曹林林,任衍森,鄧 輝,楊 樂,王 洋,常瀚予
棉稈熱解分級(jí)冷凝產(chǎn)物改良鹽堿土效果
曹林林1,任衍森1,鄧 輝1※,楊 樂2,王 洋1,常瀚予1
(1. 石河子大學(xué)化學(xué)化工學(xué)院,環(huán)境監(jiān)測(cè)與污染物控制兵團(tuán)重點(diǎn)實(shí)驗(yàn)室,石河子 832003;2. 石河子大學(xué)農(nóng)學(xué)院,石河子 832003)
為揭示分級(jí)冷凝熱解液對(duì)鹽堿土的改良作用,該研究以三級(jí)冷凝方式作為棉稈熱解液精制方法,分析分級(jí)冷凝對(duì)產(chǎn)物組成影響;在此基礎(chǔ)上,利用盆栽試驗(yàn),以不同熱解溫度下獲得的棉稈分級(jí)冷凝第3級(jí)產(chǎn)物稀釋不同倍數(shù)后施入鹽堿土,考察分級(jí)冷凝第3級(jí)產(chǎn)物對(duì)于小白菜生長(zhǎng)、土壤pH值、全鹽量、蔗糖酶、脲酶、堿性磷酸酶、過氧化氫酶、有機(jī)質(zhì),堿解氮、速效磷和速效鉀的影響。結(jié)果表明:1)分級(jí)冷凝可以達(dá)到棉稈熱解液從源頭分離的目的,實(shí)現(xiàn)酚類與酸類物質(zhì)的粗分離,分級(jí)冷凝第3級(jí)產(chǎn)物的酚類與酸類物質(zhì)濃度分別為單級(jí)產(chǎn)物的0.50~0.55與1.21~1.35倍。2)灌施分級(jí)冷凝第3級(jí)產(chǎn)物可以顯著促進(jìn)小白菜的萌發(fā)與生長(zhǎng)(<0.05),熱解溫度與稀釋倍數(shù)均會(huì)影響促進(jìn)作用。中溫?zé)峤庖约拜^大的稀釋倍數(shù)對(duì)種子萌發(fā)更有利,500 ℃熱解獲得分級(jí)冷凝第3級(jí)產(chǎn)物稀釋600倍灌施時(shí),小白菜的長(zhǎng)勢(shì)最好,發(fā)芽率、株高與株質(zhì)量分別提高32.12%、95.11%與120.03%,丙二醛含量降低48.39%。3)灌施分級(jí)冷凝第3級(jí)產(chǎn)物會(huì)顯著影響土壤酶活性,除稀釋50倍時(shí)降低土壤脲酶與堿性磷酸酶活性外,其他稀釋倍數(shù)下土壤中酶活性顯著增加(<0.05)。4)灌施分級(jí)冷凝第3級(jí)產(chǎn)物會(huì)顯著降低鹽堿土的pH值與全鹽量,顯著增加鹽堿土的有機(jī)質(zhì),堿解氮、速效磷和速效鉀的含量(<0.05)。上述結(jié)果表明,分級(jí)冷凝第3級(jí)棉稈熱解產(chǎn)物可有效對(duì)鹽堿土進(jìn)行改良,熱解溫度與稀釋倍數(shù)會(huì)顯著影響改良效果,該研究能夠?yàn)樯镔|(zhì)熱解液在鹽堿土改良中的應(yīng)用提供一定理論依據(jù)。
土壤;熱解;棉稈;鹽堿土;熱解液;分級(jí)冷凝;盆栽試驗(yàn)
土壤的鹽漬化和堿化會(huì)降低土壤有機(jī)質(zhì)、堿解氮、速效鉀和速效磷的含量,導(dǎo)致土壤肥力下降[1],最終對(duì)農(nóng)作物生長(zhǎng)產(chǎn)生嚴(yán)重的危害。隨著人口持續(xù)增長(zhǎng),對(duì)糧食等農(nóng)產(chǎn)品的需求不斷增加,充分利用鹽堿地迫在眉睫[2]。因此,鹽堿土的改良和利用已引起人們的廣泛關(guān)注。目前使用的鹽堿土改良措施,如增施有機(jī)肥、人工灌排[3]、種植耐鹽植物[4]、向土壤中加入石膏[5]等,雖具有一定的效果,但也存在不同程度的缺陷,如人工灌排前期投資過大,種植耐鹽植物見效緩慢等。相較于以上幾種措施,應(yīng)用土壤改良劑是改善鹽堿地的一種簡(jiǎn)單有效的方法。施加改良劑可以降低土壤的pH值和鹽分,但也可能會(huì)對(duì)土壤造成二次污染[6]。因此,在能保證改良效果的基礎(chǔ)上,開發(fā)廉價(jià)、環(huán)保的鹽堿土改良劑至關(guān)重要。
生物質(zhì)是一種儲(chǔ)量巨大、種類豐富、無污染的可再生資源。熱解液是生物質(zhì)在隔絕氧氣條件下高溫?zé)峤獾玫降囊簯B(tài)產(chǎn)物[7],因其有機(jī)酸含量較高[8],常被用于鹽堿土改良。He等[9]研究表明稀釋的熱解液可以降低鹽堿土的pH值和鹽分,增加土壤中的有機(jī)質(zhì),促進(jìn)植物生長(zhǎng)。斯日木極等[10]通過盆栽試驗(yàn)研究了不同濃度的熱解液對(duì)土壤酶活性的影響,結(jié)果表明熱解液促進(jìn)了土壤淀粉酶、磷酸酶、蛋白酶、過氧化氫酶和脲酶的活性。盡管目前的研究表明熱解液對(duì)鹽堿土的改良有利,但熱解液中存在大量的酚類物質(zhì),該物質(zhì)作為原生質(zhì)毒物,可對(duì)所有生物活性體產(chǎn)生毒害[11],因此,對(duì)熱解液進(jìn)行精制,脫除其中的酚類物質(zhì),是使其得到更好地改良應(yīng)用的重要條件。
