• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Thermally stratified flow of hybrid nanofluids with radiative heat transport and slip mechanism: multiple solutions

    2022-02-18 11:26:04RaiSajjadSaifHashimMariaZamanandMuhammadAyaz
    Communications in Theoretical Physics 2022年1期

    Rai Sajjad Saif, HashimMaria Zaman and Muhammad Ayaz

    1 Department of Humanities and Sciences, School of Electrical Engineering and Computer Science(SEECS), National University of Sciences and Technology (NUST), Islamabad, Pakistan

    2 Department of Pure & Applied Mathematics, University of Haripur, 22620, Haripur, Pakistan

    3 Department of Mathematics & Statistics, Riphah International University Islamabad, Pakistan

    4 Department of Mathematics, Abdul Wali Khan University, Mardan, 23200, Pakistan

    Abstract Research on flow and heat transfer of hybrid nanofluids has gained great significance due to their efficient heat transfer capabilities.In fact,hybrid nanofluids are a novel type of fluid designed to enhance heat transfer rate and have a wide range of engineering and industrial applications.Motivated by this evolution, a theoretical analysis is performed to explore the flow and heat transport characteristics of Cu/Al2O3 hybrid nanofluids driven by a stretching/shrinking geometry.Further, this work focuses on the physical impacts of thermal stratification as well as thermal radiation during hybrid nanofluid flow in the presence of a velocity slip mechanism.The mathematical modelling incorporates the basic conservation laws and Boussinesq approximations.This formulation gives a system of governing partial differential equations which are later reduced into ordinary differential equations via dimensionless variables.An efficient numerical solver, known as bvp4c in MATLAB, is utilized to acquire multiple (upper and lower)numerical solutions in the case of shrinking flow.The computed results are presented in the form of flow and temperature fields.The most significant findings acquired from the current study suggest that multiple solutions exist only in the case of a shrinking surface until a critical/turning point.Moreover, solutions are unavailable beyond this turning point, indicating flow separation.It is found that the fluid temperature has been impressively enhanced by a higher nanoparticle volume fraction for both solutions.On the other hand, the outcomes disclose that the wall shear stress is reduced with higher magnetic field in the case of the second solution.The simulation outcomes are in excellent agreement with earlier research,with a relative error of less than 1%.

    Keywords: multiple numerical solutions, hybrid nanofluids, thermal radiation, thermal stratification, slip conditions, heat transfer

    1.Introduction

    The thermal performance of fluids employed for heat transport analysis is of main concern in various thermal processes used in industry.In recent years,several researchers put their efforts into improving the thermal performance of these processes by employing different techniques.Correspondingly,it was shown that the thermal features of ordinary fluids were substantially changed with the addition of nanosized particles of single type, known as nanoparticles.Such nanoparticles could be made up of oxides, carbides, carbon nanotubes,and metals.Nanofluids are a stable mixture of base fluid and suspended nanoparticles(up to 100 nm).Engine oil,water, and ethylene glycol may be taken as base fluids.As expected, nanofluids displayed higher heat dissipation performance.In addition, they have shown greater increases in their thermal physical characteristics, like thermal conductivity, etc.Treatment of cancer, medicine, transformer cooling, solar collectors, heat exchangers, nuclear reactor cooling, freezers, electronics cooling, and automobiles are just a few examples of nanofluid applications.Due to the successful performance of nanofluids in the heat transport mechanism, numerous studies have reported on the heat transfer of nanofluids.Choi [1] was the first one to spotlight the notion and implications of using nanoparticles in a conventional fluid to improve heat transfer.After that, Buongiorno [2] and Tiwari and Das [3] proposed two common hydrodynamic models for nanofluids.Buongiorno’s model considered the impacts of Brownian motion and thermophoresis.On the other hand, the Tiwari and Das model explored the nature of nanofluids by volume fraction considering the nanoparticles.Several authors, including Kuznetsov and Nield[4],Makinde and Aziz[5],Mustafa et al[6],Khan and Aziz [7], and Hashim and Khan [8], investigated the various physical characteristics of nanofluids using Buongiorno’s model.On the other hand, the single-phase model proposed by Tiwari and Das [3] has been applied by various authors.Rashad et al [9] utilized the numerical technique to explore the mixed convection flow of copper–water nanofluid in a rectangular cavity within a porous medium.The natural convection flow of an Al2O3/water nanofluid along with heat transport in an L-shaped enclosure has been presented by Mohebbi and Rashidi [10].Later,Bhatti et al [11] numerically investigated the 3D unsteady flow of a nanofluid with gyrotactic microorganisms driven by cylindrical geometry.Many researchers have explored the flow and heat transport properties in various geometries using nanofluids in recent years due to the effectiveness of nanofluids, including Hashim et al [12], Hamid et al [13], Hafeez et al [14], etc.

