陳晨偉,彭柳城,丁 榕,黃智健,易 靜,楊福馨,謝 晶
制備工藝參數(shù)對(duì)菌絲體生物質(zhì)材料性能的影響
陳晨偉1,2,3,彭柳城1,丁 榕1,黃智健1,易 靜1,楊福馨1,謝 晶1,2,3
(1. 上海海洋大學(xué)食品學(xué)院,上海 201306;2. 上海冷鏈設(shè)備性能與節(jié)能專業(yè)技術(shù)服務(wù)平臺(tái),上海 201306;3. 國(guó)家食品科學(xué)與工程實(shí)驗(yàn)教學(xué)示范中心(上海海洋大學(xué)),上海 201306)
為獲得菌絲體生物質(zhì)材料優(yōu)化性能的最佳工藝參數(shù),該研究以最小緩沖系數(shù)和彎曲強(qiáng)度為評(píng)定指標(biāo),通過(guò)3因素3水平正交試驗(yàn)研究了菌種接種量、基質(zhì)顆粒度和水添加量對(duì)平菇菌絲體材料性能的影響。研究結(jié)果表明,正交試驗(yàn)9組菌絲體材料中菌絲平均直徑最大為1 641 nm,最小為520 nm,前者后者的3.16倍,表明不同工藝參數(shù)顯著(<0.05)影響菌絲生長(zhǎng)狀態(tài)。影響菌絲體材料力學(xué)性能的最大因素是基質(zhì)顆粒度,其次是水添加量和接種量。最佳工藝參數(shù)為接種量10%、基質(zhì)顆粒度10 mm和水添加量60%,對(duì)應(yīng)菌絲體材料的最小緩沖系數(shù)最低為4.17、彎曲強(qiáng)度最大為417.43 kPa,與發(fā)泡聚苯乙烯泡沫的彎曲強(qiáng)度相近。研究結(jié)果可為菌絲體材料制備工藝參數(shù)與性能的優(yōu)化提供基礎(chǔ)。
農(nóng)業(yè)廢棄物;生物質(zhì);資源化;工藝參數(shù);菌絲體材料;彎曲強(qiáng)度;緩沖系數(shù)
不可降解包裝材料的大量生產(chǎn)與使用造成了嚴(yán)重的環(huán)境問(wèn)題。在能源消耗和溫室氣體排放方面,常用包裝材料聚苯乙烯的生產(chǎn)對(duì)環(huán)境的影響僅次于鋁的生產(chǎn)[1];外賣、快遞等一次性包裝材料已成為海洋垃圾和城市垃圾的主要的來(lái)源[2],并且由于材料的不可降解,需要掩埋或焚燒處理,直接或間接影響人體健康。因此,研究開(kāi)發(fā)可降解包裝材料成為近年來(lái)的研究熱點(diǎn)。
菌絲體材料是一種新型的綠色包裝材料,受到廣大研究者的日益關(guān)注[3],它是以農(nóng)業(yè)廢棄物為基質(zhì)材料,利用真菌菌絲的生長(zhǎng)特性,將基質(zhì)材料粘結(jié)形成的菌絲體材料,綠色環(huán)保、天然可降解[4-5]。全球農(nóng)作物的生產(chǎn)每年產(chǎn)生超50億t的農(nóng)業(yè)副產(chǎn)物,如玉米芯、棉籽殼、稻殼、秸稈等[6]。中國(guó)農(nóng)業(yè)副產(chǎn)物產(chǎn)量巨大,大量未被回收利用,從而造成了許多環(huán)境問(wèn)題[7-8]。開(kāi)發(fā)菌絲體材料可以拓寬農(nóng)業(yè)副產(chǎn)物的利用途徑,提高農(nóng)業(yè)副產(chǎn)物的綜合利用價(jià)值。國(guó)內(nèi)外有關(guān)菌絲體生物質(zhì)材料的研究逐漸增多,可用于包裝、建筑、保溫、隔音等領(lǐng)域[9–12]。有研究表明,菌絲體材料具有類似發(fā)泡聚苯乙烯(Expanded Polystyrene,EPS)的性能,可利用模具形制成不同形狀,有替代EPS在包裝中應(yīng)用的巨大潛力[13]。例如,Holt等[9]使用真菌菌絲體和棉花等植物基質(zhì)制備了菌絲體材料,發(fā)現(xiàn)其相關(guān)性能達(dá)到或超過(guò)了EPS泡沫;Jose等[14]制備了以木屑為基質(zhì)的菌絲體材料,探索了其在包裝方面應(yīng)用的可能性。盡管如此,菌絲體材料研究依然是一個(gè)新領(lǐng)域,影響材料制備和性能的因素很多,包括菌種[12]、基質(zhì)[15]、制備工藝[16]等多個(gè)方面,值得進(jìn)一步深入研究。本團(tuán)隊(duì)在菌絲體材料方面已開(kāi)展了初步研究,前期研究證明基質(zhì)配方中外源營(yíng)養(yǎng)物的加入可以促進(jìn)平菇菌絲的生長(zhǎng),提高菌絲體材料的強(qiáng)度和回彈性[17]。本文結(jié)合菌絲體材料的使用目的和前期研究發(fā)現(xiàn)材料抗彎曲性能較差的問(wèn)題,以最小緩沖系數(shù)和彎曲強(qiáng)度為評(píng)價(jià)指標(biāo),通過(guò)正交試驗(yàn)研究菌種接種量、基質(zhì)顆粒度和水添加量對(duì)菌絲體材料性能的影響,得到制備菌絲體材料的最佳工藝條件,并將以最佳工藝參數(shù)制備的菌絲體材料與EPS包裝材料進(jìn)行性能對(duì)比,旨在為菌絲體生物質(zhì)材料制備及其性能優(yōu)化提供基礎(chǔ)。
