• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Intelligent Deep Learning Based Disease Diagnosis Using Biomedical Tongue Images

    2022-03-14 09:26:04ThanikachalamShanthiKalirajanSayedAbdelKhalekMohamedOmriandLotfiLadhar
    Computers Materials&Continua 2022年3期

    V.Thanikachalam,S.Shanthi,K.Kalirajan,Sayed Abdel-Khalek,Mohamed Omri and Lotfi M.Ladhar

    1Sri Sivasubramaniya Nadar College of Engineering,Chennai,603110,India

    2Department of Information Technology,Department of Electronics and Communication Engineering,CARE College of Engineering,Tiruchirappalli,620009,India

    3Department of Electronics and Communication Engineering,KPR Institute of Engineering and Technology,Coimbatore,641407,India

    4Department of Mathematics and Statistics,College of Science,Taif University,P.O.Box 11099,Taif 21944,Saudi Arabia

    5Mathematics Department,Faculty of Science,Sohag University,Sohag,Egypt

    6Deanship of Scientific Research,King Abdulaziz University,Jeddah,Saudi Arabia

    7Department of Electrical and Computer Engineering,Faculty of Engineering,King Abdulaziz University,Jeddah,Saudi Arabia

    Abstract: The rapid development of biomedical imaging modalities led to its wide application in disease diagnosis.Tongue-based diagnostic procedures are proficient and non-invasive in nature to carry out secondary diagnostic processes ubiquitously.Traditionally, physicians examine the characteristics of tongue prior to decision-making.In this scenario,to get rid of qualitative aspects, tongue images can be quantitatively inspected for which a new disease diagnosis model is proposed.This model can reduce the physical harm made to the patients.Several tongue image analytical methodologies have been proposed earlier.However,there is a need exists to design an intelligent Deep Learning (DL) based disease diagnosis model.With this motivation,the current research article designs an Intelligent DL-based Disease Diagnosis method using Biomedical Tongue Images called IDLDD-BTI model.The proposed IDLDD-BTI model incorporates Fuzzy-based Adaptive Median Filtering(FADM) technique for noise removal process.Besides, SqueezeNet model is employed as a feature extractor in which the hyperparameters of SqueezeNet are tuned using Oppositional Glowworm Swarm Optimization(OGSO) algorithm.At last, Weighted Extreme Learning Machine (WELM)classifier is applied to allocateproper class labels for input tongue color images.The design of OGSO algorithm for SqueezeNet model shows the novelty of the work.To assess the enhanced diagnostic performance of the presented IDLDD-BTI technique,a series of simulations was conducted on benchmark dataset and the results were examined in terms of several measures.The resultant experimental values highlighted the supremacy of IDLDD-BTI model over other state-of-the-art methods.

    Keywords: Biomedical images; image processing; tongue color image; deep learning; squeezenet; disease diagnosis

    1 Introduction

    For a long-known time, human tongue is assessed visually for signs and symptoms of diseases,since it is a non-invasive approach.Conventionally, medical experts observe its features while the diagnosis outcomes depend upon their years of experience [1].But, subjectivity and ambiguity affect the results of such visual diagnosis.In order to eliminate such qualitative factors, tongue images are examined objectively for which a novel method is provided for disease diagnosis.Such model can also reduce the physical damage caused to persons (related to other medical investigations).In advanced computerized tongue image analyses, texture and colour features are more commonly observed [2].There has been no or only few studies conducted upon tongue image analyses utilizing geometry features.However, conventional medicines like Traditional Chinese medicine (TCM) assess the shape of tongue to determine a person’s disease.The study conducted earlier [3] presented a method to manually identify the shapes of tongue depending on geometric features.With the help of support decision tool, it weighs the comparative effects of geometric features and categorizes the tongue image under one out of six tongue shapes such as, rectangle,hammer, obtuse triangle, acute triangle, round, and square (on the basis of TCM).The combination of signal decomposition with dimension reduction techniques along with neural networks also provide good accuracy for both subject dependent and independent disease diagnosis using biomedical images [4].

    Few disease diagnosis systems make decisions based on distinct features extracted during feature extraction phase [5].So, the quality of output is straightaway compared with the segmented tongue image present in the source.Thus, it is crucial to perform accurate and quick tongue image segmentation.So far, several automated tongue image segmentation methods have been presented based on detailed systems [6].Especially, Bi-Elliptical Deformable Contour (BEDC)integrates module-based methods and Active Contour Models (ACM).In comparison with other techniques, this technique attained significant segmentation outcomes.Its segmentation quality was heavily based on few preceding knowledge and is sensitive to location and early curves present in the tongue.In order to confront this, Ning et al.[7] substituted module-based methods with the help of region merging approach in order to obtain coarse segmentation outcomes.ACM was utilized in this study for post-processing phase to attain improved segmentation efficiency related to BEDC.Though, earlier researchers [8] depend mostly on existing knowledge, the location data of early markers must be defined manually.Wu et al.[9] implemented an edge and region-based combinational method which could additionally eliminate the impact of nearby artefact in tongue and accordingly increase the results and strength of boost segmentation.Hence, this technique displayed weak strength in several situations.Particularly, the segmentation result was poor, if tongue poses are uneven and if the tongue is nearly shadowed by the lips [10,11].