    These days,the research community focuses on radiative heat transfer and flow processes in energy conversion systems that run at high temperatures, owing to their remarkable performance in a variety of fields of science, including satellites, missiles, various aircraft propulsion devices, gas turbines, and nuclear power plants.For a device operating at an above-average temperature where radiation from heated walls and working fluid is different, the effect of thermal radiation is highly important in the transfer of heat flow.Heat transfer features under the influence of thermal radiation have been investigated by several researchers.The influences of buoyancy force and thermal radiation on stagnation point flow past a stretching sheet were examined by Pal [15].Furthermore, Bidin and Nazar [16] numerically investigated the effects of thermal radiation on flow and heat transport analysis due to an exponentially extending surface.Later,Aziz [17] conducted a numerical study on the flow and heat transport mechanism for viscous fluid flow over an unsteady stretching surface.Pal and Mondal [18] analysed non-Darcy flow over a stretching plate incorporating thermal radiation effects.Dogonchi and Ganji[19]addressed the heat transport characteristics of a nanofluid past a stretching surface in the presence of thermal radiation.Lin et al[20]explored the flow and heat transport characteristics of copper–water nanofluid subject to thermal radiation and nanoparticle shape factor effects.Waqas et al [21] presented a numerical study to address the flow of non-Newtonian Carreau fluid subject to thermal radiation using revised nanofluid model.Later,Sheikholeslami et al[22]employed the control volume-based finite element numerical method to study the flow of a nanofluid through a wavy chamber with thermal radiation impacts.The closed-form solutions for two-dimensional flow and heat transfer analysis in the presence of thermal radiation past a vertical plate have been examined by Turkyilmazoglu [23].

    Stratification occurs because of temperature gradients or the mixture of multiple fluids having different densities in engineering and industrial mechanisms.Exploring the mechanism of thermal stratification during flow and heat transport in nanofluids is of tremendous physical interest.This process is essential in the disciplines of lake thermohydraulics, salinity and thermal stratification mechanisms in oceans, heat rejection into the surrounding environment via rivers, agriculture fields, volcanic flows, and industries such as reservoirs, industrial food and salinity, atmosphere involving heterogeneous mixtures,and groundwater reservoirs.As a pioneer, Yang et al [24] investigated the free convective flow of a thermally stratified fluid due to a non-isothermal plate.Ishak et al [25] examined the time-independent mixed convection flow through a stable stratified medium near a vertical flat plate.Cheng [26] employed the cubic spline collocation method to explore the impacts of double stratification on natural convection flow of a non-Newtonian fluid near a vertical wavy surface.Mukhopadhyay and Ishak [27]presented a numerical study to discuss the mixed convection axisymmetric flow of thermally stratified viscous fluid over a stretching cylinder.Mishra et al [28] conducted a numerical study to probe a steady flow due to a vertical surface subject to double stratified micropolar fluid.An identical study of nanofluid flow and heat transport with thermal stratification has been presented by Abbasi et al [29], Hayat et al [30],Eswaramoorthi et al [31], Jabeen et al [32].

    According to the literature review, there have been several investigations on the flow and transfer of hybrid nanofluids using various mechanisms.In most of these works, the authors have studied the hybrid nanofluid heat transport features by considering constant wall and free stream temperatures and computed single solutions by using analytical and numerical techniques.However, in a variety of real-world circumstances, these temperatures do not remain constant,and we must treat them as a function of space and time variables.Moreover, the energy transport phenomenon of a hybrid nanofluid driven by a stretching/shrinking geometry with variable temperatures has various realistic industrial,engineering and biomechanical applications, like polymer technology, blood flow, treatment of several diseases,metallurgical processes, and annealing and thinning of wires.As a result of these applications in numerous disciplines of science and technology, it is worthwhile to discuss and explore thermally stratified flow of hybrid nanofluids with thermal radiation.