平菇菌株(廣溫,最適溫度24~28 ℃),購(gòu)于江蘇天達(dá)食用菌研究所;木屑粉末(質(zhì)量分?jǐn)?shù)分別為綜纖維素75%、木質(zhì)素23%)、玉米芯粉末(質(zhì)量分?jǐn)?shù)分別為綜纖維素72%、木質(zhì)素18%)、麥麩粉末(質(zhì)量分?jǐn)?shù)分別為非淀粉多糖46%,蛋白質(zhì)14%)購(gòu)于惠豐秸稈農(nóng)產(chǎn)品深加工;棉籽殼(質(zhì)量分?jǐn)?shù)分別為綜纖維素54%、木質(zhì)素26%)購(gòu)于德州食用菌研究所;葡萄糖、酵母粉、磷酸二氫鉀購(gòu)自國(guó)藥集團(tuán)化學(xué)試劑有限公司。發(fā)泡聚苯乙烯(密度為0.02 g/cm3)購(gòu)于永康市儷創(chuàng)電子商務(wù)商行。
試驗(yàn)儀器與設(shè)備:VS-1300L-U型超凈工作臺(tái)(蘇州安泰空氣技術(shù)有限公司,500 W),BPS-50CH型恒溫恒濕箱(上海一恒科技有限公司,RT+10~85 ℃,80%~95%RH),SU-500掃描電子顯微鏡(SEM)(日本HITACHI公司,10~600 000倍),GX-ZGF101型鼓風(fēng)干燥箱(上海賀德實(shí)驗(yàn)設(shè)備有限公司,50~300 ℃),ZY-150F型滅菌鍋(浙江新豐醫(yī)療器械有限公司,750 W),DDL-100電子萬(wàn)能試驗(yàn)機(jī)(長(zhǎng)春機(jī)械科學(xué)研究院有限公司,0.001~1 000 mm/min)。
結(jié)合前期研究及相關(guān)文獻(xiàn)[17–20],選擇基質(zhì)滅菌方式(高壓蒸汽滅菌、高溫滅菌和化學(xué)滅菌)、培養(yǎng)溫度、接種量、基質(zhì)顆粒度和水添加量進(jìn)行單因素預(yù)試驗(yàn),結(jié)果表明高壓蒸汽滅菌和適宜的培養(yǎng)溫度有利于縮短菌絲體材料制備時(shí)間,但基質(zhì)滅菌方式和培養(yǎng)溫度對(duì)材料性能的影響不大。接種量、基質(zhì)顆粒度和水添加量對(duì)菌絲體材料的彎曲強(qiáng)度有較大影響。因此,確定接種量、基質(zhì)顆粒度和水添加量3個(gè)工藝參數(shù)進(jìn)行正交試驗(yàn)。依據(jù)單因素預(yù)試驗(yàn)結(jié)果,確定接種量為5%~15%(質(zhì)量分?jǐn)?shù))、顆粒度為0.3~10 mm、水添加量為40%~80%(質(zhì)量分?jǐn)?shù)),以彎曲強(qiáng)度和最小緩沖系數(shù)為評(píng)價(jià)指標(biāo),正交試驗(yàn)因素水平如表1所示,根據(jù)參數(shù)水平表設(shè)計(jì)正交試驗(yàn)表,見(jiàn)表2。
表1 正交試驗(yàn)因素水平表
參照前期研究[17],培養(yǎng)基質(zhì)由木屑、棉籽殼、玉米芯、麥麩、石灰和石膏組成,并且額外添加營(yíng)養(yǎng)物[21]葡萄糖(質(zhì)量分?jǐn)?shù)4.7%)、酵母粉(質(zhì)量分?jǐn)?shù)1%)和磷酸二氫鉀(質(zhì)量分?jǐn)?shù)0.3%)。先對(duì)菌種進(jìn)行活化處理,再將基質(zhì)均勻混合,經(jīng)高壓蒸汽滅菌處理冷卻后在超凈工作臺(tái)中與平菇菌種接種,在恒溫恒濕培養(yǎng)箱中培養(yǎng)一定時(shí)間后經(jīng)干燥處理制得到菌絲體材料。
1.4.1 微觀形態(tài)
菌絲體材料微觀結(jié)構(gòu)通過(guò)掃描電鏡進(jìn)行表征[16],并通過(guò)ImageJ軟件對(duì)拍攝照片進(jìn)行菌絲直徑測(cè)定[15]。
1.4.2 彎曲強(qiáng)度
參照GB/T 8812.2—2007《硬質(zhì)泡沫塑料彎曲性能的測(cè)定》,壓板以20±1 mm/min速度垂直于試樣縱軸方向施加壓力,彎曲強(qiáng)度(,kPa)計(jì)算見(jiàn)式(1)。
式中為施加的最大載荷,kN;為兩支座間跨度,mm;為試樣寬度,mm;為試樣厚度,mm。
1.4.3 靜態(tài)緩沖系數(shù)測(cè)定
參照GB/T8168—2008《包裝用緩沖材料靜態(tài)壓縮試驗(yàn)方法》。壓板以12±3 mm/min速度沿試樣厚度方向逐漸增加載荷,壓縮過(guò)程中同時(shí)記錄壓縮力及相應(yīng)變形[22]。
壓縮應(yīng)力計(jì)算見(jiàn)式(2)。
式中為壓縮應(yīng)力,Pa;為壓縮載荷,N;為試樣承載面積,mm2。