分級(jí)冷凝法是根據(jù)物質(zhì)的露點(diǎn)差異,將熱解氣的不同組分分別在冷凝過程中富集到不同的溫度段中,從而在源頭上實(shí)現(xiàn)對(duì)熱解液初步分離的方法。馬善為等[12]對(duì)稻殼熱解氣進(jìn)行四級(jí)冷凝,獲得多種品級(jí)的生物油。Pollard等[13]利用分級(jí)冷凝的方法也得到了5種生物油,且大部分能源物質(zhì)都富集在前兩級(jí)。黃凌瑞等[14]設(shè)置了三級(jí)冷凝裝置來冷凝熱解氣,成功分離了生物油中的呋喃類產(chǎn)物和含氮雜環(huán)化合物。相比較傳統(tǒng)精制方法(分子蒸餾與傳統(tǒng)蒸餾[15-17]),分級(jí)冷凝法減少了蒸餾過程中熱解液的縮聚,降低了能耗以及分離成本,極具發(fā)展前景[18]。
棉稈是木質(zhì)素含量較高的秸稈類原料,熱解液中酚類物質(zhì)含量以及含水率較高。因此,本研究以棉稈熱解液中酚類物質(zhì)與有機(jī)酸[19]的沸點(diǎn)為基礎(chǔ),考慮一次冷凝對(duì)酚類物質(zhì)的分離效果有限[13]以及經(jīng)濟(jì)性,提出利用三級(jí)冷凝的方式對(duì)熱解液中酚類物質(zhì)、有機(jī)酸進(jìn)行分離,分析各級(jí)冷凝液的組成特性。在此基礎(chǔ)上,將分級(jí)冷凝第3級(jí)產(chǎn)物稀釋不同的倍數(shù)后灌施到鹽堿土中,通過盆栽試驗(yàn),探究其對(duì)鹽堿土的作用效果,以期為今后脫酚熱解液的鹽堿土改良提供理論基礎(chǔ)。
棉稈(CS):試驗(yàn)所需原料來自石河子大學(xué)農(nóng)試場(chǎng),取回后置于通風(fēng)處風(fēng)干,剪為1~2 cm小段,于105 ℃烘箱中干燥4 h,冷卻后放入密封袋置于干燥器中備用。棉稈的元素分析和工業(yè)分析結(jié)果如表1所示。
表1 棉稈元素分析和工業(yè)分析
注:O*元素采用差減法汁算。
Note: O* elements are calculated using the difference-subtraction method.
鹽堿土:取自石河子市蘑菇湖水庫附近,采樣區(qū)內(nèi)以S型設(shè)置采取樣點(diǎn),采土深度為0~20 cm,共采取約100 kg鹽堿土。土樣帶回實(shí)驗(yàn)室,攤開風(fēng)干,挑揀出碎石草根殘?jiān)入s質(zhì),過3 mm篩后備用。土壤基本理化性質(zhì)如下:pH值7.98± 0.01,全鹽量(13.60±1.40)g/kg,堿解氮(44.26±1.06)mg/kg,速效磷(4.31±0.25)mg/kg,速效鉀(85.01±1.24)mg/kg,有機(jī)質(zhì)(7.24±0.11)g/kg。
用天平稱取100 g ± 0.5 g的棉稈放入反應(yīng)釜內(nèi),將反應(yīng)釜密封后置于馬弗爐中,熱解開始前向釜內(nèi)持續(xù)通入氮?dú)?.5 h,吹掃速率為0.3 L/min,以排凈反應(yīng)釜內(nèi)的空氣。由課題組前期棉稈熱解試驗(yàn)結(jié)果[19],設(shè)置熱解溫度為300、400、500、600和700 ℃,熱解時(shí)間為1 h。熱解液的單級(jí)冷凝溫度設(shè)為0 ℃,分級(jí)冷凝熱解液采用三級(jí)冷凝裝置,一、二、三級(jí)冷凝器的溫度分別設(shè)為180、120和0 ℃,分別得到一、二、以及三級(jí)產(chǎn)物。圖1是熱解反應(yīng)的分級(jí)冷凝試驗(yàn)裝置圖,一級(jí)、二級(jí)冷凝用二甲基硅油作為冷卻、保溫介質(zhì),三級(jí)冷凝采用冰水為冷卻介質(zhì)。待熱解結(jié)束,爐膛內(nèi)溫度降至室溫時(shí),將熱解液取出稱質(zhì)量,裝入棕色瓶中放入4 ℃冰箱中備用。
本次試驗(yàn)以黑油小白菜作為指示植物進(jìn)行盆栽,共設(shè)置21個(gè)處理,包括清水澆灌處理(CK)與20個(gè)三級(jí)產(chǎn)物處理(T-D),每個(gè)處理設(shè)置3個(gè)平行,其中表示熱解溫度的數(shù)值,表示第三級(jí)產(chǎn)物的稀釋倍數(shù),如處理T300-D50即為300 ℃熱解獲得的三級(jí)產(chǎn)物稀釋50倍后施入鹽堿土。本試驗(yàn)中取前述熱解試驗(yàn)溫度,由文獻(xiàn)[20-25]調(diào)研與前期預(yù)試驗(yàn)(T300不同稀釋倍數(shù)處理的盆栽試驗(yàn))確定,分別取50、200、400、600。
1.氮?dú)馄?2.溫控儀 3.反應(yīng)釜 4.馬弗爐 5.一級(jí)冷凝裝置 6.二級(jí)冷凝裝置 7.三級(jí)冷凝裝置 8.抽濾瓶 9.熱解氣 10.液封瓶
