• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Fractional Order Linear Active Disturbance Rejection Control for Linear Flexible Joint System

    2022-03-14 09:25:24IbrahimMehediRachidMansouriUbaidAlSaggafAhmedIskanderaniMaamarBettayebAbdulahJezaAljohaniThangamPalaniswamyShaikhAbdulLatifandAbdulLatif
    Computers Materials&Continua 2022年3期

    Ibrahim M.Mehedi,Rachid Mansouri,Ubaid M.Al-Saggaf,Ahmed I.M.Iskanderani,Maamar Bettayeb,Abdulah Jeza Aljohani,Thangam Palaniswamy,Shaikh Abdul Latif and Abdul Latif

    1Department of Electrical and Computer Engineering(ECE),King Abdulaziz University,Jeddah,21589,Saudi Arabia

    2Center of Excellence in Intelligent Engineering Systems(CEIES),King Abdulaziz University,Jeddah,21589,Saudi Arabia

    3L2CSP Laboratory,Mouloud Mammeri University,Tizi Ouzou,Algeria

    4Electrical&Computer Engineering Department,University of Sharjah,United Arab Emirates

    5Department of Nuclear Engineering,King Abdulaziz University,Jeddah,21589,Saudi Arabia

    6Department of Mathematics,King Abdulaziz University,Jeddah,21589,Saudi Arabia

    Abstract:A linear flexible joint system using fractional order linear active disturbance rejection control is studied in this paper.With this control scheme,the performance against disturbances,uncertainties,and attenuation is enhanced.Linear active disturbance rejection control (LADRC) is mainly based on an extended state observer (ESO) technology.A fractional integral (FOI)action is combined with the LADRC technique which proposes a hybrid control scheme like FO-LADRC.Incorporating this FOI action improves the robustness of the standard LADRC.The set-point tracking of the proposed FO-LADRC scheme is designed by Bode’s ideal transfer function (BITF)based robust closed-loop concept, an appropriate pole placement method.The effectiveness of the proposed FO-LADRC scheme is illustrated through experimental results on the linear flexible joint system (LFJS).The results show the enhancement of the robustness with disturbance rejection.Furthermore,a comparative analysis is presented with the results obtained using the integer-order LADRC and FO-LADRC scheme.

    Keywords: Active disturbance rejection; fractional calculus; ADRC; pole placement; linear flexible joint system; robust control

    1 Introduction

    Due to the increasing complexity of industrial systems, it has become more difficult to analyze and control.Moreover, the non-linear behavior of physical systems produces uncertainties that cause modeling issues of those systems.There are mainly two types of uncertainties, one is internal (unknown parameters or un-modelled dynamics) and the other one is external (disturbances).Therefore, several robust control system design methods are developed for uncertain systems which has followed several directions.Sliding mode is one of those control directions which acts against external disturbances of linear or non-linear systems [1,2].Linear matrix inequalities methods are applied to interval systems with parameter uncertainties [3,4].Ultra-local models-based datadriven control which is an online parameter identification method is proposed [5,6].There is another generalized disturbance control method which is effective against internal and the external disturbances [7,8].

    Basing on an extended state observer (ESO), a judicious feedback loop is used to estimate and cancel this generalized disruption.Experimental, as well as simulation results have been stated in several examples (see [9,10] for the examples).An interesting control structure is the linear active disturbance rejection control (LADRC) structure.It can solve both the set point tracking (SPT) problem and the disturbance rejection (DR) in an improved way compared to the standard scheme, particularly when there are variable outward disturbances [11].The LADRC control structure with an integral action is shown in [11].This structure is simplified to the fractional-order case by interchanging the integer integration action with a non-integer order one.For this, it is required to propose an appropriate method for calculating the parameters of the acquired fractional-order control law, especially the non-integer order, which in this case, is a challenge.The solution often used in the state-space representation is the pole placement method.But this solution is not obvious in this case because of the non-integer order [12].One other solution can be simply using the supposed ‘a(chǎn)ugmented model’consistent with the fractional-order model [13-18].The non-integer order in this solution is not calculated in agreement with the closed-loop (CL) reference model but chosen instead.Also, it has to be rational.Subsequently,the typical polynomial of the augmented model can be simplified to an integer polynomial by using an appropriate change of variable.

    A suitable pole placement then makes calculating the parameters of the control law possible.Then again, in this procedure, two significant points need to be taken into consideration.First, the non-integer order of the control law is not calculated in accordance with the CL reference model.In addition, it has to be rational.Secondly, the degree of the integer order of the distinctive polynomial corresponding to the augmented model is very high.This calls for the designer to select a great number of poles while the fractional order model does not require to that extent [19].