壓縮應(yīng)變計(jì)算見(jiàn)式(3)。
式中為壓縮應(yīng)變,%;為試樣原始厚度,mm;T為試樣試驗(yàn)后厚度,mm。
緩沖系數(shù)計(jì)算見(jiàn)式(4)。
式中為緩沖系數(shù);為緩沖效率。
將試樣應(yīng)力-應(yīng)變曲線轉(zhuǎn)換為試樣的緩沖系數(shù)-應(yīng)力曲線,緩沖系數(shù)越小,單位體積材料吸收的沖擊能量越多,緩沖效果越好[23]。
數(shù)據(jù)通過(guò)SPSS20進(jìn)行方差分析,通過(guò)Duncan的極差檢驗(yàn)將差異比較到0.05顯著性水平;使用Origin 2018進(jìn)行作圖。
根據(jù)正交試驗(yàn)制備的9種菌絲體材料樣品照片、掃描電鏡圖和菌絲平均直徑如圖1所示。菌絲體材料的制備原理是通過(guò)菌絲在基質(zhì)上的定殖來(lái)實(shí)現(xiàn)的,其過(guò)程為菌絲通過(guò)分泌酶將基質(zhì)中的聚合物轉(zhuǎn)化為可被吸收的營(yíng)養(yǎng)物質(zhì),基質(zhì)被降解,菌絲體取代部分基質(zhì)并不斷對(duì)外生長(zhǎng),直到外表面,在基質(zhì)表層形成一層致密蓬松的菌絲體薄膜[12]。由樣品照片可觀察到,9種材料具有不同的外觀特征:樣品1、6、8和9的表層菌絲體不致密、不完整,無(wú)法完全覆蓋基質(zhì),肉眼可觀察到暴露的基質(zhì)。相比于樣品1和8的松散狀態(tài),樣品6和9的質(zhì)地相對(duì)緊實(shí)、堅(jiān)硬,類似鋸末木板。這主要?dú)w因于水添加量和顆粒度的差異。樣品1、6和8的水添加量相對(duì)較低(40%),菌絲可能無(wú)法獲取充足水分,進(jìn)而影響其生長(zhǎng)代謝過(guò)程。而樣品6和9的基質(zhì)顆粒度最低,基質(zhì)類似粉末依靠菌絲粘合形成較致密的木質(zhì)材料?;|(zhì)顆粒較細(xì),吸水后膨脹,使試樣內(nèi)部空隙大大減少,不利于其內(nèi)部空氣流通。菌絲生長(zhǎng)除了需要水分以外,也需要吸收氧氣和排放二氧化碳,空氣不流通導(dǎo)致菌絲無(wú)法良好生長(zhǎng)。通過(guò)對(duì)比看出,樣品5和7的外表較白,觸感質(zhì)地彈軟,菌絲生長(zhǎng)良好,在試樣表面生成泡沫質(zhì)感的菌絲體層。
圖1 試驗(yàn)樣外觀、微觀結(jié)構(gòu)及菌絲體直徑直方圖
由SEM圖可以看出,所有試樣的菌絲都呈現(xiàn)高度密集交錯(cuò)的三維網(wǎng)絡(luò)結(jié)構(gòu),這是菌絲體生長(zhǎng)的特性,依靠這樣的結(jié)構(gòu)包裹基質(zhì)才會(huì)使材料擁有良好機(jī)械性能。所有試樣菌絲直徑在500~2 200 nm之間。樣品1、6和8的菌絲整體纖細(xì),平均直徑分別為575、603和527 nm,這3組的水添加量均為40%。樣品7的菌絲最粗,平均直徑為1 641 nm,其次是樣品5(893 nm),這2組水添加量為60 %。其余組菌絲平均直徑分別為631(樣品2)、717(樣品3)、690(樣品4)和643 nm(樣品9)。因此,水添加量過(guò)高或過(guò)低都會(huì)使菌絲生長(zhǎng)不佳,60%水添加量條件下菌絲生長(zhǎng)較佳,菌絲平均直徑最大值是最小值的3.16倍。上述結(jié)果說(shuō)明,不同工藝參數(shù)顯著影響菌絲的生長(zhǎng)(<0.05),導(dǎo)致不同樣品菌絲生長(zhǎng)差異。
根據(jù)圖1外觀形態(tài)與微觀形貌分析,試驗(yàn)制得的菌絲體材料有的質(zhì)地致密類似板材,有的質(zhì)地相對(duì)疏松類似泡沫。結(jié)合開(kāi)發(fā)菌絲體材料作為包裝材料的使用目的和前期研究中發(fā)現(xiàn)材料抗彎曲性能較差的問(wèn)題,從緩沖性能和抗彎曲性能兩個(gè)角度評(píng)價(jià)材料的力學(xué)性能,選擇最小緩沖系數(shù)和彎曲強(qiáng)度作為評(píng)價(jià)指標(biāo),具體結(jié)果如表2所示。對(duì)以上2個(gè)指標(biāo)進(jìn)行極差綜合分析,如表3所示。極差反映同一水平下數(shù)據(jù)離散程度,值越大代表該因素對(duì)指標(biāo)影響越大。
表2 菌絲體材料性能測(cè)試結(jié)果
注:、、分別為接種量、基質(zhì)顆粒度和水添加量的水平值,下同。
Note:,,are the level values of inoculation amounts, particle size of substrate and water addition, respectively. The same below.