盆栽試驗(yàn)具體方案為:稱取250.0 g鹽堿土置于花盆中,均勻播入12粒籽粒飽滿的小白菜種子,在菜籽表面撒上約3 mm的土層,隨后用保鮮膜對(duì)花盆封口后,將其置于培養(yǎng)架上室溫培養(yǎng)(光強(qiáng)45 W/m2),播種后記錄盆中小白菜的發(fā)芽數(shù),每7 d拔掉長(zhǎng)勢(shì)最差的2株苗,測(cè)定小白菜的株高、株質(zhì)量,試驗(yàn)周期為35 d。每隔3 d澆灌一次,前10 d澆灌清水或稀釋后的三級(jí)產(chǎn)物 30 mL,后25 d澆灌清水或稀釋后的三級(jí)產(chǎn)物50 mL。試驗(yàn)周期結(jié)束后測(cè)定土壤pH值和總鹽分,脲酶、蔗糖酶等酶活性以及土壤有機(jī)質(zhì)和速效氮、磷、鉀等土壤養(yǎng)分含量。
1.4.1 熱解液的分析和表征
采用氣相色譜-質(zhì)譜聯(lián)用(GC-MS)方法對(duì)單級(jí)冷凝產(chǎn)物與第三級(jí)冷凝產(chǎn)物的組成進(jìn)行分析,用pH計(jì)測(cè)定熱解液的pH值??偠喾拥臏y(cè)定采用稍作修改的福林酚法,以沒食子酸為標(biāo)準(zhǔn)品,并繪制標(biāo)準(zhǔn)曲線??偹幔═otal acid)的測(cè)定參照國(guó)家標(biāo)準(zhǔn)GB/T 12456-90,采用滴定法測(cè)定,以乙酸計(jì)算。
1.4.2 盆栽試驗(yàn)測(cè)定指標(biāo)及方法
采用電極法測(cè)定鹽堿土的pH值;土壤總鹽分測(cè)定采用殘?jiān)娓?質(zhì)量法測(cè)定;采用硫代巴比妥酸法測(cè)定植物中丙二醛含量;使用苯酚鈉-次氯酸鈉比色法測(cè)定土壤中脲酶活性;采用3,5-二硝基水楊酸比色法測(cè)定土壤中蔗糖酶活性;采用高錳酸鉀滴定法測(cè)定土壤中過氧化氫酶活性;使用磷酸苯二鈉比色法測(cè)定土壤中堿性磷酸酶活性;土壤堿解氮含量采用堿解擴(kuò)散法測(cè)定;土壤速效磷含量采用0.5 mol/L NaHCO3法;土壤速效鉀含量采用NH4OAc浸提,火焰光度法;土壤有機(jī)質(zhì)含量采用重鉻酸鉀容量法-稀釋熱法。
2.1.1 分級(jí)冷凝產(chǎn)物中總多酚和總酸的分布
因?yàn)榉旨?jí)冷凝所得的熱解產(chǎn)物中第一級(jí)產(chǎn)物產(chǎn)率低且流動(dòng)性極差,所以無法對(duì)其進(jìn)行總多酚和總酸的檢測(cè),因此,僅對(duì)第二、三級(jí)產(chǎn)物中的總多酚與總酸進(jìn)行含量檢測(cè)。
分級(jí)冷凝熱解液和單級(jí)冷凝熱解液的結(jié)果如表 2所示。對(duì)于單級(jí)產(chǎn)物來說,隨著熱解溫度的升高,總多酚含量逐漸升高,由300 ℃時(shí)的67.27 mg/g升至700 ℃時(shí)的76.79 mg/g,而總酸含量則呈現(xiàn)下降趨勢(shì),由300 ℃時(shí)的139.23 mg/g降至700 ℃時(shí)101.09 mg/g。對(duì)分級(jí)冷凝產(chǎn)物來說,隨溫度升高,其第二、三級(jí)產(chǎn)物中總多酚的含量均呈現(xiàn)上升趨勢(shì),在700 ℃時(shí)分別可達(dá)到169.08與42.55 mg/g,但總酸的含量呈現(xiàn)不規(guī)則變化,第二、三級(jí)產(chǎn)物中總酸含量最高值分別出現(xiàn)在600 ℃時(shí)(11.96 mg/g),300 ℃(182.87 mg/g)。對(duì)比相同熱解溫度下獲得的單級(jí)產(chǎn)物與分級(jí)冷凝產(chǎn)物,發(fā)現(xiàn)第二、三級(jí)產(chǎn)物的酚類濃度分別為單級(jí)產(chǎn)物的2.18~2.24與0.50~0.55倍,酸類物質(zhì)濃度分別為單級(jí)產(chǎn)物的0.07~0.11與1.21~1.35倍,表明分級(jí)冷凝能夠很好的實(shí)現(xiàn)酚類物質(zhì)與酸類物質(zhì)分離,降低第二級(jí)產(chǎn)物中的總酸濃度以及第三級(jí)產(chǎn)物中總多酚的濃度,實(shí)現(xiàn)在制備過程中對(duì)熱解液的粗分離。
表2 不同熱解溫度的熱解液與分級(jí)冷凝產(chǎn)物中總酸、總多酚含量
2.1.2 熱解液與第三級(jí)產(chǎn)物的GC-MS結(jié)果分析
熱解液GC?MS分析結(jié)果如表3所示。熱解液中有機(jī)成分主要有酸類、酚類、醇類、醛類等物質(zhì),含量排序?yàn)樗犷?酚類>醇類>酮類>醛類>其他,乙酸含量最高,占有機(jī)物的20.35%~26.87%,酚類物質(zhì)占有機(jī)物的17%以上,且隨著溫度的增加含量逐漸降低。與單級(jí)冷凝獲得的熱解液相比,第三級(jí)產(chǎn)物中并未出現(xiàn)新的物質(zhì),其中仍有大量的酸類物質(zhì),乙酸的相對(duì)含量可達(dá)33.66%~43.27%,酚類物質(zhì)的相對(duì)含量卻明顯降低,最高僅為9.02%。
注:C為單級(jí)冷凝產(chǎn)物,R3指分級(jí)冷凝第三級(jí)產(chǎn)物。
Note: C represents the single-stage product, R3 represents the tertiary product.
