• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    淮北礦區(qū)煤矸石多環(huán)芳烴污染特征及毒性評價(jià)

    2022-02-25 11:51:16許丹丹錢雅慧洪秀萍梁漢東
    中國環(huán)境科學(xué) 2022年2期
    關(guān)鍵詞:烷基煤矸石芳烴

    陳 雪,許丹丹,錢雅慧,洪秀萍,梁漢東*

    淮北礦區(qū)煤矸石多環(huán)芳烴污染特征及毒性評價(jià)

    陳 雪1,2,許丹丹1,錢雅慧1,洪秀萍3,梁漢東1,2*

    (1.中國礦業(yè)大學(xué)(北京),煤炭資源與安全開采國家重點(diǎn)實(shí)驗(yàn)室,北京 100083;2.中國礦業(yè)大學(xué)(北京)地球科學(xué)與測繪工程學(xué)院,北京 100083;3.淮北師范大學(xué)生命科學(xué)學(xué)院,安徽淮北 235000)

    煤矸石;烷基多環(huán)芳烴;風(fēng)化;特征比值;毒性當(dāng)量(TEQ)

    多環(huán)芳烴(PAHs)是一類環(huán)境持久性有機(jī)污染物[1],具有“三致”毒性,美國EPA將16種母體多環(huán)芳烴(16PAHs)列為優(yōu)先控制的污染物[2-3],而母體苯環(huán)上帶有基團(tuán)的PAHs衍生物,如烷基多環(huán)芳烴(a-PAHs)近來被發(fā)現(xiàn)有更高的毒性和生物可及性[4].長期以來,煤炭燃燒被認(rèn)為是PAHs重要來源[5],然而新近研究發(fā)現(xiàn),未燃燒原煤中也普遍含有PAHs[6].而煤矸石作為一種與煤伴生的富含碳有機(jī)質(zhì)的灰黑色硬質(zhì)巖石[7],生產(chǎn)中常以原煤15%的比例同時(shí)產(chǎn)出[8],很可能天然含有PAHs.目前已有研究者對煤矸石及其附近環(huán)境介質(zhì)中的PAHs進(jìn)行研究:不僅煤矸石堆周圍土地及水體中普遍含有PAHs[9],而且煤矸石中也同樣含有PAHs,其釋放的PAHs會增加當(dāng)?shù)匕┌Y風(fēng)險(xiǎn)[10].煤矸石對于其堆放區(qū)域的土壤,水體的污染已經(jīng)引起重視,但是煤矸石本身的有機(jī)污染特征尚不清晰.此外,產(chǎn)出的煤矸石露天堆放或就地回填的粗放處理方式會加劇煤矸石的風(fēng)化氧化[11],其環(huán)境影響很可能更甚于原煤[12],煤礦關(guān)閉后原煤被開采殆盡,而遺留下的煤矸石堆及回填煤矸石會持續(xù)向環(huán)境釋放PAHs,研究發(fā)現(xiàn)廢棄50年的德國魯爾煤礦土壤中仍含有大量PAHs[13](包含a-PAHs),其主要來源于煤,煤灰及矸石碎屑.我國迄今仍為世界上最大的煤炭生產(chǎn)國,消費(fèi)國[8],劉橋二礦所開采的是我國最重要的含煤地層——石炭-二疊紀(jì)煤層,分布于泛華北區(qū)域的重要戰(zhàn)略位置,煤炭產(chǎn)量占全國55%[14],是闡明煤矸石環(huán)境問題的良好切入點(diǎn),目前我國對煤矸石中PAHs尤其是a-PAHs的研究較少[15],本文采集礦區(qū)典型新鮮煤矸石與風(fēng)化煤矸石樣品,利用GC-MS/MS檢測其中PAHs與a-PAHs的含量,分析污染特征,評估潛在生態(tài)風(fēng)險(xiǎn),旨在探索煤矸石中賦存PAHs的潛在內(nèi)在聯(lián)系.

    1 材料與方法

    1.1 研究區(qū)概況

    圖1 劉橋二礦位置

    劉橋二礦(116°39′E,33°56′N)位于安徽省淮北市濉溪縣劉橋鎮(zhèn)境內(nèi),東距灘溪縣城約10km,西接河南省永夏礦區(qū),地理位置如圖1所示.井田地層屬華北型,煤系地層為石炭二疊系,發(fā)育11個組,本礦主采煤層為二迭系山西組6煤層(煤層厚1.50~5.93m,平均2.95m)和下石盒子組4煤層(煤層厚0~3.54m,平均1.68m),礦井設(shè)計(jì)年產(chǎn)量為60萬t.