表3 試驗(yàn)參數(shù)極差計(jì)算結(jié)果
由表3可知,對(duì)菌絲體材料彎曲強(qiáng)度和最小緩沖系數(shù)指標(biāo)影響大小的次序?yàn)榛|(zhì)顆粒度、水添加量、接種量,2項(xiàng)指標(biāo)最優(yōu)結(jié)果相同,最優(yōu)組合為212,即接種量10%、基質(zhì)顆粒度2 mm和水添加量60%。
圖2為基質(zhì)顆粒度對(duì)菌絲體材料的彎曲強(qiáng)度和最小緩沖系數(shù)的影響變化曲線。隨著基質(zhì)的顆粒度降低,材料的彎曲強(qiáng)度下降,最小緩沖系數(shù)增加。由表3結(jié)果計(jì)算可得,10 mm顆粒度對(duì)應(yīng)菌絲體材料的彎曲強(qiáng)度比2和0.5 mm顆粒度對(duì)應(yīng)材料分別高出34%和182%,2和0.5 mm顆粒度對(duì)應(yīng)菌絲體材料的最小緩沖系數(shù)比10 mm顆粒度對(duì)應(yīng)菌絲體材料分別高出15%和31%。這意味著隨著基質(zhì)顆粒度減小,菌絲體材料的抗彎曲能力和緩沖效果降低。主要原因是基質(zhì)材料內(nèi)部空隙因顆粒度降低而減少,材料變形空間受到限制,空氣流通性變差,從而影響菌絲的生長(zhǎng),使得基質(zhì)間不能很好地粘結(jié),從而降低了材料的緩沖性能和抗彎曲能力。此外,基質(zhì)本身的植物纖維主要成分是葡萄糖大分子鏈構(gòu)成的纖維素,纖維素的多羥基結(jié)構(gòu)使纖維素分子間具有氫鍵作用[19]。但僅靠基質(zhì)粉末之間化學(xué)鍵結(jié)合無(wú)法提供更優(yōu)的力學(xué)性能,而大顆粒度的基質(zhì)互相交叉支撐,不僅提供了材料支撐結(jié)構(gòu),也為菌絲生長(zhǎng)提供了空隙,最終形成菌絲體包裹基質(zhì)結(jié)構(gòu)以提高材料力學(xué)性能。所以確定顆粒度最佳參數(shù)為10 mm。Sarikaya[17]等使用白腐真菌平菇對(duì)油菜籽的不可食用部分進(jìn)行固態(tài)發(fā)酵發(fā)現(xiàn),小顆粒度(<0.42 mm)對(duì)應(yīng)樣品的木質(zhì)素降解量低于大顆粒度(>0.42 mm)對(duì)應(yīng)的樣品,即表明菌絲的生長(zhǎng)與基質(zhì)顆粒大小相關(guān),這與本研究結(jié)論類似。
圖2 基質(zhì)顆粒度對(duì)試樣彎曲強(qiáng)度和最小緩沖系數(shù)的影響
基質(zhì)的初始含水量對(duì)真菌生長(zhǎng)非常重要,影響菌絲的新陳代謝[18]。圖3為水添加量對(duì)菌絲體材料的彎曲強(qiáng)度和最小緩沖系數(shù)的影響變化曲線。隨著水添加量增加,材料的彎曲強(qiáng)度顯示先增加后減少趨勢(shì),最小緩沖系數(shù)呈現(xiàn)先減少后增加趨勢(shì)。結(jié)合表3數(shù)據(jù)計(jì)算可得,60%水添加量對(duì)應(yīng)菌絲體材料的彎曲強(qiáng)度比40%和80%水添加量對(duì)應(yīng)材料分別高出141%和16%,40%和80%水添加量對(duì)應(yīng)菌絲體材料的最小緩沖系數(shù)比60%水添加量對(duì)應(yīng)材料分別高出20%和8%。水添加量為60%時(shí),材料顯示出最佳抗彎曲性能和緩沖效率。結(jié)合形態(tài)分析,當(dāng)水添加量少時(shí),菌絲體缺乏足夠水分參與自身新陳代謝和生長(zhǎng),菌絲生長(zhǎng)量不足以包裹基質(zhì),最終材料內(nèi)部基質(zhì)間粘結(jié)性相對(duì)較弱,無(wú)法提供較好地力學(xué)性能;當(dāng)水添加量較多時(shí),過(guò)多的水分填充了內(nèi)部空隙,在一定程度上降低了空氣流通性,菌絲體生長(zhǎng)期間的所需的氧氣和代謝的二氧化碳不能及時(shí)交換,最終影響菌絲體生長(zhǎng)量,造成菌絲體材料彎曲強(qiáng)度和緩沖性能下降。Wan等[19]使用彎孢擬蠟孔菌處理玉米秸稈時(shí)發(fā)現(xiàn),45%水分含量培養(yǎng)料中真菌無(wú)降解和生長(zhǎng)現(xiàn)象,當(dāng)含水量增加時(shí),真菌的木質(zhì)素降解率也隨之增加,表明彎孢擬蠟孔菌菌種對(duì)玉米桔稈的降解與利用和基質(zhì)水分含量有關(guān)。綜上考慮,60%水添加量最佳。