    However, there is another solution that involves finding a method that makes it plausible to evaluate both the parameters of the control law and the non-integer order presented by the fractional order integrator based on the preferred CL reference model.This is precisely what is presented in this paper, based on the BITF [19].In this method, it becomes possible to enforce the iso-damping property to the CL model, which makes the robust control law.

    The novel ideas of this paper are:

    ? A method that makes it possible to impose the iso-damping property in the CL model response.For this, a new reference model using the BITF has been proposed.It is to control systems with a high relative degree using fractional-order controllers and to enforce the planeness of the phase margin.

    ? The LADRC control system, a control structure linked with a fractional order integral action inserted in the SPT loop, has been proposed [20,21].

    ? The main theoretical contribution is a new design technique of the SPT controller-based design.

    ? In order to confirm these theoretical results, numerical simulations have been offered and the robustness of the control structure with respect to the SPT controller gain variations.

    ? The LADRC control structure which has been proposed in this paper has also been applied on an experimental testbed which consists of a linear flexible joint cart system.We have shown that it is possible to implement this structure without modeling the system.Also,this can be useful to improve the sturdiness of the LADRC control technique compared to the other existing control schemes in the literature.

    2 Preliminary

    In the standard formulation of LADRC method for a linear integer order system, controlling the complete model of the system is not needed.This method is based on the relative degree and the gain of the model.The controlled scheme for a second order model is shown by:

    where, the input of the system isu(t)andy(t)is the output.d(t)is the external disturbance andf(t)=f(t,y(i),u(i),d(i),d)+(b-b0)u(t)is the generalized disturbance.b0is the estimated value of the system gainb.

    The key in the LADRC method is estimating the unknownf(t)by using an ESO.Assuming that f(t) can be differentiated, the extended state space model corresponding to Eq.(1) is

    andC=[1 0 0].

    The structure of the full ESO is given by

    where,Lis the gain vector of the observer.

    The parametersβi,(i=1, 3)are determined so that(A-LC)is asymptotically stable.In this case, variablesz1(t)andz2(t)approximate the outputy(t)and its derivative ˙y(t), andz3(t)approximatesf(t).To reject the estimated disturbance, the control law is chosen as:

    If the estimated error is ignored(z3(t)=f(t)), then the system in Eq.(1) is reduced to two cascaded integer-order integral operators.

    As a standard form, set-point tracking is solved by state feedback.So, the control lawu(t)is given by

    wherer(t)is the reference signal.k1andk2are the state feedback gain design to impose the transient response of the set-point tracking.

    Fig.1 represents the standard LADRC structure.This has two gain vectors to design: for the controller, the gain Ko and for the ESO, the gain L.In order to do this, the method usually used is proposed in.This comes down to two parameters:ωo, the observer bandwidth, andωc, the controller bandwidth.

    Figure 1: Standard structure of LADRC

    3 LADRC with Fractional Order Integral Action

    Non-integer order derivatives have several definitions, and these are usually not equivalent to integer-order derivatives [22-25].A control system linking a LADRC with an integer order integral action has been proposed in [11,20].Here, a different technique with a fractional integral action has been bought together.It is for improving the performance of the standard LADRC for ambiguous systems, mainly regarding external disturbances.The proposed technique has been shown in Fig.2.

    Figure 2: Control structure of LADRC with fractional integral action

    Thenpoles of the CL characteristic polynomial are allowed to be placed arbitrarily by the state feedbackKs.It is linked with the gainKiof the fractional integration to impose to the closed-loop Bode’s ideal transfer function in Eq.(9).Then it becomes possible to increase the sturdiness of the LADRC structure with respect to the set-point open-loop gain.The ESO is that of Eq.(3).Hence, the control signal is shown as:

    where ?α(.)denote the fractional order integral operator [23,26].

    In what follows, the method to design the coefficient of the state feedbackks2, the coefficientkiassociated to the fractional order integral action and the non-integer orderαof the fractional order integrator of Eq.(8) when the closed-loop reference model is in Eq.(9).

    to which it corresponds in open loop

    which has the same frequency characteristic as Bode’s ideal transfer function whenT?τc[27].

    The closed-loop system with control plant given by Eq.(6) and the control law given by Eq.(8) is

    which can be written as

    For this transfer function to be equal to the reference model in Eq.(9) it is required that

    Remark:To link with the standard LADRC, the set-point tracking controller parameter designωcis replaced by the two parametersτcandλandω0is still used to calculate the observer gain.Additionally, to know the generalized disturbance, the observer should be able to estimate the magnitude of the disturbance, the frequency generated by the time constantTmust be smaller thanω0.