    As per the authors’ knowledge and based on the open literature review,it is noticed that multiple numerical solutions for thermally stratified flow of hybrid nanofluid driven by a shrinking surface have not been reported yet.The core novelty of the current study is to perform a numerical simulation to predict the multiple solutions for thermally stratified flow of Cu ? Al2O3? hybri d nanomaterials along with heat transport analysis in the presence of thermal radiation and slip mechanism.In this research, the authors formulated the problem of two-dimensional time-dependent magnetohydrodynamic(MHD)hybrid nanofluid flow over a flat sheet with the help of conservation laws and Boussinesq approximations in the form of partial differential equations.Moreover, the current investigation employs an efficient and versatile numerical method,the bvp4c routine in MATLAB, to acquire the problem solutions.The outcomes are compared to those obtained without hybrid nanofluids as well as those obtained with nanofluids.

    2.Mathematical model

    2.1.Formulation and basic equations

    As shown in figure 1, the considered physical situation involves unsteady,two-dimensional,and incompressible flow of hybrid nanofluids past a flat surface with stretching and shrinking characteristics.During the mathematical formations, the following assumptions have been kept in mind:

    Figure 1.Flow geometry and coordinate system.

    Therefore,in view of the Boussinesq approximations and above stated restrictions,the basic conservation equations for MHD unsteady flow of hybrid nanofluids subject to the Tiwari and Das[3]model can be acknowledged as(see Fang et al [33], Rohini et al [34], Devi and Devi [35], Ismail et al [36]):

    Continuity equation:

    Momentum equation:

    Energy equation:

    The following boundary conditions are put on the surface walls as well as on the free stream:

    Table 1.Thermo-physical characteristics of hybrid nanofluids and base fluid (see Khanafer et al [37], Oztop and Abu-Nada [38]).

    In the above equation, the subscript"hnf" represents the hybrid nanofluids, while"f" denotes the base fluid.

    The radiative heat fluxqrin equation (3) is depicted as:

    where(k*)signifies the Stefan–Boltzmann constant and coefficient of mean absorption.Now, pluggingqrfrom equation (7) into equation (3) , we get

    The dimensionless form of the modelled problem is obtained by utilizing the following subsequent transformations:

    Substituting equation (9) into equations (2) and (8), the following converted system of ordinary differential equations is derived:

    subject to the conditions

    The wall mass transfer velocity (or fluid suction velocity)becomes=S,whereSis a constant that specifies the wall mass transfer parameter, withS> 0 indicating suction,S< 0 indicating injection andS= 0 indicating impermeability.

    The other dimensionless parameters are written as

    In this analysis,the variables of physical curiosity are the drag force and the heat transfer rate,which are written in their dimensionless form as follows:

    3.Numerical method

    Figure 2.Variation of f″ (0) with magnetic parameter M againstλ.

    The governing set of ordinary differential equations (10) and(11) along with boundary conditions (12) is numerically integrated by employing the built-in MATLAB solver bvp4c.The flow and heat transport characteristics are observed by the virtue of non-dimensional velocity, temperature, skinfriction, and heat transfer rate computed by the above-mentioned numerical method.The main purpose of this analysis is to predict multiple solutions for flow fields in the case of a shrinking surface.These solutions can be achieved by two different sets of initial guesses which fulfil the far-field boundary conditions.In this method, higher-order non-linear ODEs are first converted into first-order differential equations by choosing suitable variables.For this,let us assumef=y1,f′ =y2,f″ =y3,θ=y4andθ′ =y5..The new system of first-order differential equations is given by

    and the boundary conditions become

    An important step in this methodology is to give a suitable finite value to(η= ∞), so that the field boundary conditions(17)are asymptotically satisfied.The tolerance criterion is set as 10?6to gain the correct numerical outcomes.

    4.Computed results

    4.1.Code validation

    To begin, tables 2 and 3 highlight the validity of the current results.In these table,the computed results of the skin-friction coefficient (upper and lower branch solutions) are compared with the published works of Wang et al[39],Mahapatra et al[40], Ismail et al [36] and Bachok et al [41].In this regard,remarkable consistency has been accomplished.This proves that the proposed model and present findings are accurate.

    ?

    ?

    Figure 3.Variation of ?θ′ (0) with radiation parameter R againstλ.