    Li et al.[12] proposed a simple and efficient tongue image segmentation system.At first,this technique extracts the primary tongue body areas with the performance of image threshold on transformed hue component in HSI colour space.Then, the image threshold results in red component of the actual tongue image which is chosen in an adaptive way to detect the gap between upper lip and tongue body root.At last, the primary body part of the tongue is established by eliminating fake object areas, for instance upper lip, so as to attain the latter tongue image segmentation outcome.Zhang et al.[13] improved a disease diagnoses approach for diabetes in accordance with regularized tongue image by SVM.The texture and colour features of the tongue image are extracted and used as input variables.Then, diabetes diagnosis method is trained using SVM.The study assessed the impact of this combination in improving the incorporation of SVM kernel parameter and input variable.

    Fan et al.[14] studied a number of tongue features in patients with gastric and diabetic symptoms.The researchers collected the images with the help of digital tongue imaging technique.During feature extraction, texture and four TCM tongue features were detected such as slenderness, coating colour, constitution colour, plumpness, and cracks.During classification, two distinct classification methods were utilized such as SVM & RF to categorize the symptoms of TCM & DM gastric diseases.Wang et al.[15] presented an AI structure with the help of DCNN framework to recognize tooth-marked tongue.Firstly, they made use of massive dataset containing 1548 tongue images captured by several tools.Meng et al.[16] presented an innovative feature extraction module termed CHDNet to extract unbiased features and reduce the human effort upon tongue diagnosis in TCM.CNN model is known to have primarily concentrated on learning convolution filter and adjusting the weights amongst itself.So, this model has two challenges such as inadequate ability & redundancy in dealing with unbalanced sample distribution.So, the researchers presented local response normalization and high dispersal function to address these problems.

    The current research article designs an Intelligent Deep Learning based Disease Diagnosis Model using Biomedical Tongue Images, called IDLDD-BTI model.The proposed IDLDD-BTI model incorporates fuzzy-based Adaptive Median Filtering (FADM) technique for noise removal process.Besides, SqueezeNet model is also employed as a feature extractor that tunes the hyperparameters of SqueezeNet model using Oppositional Glowworm Swarm Optimization (OGSO)algorithm.At last, Weighted Extreme Learning Machine (WELM) classifier is employed to allocate proper class labels to input tongue color images.In order to assess the improved diagnostic results of the presented IDLDD-BTI model, extensive experimental analysis was performed on benchmark dataset.

    2 The Proposed IDLDD-BTI Model

    Fig.1 shows the working principle involved in the presented IDLDD-BTI model.The presented IDLDD-BTI model incorporates FADM-based noise removal technique, SqueezeNet-based feature extractor, OGSO-based parameter tuning, and WELM-based classification.The detailed working processes of these modules are discussed in succeeding sections.

    2.1 FADM Based Preprocessing

    During pre-processing stage, FADM technique is employed to remove the noise.Binary decision mapB(u,v)performs as ‘switch’to turn on the filters, if a noise pixel is distinguished.For instance,B(u,v)=0.Then, the filtering act is skipped, ifB(u,v)=1 and

    (1) Define the amount of noise-free pixelG(u,v)and calculate the number of ‘1s’inB(u,v)

    (2) DevelopWf(u,v)with 1 pixel at one of its each four sides(i.e.,Lf=Lr+1), ifG(u,v)<1.Repeating steps 1 and 2, still the conditionG(u,v)≥1 is fulfilled.

    (3) Estimate the median pixelM(u,v)with the help of every noise-free pixel from current(u,v).The median pixelM(u,v)is provided herewith.

    m(u,v)=median{x(u+p,v+q)}withB(t)(u+p,v+q)=1

    4.Compute the variance between central pixel and the neighboring pixels from filtering window [17].

    Figure 1: Overall process of IDLDD-BTI model

    Based on:

    where

    whereT1andT2are two existing thresholds.

    6.Calculate the restoration termy(u,v)as follows:

    2.2 Squeezenet Based Feature Extraction

    SqueezeNet is a convolutional network that applies optimum efficiency than AlexNet with 50× smaller parameter.It has 15 layers with five distinct layers as two convolutional layers,three max pooling layers, eight fire layers, one global average pooling layer, and one output layer softmax.The structure of network is shown in Fig.2.As demonstrated in the figure, K×K notations signify the receptive field size of filter, ‘s’implies the stride sizes and l represents the length of the feature map, correspondingly.The input of networks consists of 227×227 dimensions with RGB channel.

    Figure 2: SqueezeNet architecture

    The generalization of input images by convolutional and max-pooling layers is executed.The convolutional layers get convoluted amongst weights as well as small regions from input volume,with 3×3 kernels.All the convolutional layers carry out an elementwise activation purpose as a positive part of their arguments [18].The outcome tensor scale and input of fire depend upon each other.The squeeze stage utilizes the filter sized 1×1, but the development utilizes the filter sized 1×1 and 3×3.Initially, an input tensorH×W×Cpermits with queeze and the amount of convolutional layers is equivalent toC/4 of the number of input tensor channels.

    Eventually, expansion outcomes are stacked from in-depth dimensions of input tensors by concatenating function.Fig.3 shows a review on fire layers and sub operations.Considering thatFMandCdetermine the feature maps and channels, the resultant layersf{y}of squeeze function with kernelware written as follows

    Figure 3: Structure of fire layer

    At this point,f{y}∈RNandw∈RC×1×FM2.The squeeze outcomes are determined as weighted combination of feature maps of distinct tensors.In the network, max-pool layers apply a down sampling function in addition with spatial dimensional and global average pool that altogether changes the feature maps of classes as to one value.