    4 Implementation on a Linear Flexible Joint System

    The linear flexible joint system, which is a system of two carts sliding on a track, with one of the carts driven by a DC motor, is an interesting example that illustrates the LADRC control scheme and validates the performance of the proposed FO-LADRC.Modeling of this system is fairly complex since two systems interact.Indeed, the cart’s motion affects the flexible spring movement and vice-versa.During the testing process, the goal was to determine the position of the cart, and the flexible spring was viewed as a permanent disturbance.A Linear-flexible-joint cart system (LFJ) is shown in Fig.3.It can be modeled as a two mass-spring system as illustrated in the schematic diagram in Fig.4 wheremcandmjcis the mass of the cart and the flexible-jointcart respectively, whilexcandxjcis their respected position.The position of the cart is measured using a quadrature optical encoder.The linear force applied to the cart is denoted byFcwhereas the spring linking the two carts has a constant denoted byKs.The force that allows moving the cart is obtained using a DC motor.Motor voltage provides control, whereas cart position on the rail controls the variable.A Quanser’s lab system and QUARC tools are used to interface the experimental hardware with a PC and the control law is implemented in a Matlab/Simulink environment [28].The sampling time is 0.001 s.To control the command motor, a digital and analog data acquisition device, the DAQ (Q2-USB) is used.To amplify the command to the motor voltage level (24 V) an amplifier (VoltPAQ-X1) is used.An experimental test-bed of LFJ car system is shown in Fig.5.

    To evaluate and compare the performance of the two LADRC structures, the design parameters of the observer are:ω0=200 rad/s andb0=1.SPT controllers are designed for LADRCs based on the reference models (11) withωn=3 rad/s andz=0.9.To obtain a similar response, the FO-LADRC is designed, whereτc=0.2 s andλ=0.02.But, because the sampling time is 0.001 s, the time constant of (11) isT=τc/20=0.01 s.CRONE approximation technique is utilized to demonstrate the fractional order integral action in the frequency range [10-450] with 10 cells.The reference positions are: +0.3 m att=0 s, -0.3 m att=5 s, and 0 att=10 s.

    Figure 3: Linear flexible joint cart system

    Figure 4: Schematic of LFJC

    Figure 5: Experimental setup for linear flexible joint cart system

    Fig.6 illustrates the experimental results of the cart position with respect to the reference signal for both FO-LADRC and standard LADRC.The evaluation of the control signal is shown in Fig.7.Note that the control signal is more important for the FO-LADRC structure.It is observed to have a little faster transient response by the FO-LADRC scheme.This result was to be expected as the FO scheme becomes nervous at startup and it shows slow performance in steady-state responses.

    Figure 6: CL behavior of linear cart position for FO-LADRC and standard LADRC (blue line:with the FO-LADRC, black line: standard LADRC)

    Figure 7: The evolution of the control signal for FO-LADRC scheme

    A comparison of the FO-LADRC structures is also made by studying their robustness with respect to the parameterKs.Three values of this parameter are then considered (Ks=0,0.3,0.5).The obtained results are illustrated in Fig.8 for the FO-LADRC scheme.These figures show that the CL step response with the FO-LADRC is almost insensitive to the variations ofKs.This demonstrates that the use of the fractional-order integral action enhances the robustness of the LADRC structure.

    Figure 8: Robustness of linear cart position for FO-LADRC with respect to varying feedback Ks

    Fig.9 illustrates the experimental results of a flexible joint cart position with respect to the reference signal for both FO-LADRC and standard LADRC.The tracking performance of the cart is very r with no overshoot for FO-LADRC scheme.

    Figure 9: CL behavior of flexible joint cart position for FO-LADRC and standard LADRC (blue line: with the FO-LADRC, black line: standard LADRC)

    Similar to the cart position, a comparison of the FO-LADRC structures is also made for a flexible joint cart position by studying their robustness with respect to the parameterKs.Three values of this parameter are then considered (Ks=0,0.3,0.5).The obtained results are illustrated in Fig.10 for the FO-LADRC scheme to track the position of the flexible joint cart.These figures show that the CL step response of a flexible joint cart position with the FO-LADRC is almost insensitive to the variations ofKs.This also demonstrates that the use of the fractional-order integral action enhances the robustness of the LADRC structure.