    4.2.Discussion

    Various numerical and graphical outcomes of the problem have been prepared and presented in detail.The simulated outcomes are displayed through velocity and temperature distributions together with the skin-friction coefficient and heat transfer rate for different flow parameters to better understand the flow and heat transport features, for instance,for magnetic parameterM, stretching/shrinking parameterλ,suction parameterS, velocity slip parameterα1, nanoparticle volume fractionsφ1andφ,2unsteadiness parameterβ, radiation parameterR, thermal stratification parameterst,heat generation/absorption parameterδand Prandtl numberPr.

    Figure 4.Variation of f″ (0) with suction parameterS againstλ.

    Figure 5.Variation of ?θ′ (0) with stratification parameter st againstλ.

    Figure 6.Velocity fieldsf ′(η) for distinct nanoparticle volume fractionφ.1

    Figure 2 is plotted to witness the impact of magnetic parameterMon wall shear stressf″ (0) against shrinking parameterλ.It is shown that a dual solution exists for shrinking parameter(λ< ?1) and suction parameter (S>2)when keeping all other parameters fixed.Further, we observed that these dual solutions occur up to a critical valueλcof the shrinking parameterλ.The critical valueλcplays an important role in predicting the nature of computed solutions.It is seen that a unique solution exists whenλ=λ cand dual solutions are possible forλ<λ cwhile no solution exists whenλ>λ.cThe respective critical valuesλcfor distinct magnetic parametersM=(0 , 0.2, 0.6) areλc= ?3.3556,?3.3840 and?3.4019, as displayed in figure 2.A significant decline in the critical value is noted with increasing value of the magnetic parameter which enhances the existence domain of dual solutions.From a physical point of view,this happens because greater values of the magnetic parameter create resistance in the flow, which results in smothering of the velocity,as shown in the first solution.Moreover,the value off″(0) with respect to the first solution is always increasing with increasing magnetic parameter.On the other hand, an opposite behaviour is depicted by the second solutions.The impact of radiation parameterRon heat transfer rate?θ′ (0)against shrinking parameterλis displayed in figure 3.Again,we depict the existence of dual solutions in the case of shrinking flow.The magnitude of the critical value∣λc∣increases with increasing radiation parameterR.The wall shear stressf″ (0) is plotted in figure 4 for distinct values of suction parameterSas a function of shrinking parameterλ.It is worth mentioning that dual solutions exists for the shrinking parameter(λ< 0) within a specific range of the suction parameter,i.e.S= 2.1, 2.3, 2.5.One can clearly see that the local wall shear stressf″ (0) increases with increasing suction parameter for the first solution, while it decreases in the case of the second solution.Figure 5 portrays the variation of local heat transfer rate?θ′ (0) with varying values of thermal stratification parameters.tWe observe that as the stratification parameter increases the rate of heat transfer decreases for both solutions.

    Figure 7.Temperature fieldsθ (η) for distinct nanoparticle volume fractionφ.1

    The impacts of the volume fraction of copper nanoparticlesφ1on the velocity and temperature distributions for fixed values of other parameter are displayed in figures 6 and 7.The outcomes uncovered that the variation in nanoparticle volume fraction has less effect on velocity fields.However,figure 6 suggests that the fluid velocity shows a decreasing behaviour with higher nanoparticle volume fraction for both solutions.On the other hand, it is observed through figure 7 that a substantial rise in temperature distribution is noted for greater volume fraction.The velocity distributions off′(η)for various values of suction parameterSare plotted in figure 8.The plotted graphs show the existence of dual solutions for shrinking flow inside the boundary layer region.As expected, an enhancement in velocity profiles is seen for greaterSin the upper solutions, while the inverse is noted in the lower solutions.Figure 9 portrays the relationship between the dimensionless temperature profilesθ(η) and the nanoparticle volume fractionφ2within the boundary layer.It should be noted that both the temperature profiles and associated boundary layer thickness increase with growing values ofφ2.The velocity distributionsf′(η) for varyingMare illustrated in figure 10, which shows that as the magnetic parameterMincreases the velocity profiles show a decreasing trend for the second solution and the opposite is noted for the first solutions.The dual temperature profilesθ(η) for precise entries of the radiation parameterRare presented in figure 11.With an increment in radiation parameter, both solutions showed that the temperature distribution increases.On the other hand, the corresponding thermal boundary layer thickness is higher for the second solution.Figure 12 depicts the effect of velocity-slip parameterα1on the dual velocity profilesf′(η) inside the boundary layer region.Once again,an opposite behaviour is displayed by the first and second branch solutions within the boundary layer region.The larger values ofα1cause a reduction in fluid velocity for the first branch and enhance the fluid velocity in the second branch.Finally, figure 13 is outlined for the behaviour temperature distributionθ(η) under the influence of stratification parameters.tThe hybrid nanofluid temperature is seen to rise for increasing values of the thermal slip parameter.