    2.3 OGSO-Based Parameter Tuning

    OGSO algorithm is employed in this study to adjust the hyperparameters involved in WELM model in an optimal manner.GSO is a smart swarm optimization method which is utilized on the basis of luminescent features of fireflies.In GSO method, glowworm swarm is dispersed in solution space and Fitness Function (FF) of all the positions of glowworm.The powerful glowworm shows the maximal brightness and its optimum location is made up of maximal FF rate.Glowworm has a vital line of sight called decision domain that has the density range for adjacent nodes.On the other hand, the decision radius is constrained, when glowworm travels to same kind of robust fluorescence in a decision domain.After obtaining high iteration values, all the glowworms are located in optimal position.It is limited by five stages:

    ? Fluoresce in concentration

    ? Neighbor set

    ? Decision domain radius

    ? Moving probability

    ? Glowworm position

    The fluorescence, in concentration upgrading technique, is given as follows.

    whereas lu(f)denotes the fluoresce in concentration of ithglowworm at time f,αindicates the fluoresce in volatilization coefficients,βrepresents the fluoresce in enhancement factor, f(x)signifies FF and xu(r)denotes the position of glowworm u at f time that is given by,

    Whereas Nu(f)denotes the neighbor group of uthglowworm at time r andrepresents the radius of decision field of uthglowworm at moment f which is given by

    Whereas rsrepresents the obtained radius of glowworm,γindicates the value of decision domain, and nidenotes the neighbor threshold.The moving likelihood of upgraded method is illustrated herewith.

    Whereas puv(z)represents likelihood in which the glowwormutravels towards the glowworm v at r time which is given by,

    Opposition Based Learning (OBL) is mainly employed from efficient optimization procedures to improve the convergence speed of distinct heuristic optimization modules.The efficient performance of OBL contributes in the evaluation of opposite and current populations in the same generation to identify an optimal candidate solution for the given problem.OBL module is efficiently employed in distinct metaheuristics to improve the speed of convergence.The module of the opposite amount should be described in OBL.

    Consider N ∈N[x,y] to be a real number.The opposite number N0is given by

    In the event of d dimension search space, the explanation may be extended as follows:

    where(N1,N2,...,Nd)denotes the d-dimensional search space and Ni[xi,yi], i=1,2,...,d.OBL technique is employed in the initiation procedure of GSO method and for all the iterations in the application of jumping rate.

    2.4 WELM Based Classification

    At the final stage, WELM classifier is applied to allocate proper class labels for the input tongue color images.ELM is utilized as the classifier of balanced dataset whereas WELM is utilized as a classifier for imbalanced dataset.Training dataset hasNdifferent instances,(xi,zi),i=1,2,...,N.A single hidden layer NN withLhidden layer nodes are written as given herewith.

    wherewirepresents a single hidden layer input weight,l()implies the activation functions,βirefers to output weights, andbistands for single hidden layers bias.Eq.(12) simply represents the notion discussed above.

    whereSimplies the output matrix of single hidden layers

    In accordance with Karush-Kuhn-Tucker theory, Lagrangian factor has been recognized in altering the trained ELM as a dual issue.The output weightsβis estimated as given herewith.

    whereCsignifies the regularization coefficients [19].Hence, the output functions of ELM classification is written as follows

    whereχimplies the kernel matrix which is computed as follows

    It is clear in (13) that the hidden layer feature mapss(x)implies the independence in classifier outcome of ELM.The classifier outcome is only connected with kernel functions,K(x,y)·K(x,y)assumes an inner product procedure, and the amount of hidden layer nodes are no outcome on output resultant.

    So, the KELM classifier efficiency is distributed into two parameters such as kernel function parameters,γand penalty parameters, C.The original benefits of ELM can be achieved in WELM too by maintaining the weight for different instances to deal with imbalanced classifier issues.The situation of output purpose is computed as given herewith.

    whereWrepresents the weight matrix.WELM has two weightage models as given below.

    where #(zi)implies the amount of instances going to classzi,i=1,...,m.mrepresents the amount of classes.zimplies the average of complete instances of each class.

    3 Performance Validation

    The proposed model was validated using tongue image dataset that comprises of images under different class labels namely Healthy, Chronic Kidney Disease (CKD), nephritis, verrucous gastritis, pneumonia, nephritis syndrome, chronic cerebral circulation insufficiency, upper respiratory tract infection, erosive gastritis, Coronary Heart Disease, chronic bronchitis and mixed hemorrhoid.The dataset includes 936 images with each class containing 78 images.Fig.4 depicts the sample test images from the dataset.The parameter setting of the SqueezeNet model is given as follows.Batch size: 500, max.epochs:15 , learning rate: 0.05, dropout rate: 0.2, and momentum:0.9.

    Tab.1 and Fig.5 shows a brief classification result attained by IDLDD-BTI technique with a training size of 60%.The outcomes exhibit that the proposed IDLDD-BTI model accomplished better results under all the runs.For instance, under run-1, the IDLDD-BTI model obtained a precision of 99.43%, recall of 99.40%, accuracy of 98.13%, F1-score of 98.97%, and kappa of 97.63%.At the same time, under run-3, the IDLDD-BTI model accomplished a precision of 98.47%, recall of 98.03%, accuracy of 98.23%, F1-score of 98.28%, and kappa of 97.97%.Moreover, under run-5, the IDLDD-BTI model obtained a precision of 98.77%, recall of 99.45%,accuracy of 99.32%, F1-score of 98.16%, and kappa of 98.89%.

