91久久精品电影网| 99久久精品国产国产毛片| 人体艺术视频欧美日本| 有码 亚洲区| 国产精品久久久久久久久免| 久久99一区二区三区| 中文字幕精品免费在线观看视频 | 久久久久视频综合| 啦啦啦啦在线视频资源| 肉色欧美久久久久久久蜜桃| 99九九线精品视频在线观看视频| 在线观看一区二区三区激情| 国产欧美日韩综合在线一区二区 | 国产熟女欧美一区二区| 久久久久久久精品精品| 蜜桃在线观看..| 中国国产av一级| a级一级毛片免费在线观看| 各种免费的搞黄视频| 亚洲美女搞黄在线观看| 久久免费观看电影| 51国产日韩欧美| 欧美精品一区二区大全| 高清欧美精品videossex| 国产男女超爽视频在线观看| 丰满少妇做爰视频| 免费观看av网站的网址| 亚洲va在线va天堂va国产| 人体艺术视频欧美日本| 一本久久精品| 亚洲av二区三区四区| 国产成人a∨麻豆精品| 国产午夜精品一二区理论片| a级毛片免费高清观看在线播放| 久热这里只有精品99| 国产一区亚洲一区在线观看| 亚洲国产毛片av蜜桃av| 最近最新中文字幕免费大全7| 久久精品国产鲁丝片午夜精品| www.色视频.com| 久久久久久久亚洲中文字幕| 各种免费的搞黄视频| 日日啪夜夜爽| 成人国产麻豆网| 男人狂女人下面高潮的视频| 免费人妻精品一区二区三区视频| 丝袜脚勾引网站| 亚洲av二区三区四区| 美女福利国产在线| 国产精品久久久久久久电影| 久久国内精品自在自线图片| 纵有疾风起免费观看全集完整版| 日本欧美国产在线视频| 大话2 男鬼变身卡| 曰老女人黄片| 亚洲第一区二区三区不卡| av国产精品久久久久影院| av有码第一页| 久久97久久精品| 岛国毛片在线播放| 卡戴珊不雅视频在线播放| 日本黄色日本黄色录像| 视频中文字幕在线观看| 岛国毛片在线播放| av卡一久久| 成人亚洲欧美一区二区av| 91精品伊人久久大香线蕉| 国产毛片在线视频| av又黄又爽大尺度在线免费看| 亚洲国产毛片av蜜桃av| 国产男人的电影天堂91| 麻豆成人午夜福利视频| 亚洲精品aⅴ在线观看| 最近2019中文字幕mv第一页| 汤姆久久久久久久影院中文字幕| 亚洲国产色片| 亚洲精品视频女| 少妇人妻精品综合一区二区| 一级,二级,三级黄色视频| 国产乱来视频区| 亚洲熟女精品中文字幕| 亚洲国产成人一精品久久久| 精品国产乱码久久久久久小说| 久久久久久久国产电影| 亚洲欧美成人综合另类久久久| 在线亚洲精品国产二区图片欧美 | 精品国产乱码久久久久久小说| 在线亚洲精品国产二区图片欧美 | 五月伊人婷婷丁香| 久久久久国产精品人妻一区二区| 国产极品天堂在线| 亚洲国产成人一精品久久久| 99热国产这里只有精品6| 国产一级毛片在线| av福利片在线| 超碰97精品在线观看| 亚洲av成人精品一二三区| 久久久a久久爽久久v久久| 各种免费的搞黄视频| 国产色爽女视频免费观看| 国产欧美另类精品又又久久亚洲欧美| 国产乱人偷精品视频| 亚洲国产欧美在线一区| 男女无遮挡免费网站观看| 国产精品久久久久久久电影| 午夜91福利影院| 人体艺术视频欧美日本| 国产在视频线精品| 永久网站在线| 成年人午夜在线观看视频| 久久热精品热| 亚洲人与动物交配视频| 国产精品国产三级专区第一集| 国产精品一区www在线观看| 亚洲av中文av极速乱| 免费看av在线观看网站| 国产一区二区在线观看av| 中文字幕久久专区| 欧美性感艳星| 国产成人一区二区在线| 久久97久久精品| 熟女电影av网| 欧美xxxx性猛交bbbb| 国产精品无大码| 丝袜在线中文字幕| 精品一区二区免费观看| 欧美精品高潮呻吟av久久| 精品久久久久久久久av| 国产伦在线观看视频一区| 久久国产亚洲av麻豆专区| 熟女电影av网| 国产精品99久久99久久久不卡 | 亚洲av二区三区四区| 亚洲综合精品二区| 欧美精品一区二区大全| a级毛色黄片| 在线精品无人区一区二区三| 国产男女超爽视频在线观看| 久久人妻熟女aⅴ| av不卡在线播放| 精品亚洲成国产av| 亚洲精品乱码久久久久久按摩| 亚洲精品第二区| 久久国内精品自在自线图片| 亚洲欧美日韩另类电影网站| 丰满乱子伦码专区| 精品久久久精品久久久| 在线观看一区二区三区激情| 成人亚洲欧美一区二区av| 免费观看无遮挡的男女| 日本黄大片高清| 又大又黄又爽视频免费| 日韩欧美精品免费久久| 国产色爽女视频免费观看| 最新的欧美精品一区二区| 男男h啪啪无遮挡| 国产精品嫩草影院av在线观看| 高清视频免费观看一区二区| 精品一区在线观看国产| 亚洲av电影在线观看一区二区三区| 大片免费播放器 马上看| 男的添女的下面高潮视频| 国产精品久久久久久久电影| 国产一区二区在线观看日韩| 久久午夜综合久久蜜桃| 精品人妻一区二区三区麻豆| 国产真实伦视频高清在线观看| 婷婷色av中文字幕| 两个人免费观看高清视频 | 国产成人freesex在线| 女人精品久久久久毛片| 啦啦啦视频在线资源免费观看| 五月玫瑰六月丁香| 国产精品99久久99久久久不卡 | 国产av码专区亚洲av| 我要看日韩黄色一级片| 99久国产av精品国产电影| videos熟女内射| 一级a做视频免费观看| 特大巨黑吊av在线直播| 少妇被粗大的猛进出69影院 |