    Figure 8.Velocity fieldsf ′(η) for distinct suction parameterS.

    Figure 9.Temperature fieldsθ (η) for distinct nanoparticle volume fractionφ.2

    Figure 10.Velocity fieldsf ′(η) for distinct magnetic parameter M.

    Figure 11.Temperature fieldsθ (η) for distinct radiation parameter R.

    Figure 12.Velocity fieldsf ′(η) for distinct velocity-slip parameter α.1

    Figure 13.Temperature fieldsθ (η) for distinct stratification parameter st.

    5.Main findings

    Numerical simulations for an unsteady thermally stratified flow of MHD hybrid nanofluid across a stretching/shrinking surface with thermal radiation and slip mechanism were carried out in this study.The main feature of the current study was the depiction of multiple branches,namely the upper and lower branch,for flow and temperature fields in the case of a shrinking surface.The following major outcomes can be summarized.

    1.As the suction parameter was increased, the existence domain of the dual solution was increased with higher critical values of the shrinking parameter.

    2.A higher skin-friction coefficient was noted for larger values of the magnetic parameter in the upper branch.

    3.At higher values of the stratification parameter, a substantial rise in fluid temperature was observed for both solutions.

    4.Higher values of the radiation and thermal stratification parameters decreased the Nusselt number for both the upper and lower branch solutions.

    5.A decreasing tendency was observed for velocity curves with increased values of the velocity-slip parameter in the case of the second solution.

    6.The hybrid nanofluid temperature was significantly increased by a greater thermal radiation parameter in both solutions.