    1.2 樣品采集

    在研究區(qū)共采集煤矸石樣品13個,包括7個新鮮煤矸石(X-1~X-7)和6個風(fēng)化煤矸石(F-1~F-6).其中新鮮煤矸石采自剛運(yùn)送出的煤矸石,沿煤矸石堆底部等距離隨機(jī)選取7個點(diǎn),每個點(diǎn)位采集1個樣品,共計(jì)7件樣品.風(fēng)化煤矸石采自已堆積多年的煤矸石堆,除去覆土后,采用順坡法采樣,分別在山底,山腰和山頂選取2個處于同一等高線水平上的采樣點(diǎn)位,每個點(diǎn)位采集2件樣品,共計(jì)6件,單件樣品質(zhì)量范圍在500~1000g.為了防止有機(jī)物污染,采集的樣品用鋁箔紙包裹帶回實(shí)驗(yàn)室待測.

    1.3 分析方法

    1.3.2 儀器分析 儀器測試及定性定量方法參考Carles等[17]檢測沉積物中29種PAHs的方法.測試儀器為氣相色譜-三重四級桿質(zhì)(Waters,Xevo TQ-GC,USA),色譜柱采用DB-5MS(Agilent,30m× 0.25mm×0.25μm, USA),進(jìn)樣體積1μL,載氣為氦氣,不分流進(jìn)樣,柱溫箱升溫程序?yàn)?初始溫度為70℃,保留1min,以15℃/min升到180℃,保留2min,10℃/min升到220℃,保留0.5min, 5℃/min升到250℃,保留2min,最后以8℃/min升到300℃,保留5min,共計(jì)33min.質(zhì)譜方法:EI離子源,電離電壓為70eV,離子源溫度250℃,接口溫度280℃,50~550amu,全掃模式.溶劑延遲4.0min.

    1.3.3 定性與定量 用正己烷作溶劑稀釋原標(biāo)準(zhǔn)品,配制7個濃度梯度(5~800ng/mL)的26種PAHs的標(biāo)準(zhǔn)溶液(16PAHs,5種a-PAHs,4種定量內(nèi)標(biāo)和1種回收率內(nèi)標(biāo)).采用全掃模式,在1.3.2的測試條件下上機(jī)檢測,從低濃度到高濃度依次進(jìn)樣,通過質(zhì)量色譜圖結(jié)合NIST庫,對各組分進(jìn)行定性分析,確定各組分的保留時(shí)間,并計(jì)算各組分的響應(yīng)因子,最后用相對響應(yīng)因子法在Targetlynx軟件建立數(shù)據(jù)定量方法,對煤矸石樣品中的目標(biāo)化合物進(jìn)行定量,已有標(biāo)準(zhǔn)物質(zhì)按照保留時(shí)間和質(zhì)量色譜圖進(jìn)行定性定量,同分異構(gòu)體通過質(zhì)量色譜圖定性,相應(yīng)標(biāo)準(zhǔn)物質(zhì)的響應(yīng)因子定量.

    1.3.4 方法驗(yàn)證 用此前處理方法及定性定量方法測定樣品前,在實(shí)驗(yàn)室進(jìn)行了方法驗(yàn)證,配置含27種PAHs的系列濃度梯度的標(biāo)準(zhǔn)溶液,對除定量內(nèi)標(biāo)及回收率內(nèi)標(biāo)外的22種PAHs(16PAHs及1-甲基萘,1,2-二甲基萘,2-甲基蒽,3,6-二甲基菲,1-甲基芘,7-甲基苯并[a]芘)進(jìn)行定量,然后進(jìn)行標(biāo)準(zhǔn)線性方程的繪制,線性范圍在5~800ng/g,線性相關(guān)系數(shù)2均在0.99以下(0.9910~0.9987),對上機(jī)樣品濃度為200ng/mL的基質(zhì)加標(biāo)樣品平行測定7次,基質(zhì)加標(biāo)回收率為70%~125%(73.11%~124.06%),相對標(biāo)準(zhǔn)偏差在14.3%以下,各物質(zhì)方法檢出限在0~0.17mg/ kg,滿足方法要求.

    2 結(jié)果與分析

    2.1 16PAHs含量及特征

    如表1所示,16PAHs的樣品檢出率為81%,NAP, FLU,PHE,CHR在所有樣品中均有檢出,ACY, ACE,ANT均未檢出,其余PAHs部分樣品中檢出.13件煤矸石樣品的∑16PAHs平均濃度為505.23ng/g (205.13~937.05ng/g,=13),其中PHE(167.77ng/g)的含量最高,其次為CHR(77.69ng/g)和NAP(76.92ng/ g),分別占16PAHs總和的33%,15%和15%.新鮮樣品中∑16PAHs平均濃度為376ng/g (205.13~562.20ng/ g,=7),含量較高的為PHE,CHR,NAP,BaP.風(fēng)化煤矸石樣品中∑16PAHs的平均濃度為656.56ng/g (378.22~937.05ng/g,=6),含量較高的為PHE,NAP, CHR.風(fēng)化樣品中∑16PAHs及部分單體PAHs(PHE, CHR,NAP)的含量約為新鮮樣品中的兩倍,但是新鮮樣品中BaP的含量遠(yuǎn)高于風(fēng)化樣品.結(jié)果說明:煤矸石中天然含有一定數(shù)量的16PAHs,且所采的煤矸石具有相似的16PAHs含量特征及種類特征,主要富含PHE,CHR,NAP這幾種物質(zhì);風(fēng)化煤矸石中16PAHs濃度高于新鮮樣品,僅BaP的濃度在風(fēng)化樣品中較低.風(fēng)化樣品中較高的PAHs濃度可能是因?yàn)槊喉肥?jīng)歷風(fēng)化過程后,大分子物質(zhì)發(fā)生解離而生成更多小分子PAHs,結(jié)構(gòu)變得更加松散使其中16PAHs更易暴露、提取.