通過測(cè)定小白菜自身生物量的變化情況可以有效地反映出植物在土壤改良過程中的生長(zhǎng)狀況,從而最直觀的判斷第三級(jí)產(chǎn)物對(duì)鹽堿土改良的效果。不同處理組對(duì)小白菜發(fā)芽率(3 d,此時(shí)即已得到最大發(fā)芽率)、株高、株質(zhì)量以及丙二醛含量(35 d,盆栽試驗(yàn)最后的2株小白菜被采收)的影響如圖2所示。
由圖2可知,相對(duì)于空白對(duì)照,灌施分級(jí)冷凝第三級(jí)產(chǎn)物均會(huì)顯著增加小白菜的發(fā)芽率(T400-D50處理除外,不顯著)、株高(T300-D50處理除外,不顯著)與株質(zhì)量(T400-D50處理除外,不顯著)(<0.05)。熱解溫度以及稀釋倍數(shù)均會(huì)顯著影響這一促進(jìn)作用,中溫?zé)峤猓?00 ℃)以及較大的稀釋倍數(shù)對(duì)種子萌發(fā)與生長(zhǎng)更有利。CK處理的發(fā)芽率為68.89%,而T500-D50與T500-D600處理的發(fā)芽率可達(dá)73.06%與91.02%,分別比CK提高了6.05%與32.12%。此外,T500-D600處理的小白菜長(zhǎng)勢(shì)最好,株高達(dá)到7.8 cm,株質(zhì)量達(dá)1.125 g,分別較CK提高了95.11%和120.03%。丙二醛的含量積累情況間接反映了植物內(nèi)膜脂過氧化程度[20]。第三級(jí)產(chǎn)物對(duì)小白菜丙二醛含量的影響如圖2d所示,由圖可知,第三級(jí)產(chǎn)物的灌施可以顯著降低小白菜的丙二醛含量(<0.05)。相對(duì)于空白對(duì)照,灌施稀釋600倍的第三級(jí)產(chǎn)物時(shí),小白菜的丙二醛含量普遍較低,最低可到3.14mol/mL,較CK降低了48.39%。
注:不同小寫字母表示處理間存在顯著性差異(P <0.05);圖例中的D表示分級(jí)冷凝第三級(jí)產(chǎn)物稀釋,數(shù)字代表稀釋倍數(shù);CK表示清水澆灌;播種3 d后即獲得最大發(fā)芽率,第35天采收最后2株小白菜。下同。
以往的研究表明,熱解液對(duì)植株的萌發(fā)與生長(zhǎng)起促進(jìn)和抑制雙重影響。馮馨慧等[21]指出通過旋轉(zhuǎn)薄膜蒸發(fā)法精制的熱解液稀釋后仍對(duì)種子的萌發(fā)有抑制作用。王靜靜等[22-25]的研究表明熱解液稀釋適當(dāng)倍數(shù)才促進(jìn)種植萌發(fā)與植物生長(zhǎng)。本研究中所有供試處理幾乎均對(duì)小白菜萌發(fā)與生長(zhǎng)起顯著促進(jìn)作用,主要因?yàn)榕c單級(jí)冷凝熱解液相比,分級(jí)冷 凝可以降低第三級(jí)產(chǎn)物中的酚類物質(zhì)濃度,增加有機(jī)酸濃度,而過多的酚類化合物對(duì)種子萌發(fā)具有抑制作用[26],并可對(duì)所有生物活性體產(chǎn)生毒害[11],灌施乙酸則可以降低植物體內(nèi)器官的膜脂過氧化,維持較高的根系活力,有利于植物生長(zhǎng)[27]。此外,本研究中T300-D50與T400-D50處理對(duì)小白菜生長(zhǎng)起輕微的抑制作用,其原因可能與第三級(jí)產(chǎn)物的有機(jī)酸相關(guān)。低溫?zé)峤猓ū?)與較低的稀釋倍數(shù)提高了三級(jí)產(chǎn)物中有機(jī)酸的濃度,高濃度的有機(jī)酸會(huì)對(duì)土壤微生物形成毒害作用[28],降低土壤酶活性,不利于植物生長(zhǎng)。
土壤酶是具有加速土壤反應(yīng)速率功能的蛋白質(zhì),參與土壤中有機(jī)物質(zhì)轉(zhuǎn)化的全過程,影響土壤一系列生物化學(xué)反應(yīng)[29],土壤中的蔗糖酶、脲酶、堿性磷酸酶、分別是土壤碳、氮、磷元素在循環(huán)過程中不可或缺的酶[30]。本試驗(yàn)通過測(cè)定4種土壤酶變化情況判斷第三級(jí)產(chǎn)物對(duì)鹽堿土改良的效果。由圖3可知,相對(duì)于空白對(duì)照,除稀釋50倍的第三級(jí)產(chǎn)物顯著降低土壤脲酶與堿性磷酸酶的活性外,其他處理鹽堿土4種酶活性均顯著提高(<0.05)。土壤脲酶活性隨第三級(jí)產(chǎn)物稀釋倍數(shù)的增大而增加,在T500-D600處理時(shí)活性最高,較CK提高了218.13%,這與Blagodatskaya等[31]的研究相類似。這可能是因?yàn)橄♂?0倍的第三級(jí)產(chǎn)物中含有更多的酚類物質(zhì)和有機(jī)酸類物質(zhì),對(duì)土壤微生物的繁殖和活性抑制性更強(qiáng)[32]。過氧化氫酶活性隨稀釋倍數(shù)的增加而降低,在T700-D50處理時(shí)達(dá)到最大,較CK增加了36.87%。在T500-D50處理時(shí),蔗糖酶活性達(dá)到最高的659.69 mg/(g×d),較CK增加了64.78%。稀釋200倍的第三級(jí)產(chǎn)物灌施時(shí),土壤堿性磷酸酶的活性最好,最高可比CK增加123.65%。綜上所述,灌施分級(jí)冷凝第三級(jí)產(chǎn)物可顯著提高土壤4種酶活性。這主要因?yàn)橥寥乐械哪z體、礦物等對(duì)酶具有吸附作用,而三級(jí)產(chǎn)物中具有大量的酸性物質(zhì)如乙酸,能競(jìng)爭(zhēng)土壤膠體和礦物對(duì)土壤酶的吸附位點(diǎn),減弱土壤對(duì)酶的吸附,增強(qiáng)土壤酶的活性[33-34]。此外,施入高濃度的三級(jí)產(chǎn)物會(huì)改變土壤微域環(huán)境,且其含有的高濃度酸類和酚類等有機(jī)物質(zhì)會(huì)對(duì)土壤微生物形成毒害作用[28],從而抑制土壤微生物生長(zhǎng)與活性,降低酶活性。