圖3 不同水添加量對(duì)試樣彎曲強(qiáng)度和最小緩沖系數(shù)的影響
圖4為菌種接種量對(duì)菌絲體材料的彎曲強(qiáng)度和最小緩沖系數(shù)的影響變化曲線。隨著接種量從5%增加到10%時(shí),彎曲強(qiáng)度提高了69%,而接種量增加到15%時(shí),彎曲強(qiáng)度略有降低。當(dāng)接種量太低,菌種接觸基質(zhì)面積有限,導(dǎo)致定殖生長(zhǎng)的區(qū)域有限,使菌絲生長(zhǎng)量不足,從而降低了基質(zhì)間的粘結(jié)性,使得材料彎曲強(qiáng)度下降。當(dāng)接種量提高,菌絲初始生長(zhǎng)點(diǎn)增多,促使菌絲定殖迅速及區(qū)域增加,但當(dāng)接種量繼續(xù)增加超過(guò)10%時(shí),因?yàn)榛|(zhì)作為菌絲生長(zhǎng)的營(yíng)養(yǎng)來(lái)源,過(guò)多的接種量使菌種之間相互爭(zhēng)奪營(yíng)養(yǎng)源,因此在一定程度上限制了菌絲的生長(zhǎng),不能使所有菌種得到完全生長(zhǎng),從而影響了基質(zhì)間的粘結(jié)性。最小緩沖系數(shù)隨著接種量增加先減少后升高,10%接種量對(duì)應(yīng)樣品的最小緩沖系數(shù)值最小,表明材料的緩沖效果越好。因此,材料因此,10%接種量最佳。綜合以上分析,也表明菌絲長(zhǎng)勢(shì)越好,越有利于增加材料基質(zhì)間的粘結(jié)性和彈性,從而提高材料的彎曲強(qiáng)度和緩沖性能。
由于正交試驗(yàn)獲得的最佳工藝參數(shù)組合212不在9組試驗(yàn)中,需要將212和正交試驗(yàn)組中性能最佳的312做進(jìn)一步驗(yàn)證對(duì)比試驗(yàn),分析工藝參數(shù)對(duì)菌絲體材料性能的影響。圖5為312和212參數(shù)組合的樣品掃描電鏡圖。由圖5可知,與312比較,212組可觀察到表面菌絲體層不只是三維網(wǎng)狀結(jié)構(gòu),最外層菌絲體不斷生長(zhǎng)連接成薄膜狀,菌絲體之間的部分空隙被菌絲填補(bǔ),這表明材料表面菌絲生長(zhǎng)更致密,212組菌絲體長(zhǎng)勢(shì)更好。圖6為312、212和EPS的最小緩沖系數(shù)和彎曲強(qiáng)度對(duì)比。312和212的最小緩沖系數(shù)分別為4.62和4.17,212組最小緩沖系數(shù)較312組降低了10%,312和212的彎曲強(qiáng)度分別為387.15和417.43 kPa,212組彎曲強(qiáng)度較312組提高了8%,這主要?dú)w因于212組相對(duì)較好的菌絲長(zhǎng)勢(shì)。盡管如此,212組的力學(xué)性能較312組提升幅度不大。綜合上述分析,212組性能最佳,具體工藝參數(shù)為接種量10%、基質(zhì)顆粒度10 mm和水添加量60%。
圖5 不同工藝參數(shù)組合的菌絲體材料微觀結(jié)構(gòu)
圖6 不同工藝參數(shù)組合下菌絲體材料和發(fā)泡聚苯乙烯的彎曲強(qiáng)度和最小緩沖系數(shù)
比較圖6菌絲體材料和EPS的彎曲強(qiáng)度、最小緩沖系數(shù)可知,2種不同工藝參數(shù)條件下所制備的菌絲體材料彎曲強(qiáng)度與試驗(yàn)選用EPS材料相當(dāng),表明212和312工藝參數(shù)的菌絲體材料能夠滿足一般緩沖包裝材料的彎曲強(qiáng)度要求。同時(shí),所制備的菌絲體材料彎曲強(qiáng)度大于國(guó)外報(bào)道[24]使用棉花基質(zhì)制備冷壓處理的菌絲體材料(210~214 kPa),但小于其經(jīng)過(guò)熱壓處理的菌絲體材料(820~870 kPa),經(jīng)熱壓處理可以顯著提高菌絲體材料彎曲強(qiáng)度。此外,菌絲體材料的最小緩沖系數(shù)大于EPS材料,表明該菌絲體材料的緩沖性能較EPS差。但有研究表明使用秸稈基質(zhì)制備的菌絲體材料的緩沖性能優(yōu)于EPS[25],以不同的基質(zhì)為原料制備的菌絲體材料在性能上有較大的差異[15]。
本研究以接種量、基質(zhì)顆粒度和水添加量進(jìn)行了3因素3水平正交試驗(yàn),以最小緩沖系數(shù)和彎曲強(qiáng)度為評(píng)價(jià)指標(biāo),制得不同菌絲體材料,通過(guò)比較分析材料的結(jié)構(gòu)與性能,確定了最佳工藝參數(shù),獲得主要結(jié)論如下:
1)菌絲體材料的微觀結(jié)構(gòu)結(jié)果顯示菌絲平均直徑中最大值為1 641 nm,為最小值527 nm的 3.16倍,表明不同工藝參數(shù)顯著(<0.05)影響菌絲生長(zhǎng)狀態(tài)。
2)由正交試驗(yàn)結(jié)果和極差分析得到,影響菌絲體材料力學(xué)性能的最大因素是顆粒度,其次是水添加量和接種量。確定最佳工藝參數(shù)為接種量10%、顆粒度10 mm和水添加量60%。由最佳工藝參數(shù)制備的菌絲體材料的彎曲強(qiáng)度與選用EPS材料相近,緩沖性能較其要差,仍有待進(jìn)一步研究提高其緩沖性能。
工藝參數(shù)影響菌絲生長(zhǎng)和材料力學(xué)性能,為菌絲體材料制備及其性能優(yōu)化提供了基礎(chǔ)。菌絲長(zhǎng)勢(shì)越好,越有利于增加材料基質(zhì)間的粘結(jié)性和彈性,從而提高材料的彎曲強(qiáng)度和緩沖性能。隨著基質(zhì)顆粒度的減小,材料內(nèi)部空隙減少,材料變形空間受到限制,空氣流通性變差,從而影響菌絲的生長(zhǎng),使得基質(zhì)間不能很好地粘結(jié),從而降低了材料的緩沖性能和抗彎曲能力;合適的水分添加量才能使菌絲體獲得足夠水分參與自身新陳代謝和生長(zhǎng),不至于因過(guò)多水分添加導(dǎo)致內(nèi)部空氣流通性下降而影響菌絲體生長(zhǎng);合適的接種量才能保證菌絲正常的定殖生長(zhǎng),不會(huì)因接種量低導(dǎo)致菌絲生長(zhǎng)不足、因接種量高導(dǎo)致菌種之間相互爭(zhēng)奪營(yíng)養(yǎng)源而在一定程度上限制了菌絲的生長(zhǎng),從而影響了菌絲的長(zhǎng)勢(shì)。
[1] Abhijith R, Ashok A, Rejeesh C R. Sustainable packaging applications from mycelium to substitute polystyrene: A review[J]. Materials Today: Proceedings, 2018, 5(1): 2139-2145.
[2] Arifin Y H, Yusuf Y. Mycelium fibers as new resource for environmental sustainability[J]. Procedia Engineering, 2013, 53: 504-508.
[3] Kuribayashi T, Lankinen P, Hietala S, et al. Dense and continuous networks of aerial hyphae improve flexibility and shape retention of mycelium composite in the wet state[J]. Composites Part A: Applied Science and Manufacturing, 2022, 152: 106688.
[4] Jiang L, Walczyk D, McIntyre G, et al. Manufacturing of biocomposite sandwich structures using mycelium-bound cores and preforms[J]. Journal of Manufacturing Processes, 2017, 28: 50-59.
[5] Elsacker E, Vandelook S, Van Wylick A, et al. A comprehensive framework for the production of mycelium-based lignocellulosic composites[J]. Science of the Total Environment, 2020, 725: 138431.
[6] Falade A O. Valorization of agricultural wastes for production of biocatalysts of environmental significance: towards a sustainable environment[J]. Environmental Sustainability, 2021, 4(2): 317-328.