    表1 劉橋二礦煤矸石樣品16PAHs含量

    由圖2可見,整體樣品中以2~3環(huán)PAHs為主(占比50%以上),其次為5~6環(huán)PAHs,4環(huán)PAHs含量較低.而劉橋二礦主產(chǎn)煤種為高變質(zhì)貧煤和無煙煤[18],煤矸石中PAHs的環(huán)數(shù)分布特征符合高變質(zhì)無煙煤以2~3環(huán)為主的特征[19].新鮮樣品中5~6環(huán)含量占比較高,而風(fēng)化樣品中2~4環(huán)含量占比較高,這可能是由于風(fēng)化過程使得大分子物質(zhì)發(fā)生化學(xué)作用,解離為更多小分子物質(zhì),從而提高了低分子量PAHs的濃度水平.

    我國煤按變質(zhì)程度主要分為3類:無煙煤,煙煤,褐煤(變質(zhì)程度依次降低);其中煙煤又按粘結(jié)性與揮發(fā)分高低分為貧煤,貧瘦煤,瘦煤,焦煤,肥煤等(粘結(jié)性與揮發(fā)分依次升高)[20].由表2可知,不同變質(zhì)程度的煤中16PAHs的含量差距較大,總體滿足變質(zhì)程度越高16PAHs的含量越低,煙煤中揮發(fā)分與粘結(jié)性越差16PAHs含量越低,總體上低環(huán)PAHs含量占比較高,中變質(zhì)煙煤,焦煤的高環(huán)PAHs較高.本文所測得劉橋二礦16PAHs含量介于無煙煤與貧煤之間,符合其出產(chǎn)高變質(zhì)貧煤的特點(diǎn),而高環(huán)化合物含量偏高,可能與煤矸石來源有關(guān),張小鳳等[21]采集的是煤層夾矸,里蘭煤礦和忻州窯煤礦是在煤矸石堆中采集的樣品,高環(huán)PAHs含量較高,劉橋二礦所采煤矸石堆含有掘進(jìn)矸石,夾矸,洗煤矸石,煤矸石種類豐富,高環(huán)PAHs在個別樣品中含量低,在部分樣品中高,因此高環(huán)PAHs平均含量高于同等變質(zhì)程度煤層夾矸.

    圖2 16PAHs環(huán)數(shù)分布

    表2 不同來源煤矸石中16PAHs含量及環(huán)數(shù)分布對比(ng/g)

    注:2~3環(huán)(NAP,ACY,ACE,FLU,PHE,ANT),4環(huán)(FLA,PYR,CHR),5~6環(huán)(BbF,BkF,BaP,InP,DBA,BgP,BaA).

    2.2 a-PAHs含量及特征

    13件煤矸石樣品中8種PAHs對應(yīng)的a-PAHs定性定量結(jié)果如表3所示,a-PAHs平均濃度為587.88ng/g(210.69~983.71ng/g,=13),總檢出率為87%,僅C4,C5-NAP未檢出,在樣品中含量最高為:烷基萘(C1-3NAP,129.49ng/g,37.29~259.91ng/g),烷基菲(C1-4PHE,237.79ng/g,85.48~558.04ng/g),C1-BaP(143.68ng/ g,0~598.33ng/g).新鮮樣品中∑a-PAHs平均濃度為528.10ng/g(210.69~795.63ng/g,=7),含量最高的為C2-PHE(204.85ng/g,48.40~430.60ng/g), C1-BaP (110.87ng/ g,0~236.11ng/g).風(fēng)化樣品中∑a-PAHs平均濃度為657.62ng/g(417.23-983.71ng/g,=6),含量最高的為C1-BaP(200.43ng/g,35.45~598.33ng/g),C1-NAP(125.65ng/g,62.06~164.09ng/g).風(fēng)化樣品較新鮮樣品∑a- PAHs濃度水平更高,主要是烷基萘,C1-BaP含量的增多,而新鮮樣品中烷基菲(尤其是C2-PHE)含量較高,其余a-PAHs含量無顯著差異.因此煤矸石中存在大量a-PAHs,含量高于16PAHs,應(yīng)給予同等的重視.