2.4.1 分級(jí)冷凝三級(jí)產(chǎn)物對(duì)土壤pH值和全鹽量的影響
通過測(cè)定土壤的pH值和全鹽量,可以全方位了解該土壤的鹽堿化程度。分級(jí)冷凝第三級(jí)產(chǎn)物對(duì)土壤pH值與全鹽量的影響如圖4所示。
圖4 不同熱解溫度的分級(jí)冷凝第三級(jí)產(chǎn)物在不同稀釋倍數(shù)下對(duì)土壤pH值和全鹽量的影響
由圖4可知,灌施分級(jí)冷凝三級(jí)產(chǎn)物可顯著降低鹽堿土pH值(<0.05),其中稀釋50倍的第三級(jí)產(chǎn)物對(duì)鹽堿土pH值影響最大,比空白對(duì)照pH值降低了0.53~0.64。這是由于第三級(jí)產(chǎn)物中的有機(jī)酸中和了鹽堿土的堿性成分所致。灌施第三級(jí)產(chǎn)物還可顯著降低土壤全鹽量(<0.05),其原因可能是第三級(jí)產(chǎn)物促進(jìn)了土壤中大分子絡(luò)合物的生成[35]。隨著第三級(jí)產(chǎn)物稀釋倍數(shù)的增加,土壤含鹽量顯著降低(<0.05),如相較于CK,T500的稀釋倍數(shù)由50逐漸增加至600時(shí),土壤全鹽量分別降低了23.62%、30.08%、38.85%與40.95%。這可能是因?yàn)橄♂?0倍的第三級(jí)產(chǎn)物生成的大分子絡(luò)合物較多,使鹽未能在短時(shí)間內(nèi)排出所致。
2.4.2 分級(jí)冷凝三級(jí)產(chǎn)物對(duì)土壤養(yǎng)分的影響
分級(jí)冷凝第三級(jí)產(chǎn)物對(duì)土壤速效磷、堿解氮、速效鉀與有機(jī)質(zhì)的影響如圖5所示。由圖5可知,相對(duì)于空白對(duì)照,灌施第三級(jí)產(chǎn)物均會(huì)顯著提高鹽堿土4種養(yǎng)分含量(<0.05)。土壤有機(jī)質(zhì)、堿解氮的含量隨稀釋倍數(shù)的增加有所降低。不同溫度的分級(jí)冷凝第三級(jí)產(chǎn)物稀釋50倍時(shí),有機(jī)質(zhì)、堿解氮的含量最高可達(dá)到13.06 g/kg與72.54 mg/kg,較CK分別增加了64.86%與33.07%。速效磷含量隨稀釋倍數(shù)的增加呈現(xiàn)先升高后降低的趨勢(shì),稀釋200和400倍對(duì)土壤速效磷影響較大,T500-D200處理時(shí)達(dá)到最大值8.37 mg/kg,較CK增加了64.65%,與堿性磷酸酶活性變化趨勢(shì)一致。速效鉀含量隨稀釋倍數(shù)的增加而逐漸升高,稀釋倍數(shù)為600倍時(shí),土壤中速效鉀含量較CK最多可提升17.29%。
本研究中,施加分級(jí)冷凝第三級(jí)產(chǎn)物能顯著提高土壤的肥力水平,主要原因是第三級(jí)產(chǎn)物中的有機(jī)酸、酚類、醇類和酮類等有機(jī)化合物[36]與土壤相互作用,增加有機(jī)質(zhì)的抗氧化性和微生物的活性,又能更新和活化老的有機(jī)質(zhì),從而提高土壤肥力[37]。此外,第三級(jí)產(chǎn)物含有的大量活性分子有利于土壤團(tuán)粒間的離子遷移,釋放原本被固定的土壤養(yǎng)分。如第三級(jí)產(chǎn)物中的酸性成分,能夠在合適的濃度范圍內(nèi)改變土壤微生物的種群結(jié)構(gòu),增加溶鉀等功能性細(xì)菌的數(shù)量,進(jìn)而促進(jìn)土壤中鉀的溶釋,增加鉀含量。
圖5 不同熱解溫度的分級(jí)冷凝第三級(jí)產(chǎn)物在不同稀釋倍數(shù)下對(duì)土壤養(yǎng)分的影響
1)分級(jí)冷凝可以達(dá)到棉稈熱解液從源頭分離的目的,實(shí)現(xiàn)酚類與酸類物質(zhì)的粗分離,分別獲得富酚低酸與低酚富酸的第二、三級(jí)產(chǎn)物,可根據(jù)產(chǎn)物的組分特征應(yīng)用到不同途徑,實(shí)現(xiàn)熱解液的高效利用。
2)灌施分級(jí)冷凝第三級(jí)產(chǎn)物可顯著促進(jìn)小白菜的萌發(fā)與生長(zhǎng)。熱解溫度與稀釋倍數(shù)均會(huì)影響促進(jìn)作用,500 ℃熱解獲得分級(jí)冷凝第3級(jí)產(chǎn)物稀釋600倍灌溉時(shí),對(duì)小白菜的生長(zhǎng)發(fā)育最為有利,發(fā)芽率、株高、株質(zhì)量較CK提高32.12%、95.11%與120.03%,丙二醛含量降低48.39%。
3)灌施分級(jí)冷凝第三級(jí)產(chǎn)物可顯著降低鹽堿土的pH值、全鹽量,顯著增強(qiáng)多種土壤酶的活性,顯著增加土壤有機(jī)質(zhì)、堿解氮、速效磷與速效鉀的含量,最高可分別提升64.86%、33.07%、64.65%與17.29%。
[1] 王涵. 不同有機(jī)物料對(duì)濱海鹽堿土改良效果的研究[D]. 吉林:吉林農(nóng)業(yè)大學(xué),2018.