    Figure 10: Robustness of flexible joint cart position for FO-LADRC with respect to varying feedback Ks

    5 Conclusion

    This paper, LADRC structure with a fractional order integral action (FO-LADRC) is proposed to control a minimum phase-stable system.Two main contributions are achieved.From the theoretical point of view, based on the BITF, a novel design method of the SPT controller is proposed for the FO-LADRC scheme.From a practical point of view, the use of LADRC control scheme is an important contribution since no modeling of the system was needed and all the parameters of the system are not accessible.Nevertheless, minimal knowledge of the system is necessary.We knew for example, that the relative degree of the model of the DC motor position is equal to 2.That is why a third order ESO is used to estimate the generalized disturbance.Through experiments on the linear flexible joint system (LFJS), the FO-LADRC scheme is shown to be effective.With disturbance rejection, the robustness of the system is enhanced.Additionally, this paper presents a comparison of results obtained by the integer-order LADRC and FO-LADRC schemes.

    Acknowledgement:This research work was funded by Institutional Fund Projects under Grant No.(IFPRC-027-135-2020).Therefore, authors gratefully acknowledge technical and financial support from the Ministry of Education and King Abdulaziz University, Jeddah, Saudi Arabia.

    Funding Statement:This research work was funded by Institutional Fund Projects under Grant No.(IFPRC-027-135-2020).

    Conflicts of Interest:The authors declare that they have no conflicts of interest to report regarding the present study.