    表3 劉橋二礦煤矸石樣品a-PAHs定性定量結(jié)果

    注:C(1-5)表示帶有(1-5)個甲基取代,如C1-NAP表示一甲基取代的萘,以此類推,n.d.表示未檢出.

    同一種a-PAHs在樣品中含量差異較大,同樣的情況在16PAHs的檢測中也存在,而這主要是因?yàn)槊喉肥逊e區(qū)域的煤矸石種類不同,通常煤矸石分為掘進(jìn)矸石,采掘過程中從頂板,底板及夾層里采出的矸石以及洗煤過程中挑出的洗矸石,不同種類矸石在含量上具有差異是正常的,而風(fēng)化矸石采用順坡采樣法,因此樣品風(fēng)化程度差異較大,其中PAHs含量不同.盡管在含量上具有差異,但優(yōu)勢PAHs是保持一致的,可以說明劉橋二礦煤矸石的污染特性.

    2.3 煤矸石來源PAHs特征比值

    目前常用PAHs特征比值來判定污染來源[24],常用特征比值有BaA/(BaA+CHR),FLA/(FLA+ PYR),ANT/(ANT+PHE)和InP/(InP+BghiP)等,主要區(qū)分環(huán)境樣品中的石油源,生物質(zhì)燃燒源及機(jī)動車排放源[25].而a-PAHs通常被認(rèn)為是來源于未經(jīng)燃燒的石油(成巖源)[26],目前有學(xué)者用0/(0+1)PHE/ ANT,0/(0+1)FLU/PYR(小于0.5)判定PAHs的石油來源[27].

    本文中萘及烷基萘,菲及烷基菲在所有樣品中均有檢出且含量較高,遵循烷基取代物大于母體的規(guī)律,因此以0/(0+1-4)PHE,0/(0+1-5)NAP為特征比值對數(shù)據(jù)進(jìn)行分析,發(fā)現(xiàn)0/ (0+1-4) PHE在0~0.23,0/(0+1-5)NAP在0.25~0.54,具有良好的聚集性,如圖3(b).同時(shí)參考此前文獻(xiàn)中關(guān)于煤炭[28],石油以及石油污染的沉積物[29]中多環(huán)芳烴及其取代物的數(shù)據(jù),進(jìn)行對比繪圖,結(jié)果具有良好的區(qū)分度.由圖3可得:左側(cè)上方橢圓部分是本次實(shí)驗(yàn)測定的矸石樣品,可見矸石源樣品在這兩個比值下具有良好的聚集性,分布范圍為[0~0.25,0.2~0.55],母體萘在萘系物(萘與烷基萘)要高于菲在菲系物中的占比;左下橢圓區(qū)域是原煤(空心方形)及原油樣品(星型),其分布范圍[0~0.3,0~0.2],萘在萘系物,菲在菲系物中的占比均較小;而原油污染過的沉積物樣品,分布范圍更加廣泛,取值范圍為[0.3~0.8,0.2~0.75],萘,菲的比值均顯著上升,這可能與環(huán)境風(fēng)化,水流的脫烷基效應(yīng)有關(guān)[30].綜上可得,0/(0+1-4)PHE,0/ (0+1-5)NAP的特征比值能夠較好的區(qū)分煤矸石來源的PAHs,a-PAHs應(yīng)用于特征比值確認(rèn)來源具有良好的效果.

    2.4 煤矸石毒性影響評價(jià)

    表4 物質(zhì)毒性等效因子(TEF),平均BaP等效毒性濃度(BaPeq)

    礦區(qū)煤矸石通常是在停止開采后才會集中進(jìn)行處理,而在煤礦的生命周期內(nèi),大量煤矸石堆積風(fēng)化已經(jīng)是一個普遍現(xiàn)象,張黎明等[22]對煤矸石堆附近土壤中16PAHs進(jìn)行檢測,發(fā)現(xiàn)其越靠近矸石堆,土壤深度越淺含量越高;喬元棟等[23]對充填重構(gòu)的煤矸石及充填位置的土壤進(jìn)行16PAHs的檢測發(fā)現(xiàn)隨時(shí)間推移,煤矸石中PAHs幾乎全部遷移到土壤中.本文采用BaP毒性等效濃度對煤矸石中PAHs進(jìn)行毒性評價(jià)[31-34],16PAHs毒性當(dāng)量因子[35]如表4所示,a-PAHs的毒性當(dāng)量因子以其對應(yīng)的母體PAH計(jì)算.評價(jià)結(jié)果顯示:BaP及其烷基取代物貢獻(xiàn)了大量的毒性風(fēng)險(xiǎn),其中C1-BaP貢獻(xiàn)了70%的毒性風(fēng)險(xiǎn).風(fēng)化后C1-BaP的含量顯著上升,導(dǎo)致風(fēng)化后煤矸石毒性風(fēng)險(xiǎn)增大,且風(fēng)化后的煤矸石粉末更易遷移,因此煤矸石的風(fēng)化會造成更加嚴(yán)重的生態(tài)風(fēng)險(xiǎn),而實(shí)地采樣時(shí)發(fā)現(xiàn),劉橋二礦煤矸石堆比鄰農(nóng)田,對農(nóng)作物及種植農(nóng)作物的人群可能也產(chǎn)生相應(yīng)的健康風(fēng)險(xiǎn).根據(jù)加拿大魁北克政府在網(wǎng)站上公布的大氣質(zhì)量標(biāo)準(zhǔn),二甲基取代BaA的BaP等效毒性為其母體的的100倍[36],同時(shí)多項(xiàng)研究顯示a-PAHs具有更高的毒性[37-40].而本文以母體多環(huán)芳烴的BaP的等效濃度計(jì)算其烷基取代物濃度,是低估了a-PAHs的毒性,所計(jì)算的等效毒性濃度數(shù)值是一個保守值,實(shí)際毒性風(fēng)險(xiǎn)可能遠(yuǎn)高于計(jì)算.因此,礦區(qū)煤矸石堆的a-PAHs污染應(yīng)引起重視.