    Figure 4: Sample tongue images

    Table 1: Performance analysis of the proposed IDLDD-BTI method with 60% training size under different measures

    Tab.2 and Fig.6 shows a brief classification results attained by IDLDD-BTI approach with 70% training size.The outcomes infer that IDLDD-BTI model accomplished optimum outcomes in all the runs.For instance, under run-1, the IDLDD-BTI model achieved a precision of 99.81%,recall of 95.75%, accuracy of 98.02%, F1-score of 99.03%, and kappa of 98.65%.Likewise, under run-3, the IDLDD-BTI model attained a precision of 98.88%, recall of 97.19%, accuracy of 98.54%, F1-score of 97.89%, and kappa of 97.49%.Also, under run-5, the IDLDD-BTI method accomplished a precision of 98.91%, recall of 96.56%, accuracy of 97.57%, F1-score of 98.69%,and kappa of 97.97%.

    Tab.3 and Fig.7 shows a detailed classification result attained by IDLDD-BTI algorithm with 80% training size.The outcomes demonstrate that the proposed IDLDD-BTI model accomplished optimal outcomes under all the runs.For instance, under run-1, the IDLDD-BTI model obtained a precision of 97.56%, recall of 98.33%, accuracy of 97.64%, F1-score of 97.07%, and kappa of 96.81%.Concurrently, under run-3, IDLDD-BTI model achieved a precision of 98.54%,recall of 99.31%, accuracy of 98.89%, F1-score of 96.25%, and kappa of 95.70%.In addition,under run-5, the IDLDD-BTI method yielded a precision of 96.55%, recall of 99.30%, accuracy of 98.23%, F1-score of 99.45%, and kappa of 98.15%.

    Figure 5: Results of the analysis of IDLDD-BTI model with 60% training size

    Table 2: Performance analysis of the proposed IDLDD-BTI method with 70% training size under different measures

    Figure 6: Result analysis of IDLDD-BTI model on training size of 70%

    Table 3: Performance analysis of proposed IDLDD-BTI method on training size = 80% in terms of different measures

    Figure 7: Result analysis of IDLDD-BTI model on training size of 80%

    Tab.4 and Fig.8 shows the average results of analysis of IDLDD-BTI technique under varying TS.The experimental outcomes infer that the presented IDLDD-BTI technique produced a maximum average precision of 98.55%, recall of 97.90%, accuracy of 98.23%, F1-score pf 98.28%, and kappa of 97.82%.

    Table 4: Performance analysis of the proposed IDLDD-BTI method under different training sizes and different measures

    Figure 8: Results of the analysis of IDLDD-BTI model under different training sizes

    A detailed comparative results of the analysis is shown in Tab.5 and Fig.9 to exhibit the improved diagnostic performance of IDLDD-BTI technique [20,21].From the results, it is evident that SIFT-Decision Tree and SIFT-SVM models produced ineffective results with minimal classification outcomes.Moreover, the LBP-Decision Tree model accomplished slightly improved classifier results over earlier models.Eventually, the LBP-SVM, VGG19-Random Forest, and VGG19-Gaussian NB models demonstrated moderately closer performances.However, the proposed IDLDD-BTI method outperformed other models by accomplishing a superior performance with maximal precision of 0.99, recall of 0.98, accuracy of 0.98, F1-score of 0.98, and kappa of 0.98.

    Table 5: Performance analysis of the proposed IDLDD-BTI model with recent methods under different measures

    Figure 9: Comparative analysis of IDLDD-BTI model with different measures

    4 Conclusion

    The current research article developed a new IDLDD-BTI method to diagnose the diseases using tongue color images.The presented IDLDD-BTI model incorporates FADM-based noise removal technique, SqueezeNet-based feature extractor, OGSO-based parameter tuning, and WELM-based classification.OGSO algorithm classifier helps in fine tuning the hyperparameters of SqueezeNet model in such a way that the diagnostic performance gets considerably increased to a maximum level.In order to verify the improved diagnostic results of the presented IDLDDBTI model, extensive experimental analysis was conducted using benchmark dataset.The resultant experimental values highlighted the supremacy of IDLDD-BTI model over existing state-of-the-art techniques.In future, the presented IDLDD-BTI model can be used as a smartphone application to diagnose patients from remote locations too.

    Funding Statement:This paper was funded by the Deanship of Scientific Research (DSR), King Abdulaziz University, Jeddah, Saudi Arabia, under grant No.(D-79-305-1442).The authors,therefore, gratefully acknowledge DSR technical and financial support.

    Conflicts of Interest:The authors declare that they have no conflicts of interest to report regarding the present study.