Wang Han. Research on the Effect of Different Organic Materials on the Improvement of Coastal Saline Soils[D]. Jilin: Jilin Agricultural University, 2018. (in Chinese with English abstract)
[2] Huang R D. Research progress on plant tolerance to soil salinity and alkalinity in sorghum[J]. Journal of Agricultural Sciences, 2018, 17(4): 739-746.
[3] 李磊,樊麗琴,吳霞,等. 秸稈還田對(duì)鹽堿地土壤物理性質(zhì)、酶活性及油葵產(chǎn)量的影響[J]. 西北農(nóng)業(yè)學(xué)報(bào),2019,28(12):1997-2004.
Li Lei, Fan Liqin, Wu Xia, et al. Effects of straw repatriation on physical properties, enzyme activity and yield of oilseed sunflower in saline soils[J]. Northwest Journal of Agriculture, 2019, 28(12): 1997-2004. (in Chinese with English abstract)
[4] 肖弘揚(yáng),李謨志,林啟美,等. 8種耐鹽植物與脫硫石膏對(duì)河套灌區(qū)鹽堿土水穩(wěn)定性團(tuán)聚體的影響[J]. 中國(guó)農(nóng)學(xué)通報(bào),2021,37(34):90-96.
Xiao Hongyang, Li Mozhi, Lin Qimei, et al. Effects of eight salt-tolerant plants and desulfurization gypsum on water-stable agglomerates in saline soils of the river-loop irrigation area[J]. China Agronomy Bulletin, 2021, 37(34): 90-96. (in Chinese with English abstract)
[5] 李明珠,張文超,王淑娟,等. 適宜脫硫石膏施用方式改良河套灌區(qū)鹽堿土提高向日葵產(chǎn)量[J]. 農(nóng)業(yè)工程學(xué)報(bào),2022,38(6):89-95.
Li Mingzhu, Zhang Wenchao, Wang Shujuan,et al. Suitable application of flue gas desulphurized gypsum to improve the sunflower yield in saline-alkali soil in the Hetao irrigation areas of Inner Mongol[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2022, 38(6): 89-95. (in Chinese with English abstract)
[6] 王睿彤,孫景寬,陸兆華. 土壤改良劑對(duì)黃河三角洲濱海鹽堿土生化特性的影響[J]. 生態(tài)學(xué)報(bào),2017,37(2):425-430.
Wang Ruitong, Sun Jingkuan, Lu Zhaohua. Effects of soil amendments on biochemical properties of coastal saline soils in the Yellow River Delta[J]. Journal of Ecology, 2017, 37(2): 425-430. (in Chinese with English abstract)
[7] Sun Y M, Shan T, Xian L, et al. Gas-pressurized torrefaction of biomass wastes: The optimization of pressurization condition and the pyrolysis of torrefied biomass[J]. Bioresource Technology, 2021, 319: 124216-124216.
[8] Mamaeva A, Tahmasebi A, Tian L, et al. Microwave-assisted
catalytic pyrolysis of lignocellulosic biomass for production of phenolic-rich bio-oil[J]. Bioresoure Technology, 2016, 211: 382-389.
[9] He X Y, Qiao X, Zhao H, et al. Effects of isolated cushion on dynamics of alkali-salinity land, soil nutrients and growth of Salix babylonica in Ningxia[J]. Applied and Environmental Biology, 2018, 24(5): 1152-1157.
[10] 斯日木極,孔濤,鄭爽,等. 木醋液對(duì)遼西北低、中肥力土壤小白菜產(chǎn)量和土壤酶活性的影響[J]. 水土保持通報(bào),2018,38(5):52-57.
Sirimuji, Kong Tao, Zheng Shuang, et al. Effect of wood vinegar solution on yield and soil enzyme activity of Brassica juncea in low and medium fertility soils in northwest Liaoning[J]. Soil and Water Conservation Bulletin, 2018, 38(5): 52-57. (in Chinese with English abstract)
[11] Avnish K, Bijoy B, Ramandeep K, et al. Oxidative valorisation of lignin into valuable phenolics: Effect of acidic and basic catalysts and reaction parameters[J]. Bioresource Technology, 2021, 338: 125513-125513.
[12] 馬善為,張一鳴,丁浩植,等. 生物質(zhì)熱解分級(jí)冷凝制備多品級(jí)生物油[J]. 太陽能學(xué)報(bào),2018,39(5):1367-1372.
Ma Shanwei, Zhang Yiming, Ding Haozhi, et al. Preparation of multi-grade bio-oil by biomass pyrolysis graded condensation[J]. Journal of Solar Energy, 2018, 39(5): 1367-1372. (in Chinese with English abstract)
[13] Pollard A S, Rover M R, Brown R C. Characterization of bio-oil recovered as stage fractions with unique chemical and physical properties[J]. Journal of Analytical & Applied Pyrolysis, 2012, 92: 129-138.
[14] 黃凌瑞,朱錫鋒. 富氮生物質(zhì)熱解氣的分級(jí)冷凝特性研究[J]. 化工學(xué)報(bào),2019,70(6):2229-2236.
Huang Lingrui, Zhu Xifeng. Study of graded condensation characteristics of nitrogen-rich biomass pyrolysis gas[J]. Journal of Chemical Engineering, 2019, 70(6): 2229-2236. (in Chinese with English abstract)
[15] Mante O D, Thompson S J, Soukri M, et al. Isolation and purification of monofunctional methoxyphenols from loblolly pine biocrude[J]. ACS Sustainable Chemistry & Engineering, 2019, 7(2): 2262-2269.
[16] Pedersen T H, Jensen C U, Sandstrom L, et al. Full characterization of compounds obtained from fractional distillation and upgrading of a HTL biocrude[J]. Applied Energy, 2017, 202(15): 408-419.
[17] Wang Y, Wang S, Leng F, et al. Separation and characterization of pyrolytic lignins from the heavy fraction of bio-oil by molecular distillation[J]. Separation and Purification Technology, 2015, 152: 123-132.