    3 結(jié)論

    3.2 所有樣品∑a-PAHs均值為587.88ng/g,總體a-PAHs含量高于16PAHs;風(fēng)化樣品a-PAHs含量增加,烷基萘與C1-BaP的含量上升最為顯著,而C2-PHE在風(fēng)化后含量降低,相對應(yīng)的BaP,PHE含量升高.

    3.3 運(yùn)用特征比值0/(0+1-5)NAP,0/(0+1-4)PHE進(jìn)行污染特征分析,結(jié)果表明0/(0+1-5)NAP(0.2~0.55),0/(0+1-4)PHE(0~0.25),可以較好地區(qū)分煤炭,石油及石油污染過的沉積物來源的PAHs.

    3.4 煤矸石的毒性風(fēng)險(xiǎn)評價(jià)結(jié)果顯示,13件樣品平均BaP等效毒性濃度為194.596ng/g,a-PAHs(尤其是C1-BaP)貢獻(xiàn)了大部分毒性風(fēng)險(xiǎn),風(fēng)化樣品毒性風(fēng)險(xiǎn)增大.而多項(xiàng)研究證實(shí)a-PAHs的毒性遠(yuǎn)大于其母體,故實(shí)際毒性風(fēng)險(xiǎn)可能遠(yuǎn)高于估計(jì)值.

    [1] Ball A, Truskewycz A. Polyaromatic hydrocarbon exposure: an ecological impact ambiguity [J]. Environmental Science & Pollution Research, 2013,20(7):4311-4326.

    [2] Shen M, Xing J, Ji Q, et al. Declining Pulmonary Function in Populations with Long-term Exposure to Polycyclic Aromatic Hydrocarbons-Enriched PM2.5[J]. Environ. Science Technology, 2018,52(11):6610-6616.

    [3] Xiao R, Bai J, Wang J, et al. Polycyclic aromatic hydrocarbons (PAHs) in wetland soils under different land uses in a coastal estuary: Toxic levels, sources and relationships with soil organic matter and water-stable aggregates [J]. Chemosphere, 2014,110:8-16.

    [4] 劉志華,劉大錳,姚艷斌.燃煤產(chǎn)物中多環(huán)芳烴賦存規(guī)律及環(huán)境意義 [J]. 煤炭科學(xué)技術(shù), 2009,5:115-118.

    Liu Z H, Liu D M, Yao Y B. Distributed law and environment significance of polycyclic aromatic hydrocarbons in coal burning productao [J]. Coal Science and Technology, 2009,5:115-118.

    [5] 馬 倫,陸大榮,梁漢東,等.神華長焰煤大分子結(jié)構(gòu)特征的研究[J]. 燃料化學(xué)學(xué)報(bào), 2013,41(5):513-522.

    Ma L, Lu D R, Liang H D, et al. Preliminary study on macromolecular structure characteristics of Shenhua long flame coal [J]. Journal of Fuel Chemistry and Technology, 2013,41(5):513-522.

    [6] 吳國強(qiáng),汪 濤,王家偉,等.煤和煤矸石及其燃燒產(chǎn)物中稀土元素賦存形態(tài)研究[J]. 燃料化學(xué)學(xué)報(bào), 2020,48(12):1498-1505.

    Wu G Q, Wang T, Wang J W, et al. Occurrence forms of rare earth elements in coal and coal gangue and their combustion products [J]. Journal of Fuel Chemistry and Technology, 2020,48(12):1498-1505.

    [7] Liu, H B, Liu Z L. Recycling utilization patterns of coal mining waste in China [J]. Resour Conserv Recycl, 2010,54(12):1331-1340.

    [8] BP. BP statistical review of world energy [Z]. 2019.