    亚洲av电影在线观看一区二区三区| 中文乱码字字幕精品一区二区三区| 国产精品一区二区精品视频观看| 国产片特级美女逼逼视频| 性色av一级| 亚洲专区中文字幕在线| 晚上一个人看的免费电影| 国产成人啪精品午夜网站| 少妇猛男粗大的猛烈进出视频| 我要看黄色一级片免费的| 国产免费一区二区三区四区乱码| √禁漫天堂资源中文www| 午夜福利一区二区在线看| 亚洲国产欧美日韩在线播放| 亚洲国产欧美日韩在线播放| 每晚都被弄得嗷嗷叫到高潮| 欧美亚洲日本最大视频资源| 亚洲欧美一区二区三区久久| 国产精品一区二区在线不卡| 99久久精品国产亚洲精品| 国产成人影院久久av| 精品少妇黑人巨大在线播放| 国产亚洲欧美在线一区二区| 久久免费观看电影| 波多野结衣一区麻豆| 免费观看av网站的网址| 亚洲欧美一区二区三区黑人| 老司机在亚洲福利影院| 一级毛片我不卡| 国产亚洲午夜精品一区二区久久| 成年女人毛片免费观看观看9 | 免费看不卡的av| 国产av一区二区精品久久| 国产av一区二区精品久久| 久久亚洲国产成人精品v| 亚洲国产精品国产精品| 亚洲专区中文字幕在线| 三上悠亚av全集在线观看| 韩国高清视频一区二区三区| 777久久人妻少妇嫩草av网站| 亚洲中文日韩欧美视频| 国产激情久久老熟女| 操出白浆在线播放| 久久99一区二区三区| 成在线人永久免费视频| av网站免费在线观看视频| 男女下面插进去视频免费观看| 色94色欧美一区二区| 亚洲第一青青草原| 午夜影院在线不卡| 丝袜喷水一区| 美女中出高潮动态图| 免费在线观看完整版高清| 高清视频免费观看一区二区| 精品亚洲成国产av| 超碰97精品在线观看| 久久精品亚洲熟妇少妇任你| 欧美日韩视频高清一区二区三区二| 啦啦啦在线观看免费高清www| 国产欧美日韩综合在线一区二区| 男的添女的下面高潮视频| 十八禁网站网址无遮挡| 91麻豆精品激情在线观看国产 | 高清av免费在线| 狂野欧美激情性xxxx| 桃花免费在线播放| 久久久精品国产亚洲av高清涩受| 国产国语露脸激情在线看| 国产人伦9x9x在线观看| 91九色精品人成在线观看| 一本大道久久a久久精品| 免费在线观看影片大全网站 | 丝袜喷水一区| 久久国产精品男人的天堂亚洲| 成年动漫av网址| 日韩精品免费视频一区二区三区| 丝瓜视频免费看黄片| 一边摸一边做爽爽视频免费| 夜夜骑夜夜射夜夜干| 亚洲欧美一区二区三区久久| 777久久人妻少妇嫩草av网站| 久热爱精品视频在线9| 日韩免费高清中文字幕av| 亚洲色图综合在线观看| 人人澡人人妻人| 日本猛色少妇xxxxx猛交久久| 菩萨蛮人人尽说江南好唐韦庄| 99精品久久久久人妻精品| 只有这里有精品99| 国产成人影院久久av| 久久精品亚洲av国产电影网| 成人黄色视频免费在线看| 操出白浆在线播放| 女人精品久久久久毛片| 两人在一起打扑克的视频| 操美女的视频在线观看| 亚洲熟女精品中文字幕| 天天躁夜夜躁狠狠久久av| 69精品国产乱码久久久| 后天国语完整版免费观看| 母亲3免费完整高清在线观看| 成人免费观看视频高清| 久久久欧美国产精品| 18禁国产床啪视频网站| 老汉色av国产亚洲站长工具| 岛国毛片在线播放| 免费看不卡的av| 亚洲国产日韩一区二区| 久久亚洲国产成人精品v| 美女中出高潮动态图| 午夜免费成人在线视频| 国产一级毛片在线| 免费在线观看影片大全网站 | 亚洲少妇的诱惑av| 韩国精品一区二区三区| 纯流量卡能插随身wifi吗| 一级a爱视频在线免费观看| 天天躁夜夜躁狠狠躁躁| 精品少妇一区二区三区视频日本电影| 亚洲午夜精品一区,二区,三区| 国产精品熟女久久久久浪| 国产在视频线精品| 9热在线视频观看99| 99热全是精品| 国产亚洲av片在线观看秒播厂| 女性生殖器流出的白浆| 欧美精品人与动牲交sv欧美| 久久久久久久久久久久大奶| 满18在线观看网站| 99国产综合亚洲精品| 日韩,欧美,国产一区二区三区| 亚洲成人国产一区在线观看 | 别揉我奶头~嗯~啊~动态视频 | 男女下面插进去视频免费观看| 色网站视频免费| 成人亚洲精品一区在线观看| 亚洲精品美女久久久久99蜜臀 | 国产精品 欧美亚洲| 婷婷丁香在线五月| 久久久久精品国产欧美久久久 | 永久免费av网站大全| 中国美女看黄片| 亚洲激情五月婷婷啪啪| 欧美精品人与动牲交sv欧美| 伊人亚洲综合成人网| 国产女主播在线喷水免费视频网站| 国产成人精品久久二区二区91| 亚洲一码二码三码区别大吗| 