    亚洲欧美日韩卡通动漫| 精品亚洲成a人片在线观看| 91精品国产国语对白视频| 久久久久久久久久久久大奶| 一个人免费看片子| 亚洲高清免费不卡视频| av在线观看视频网站免费| 免费看不卡的av| 亚洲欧美日韩另类电影网站| 大码成人一级视频| 久久久久久久久久人人人人人人| 三级国产精品片| 国产视频首页在线观看| 制服丝袜香蕉在线| 亚洲国产成人一精品久久久| 日本猛色少妇xxxxx猛交久久| 国产精品一区二区在线观看99| av在线老鸭窝| 成人毛片a级毛片在线播放| 久久久久久久大尺度免费视频| 偷拍熟女少妇极品色| 免费人妻精品一区二区三区视频| h视频一区二区三区| 女性被躁到高潮视频| 久久久久久伊人网av| 我的老师免费观看完整版| 黑人巨大精品欧美一区二区蜜桃 | 少妇人妻 视频| 亚洲人成网站在线观看播放| 日韩亚洲欧美综合| 亚洲欧美成人综合另类久久久| 国产免费又黄又爽又色| 国产av国产精品国产| 久久免费观看电影| 国产深夜福利视频在线观看| 国产综合精华液| 久久免费观看电影| 久久精品国产a三级三级三级| 菩萨蛮人人尽说江南好唐韦庄| 岛国毛片在线播放| 大香蕉97超碰在线| 欧美日韩视频精品一区| 亚洲国产毛片av蜜桃av| 大片电影免费在线观看免费| 五月开心婷婷网| 午夜精品国产一区二区电影| 9色porny在线观看| 亚洲欧美精品专区久久| 乱码一卡2卡4卡精品| 大片免费播放器 马上看| 日韩精品有码人妻一区| 亚洲成人av在线免费| av线在线观看网站| 高清不卡的av网站| 观看av在线不卡| 国产精品国产三级专区第一集| 丰满饥渴人妻一区二区三| 97超视频在线观看视频| 三级经典国产精品| 国产深夜福利视频在线观看| 日日爽夜夜爽网站| 在线观看免费日韩欧美大片 | 嫩草影院入口| 在线观看免费日韩欧美大片 | 久久精品夜色国产| 美女xxoo啪啪120秒动态图| av免费观看日本| 国产黄片美女视频| 一级毛片aaaaaa免费看小| 性色av一级| 日韩欧美精品免费久久| 我要看日韩黄色一级片| 又大又黄又爽视频免费| 观看免费一级毛片| 三级国产精品欧美在线观看| 久久精品国产亚洲网站| 久久久精品94久久精品| 亚洲一区二区三区欧美精品| 人妻 亚洲 视频| 国产 精品1| 一级毛片久久久久久久久女| 欧美精品一区二区免费开放| 人人妻人人爽人人添夜夜欢视频 | 日韩一区二区三区影片| 久久久久久久久大av| 亚洲成人av在线免费| 99热这里只有是精品50| 免费看av在线观看网站| 亚洲第一区二区三区不卡| 热re99久久精品国产66热6| 久久6这里有精品| √禁漫天堂资源中文www| www.色视频.com| 久久免费观看电影| 99视频精品全部免费 在线| 人人妻人人看人人澡| av在线老鸭窝| 九九爱精品视频在线观看| 大片免费播放器 马上看| 成人特级av手机在线观看| 亚洲av成人精品一二三区| 边亲边吃奶的免费视频| 人人妻人人爽人人添夜夜欢视频 | 日韩成人伦理影院| 欧美3d第一页| 99久国产av精品国产电影| 视频中文字幕在线观看| 国产欧美另类精品又又久久亚洲欧美| 亚洲精品日韩av片在线观看| 日韩欧美 国产精品| 久久久久久久久久成人| 久久亚洲国产成人精品v| 99热这里只有是精品50| 亚洲不卡免费看| 97精品久久久久久久久久精品| 91久久精品国产一区二区成人| 久久久久久伊人网av| 亚洲美女视频黄频| 九九在线视频观看精品| 国产探花极品一区二区| 一级爰片在线观看| 久久久久久久大尺度免费视频| 亚洲精品国产av成人精品| 欧美国产精品一级二级三级 | 欧美日韩国产mv在线观看视频| 国产成人精品婷婷| 日本与韩国留学比较| 插逼视频在线观看| 伦精品一区二区三区| 成年av动漫网址| 最后的刺客免费高清国语| 一级毛片电影观看| 国产伦精品一区二区三区视频9| 成人黄色视频免费在线看| 亚洲精品亚洲一区二区| 一个人看视频在线观看www免费| 国产精品麻豆人妻色哟哟久久| 中文字幕av电影在线播放| 久久久国产一区二区| 欧美bdsm另类| 国产极品天堂在线| 亚洲欧美日韩东京热| 蜜桃久久精品国产亚洲av| 99精国产麻豆久久婷婷| 亚洲精品视频女| 国产精品偷伦视频观看了| 丝袜在线中文字幕| 青春草亚洲视频在线观看| 丰满人妻一区二区三区视频av| 亚洲欧美成人综合另类久久久| 日本色播在线视频| 亚洲美女黄色视频免费看| 