    [9] Sun Y, Fan J, Qin P, et al. Pollution extents of organic substances from a coal gangue dump of Jiulong Coal Mine, China [J]. Environmental Geochemistry and Health, 2009,31(1):81-89.

    [10] Yang Y R, Gao H F, Yue X F, et al. Polycyclic aromatic hydrocarbon (PAH)-containing soils from coal gangue stacking areas contribute to epithelial to mesenchymal transition (EMT) modulation on cancer cell metastasis [J]. Science of the Total Environment, 2017,580:632-640.

    [11] 尚 譽(yù),楊豐隆,董軼茹,等.矸石山及其周邊村莊土壤浸出液對大麥的毒性作用[J]. 環(huán)境科學(xué), 2020,41(6):2936-2941.

    Shang Y, Yang F L, Dong Y R, et al. Toxicity of soil leachate from coal gangue and its surrounding village of barley (Hordeum vulgare) [J]. Environmental Science, 2020,41(6):2936-2941.

    [12] 郭盛華.煤矸石污染與綜合利用的途徑[J]. 環(huán)境科學(xué), 1985,16(6):27-31.

    Guo S H. Coal stone removal pollution and comprehensive utilization approach [J]. Environmental Science, 1985,16(6):27-31.

    [13] Benjamin Hindersmann, Christine Achten. Urban soils impacted by tailings from coal mining: PAH source identification by 59PAHs, BPCA and alkylated PAHs [J]. Environmental Pollution, 2018,242: 1217-1225.

    [14] 范維唐,楊錫祿.中國煤炭工業(yè)百科全書(地質(zhì)·測量卷) [M]. 北京:煤炭工業(yè)出版社, 1996:456.

    Fan W T, Yang X L. China coal industry encyclop aedia(Geology & Survey volame) [M]. Beijing: China Coal Industry Publishing House, 1996:456.

    [15] 樊景森,渾凌云,駢 煒.峰峰五礦煤矸石山周圍有機(jī)污染特征研究[J]. 環(huán)境工程, 2016,34(S1):828-832.

    Fan J S, Hun L Y, Pian W. Organic pollution of coal gangue dump in No.5caol mine in fengfeng,China [J]. Enviromental Engineering, 2016,34(S1):828-832.

    [16] 馮精蘭,翟夢曉,申君慧,等.超聲萃取-高效液相色譜法測定沉積物中多環(huán)芳烴[J]. 理化檢測(化學(xué)分冊), 2012,48(3):308-311.

    Feng J L, Gai M X, Shen J H, et al. HPLC Determination of polycyclic aromatic hydrocarbons in sediment with ultrasonic extaction [J]. Physical Testing and Chemical Analysis(Part B:Chemical Analysis), 2012,48(3):308-311.

    [17] Carles P, Alejandra P, Josep R, et al. Analysis of alkyl and 2–6-ringed polycyclic aromatic hydrocarbons by isotope dilution gas chromatography/mass spectrometry: Quality assurance and determination in Spanish river sediments [J]. Journal of Chromatography A, 2006,1113(1/2):220-230.

    [18] 馬 艷,俞海鷹,陳玉山.劉橋高效選煤廠的設(shè)計(jì)與探討[J]. 煤炭科技, 2001,(1):12-14.

    [19] Stout S A, Emsbo-Mattingly S D. Concentration and character of PAHs and other hydrocarbons in coals of varying rank-Implications for environmental studies of soils and sediments containing particulate coal [J]. Organic Geochemistry, 2008,39:801-819.

    [20] GB5751-86 中國煤炭分類[S].

    GB5751-86 Coal classification in China [S].

    [21] 張小鳳,文雪琴,楊亞麗.不同變質(zhì)程度煤中夾矸中多環(huán)芳烴的分布特征[J]. 煤炭技術(shù), 2016,35(11):180-182.

    Zhang X F, Wen X Q, Yang Y L. Distribution Characteristic of Polycyclic Aromatic Hydrocarbons(PAHs) in Different Coal Rank of Coals Gangue [J]. Coal Technology, 2016,35(11):180-182.

    [22] 張黎明,周建偉,柴 波,等.合山煤矸石堆周邊土壤中多環(huán)芳烴的空間分布特征[J]. 生態(tài)與農(nóng)村環(huán)境學(xué)報(bào), 2014,30(5):652-657.

    Zhang L M, Zhou J W, Chai B, et al. Spatial Distribution of PAHs in Soils Around Coal Gangue Piles in Heshan [J]. Journal of Ecology and Rural Environment, 2014,30(5):652-657.

    [23] 喬元棟,羅化峰,寧掌玄,等.煤矸石充填土壤中多環(huán)芳烴的遷移規(guī)律研究[J]. 中國煤炭, 2020,46(7):73-78.

    Qiao Y D, Luo H F, Ning Z X, et zl. Stugy on the migration rule of polycyclic aromatic hydrocarbons in the soil filled with coal gangue [J]. China Coal, 2020,46(7):73-78.