[7] Falade A O, Mabinya L V, Okoh A I, et al. Agroresidues enhanced peroxidase activity expression by Bacillus sp. MABINYA-1 under submerged fermentation[J]. Bioresources and Bioprocessing, 2020, 7(1): 55.
[8] 孫永明,李國(guó)學(xué),張夫道,等. 中國(guó)農(nóng)業(yè)廢棄物資源化現(xiàn)狀與發(fā)展戰(zhàn)略[J]. 農(nóng)業(yè)工程學(xué)報(bào),2005,21(8):169-173.
Sun Yongming, Li Guoxue, Zhang Fudao, et al. Status quo and developmental strategy of agricultural residues resources in China[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2005, 21(8): 169-173. (in Chinese with English abstract)
[9] Holt G A, Mcintyre G, Flagg D, et al. Fungal mycelium and cotton plant materials in the manufacture of biodegradable molded packaging material: Evaluation study of select blends of cotton byproducts[J]. Journal of Biobased Materials and Bioenergy, 2012, 6(4): 431-439.
[10] Attias N, Danai O, Abitbol T, et al. Mycelium bio-composites in industrial design and architecture: Comparative review and experimental analysis[J]. Journal of Cleaner Production, 2020, 246: 119037.
[11] Pelletier M G, Holt G A, Wanjura J D, et al. An evaluation study of mycelium based acoustic absorbers grown on agricultural by-product substrates[J]. Industrial Crops and Products, 2013, 51: 480-485.
[12] Bruscato C, Malvessi E, Brandalise R N, et al. High performance of macrofungi in the production of mycelium-based biofoams using sawdust-Sustainable technology for waste reduction[J]. Journal of Cleaner Production, 2019, 234: 225-232.
[13] Jones M, Huynh T, Dekiwadia C, et al. Mycelium composites: A review of engineering characteristics and growth kinetics[J]. Journal of Bionanoscience, 2017, 11(4): 241-257.
[14] Jose J, Uvais K N, Sreenadh T S, et al. Investigations into the development of a mycelium biocomposite to substitute polystyrene in packaging applications[J]. Arabian Journal for Science and Engineering, 2021, 46(3): 2975-2984.
[15] Peng L, Yi J, Yang X, et al. Development and characterization of mycelium bio-composites by utilization of different agricultural residual byproducts[J]. Journal of Bioresources and Bioproducts,2022, 8(1): 78-89.
[16] Rafiee K, Kaur G, Brar S K. Fungal biocomposites: How process engineering affects composition and properties[J]. Bioresource Technology Reports, 2021, 14: 100692.
[17] 陳晨偉,丁榕,彭柳城,等. 外源營(yíng)養(yǎng)物對(duì)菌絲體生物質(zhì)材料的生長(zhǎng)研究及其性能表征[J]. 農(nóng)業(yè)工程學(xué)報(bào),2021,37(21):295-302.
Chen Chenwei, Ding Rong, Peng Liucheng, et al. Effects of exogenous nutrients on the growth of mycelial biomass materials and its characterization[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2021, 37(21): 295-302. (in Chinese with English abstract)
[18] Sarikaya A, Ladisch M R. Solid-state fermentation of lignocellulosic plant residues from Brassica napus by Pleurotus ostreatus[J]. Applied Biochemistry and Biotechnology, 1999, 82(1): 1-15.
[19] Wan C, Li Y. Microbial delignification of corn stover by ceriporiopsis subvermispora for improving cellulose digestibility[J]. Enzyme & Microbial Technology, 2010, 47(1-2): 31-36.
[20] Wan C, Li Y. Microbial pretreatment of corn stover with ceriporiopsis subvermispora for enzymatic hydrolysis and ethanol production[J]. Bioresource Technology, 2010, 101(16): 6398-6403.
[21] 裴海生,孫君社,王民敬,等. 木質(zhì)素對(duì)靈芝菌絲體生長(zhǎng)的影響[J]. 農(nóng)業(yè)工程學(xué)報(bào),2017,33(6):309-314.
Pei Haisheng, Sun Junshe, Wang Minjing, et al. Effect of lignin on growth of Ganoderma lucidum[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2017, 33(6): 309-314. (in Chinese with English abstract)
[22] 孫聚杰,郝笑夢(mèng). 不同組合角度瓦楞紙板緩沖性能研究[J]. 包裝工程,2010,31(19):43-45+54.
Sun Jujie, Hao Xiaomeng. Research on cushion properties of corrugated boards structure with different angles[J]. Packaging Engineering, 2010, 31(19): 4. (in Chinese with English abstract)
[23] 梁秀,王玉龍,王柳. 泡沫塑料/瓦楞紙板組合結(jié)構(gòu)的緩沖性能[J]. 包裝工程,2016,37(15):129-133.
Liang Xiu, Wang Yulong, Wang Liu. Cushion properties of composite structures with foamed plastic and corrugated paperboard[J]. Packaging Engineering, 2016, 37(15): 129-33. (in Chinese with English abstract)
[24] Appels F V W, Camere S, Montalti M, et al. Fabrication factors influencing mechanical, moisture- and water-related properties of mycelium-based composites[J]. Materials & Design, 2019, 161: 64-71.