久久精品成人免费网站| 汤姆久久久久久久影院中文字幕| 丝袜人妻中文字幕| 国产色视频综合| 麻豆国产av国片精品| 亚洲综合色网址| 脱女人内裤的视频| 日日夜夜操网爽| 美女福利国产在线| 欧美乱码精品一区二区三区| 97精品久久久久久久久久精品| 性色av一级| 免费看av在线观看网站| 好男人电影高清在线观看| 午夜福利一区二区在线看| 美女中出高潮动态图| 日本欧美视频一区| avwww免费| 欧美黄色片欧美黄色片| 国产精品二区激情视频| 国产在线免费精品| 99国产综合亚洲精品| 欧美激情高清一区二区三区| 精品国产一区二区三区久久久樱花| 性高湖久久久久久久久免费观看| av有码第一页| 国产av精品麻豆| 老鸭窝网址在线观看| 免费高清在线观看视频在线观看| 欧美黄色淫秽网站| 老司机深夜福利视频在线观看 | 搡老岳熟女国产| 国产免费福利视频在线观看| 国产一区二区在线观看av| 亚洲av片天天在线观看| 成年av动漫网址| 午夜福利一区二区在线看| 日韩熟女老妇一区二区性免费视频| 女性生殖器流出的白浆| 成年人黄色毛片网站| 自拍欧美九色日韩亚洲蝌蚪91| 免费一级毛片在线播放高清视频 | 下体分泌物呈黄色| 国产又爽黄色视频| 精品国产一区二区三区四区第35| 男女床上黄色一级片免费看| 欧美人与善性xxx| 亚洲九九香蕉| 亚洲人成电影免费在线| 久久99热这里只频精品6学生| 国产精品免费视频内射| 波多野结衣av一区二区av| 亚洲人成77777在线视频| 大香蕉久久成人网| 成人三级做爰电影| 国产精品久久久久成人av| 好男人电影高清在线观看| 亚洲久久久国产精品| 18在线观看网站| 久久影院123| 丝袜脚勾引网站| 人妻人人澡人人爽人人| 欧美日韩黄片免| 国产xxxxx性猛交| 大香蕉久久网| 在线观看免费日韩欧美大片| 免费久久久久久久精品成人欧美视频| 99国产精品99久久久久| 每晚都被弄得嗷嗷叫到高潮| 91麻豆精品激情在线观看国产 | 国产精品一区二区精品视频观看| 国产野战对白在线观看| 国产三级黄色录像| 中国美女看黄片| 亚洲免费av在线视频| 99久久综合免费| 亚洲精品一区蜜桃| 久久精品人人爽人人爽视色| 欧美精品一区二区免费开放| 午夜久久久在线观看| 我要看黄色一级片免费的| 国产欧美日韩一区二区三区在线| 黄片小视频在线播放| 男女免费视频国产| 桃花免费在线播放| 中文字幕av电影在线播放| 晚上一个人看的免费电影| 久久精品国产亚洲av涩爱| 美女大奶头黄色视频| 大码成人一级视频| 欧美乱码精品一区二区三区| av在线app专区| 男女之事视频高清在线观看 | 首页视频小说图片口味搜索 | 黄色一级大片看看| 成人手机av| 欧美国产精品一级二级三级| 天天躁日日躁夜夜躁夜夜| 久久人人97超碰香蕉20202| 成年人免费黄色播放视频| 久久性视频一级片| 国产人伦9x9x在线观看| 女性被躁到高潮视频| 亚洲欧美色中文字幕在线| 狠狠婷婷综合久久久久久88av| 波多野结衣一区麻豆| 黄色a级毛片大全视频| 国产精品国产三级国产专区5o| 欧美变态另类bdsm刘玥| 男的添女的下面高潮视频| 日韩av免费高清视频| 老司机亚洲免费影院| 99久久人妻综合| 久久鲁丝午夜福利片| 国产成人影院久久av| √禁漫天堂资源中文www| 国产老妇伦熟女老妇高清| 精品人妻1区二区| 日韩熟女老妇一区二区性免费视频| 成人黄色视频免费在线看| 国产一区二区 视频在线| 精品福利观看| 成年动漫av网址| 国产精品 国内视频| 中文精品一卡2卡3卡4更新| 中文乱码字字幕精品一区二区三区| 久久精品国产a三级三级三级| 中文字幕人妻丝袜一区二区| 亚洲国产欧美一区二区综合| 又粗又硬又长又爽又黄的视频| 人妻人人澡人人爽人人| 亚洲国产成人一精品久久久| 人妻一区二区av| 亚洲一区二区三区欧美精品| 黑人猛操日本美女一级片| 成年人午夜在线观看视频| 欧美黑人精品巨大| 国产一区二区三区av在线| 美女福利国产在线| 男人添女人高潮全过程视频| 欧美老熟妇乱子伦牲交| 久久国产精品大桥未久av| 国产精品免费大片| 黄色 视频免费看| 91精品三级在线观看| 欧美黄色淫秽网站| 欧美精品啪啪一区二区三区 | 男女边吃奶边做爰视频| 999精品在线视频| 大陆偷拍与自拍| 免费久久久久久久精品成人欧美视频| 在线观看国产h片| av一本久久久久| 黄色视频在线播放观看不卡| 欧美黑人精品巨大| 老鸭窝网址在线观看| 成人三级做爰电影| 