午夜日本视频在线| a级毛片在线看网站| 人妻夜夜爽99麻豆av| 成人毛片60女人毛片免费| 午夜福利网站1000一区二区三区| 久久国产精品大桥未久av | av免费在线看不卡| 18禁裸乳无遮挡动漫免费视频| 一区二区av电影网| 搡女人真爽免费视频火全软件| 国产欧美日韩综合在线一区二区 | 国产一区二区在线观看av| av福利片在线| 亚洲av中文av极速乱| 这个男人来自地球电影免费观看 | 精品一区在线观看国产| 亚洲av成人精品一二三区| 免费高清在线观看视频在线观看| 91久久精品电影网| 久久国产精品大桥未久av | 久久精品国产a三级三级三级| 人妻少妇偷人精品九色| 热99国产精品久久久久久7| videossex国产| 好男人视频免费观看在线| 国产精品女同一区二区软件| 夫妻午夜视频| 一本色道久久久久久精品综合| 视频区图区小说| 亚洲精品亚洲一区二区| 五月开心婷婷网| 九草在线视频观看| 熟女av电影| 国产亚洲av片在线观看秒播厂| 中文字幕制服av| 内地一区二区视频在线| 国产一级毛片在线| 晚上一个人看的免费电影| 国产精品蜜桃在线观看| 美女视频免费永久观看网站| 男人狂女人下面高潮的视频| 人妻系列 视频| 欧美日韩av久久| 欧美精品亚洲一区二区| 最近2019中文字幕mv第一页| 51国产日韩欧美| 五月天丁香电影| 日韩 亚洲 欧美在线| 少妇人妻精品综合一区二区| 国产日韩欧美视频二区| 男人狂女人下面高潮的视频| 亚洲国产成人一精品久久久| 亚洲精品乱码久久久v下载方式| 久久久久久久久久久丰满| 纯流量卡能插随身wifi吗| 性色av一级| 亚洲av在线观看美女高潮| 亚洲美女搞黄在线观看| 亚洲精品国产av蜜桃| 欧美成人午夜免费资源| 成年av动漫网址| 大又大粗又爽又黄少妇毛片口| 久久av网站| 人妻一区二区av| 欧美激情极品国产一区二区三区 | av天堂久久9| a级毛片免费高清观看在线播放| 一级毛片 在线播放| 少妇人妻久久综合中文| 日韩不卡一区二区三区视频在线| 最黄视频免费看| 亚洲精品,欧美精品| 亚洲激情五月婷婷啪啪| 交换朋友夫妻互换小说| 日本免费在线观看一区| 性高湖久久久久久久久免费观看| 亚洲欧美日韩东京热| 中文资源天堂在线| 国产精品国产av在线观看| 午夜免费男女啪啪视频观看| 两个人免费观看高清视频 | 国产女主播在线喷水免费视频网站| 女人久久www免费人成看片| 亚洲国产日韩一区二区| 18+在线观看网站| 久久久欧美国产精品| 国产探花极品一区二区| 不卡视频在线观看欧美| 欧美xxⅹ黑人| 日本免费在线观看一区| 22中文网久久字幕| 国产午夜精品久久久久久一区二区三区| 国产女主播在线喷水免费视频网站| 纵有疾风起免费观看全集完整版| 天天躁夜夜躁狠狠久久av| 久久99蜜桃精品久久| 欧美精品一区二区大全| 成人毛片a级毛片在线播放| 国产精品一区二区性色av| 美女脱内裤让男人舔精品视频| 熟女电影av网| 久久99一区二区三区| 男女边摸边吃奶| 精品人妻偷拍中文字幕| 亚洲电影在线观看av| 边亲边吃奶的免费视频| 精品人妻偷拍中文字幕| 日韩一本色道免费dvd| 国产精品偷伦视频观看了| 国产熟女午夜一区二区三区 | 高清视频免费观看一区二区| 亚洲欧美成人综合另类久久久| 欧美性感艳星| 亚洲欧美日韩另类电影网站| 日本欧美视频一区| 街头女战士在线观看网站| 91精品国产国语对白视频| 大又大粗又爽又黄少妇毛片口| 国产精品无大码| 男男h啪啪无遮挡| 中文字幕人妻熟人妻熟丝袜美| 久久久欧美国产精品| 日本黄色日本黄色录像| 99re6热这里在线精品视频| av天堂中文字幕网| 2022亚洲国产成人精品| 亚洲av.av天堂| 久久午夜综合久久蜜桃| 水蜜桃什么品种好| 香蕉精品网在线| 久久这里有精品视频免费| 五月开心婷婷网| 久久久久久久久久久久大奶| 极品人妻少妇av视频| 激情五月婷婷亚洲| 午夜老司机福利剧场| 亚洲欧美中文字幕日韩二区| 在线观看www视频免费| 亚洲人成网站在线播| 在线观看一区二区三区激情| 国产精品国产av在线观看| 一本色道久久久久久精品综合| 欧美另类一区| 日本黄大片高清| 久久99热这里只频精品6学生| 九九在线视频观看精品| 国产在线视频一区二区| av有码第一页| 色网站视频免费| 免费黄色在线免费观看| 精品一区在线观看国产| 久久久国产一区二区| 少妇被粗大猛烈的视频| 国产精品免费大片| 