[25] 尚舒,牛宏震,林理量,等. 食用菌制全降解包裝材料的研究[J]. 云南化工,2015,42(6):23-27.
Shang Shu, Niu Hongzhen, Lin Liliang, et al. Preparation of a fully degraded packaging material by using the mushroom cultivation technology[J]. Yunnan Chemical Technology, 2015, 42(6): 23-27. (in Chinese with English abstract)
Effects of preparation process parameters on the properties of mycelium biomass materials
Chen Chenwei1,2,3, Peng Liucheng1, Ding Rong1, Huang Zhijian1, Yi Jing1, Yang Fuxin1, Xie Jing1,2,3
(1.,,201306,; 2.,201306,; 3.(),201306,)
Biodegradable packaging materials have received widespread attention in recent years. The reason is that non-biodegradable packaging materials have caused serious environmental and human health issues during disposal after mass production. Fortunately, the mycelium material can be expected to serve as one of the promising biodegradable materials. In this study, the mycelium biomass material was cultivated to determine the effect of preparation process parameters on mechanical properties.was selected to inoculate in a culture substrate, including the wood chips, cotton seed hulls, corn cobs, wheat bran, lime, and gypsum. The process parameters were then optimized for the properties of mycelium biomass material. After that, a three-factor and the three-level orthogonal test was carried out to investigate the three process parameters (inoculum amounts, particle size of substrate, and water addition) using the minimum cushioning coefficient and bending strength as the evaluation indexes. The maximum and minimum average diameters of mycelium were 1 641 and 520 nm, indicating the significant influence of different process parameters on the growth state of mycelium. The influencing factors were ranked in descending order of the particle size of the substrate, followed by the water addition, and inoculum amount. The bending resistance and buffering effect of mycelium material decreased as the particle size of the substrate decreased, due to the reduced internal space of substrate material. The low growth of mycelium and adherence between the substrates was attributed to the limited deformation space of material for less air circulation. The best bending resistance and buffering efficiency were achieved in the amount of water addition of 60%. As such, the bonding between the substrate inside the material depended mainly on the amount of water addition. The better mechanical properties were obtained in the relatively strong bonding, where the metabolism and growth of mycelium with suitable water was a benefit to wrapping the substrate. By contrast, the air circulation was reduced, where too much water filled the internal void in the material. The needed oxygen and metabolic carbon dioxide were not exchanged during the mycelium growth in time, leading to the low bending strength and buffering performance of the mycelium material without growth. The best bending resistance and buffering efficiency were achieved in the optimal inoculum of 10%. Once the inoculum was too low, the strains have limited contact with the substrate area, resulting in a limited area for colonization and growth. The insufficient mycelium growth reduced the bonding between substrates, leading to a decrease in the bending strength of mycelium material. A high inoculum greatly contributed to the strains competing with each other for the nutrient source, leading to the limited growth of mycelium in all strains. The optimum process parameters were optimized for the inoculum amounts of 10%, the particle size of substrate 10 mm, and water addition of 60%, corresponding to the minimum cushioning coefficient of 4.17 and the highest bending strength of 417.43 kPa of the mycelium material. Therefore, the bending strength of mycelium material was comparable to that of expanded polystyrene foam. But, the cushioning performance was less than that of expanded polystyrene foam. Three process parameters can be expected to further optimize the growth of mycelium, particularly for the better mechanical properties of the mycelium material. This finding can provide a strong reference to optimize the preparation process parameters and mechanical properties of mycelium biomass material.
mycelium material; biomass; resources; process parameters; bending strength; cushioning coefficient; agricultural waste; degradable materials
10.11975/j.issn.1002-6819.2022.22.020
S216.2
A
1002-6819(2022)-22-0183-07
陳晨偉,彭柳城,丁榕,等. 制備工藝參數(shù)對(duì)菌絲體生物質(zhì)材料性能的影響[J]. 農(nóng)業(yè)工程學(xué)報(bào),2022,38(22):183-189.doi:10.11975/j.issn.1002-6819.2022.22.020 http://www.tcsae.org
Chen Chenwei, Peng Liucheng, Ding Rong, et al. Effects of preparation process parameters on the properties of mycelium biomass materials[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2022, 38(22): 183-189. (in Chinese with English abstract) doi:10.11975/j.issn.1002-6819.2022.22.020 http://www.tcsae.org
2022-06-04
2022-11-09
國(guó)家重點(diǎn)研發(fā)計(jì)劃項(xiàng)目(2018YFD0400701);上海市科委公共服務(wù)平臺(tái)建設(shè)項(xiàng)目(19DZ2284000);上海市大學(xué)生創(chuàng)新項(xiàng)目(S202110264033)
陳晨偉,博士,副教授,研究方向?yàn)榭山到獍b材料、食品包裝與保鮮。Email:cwchen@shou.edu.cn
謝晶,博士,教授,博士生導(dǎo)師,研究方向?yàn)槭称繁ur、包裝。Email:jxie@shou.edu.cn