97精品久久久久久久久久精品| a级片在线免费高清观看视频| 欧美精品人与动牲交sv欧美| 亚洲精品国产一区二区精华液| 黄色视频在线播放观看不卡| 80岁老熟妇乱子伦牲交| 欧美成狂野欧美在线观看| 免费在线观看日本一区| 超碰97精品在线观看| 捣出白浆h1v1| 最新的欧美精品一区二区| 多毛熟女@视频| 亚洲午夜精品一区,二区,三区| 日本欧美视频一区| 香蕉丝袜av| 18禁黄网站禁片午夜丰满| 亚洲精品久久午夜乱码| 丰满饥渴人妻一区二区三| 欧美黑人精品巨大| 大型av网站在线播放| 色综合欧美亚洲国产小说| 免费日韩欧美在线观看| 久久精品熟女亚洲av麻豆精品| 一级,二级,三级黄色视频| 成人影院久久| 爱豆传媒免费全集在线观看| 亚洲av片天天在线观看| 丝袜喷水一区| 交换朋友夫妻互换小说| 亚洲欧洲精品一区二区精品久久久| 亚洲欧美日韩另类电影网站| 国产成人一区二区在线| 亚洲美女黄色视频免费看| 国产av国产精品国产| 老汉色∧v一级毛片| 国产精品一区二区在线观看99| 极品人妻少妇av视频| 又黄又粗又硬又大视频| 精品亚洲成国产av| 男女之事视频高清在线观看 | 成年女人毛片免费观看观看9 | svipshipincom国产片| 亚洲成人免费电影在线观看 | 亚洲国产精品一区三区| 一边摸一边做爽爽视频免费| 欧美激情 高清一区二区三区| 成年人黄色毛片网站| 一级毛片我不卡| 国产亚洲av片在线观看秒播厂| 免费观看人在逋| 亚洲精品乱久久久久久| 五月天丁香电影| 久久国产精品男人的天堂亚洲| 亚洲国产精品一区二区三区在线| 精品欧美一区二区三区在线| 男人爽女人下面视频在线观看| 黄片小视频在线播放| 欧美精品一区二区免费开放| 国产日韩一区二区三区精品不卡| 黄网站色视频无遮挡免费观看| 黄片小视频在线播放| 国产精品一国产av| 男女国产视频网站| 亚洲精品国产区一区二| 亚洲av日韩在线播放| 一区二区三区四区激情视频| 亚洲国产精品国产精品| 伊人亚洲综合成人网| 国产日韩一区二区三区精品不卡| 狠狠精品人妻久久久久久综合| 色网站视频免费| 爱豆传媒免费全集在线观看| 国产视频一区二区在线看| 亚洲,欧美,日韩| 久久天躁狠狠躁夜夜2o2o | 成年av动漫网址| 久久人妻熟女aⅴ| 看免费av毛片| 久久精品aⅴ一区二区三区四区| 日本一区二区免费在线视频| 手机成人av网站| 精品少妇黑人巨大在线播放| 黄色片一级片一级黄色片| 午夜91福利影院| 国产免费又黄又爽又色| 亚洲av国产av综合av卡| 丁香六月欧美| 国产精品香港三级国产av潘金莲 | 欧美精品一区二区大全| 无遮挡黄片免费观看| 51午夜福利影视在线观看| 啦啦啦在线观看免费高清www| 99国产精品一区二区三区| 国产91精品成人一区二区三区 | 悠悠久久av| 亚洲av电影在线进入| 国产激情久久老熟女| 999精品在线视频| 久久精品人人爽人人爽视色| 午夜激情久久久久久久| 黄色 视频免费看| 久久人妻熟女aⅴ| 天堂8中文在线网| 成人国产一区最新在线观看 | 王馨瑶露胸无遮挡在线观看| 国产在线观看jvid| 制服诱惑二区| 在线 av 中文字幕| 18禁国产床啪视频网站| 色婷婷av一区二区三区视频| 国产片特级美女逼逼视频| 尾随美女入室| 七月丁香在线播放| 一级黄色大片毛片| 国产精品.久久久| √禁漫天堂资源中文www| 中文字幕亚洲精品专区| 51午夜福利影视在线观看| 亚洲国产中文字幕在线视频| 天天躁夜夜躁狠狠躁躁| 肉色欧美久久久久久久蜜桃| 搡老乐熟女国产| 国产在线一区二区三区精| 国产福利在线免费观看视频| 中文字幕高清在线视频| 久久久久视频综合| 亚洲,一卡二卡三卡| 一个人免费看片子| 国产精品偷伦视频观看了| 亚洲国产欧美网| 欧美97在线视频| 交换朋友夫妻互换小说| 久久综合国产亚洲精品| 伊人久久大香线蕉亚洲五| 欧美日韩亚洲综合一区二区三区_| 欧美日韩亚洲国产一区二区在线观看 | 99久久99久久久精品蜜桃| 丁香六月天网| 日韩av在线免费看完整版不卡| 高潮久久久久久久久久久不卡| 欧美日韩亚洲高清精品| 性色av乱码一区二区三区2| 丰满人妻熟妇乱又伦精品不卡| 黄网站色视频无遮挡免费观看| 日韩熟女老妇一区二区性免费视频| 成人三级做爰电影| 精品国产超薄肉色丝袜足j| av有码第一页| 国产精品欧美亚洲77777| 亚洲国产欧美日韩在线播放| 亚洲九九香蕉| 欧美少妇被猛烈插入视频| 国产精品一二三区在线看| 