精品一区在线观看国产| 国产欧美日韩综合在线一区二区 | 日韩,欧美,国产一区二区三区| 丝瓜视频免费看黄片| 中文字幕免费在线视频6| 丰满饥渴人妻一区二区三| 美女cb高潮喷水在线观看| 国产精品福利在线免费观看| 欧美区成人在线视频| 久久久久久人妻| 久久人人爽人人片av| av卡一久久| 少妇猛男粗大的猛烈进出视频| 91精品国产国语对白视频| 亚洲欧洲精品一区二区精品久久久 | 18禁在线播放成人免费| 国内揄拍国产精品人妻在线| 深夜a级毛片| 色网站视频免费| 黄色一级大片看看| 亚洲国产日韩一区二区| 国产高清三级在线| 亚洲精品成人av观看孕妇| 亚洲欧美精品专区久久| 国产免费福利视频在线观看| 在线播放无遮挡| 国产日韩欧美在线精品| 亚洲精品日本国产第一区| 久久 成人 亚洲| 亚州av有码| 日韩一本色道免费dvd| 边亲边吃奶的免费视频| 天堂中文最新版在线下载| 岛国毛片在线播放| 中国美白少妇内射xxxbb| 少妇精品久久久久久久| 亚洲精品国产色婷婷电影| 91午夜精品亚洲一区二区三区| 国产男女超爽视频在线观看| 亚洲国产日韩一区二区| 亚洲在久久综合| 99re6热这里在线精品视频| av黄色大香蕉| 日本wwww免费看| 赤兔流量卡办理| 搡老乐熟女国产| 国产午夜精品一二区理论片| 在线观看人妻少妇| 一个人免费看片子| 夜夜爽夜夜爽视频| 国产伦精品一区二区三区四那| 两个人免费观看高清视频 | 午夜免费观看性视频| 少妇精品久久久久久久| 国产色爽女视频免费观看| 一级毛片aaaaaa免费看小| 欧美97在线视频| 夜夜爽夜夜爽视频| 亚洲国产精品一区二区三区在线| 中文欧美无线码| av女优亚洲男人天堂| 啦啦啦视频在线资源免费观看| 一级毛片我不卡| 综合色丁香网| 午夜老司机福利剧场| 熟女人妻精品中文字幕| 成人二区视频| 欧美97在线视频| 亚洲国产精品999| 免费av不卡在线播放| 国产女主播在线喷水免费视频网站| 欧美精品人与动牲交sv欧美| 亚洲精品自拍成人| 欧美日韩视频精品一区| 看非洲黑人一级黄片| 国产成人免费观看mmmm| 精品少妇久久久久久888优播| 最后的刺客免费高清国语| 亚洲精品一区蜜桃| 97超碰精品成人国产| www.av在线官网国产| 亚洲天堂av无毛| 9色porny在线观看| 人妻少妇偷人精品九色| 国产美女午夜福利| 成人美女网站在线观看视频| 人妻 亚洲 视频| 99视频精品全部免费 在线| 亚洲一区二区三区欧美精品| 日韩中字成人| 午夜免费鲁丝| 下体分泌物呈黄色| 极品教师在线视频| 久久精品国产a三级三级三级| 在线观看免费视频网站a站| 欧美激情极品国产一区二区三区 | 国产亚洲一区二区精品| 一个人免费看片子| 国产伦在线观看视频一区| 亚洲国产精品一区二区三区在线| 国产一区二区在线观看日韩| 丰满人妻一区二区三区视频av| 久久人人爽人人爽人人片va| 国产高清国产精品国产三级| 一级片'在线观看视频| 热re99久久国产66热| 我要看黄色一级片免费的| 亚洲精品成人av观看孕妇| 久久久久久久大尺度免费视频| 亚洲美女搞黄在线观看| 成人午夜精彩视频在线观看| 少妇 在线观看| 亚洲av不卡在线观看| av专区在线播放| 久久狼人影院| 国产91av在线免费观看| 精品一区二区三卡| 在线精品无人区一区二区三| 成年美女黄网站色视频大全免费 | 99久国产av精品国产电影| 人妻人人澡人人爽人人| 观看美女的网站| 男人爽女人下面视频在线观看| 久久久久久久国产电影| av专区在线播放| 美女脱内裤让男人舔精品视频| 日韩欧美 国产精品| 黄片无遮挡物在线观看| 免费不卡的大黄色大毛片视频在线观看| 天美传媒精品一区二区| 亚洲欧洲精品一区二区精品久久久 | 九九爱精品视频在线观看| 99国产精品免费福利视频| 免费人妻精品一区二区三区视频| 97在线视频观看| 亚洲国产色片| 国产毛片在线视频| 国产一区二区三区av在线| 亚洲色图综合在线观看| 妹子高潮喷水视频| 久久久久久久久久成人| 久久久午夜欧美精品| 国内揄拍国产精品人妻在线| 一级二级三级毛片免费看| 好男人视频免费观看在线| av黄色大香蕉| 亚洲天堂av无毛| 嫩草影院入口| 精品一区二区三卡| 日韩中字成人| 人妻系列 视频| 欧美精品人与动牲交sv欧美| 9色porny在线观看| 亚洲国产精品999| 免费久久久久久久精品成人欧美视频 | 国产 精品1| 波野结衣二区三区在线| 