[18] Zhang D, Zhou J, Xia F, et al. Bond cleavage, fragment modification and reassembly in enantioselective three-component reactions[J]. Nature Communications, 2015, 6: 5801-5809.
[19] 任衍森,馬騰,周毅,等. 溫度對(duì)棉花秸稈熱解固液相產(chǎn)物特性的影響[J]. 石河子大學(xué)學(xué)報(bào)(自然科學(xué)版),2020,38(6):668-674.
Ren Yansen, Ma Teng, Zhou Yi, et al. Effect of temperature on the properties of solid-iquid products based on cotton stalk pyrolysis[J]. Journal of Shihezi University(Natural Science), 2020, 38(6): 668-674. (in Chinese with English abstract)
[20] Shen W Y, Kazuyoshi Nada, Shoji Tachibana. Involvement of polyamines in the chilling tolerance of cucumber cultivars[J]. Plant Physiology, 2000, 124(1): 431-439.
[21] 馮馨慧,王海英,劉志明. 木醋液對(duì)長(zhǎng)白落葉松種子萌發(fā)的影響[J]. 廣東化工,2018,45(3):23-24.
Feng Xinhui, Wang Haiying, Liu Zhiming. Effect of wood vinegar solution on seed germination of Changbai larch[J]. Guangdong Chemical Industry, 2018, 45(3): 23-24. (in Chinese with English abstract)
[22] 王靜靜,黃群,劉偉偉,等. 沼液與木醋液浸種對(duì)黑豆育苗效果的影響[J]. 中國(guó)沼氣,2021,39(5):38-42.
Wang Jingjing, Huang Qun, Liu Weiwei, et al. Effect of methane and wood vinegar solution dipping on the effect of black bean seedlings[J]. China Biogas, 2021, 39(5): 38-42. (in Chinese with English abstract)
[23] 王雅倩,張尚昆,李冬兵. 木醋液對(duì)元寶楓幼苗生長(zhǎng)發(fā)育的影響[J]. 中國(guó)農(nóng)學(xué)通報(bào),2021,37(25):41-46.
Wang Yaqian, Zhang Shangkun, Li Dongbing. Effect of wood vinegar solution on the growth and development of metasequoia seedlings[J]. Chinese Agronomy Bulletin, 2021, 37(25): 41-46. (in Chinese with English abstract)
[24] 盧辛成. 杉木木醋液煉制及其對(duì)小麥生長(zhǎng)的調(diào)節(jié)機(jī)制研究[D]. 北京:北京林業(yè)大學(xué),2021.
Lu Xincheng. Research on the Refinement of Cedar Wood Vinegar Solution and its Regulatory Mechanism on Wheat Growth[D]. Beijing: Beijing Forestry University, 2021. (in Chinese with English abstract)
[25] 常青. 秸稈炭化木醋液對(duì)三種蔬菜養(yǎng)分吸收及產(chǎn)量的影響 [D]. 太原:山西大學(xué),2019.
Chang Qing. Effect of Straw Charred Wood Vinegar Solution on Nutrient Uptake and Yield of Three Vegetables[D]. Taiyuan: Shanxi University, 2019. (in Chinese with English abstract)
[26] Muscolo A, Panuccio MR, Sidari M, The effect of phenols on respiratory enzymes in seed germination - Respiratory enzyme activities during germination of Pinus laricio seeds treated with phenols extracted from different forest soils[J]. Plant Growth Regul, 2001, 35(1): 31-35.
[27] 王輝,高玉錄,于夢(mèng),等. 根灌乙酸及葡萄酒對(duì)海水脅迫下葡萄光抑制的影響[J]. 中國(guó)農(nóng)業(yè)科學(xué),2018,51(21):4210-4218.
Wang Hui, Gao Yulu, Yu Meng, et al. Effect of root-infusion acetic acid and wine on photoinhibition of grapes under seawater stress[J]. Chinese Agricultural Science, 2018, 51(21): 4210-4218. (in Chinese with English abstract)
[28] 程虎,王紫泉,周琨,等. 木醋液對(duì)堿性土壤微生物數(shù)量及酶活性的影響[J]. 中國(guó)環(huán)境科學(xué),2017,37(2):696-701.
Cheng Hu, Wang Ziquan, Zhou Kun, et al. Effect of wood vinegar solution on microbial population and enzyme activity of alkaline soil[J]. China Environmental Science, 2017, 37(2): 696-701. (in Chinese with English abstract)
[29] Zsuzsa V, Zsolt K, István F, et al. Soil extracellular enzyme activities are sensitive indicators of detrital inputs and carbon availability[J]. Applied Soil Ecology, 2015, 92: 18-23.
[30] 喬文靜,戴銀月,張偉,等. 黃土丘陵區(qū)撂荒恢復(fù)過程中植物群落組成與土壤養(yǎng)分及酶活性變化的關(guān)系[J]. 環(huán)境科學(xué),2018,39(12):5687-5698.
Qiao Wenjing, Dai Yinyue, Zhang Wei, et al. Relationship between plant community composition and changes in soil nutrients and enzyme activities during the restoration of abandoned wasteland in loess hilly areas[J]. Environmental Science, 2018, 39(12): 5687-5698. (in Chinese with English abstract)
[31] Blagodatskaya E V, Anderson T H. Adaptive responses of soil microbial communities under experimental acid stress in controlled laboratory studies[J]. Applied Soil Ecology, 1999, 11(2): 207-216.
[32] Qin W, Ma X, Dong J. Preparation, chemical constituents and antimicrobial activity of pyroligneous acids from walnut tree branches[J]. Journal of Analytical & Applied Pyrolysis, 2010, 87(1): 24-28.
[33] Naidja A, Huang P M, Bollag J M. Enzyme-clay interactions and their impact on transformations of natural and anthropogenic organic compounds in soil[J]. Journal of Environmental Quality, 2000, 29(3): 677-691.