    [24] Li Y J, Wu Y D, Xu J, et al. Chemical characterization of particulate organic matter from commercial restaurants: Alkyl PAHs as new tracers for cooking. [J]. The Science of the Total Environment, 2017, 580:632-640.

    [25] 陳 剛,周瀟雨,吳建會,等.成都市冬季PM2.5中多環(huán)芳烴的源解析與毒性源解析[J]. 中國環(huán)境科學(xué), 2015,35(10):3150-3156.

    Chen G, Zhou X Y, Wu J H, et al. Source apportionment and toxicity quantitation of PM2.5-associated polycyclic aromatic hydrocarbons obtained from Chengdu, China. [J]. China Environmental Science, 2015,35(10):3150-3156.

    [26] Zhang Y, Chen Y, Li R, et al. Determination of PM2.5-bound polyaromatic hydrocarbons and their hydroxylated derivatives by atmospheric pressure gas chromatography-tandem mass spectrometry [J]. Talanta, 2019,195:757-63.

    [27] Nádudvari A, Fabiańska M J, Marynowski L, et al. Distribution of coal and coal combustion related organic pollutants in the environment of the Upper Silesian Industrial Region [J]. The Science of the Total Environment, 2018,628-629:1462-1488.

    [28] 孫 溶,陳穎軍,韓 勇,等.典型煙煤中游離態(tài)母體及烷基多環(huán)芳烴的含量和組成特征[J]. 地球化學(xué), 2017,46(4):358-366.

    Sun R, Chen Y J, Han Y, et al. The concentration and composition characteristics of soluble parent and alkylated polycyclic aromatic hydrocarbons in typical bituminous coals [J]. Geochimica, 2017, 46(4):358-366.

    [29] Sigve S, Nina G, Rainer G L, et al. Source identification of paromatic hydrocarbons in sediments using GC/MS [J]. Environmental Science & Technology, 1983,17:282-286.

    [30] Mark B Y; Robie W M; Roxanne V, et al. PAHs in the Fraser River basin: a critical appraisal of PAH ratios as indicators of PAH source and composition [J]. Organic Geochemistry, 2002,33(4):489-515.

    [31] 劉文靜,李廣坡,倪進(jìn)治,等.土壤有機(jī)質(zhì)組分中多環(huán)芳烴分配特征和生態(tài)風(fēng)險(xiǎn)[J]. 中國環(huán)境科學(xué), 2020,40(4):1620-1627.

    Liu W J, Li G P, Ni J Z, et al. Distribution patterns and ecological risks of polycyclic aromatic hydrocarbons in different soil organic matter fractions [J]. China Environmental Science, 2020,40(4):1620-1627.

    [32] 梅衛(wèi)平,阮慧慧,吳 昊,等.滴水湖水系沉積物中多環(huán)芳烴的分布及風(fēng)險(xiǎn)評價(jià)[J]. 中國環(huán)境科學(xué), 2013,33(11):2069-2074.

    Mei W P, Ruan H H, Wu H, et al. Distribution and ecological risk assessment of polycyclic aromatic hydrocarbons in sediments from Dishui Lake water system [J]. China Environmental Science, 2013,33(11):2069-2074.

    [33] 魯垠濤,王雪雯,張士超,等.黃河全流域岸邊表層土壤中PAHs的分布、來源及風(fēng)險(xiǎn)評估[J]. 中國環(huán)境科學(xué), 2019,39(5):2078-2085.

    Lu Y T, Wang X F, Zhang S C, et al. Distribution, source and risk assessment of PAHs in surface soil of the Yellow River Basin [J]. China Environmental Science, 2019,39(5):2078-2085.

    [34] Ramachandran S D, Hodson P V, Khan C W, et al. Oil dispersant increases PAH uptake by fish exposed to crudeoil [J]. Ecotoxicology and Environmental Safety, 2004,59(3):300-308.

    [35] 張 娟,吳建芝,劉 燕.北京市綠地土壤多環(huán)芳烴分布及健康風(fēng)險(xiǎn)評價(jià)[J]. 中國環(huán)境科學(xué), 2017,37(3):1146-1153.

    Zhang J, Wu J Z, Liu Y. Polycyclic aromatic hydrocarbons in urban green space of Beijing: distribution and potential risk [J]. China Environmental Science, 2017,37(3):1146-1153.

    [36] Atmospheric quality standards and criteria [R]. Gouvernement du Québec, Canada, 2021.

    [37] Khalili N R, Scheff P A, Holse T. PAH source fingerprints for coke ovens, diesel and gasoline-engines,highway tunnels and wood combustion emissions [J]. Atmos. Environ., 1995,29(4):533-542.

    [38] Wirgin I, Waldman J R. Resistance to contaminants in North American fish populations. [J]. Mutat. Res., 2004,552(1/2):73-100.