日日摸夜夜添夜夜添av毛片| 国产真实伦视频高清在线观看| 99久久精品国产国产毛片| 乱码一卡2卡4卡精品| 国产一区二区在线观看日韩| 最近的中文字幕免费完整| 欧美精品一区二区免费开放| 熟女人妻精品中文字幕| 久久人妻熟女aⅴ| 99热6这里只有精品| 人妻夜夜爽99麻豆av| 久久午夜福利片| 欧美精品一区二区大全| 大香蕉97超碰在线| 久久久久久久久久人人人人人人| 99久国产av精品国产电影| 久久女婷五月综合色啪小说| 久久精品久久精品一区二区三区| 国产av精品麻豆| 在线观看美女被高潮喷水网站| 人妻 亚洲 视频| 久久久午夜欧美精品| 精品99又大又爽又粗少妇毛片| 2022亚洲国产成人精品| 乱系列少妇在线播放| 91aial.com中文字幕在线观看| 亚洲欧美一区二区三区国产| 你懂的网址亚洲精品在线观看| 嫩草影院新地址| 欧美区成人在线视频| 久久精品久久精品一区二区三区| 亚洲精品一二三| 亚洲婷婷狠狠爱综合网| 成人免费观看视频高清| 日韩欧美精品免费久久| 日韩一区二区视频免费看| 亚洲天堂av无毛| 性色avwww在线观看| 一级毛片aaaaaa免费看小| 亚洲欧美精品专区久久| 五月天丁香电影| 久久久国产欧美日韩av| 亚洲av中文av极速乱| 久久综合国产亚洲精品| 在线亚洲精品国产二区图片欧美 | 国产有黄有色有爽视频| 简卡轻食公司| 两个人的视频大全免费| 在线观看国产h片| 三级经典国产精品| 啦啦啦视频在线资源免费观看| 人妻一区二区av| 一本久久精品| 美女脱内裤让男人舔精品视频| 亚洲欧美日韩另类电影网站| 久久久亚洲精品成人影院| 亚洲四区av| 少妇人妻一区二区三区视频| 性色av一级| 国内少妇人妻偷人精品xxx网站| 91精品国产九色| av在线观看视频网站免费| 国产精品嫩草影院av在线观看| 你懂的网址亚洲精品在线观看| 91久久精品国产一区二区成人| 亚洲丝袜综合中文字幕| 久久 成人 亚洲| 内射极品少妇av片p| a级毛片免费高清观看在线播放| 国产av一区二区精品久久| 黑人高潮一二区| 丝袜喷水一区| 日本av手机在线免费观看| 国产在线视频一区二区| 亚洲四区av| 亚洲电影在线观看av| 成人无遮挡网站| 三级经典国产精品| 午夜激情福利司机影院| 国产极品天堂在线| 极品少妇高潮喷水抽搐| 国产伦精品一区二区三区视频9| 18禁动态无遮挡网站| 自拍欧美九色日韩亚洲蝌蚪91 | 久久热精品热| 狠狠精品人妻久久久久久综合| 哪个播放器可以免费观看大片| 狂野欧美激情性bbbbbb| 亚洲av成人精品一二三区| 嘟嘟电影网在线观看| 日本与韩国留学比较| 国产一区有黄有色的免费视频| 十分钟在线观看高清视频www | 99精国产麻豆久久婷婷| 久久久精品94久久精品| 亚洲经典国产精华液单| 久久精品久久精品一区二区三区| 国产91av在线免费观看| 亚洲美女视频黄频| 一级毛片电影观看| 日本av免费视频播放| 性色avwww在线观看| 特大巨黑吊av在线直播| 日本免费在线观看一区| 综合色丁香网| 国产欧美日韩一区二区三区在线 | 又爽又黄a免费视频| 这个男人来自地球电影免费观看 | 久久久久久久精品精品| 狠狠精品人妻久久久久久综合| 亚洲精品亚洲一区二区| 色婷婷久久久亚洲欧美| 色网站视频免费| 久久久久人妻精品一区果冻| 亚洲精品一区蜜桃| 中文欧美无线码| 国产精品久久久久久精品电影小说| 全区人妻精品视频| 能在线免费看毛片的网站| 免费看光身美女| 91久久精品国产一区二区三区| 精品亚洲成a人片在线观看| 视频区图区小说| 老女人水多毛片| 3wmmmm亚洲av在线观看| 建设人人有责人人尽责人人享有的| 如日韩欧美国产精品一区二区三区 | 亚洲精品中文字幕在线视频 | 99热全是精品| 大话2 男鬼变身卡| 亚洲欧洲精品一区二区精品久久久 | 亚洲精华国产精华液的使用体验| 国产成人免费观看mmmm| 91精品国产九色| 久久免费观看电影| 高清不卡的av网站| 建设人人有责人人尽责人人享有的| 美女大奶头黄色视频| 青春草亚洲视频在线观看| 国产深夜福利视频在线观看| 亚洲在久久综合| 国产亚洲欧美精品永久| 中文字幕免费在线视频6| 久久久亚洲精品成人影院| 国产美女午夜福利| 成人免费观看视频高清| 国产 精品1| 国产成人精品久久久久久| 国产精品熟女久久久久浪| 最新中文字幕久久久久| 乱人伦中国视频| 国产亚洲午夜精品一区二区久久|