日韩熟女老妇一区二区性免费视频| 狂野欧美激情性xxxx| 亚洲精品国产区一区二| 男女之事视频高清在线观看 | 老司机深夜福利视频在线观看 | 国产野战对白在线观看| 亚洲激情五月婷婷啪啪| 黄片播放在线免费| 人人妻,人人澡人人爽秒播 | 国产成人一区二区三区免费视频网站 | 午夜福利视频精品| 国产xxxxx性猛交| 日韩大码丰满熟妇| 国产成人免费无遮挡视频| 天天躁狠狠躁夜夜躁狠狠躁| 亚洲黑人精品在线| 色视频在线一区二区三区| 男女午夜视频在线观看| 亚洲精品日韩在线中文字幕| 丁香六月欧美| 久久亚洲精品不卡| bbb黄色大片| 亚洲欧美中文字幕日韩二区| 看免费成人av毛片| 少妇的丰满在线观看| 天堂俺去俺来也www色官网| 大香蕉久久网| 国产亚洲欧美精品永久| 中文字幕亚洲精品专区| 一级毛片黄色毛片免费观看视频| 日韩av免费高清视频| 国产爽快片一区二区三区| 久久久亚洲精品成人影院| 脱女人内裤的视频| h视频一区二区三区| 视频区图区小说| 欧美 亚洲 国产 日韩一| 久久亚洲国产成人精品v| 99热网站在线观看| 日韩一区二区三区影片| 国产有黄有色有爽视频| 50天的宝宝边吃奶边哭怎么回事| 日本91视频免费播放| 中文欧美无线码| 2021少妇久久久久久久久久久| 深夜精品福利| 777米奇影视久久| 男人舔女人的私密视频| cao死你这个sao货| 91精品伊人久久大香线蕉| 亚洲人成网站在线观看播放| 女警被强在线播放| a 毛片基地| 亚洲av日韩精品久久久久久密 | 青青草视频在线视频观看| 欧美97在线视频| 少妇人妻 视频| 搡老岳熟女国产| 精品福利永久在线观看| 高清不卡的av网站| 一本一本久久a久久精品综合妖精| 久久久久久亚洲精品国产蜜桃av| 国产精品一二三区在线看| 亚洲国产精品一区二区三区在线| 中文字幕高清在线视频| 尾随美女入室| 亚洲精品国产一区二区精华液| 国产爽快片一区二区三区| 欧美精品人与动牲交sv欧美| 欧美乱码精品一区二区三区| 亚洲国产日韩一区二区| 国产精品人妻久久久影院| 免费在线观看影片大全网站 | 久热这里只有精品99| 国产成人免费观看mmmm| 久久久久久人人人人人| 亚洲人成电影观看| 9热在线视频观看99| 99国产综合亚洲精品| 国产1区2区3区精品| 黄片小视频在线播放| 久久久精品94久久精品| 日本欧美视频一区| 国产成人欧美在线观看 | 欧美精品高潮呻吟av久久| 别揉我奶头~嗯~啊~动态视频 | 啦啦啦啦在线视频资源| 男女之事视频高清在线观看 | 国产无遮挡羞羞视频在线观看| 麻豆av在线久日| 国产片特级美女逼逼视频| 中文字幕另类日韩欧美亚洲嫩草| 亚洲中文日韩欧美视频| 成年人免费黄色播放视频| 黄片播放在线免费| 久久av网站| 亚洲欧洲精品一区二区精品久久久| 人妻 亚洲 视频| 国产亚洲欧美精品永久| 午夜免费成人在线视频| 麻豆国产av国片精品| 在线观看www视频免费| 国产成人影院久久av| 久久久久国产精品人妻一区二区| 久久精品国产亚洲av高清一级| 高清欧美精品videossex| 老司机影院毛片| 中文字幕高清在线视频| 成年人免费黄色播放视频| 欧美久久黑人一区二区| 1024香蕉在线观看| 国产高清videossex| 男人添女人高潮全过程视频| 一级毛片 在线播放| 乱人伦中国视频| 女警被强在线播放| 啦啦啦啦在线视频资源| 嫁个100分男人电影在线观看 | 国产成人精品在线电影| 国产成人a∨麻豆精品| 国产在线视频一区二区| 亚洲色图综合在线观看| 看免费成人av毛片| 黄色a级毛片大全视频| 亚洲,欧美精品.| 成人18禁高潮啪啪吃奶动态图| 午夜福利一区二区在线看| 亚洲欧洲日产国产| 久久亚洲精品不卡| 美女扒开内裤让男人捅视频| 免费少妇av软件| 可以免费在线观看a视频的电影网站| 亚洲精品一区蜜桃| 一级毛片 在线播放| 在线观看人妻少妇| 亚洲av男天堂| av在线老鸭窝| 可以免费在线观看a视频的电影网站| 国产亚洲av片在线观看秒播厂| 日韩大片免费观看网站| 久久久国产欧美日韩av| 成人国产av品久久久| 国产成人精品久久久久久| 欧美乱码精品一区二区三区| 精品久久久久久久毛片微露脸 | 久久性视频一级片| 韩国高清视频一区二区三区| 亚洲五月婷婷丁香| 亚洲五月色婷婷综合| 丝袜人妻中文字幕| 黄网站色视频无遮挡免费观看| 老鸭窝网址在线观看| 精品福利观看| 亚洲精品自拍成人| 啦啦啦啦在线视频资源| 大香蕉久久成人网| 啦啦啦啦在线视频资源|