[34] Huang Q Y, Zhao Z H, Chen W. Effects of several low-molecular weight organic acids and phosphate on the adsorption of acid phosphatase by soil colloids and minerals[J]. Scientia Agricultura Sinica, 2003, 52(3): 571-579.
[35] 張亞蘭,孫金龍,李治宇,等. 木醋液對(duì)鹽堿土改良效果研究[J]. 中國(guó)農(nóng)機(jī)化學(xué)報(bào),2014,35(6):292-295.
Zhang Yalan, Sun Jinlong, Li Zhiyu, et al. Study on the effect of wood vinegar solution on saline soil improvement[J]. China Journal of Agricultural Chemistry, 2014, 35(6): 292-295. (in Chinese with English abstract)
[36] Sindhu M, Zainul A Z, Nur F M. Antioxidant property and chemical profile of pyroligneous acid from pineapple plant waste biomass[J]. Process Biochemistry, 2015(11): 1985-1992.
[37] 李忠徽,王旭東. 灌施木醋液對(duì)土壤性質(zhì)和植物生長(zhǎng)的影響[J]. 植物營(yíng)養(yǎng)與肥料學(xué)報(bào),2014,20(2):510-516.
Li Zhonghui, Wang Xudong. Effect of wood vinegar solution application on soil properties and plant growth[J]. Journal of Plant Nutrition and Fertilizer, 2014, 20(2): 510-516. (in Chinese with English abstract)
Improved effect of saline soil by grading condensate of cotton straw pyrolysis fluid
Cao Linlin1, Ren Yansen1, Deng Hui1※, Yang Le2, Wang Yang1, Chang Hanyu1
(1.,,,832003; 2.,,832003,)
A huge area of saline-alkali land cannot be cultivated in China, due to the salt stress and low nutrient. Pyrolysis fluid with high acidity has been used to improve the saline soils. Among them, phenolic substances are adverse to the growth of plants. Therefore, the aim of the study was to explore the improvement effect of pyrolysis fluid on the saline soils, in order to efficiently reduce the phenols during pyrolysis. Firstly, the pyrolysis fluid was prepared at different temperatures (300, 400, 500, 600, and 700 ℃), and then refined under the three-stage condensation mode. Secondly, an analysis was made to clarify the effect of graded condensation on the product composition. Taking the Chinese cabbage as an indicator, a pot experiment was performed on the saline soils using the tertiary product under different dilution folds (50, 200, 400 and 600). Finally, a systematic investigation was implemented to determine the effects of the tertiary product on the growth of Chinese cabbage, soil pH, total salt, sucrase, urease, alkaline phosphatase, catalase, organic matter, alkaline digested nitrogen, fast-acting phosphorus and potassium. The results showed that: 1) No new substance was found in the tertiary product from the pyrolysis fluid phase during three-stage condensation, compared with the single-stage. The graded condensation was used to realize the rapid and efficient separation of phenols and acids from the fluid phase products of cotton stalk pyrolysis. The concentrations of phenols and acids in the secondary product were 2.18-2.24 and 0.07-0.11 times higher than those by the single-stage, respectively. In the tertiary product, the concentrations of phenols and acids were 0.50-0.55 and 1.21-1.35 times higher than those by the single-stage, respectively. 2) The tertiary product significantly promoted the germination and growth of the Chinese cabbage (<0.05). This promotion also depended mainly on both pyrolysis temperature and dilution ratio. The medium pyrolysis temperature and the larger dilution folds were more favorable for the Chinese cabbage seed germination. The best growth of Chinese cabbage was observed in the T500-D600 treatment (pyrolysis temperature of 500 ℃, dilution fold of 600), with 32.12%, 95.11%, and 120.03% increase in the germination rate, plant height, and fresh weight per plant, respectively, while 48.39% decrease in the malondialdehyde content. 3) The soil enzyme activity was dominated by the irrigation of the tertiary product with different dilution ratios (<0.05). Interestingly, the activities of urease and alkaline phosphatase were reduced, only when the tertiary product was diluted by 50 times into the saline soil. Additionally, the activities of urease, alkaline phosphatase, sucrase and catalase in the saline soil increased by 218.13%, 123.65%, 64.78%, and 36.87% respectively, compared with the control. 4) The tertiary products significantly reduced the pH and total salt amounts in the saline soil, whereas, there was a significant increase in the nutrient contents (<0.05). The contents of organic matter, alkaline soluble nitrogen, fast-acting phosphorus, and fast-acting potassium in the saline soil increased by 64.86%, 33.07%, 64.65% and 17.29%, respectively. Anyway, the tertiary-stage condensation products of cotton stalk pyrolysis greatly contributed to the high fertility and enzyme activity of saline soil, as well as the better growth of Chinese cabbage. This finding can provide a sound theoretical basis for the biomass pyrolysis fluid to improve the saline-alkali land.
soil; pyrolysis; cotton straw; saline soil; pyrolysis fluid; graded condensation; potting test
10.11975/j.issn.1002-6819.2022.22.017
S156
A
1002-6819(2022)-22-0158-08
曹林林,任衍森,鄧輝,等. 棉稈熱解分級(jí)冷凝產(chǎn)物改良鹽堿土效果[J]. 農(nóng)業(yè)工程學(xué)報(bào),2022,38(22):158-165.doi:10.11975/j.issn.1002-6819.2022.22.017 http://www.tcsae.org
Cao Linlin, Ren Yansen, Deng Hui, et al. Improved effect of saline soil by grading condensate of cotton straw pyrolysis fluid[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2022, 38(22): 158-165. (in Chinese with English abstract) doi:10.11975/j.issn.1002-6819.2022.22.017 http://www.tcsae.org
2022-09-16
2022-11-12
國(guó)家自然科學(xué)基金項(xiàng)目(51768061);石河子大學(xué)“雙一流”重點(diǎn)科技項(xiàng)目(SHYL-ZD201803)
曹林林,研究方向?yàn)楣腆w廢物資源化。Email:caoll18736770200@163.com
鄧輝,博士,教授,研究方向?yàn)楣腆w廢物資源化與功能性材料。Email:huid@163.com