    [39] Golzadeh N, Barst B D, Baker J M, et al. Alkylated polycyclic aromatic hydrocarbons are the largest contributor to polycyclic aromatic compound concentrations in traditional foods of the Bigstoneree Nation in Alberta, Canada [J/OL]. Environmental Pollution, https://doi.org/10.1016/j.envpol.2021.116625.

    [40] Risk assessment guidance for superfund (RAGS), Vol.I: Human health evaluation manual (part E), Supplemental guidance from dermal risk assessment [Z]. US EPA, 2004.

    Pollution characteristics and toxicity assessment of PAHs in coal gangue from mine aera in Huaibei.

    CHEN Xue1,2, XU Dan-dan1, QIAN Ya-hu1, HONG Xiu-ping3, LIANG Han-dong1,2*

    (1.State Key Laboratory of Coal Resources and Safe Mining, China University of Mining and Technology, Beijing 100083, China;2.College of Geoscience and Surveying Engineering, China University of Mining and Technology, Beijing 100083, China;3.College of Life Sciences, Huaibei Normal University, Huaibei 235000, China)., 2022,42(2):753~760

    In this paper, we collected 13 gangue samples (7 fresh samples and 6 weathered samples) from Liuqiao Mine in Huaibei, and 16 parent polycyclic aromatic hydrocarbons (16 PAHs) and alkyl-polycyclic aromatic hydrocarbons (a-PAHs) were analyzed by GC-MS/MS on qualitative and quantitative. The results showed that 16PAHs and a-PAHs were generally contained in coal gangue, and the content level of a-PAHs (∑a-PAHs average 587.88ng/g,=13) was generally higher than that of 16PAHs (∑16PAHs average 505.23ng/g,=13). The most abundant substance was naphthalene, phenanthrene and chrysene , accounted for 15%, 33% and 15% of ∑16PAHs, respectively. Alkyl-naphthalene and alkyl-phenanthrene in the content of the advantage, accounted for 22% and 40% of ∑a-PAHs. The contents of ∑16PAHs and ∑a-PAHs in the weathered samples was higher than those in the fresh samples. Only the contents of Benzoapyrene and C2-phenanthrene decreased after weathering, and the corresponding contents of C1-Benzoapyrene and phenanthrene increased after weathering. The characteristic ratio shown that the coal gangue samples satisfy 0<0/(0+1-4) PHE<0.25 and 0.2<0/(0+1-5) NAP<0.55; apply these ratios to PAHs of coal, petroleum, sediment also have a good dispersion. Therefore, these ratios can be used for identify PAHs from coal gangue. Through the toxicity evaluation of coal gangue, the average Benzoapyrene toxicity equivalent concentration reached 194.60ng/g, in which a-PAH contributed most of the toxicity equivalent concentration. This study provides basic experimental data for the source of PAHs and reveals the possible ecological risks of PAHs in coal gangue.

    coal gangue;a-PAHs;weathering;characteristics ratio;toxic equivalent ( TEQ)

    X503

    A

    1000-6923(2022)02-0753-08

    陳 雪(1998-),女,山東日照人,中國礦業(yè)大學(xué)(北京)碩士研究生,主要從事環(huán)境分析化學(xué)研究.發(fā)表論文1篇.

    2021-07-05

    國家自然科學(xué)基金資助項(xiàng)目(41772157);國家自然科學(xué)青年基金資助項(xiàng)目(41902172)

    * 責(zé)任作者, 教授, HDL6688@vip.sina.com

    猜你喜歡
    烷基煤矸石芳烴
    淺談煤矸石在固廢混凝土中的應(yīng)用
    關(guān)于重芳烴輕質(zhì)化與分離的若干思考
    烷基胺插層蒙脫土的陽離子交換容量研究
    煤矸石的綜合利用
    上海建材(2018年2期)2018-06-26 08:50:56
    輪胎填充油中8種多環(huán)芳烴的檢測
    高芳烴環(huán)保橡膠填充油量產(chǎn)
    環(huán)保型橡膠填充油中芳烴及多環(huán)芳烴組成研究
    改性煤矸石對污水中油的吸附作用
    五種小麥麩皮烷基酚類化合物體外抗腫瘤作用及初步的機(jī)制研究
    煤矸石浸水路堤不均勻沉降研究
    阜城县| 金华市| 中超| 宝山区| 正定县| 祁阳县| 大宁县| 上林县| 临洮县| 湘潭市| 高州市| 孟州市| 华安县| 若尔盖县| 高唐县| 漳平市| 龙山县| 夏邑县| 延津县| 彰化市| 宁晋县| 高平市| 深州市| 包头市| 松原市| 伊金霍洛旗| 遂溪县| 伽师县| 镇宁| 赤水市| 海阳市| 牙克石市| 包头市| 南城县| 义马市| 青龙| 中江县| 西华县| 兴海县| 确山县| 宝清县|