    ORCID iDs

    激情视频va一区二区三区| 9191精品国产免费久久| 亚洲国产精品一区三区| 国产一区亚洲一区在线观看| 成人手机av| 满18在线观看网站| 在线看a的网站| 大香蕉久久成人网| 高清黄色对白视频在线免费看| 哪个播放器可以免费观看大片| 最新在线观看一区二区三区 | 国产av一区二区精品久久| 国产成人午夜福利电影在线观看| 亚洲人成网站在线观看播放| 男人添女人高潮全过程视频| 99久久人妻综合| 在线亚洲精品国产二区图片欧美| 乱人伦中国视频| 午夜福利乱码中文字幕| 久久天堂一区二区三区四区| 99久国产av精品国产电影| av女优亚洲男人天堂| 老汉色∧v一级毛片| 黄色 视频免费看| 国产欧美日韩一区二区三区在线| 亚洲国产欧美日韩在线播放| 亚洲精品一区蜜桃| 亚洲人成网站在线观看播放| 亚洲精品美女久久久久99蜜臀 | 亚洲av成人不卡在线观看播放网 | 美女扒开内裤让男人捅视频| 久久青草综合色| 中文字幕高清在线视频| 美女国产高潮福利片在线看| 国产精品久久久久久精品古装| 免费黄网站久久成人精品| 日韩制服丝袜自拍偷拍| 天天躁夜夜躁狠狠躁躁| 免费黄频网站在线观看国产| 日韩 欧美 亚洲 中文字幕| 一区二区日韩欧美中文字幕| 人妻一区二区av| 精品少妇黑人巨大在线播放| 九草在线视频观看| 国产一区二区激情短视频 | 久久青草综合色| 午夜av观看不卡| 国产 一区精品| 狂野欧美激情性xxxx| 男女高潮啪啪啪动态图| 可以免费在线观看a视频的电影网站 | 免费人妻精品一区二区三区视频| 天天添夜夜摸| av有码第一页| 亚洲欧美精品自产自拍| 黄色一级大片看看| 高清黄色对白视频在线免费看| 亚洲欧美一区二区三区黑人| 国产成人精品久久二区二区91 | 亚洲三区欧美一区| 激情视频va一区二区三区| 老司机靠b影院| 少妇猛男粗大的猛烈进出视频| 欧美 亚洲 国产 日韩一| 嫩草影院入口| 少妇被粗大的猛进出69影院| 国产av一区二区精品久久| 啦啦啦中文免费视频观看日本| 中文字幕最新亚洲高清| 黄色怎么调成土黄色| 精品少妇内射三级| 99热全是精品| 老熟女久久久| 精品一品国产午夜福利视频| av有码第一页| 亚洲精品aⅴ在线观看| 亚洲精品aⅴ在线观看| 亚洲中文av在线| 久久久欧美国产精品| 美女脱内裤让男人舔精品视频| 免费高清在线观看视频在线观看| 国产日韩欧美亚洲二区| 亚洲av综合色区一区| 精品视频人人做人人爽| 日韩视频在线欧美| 国产精品久久久久久久久免| 亚洲成人免费av在线播放| videosex国产| 超碰97精品在线观看| 韩国av在线不卡| 一级黄片播放器| 男男h啪啪无遮挡| 国产亚洲午夜精品一区二区久久| 精品国产一区二区久久| 亚洲av中文av极速乱| 午夜日本视频在线| av网站免费在线观看视频| 黄片无遮挡物在线观看| 亚洲精品久久久久久婷婷小说| 叶爱在线成人免费视频播放| 日本黄色日本黄色录像| 丝袜美腿诱惑在线| 午夜久久久在线观看| 久久精品亚洲熟妇少妇任你| 日韩一区二区视频免费看| 男女下面插进去视频免费观看| 久久久久国产一级毛片高清牌| 国产精品久久久久成人av| 十八禁高潮呻吟视频| 99国产综合亚洲精品| 久久久久精品久久久久真实原创| 午夜福利影视在线免费观看| 蜜桃在线观看..| 两性夫妻黄色片| 青青草视频在线视频观看| 在线亚洲精品国产二区图片欧美| 久久精品国产亚洲av高清一级| 欧美日韩亚洲国产一区二区在线观看 | 99热国产这里只有精品6| 午夜日韩欧美国产| 亚洲国产看品久久| 免费人妻精品一区二区三区视频| 欧美乱码精品一区二区三区| 另类亚洲欧美激情| 亚洲av成人精品一二三区| 国产在视频线精品| 一本一本久久a久久精品综合妖精| 美女主播在线视频| 国产片特级美女逼逼视频| 成人午夜精彩视频在线观看| 精品国产乱码久久久久久小说| 色播在线永久视频| 精品人妻在线不人妻| 国产一区二区三区av在线| 在线观看免费高清a一片| 波多野结衣av一区二区av| 美女大奶头黄色视频| 国产日韩一区二区三区精品不卡| 人人妻,人人澡人人爽秒播 | 亚洲天堂av无毛| 国产成人a∨麻豆精品| 波多野结衣av一区二区av| 久久免费观看电影| 久久99热这里只频精品6学生| 女人高潮潮喷娇喘18禁视频| 亚洲av国产av综合av卡| 亚洲婷婷狠狠爱综合网| 蜜桃在线观看..| 99热国产这里只有精品6| 午夜免费男女啪啪视频观看| 男人舔女人的私密视频| 欧美日韩精品网址| 老司机深夜福利视频在线观看 | 日韩一卡2卡3卡4卡2021年| 中文精品一卡2卡3卡4更新| 国产亚洲最大av| 丰满迷人的少妇在线观看| 国产精品久久久久成人av| 久久ye,这里只有精品| 大码成人一级视频| 中文天堂在线官网| 汤姆久久久久久久影院中文字幕| 观看av在线不卡| av又黄又爽大尺度在线免费看| 欧美日韩视频高清一区二区三区二| 日韩欧美精品免费久久| 国产片特级美女逼逼视频| 女人被躁到高潮嗷嗷叫费观| 午夜免费男女啪啪视频观看| 欧美日韩综合久久久久久| 亚洲一码二码三码区别大吗| 美女主播在线视频| 夫妻午夜视频| 高清欧美精品videossex| 女性被躁到高潮视频| 久久久久久久国产电影| 成年人免费黄色播放视频| 欧美日韩成人在线一区二区| 亚洲情色 制服丝袜| 在线免费观看不下载黄p国产| 久久毛片免费看一区二区三区| kizo精华| 女人被躁到高潮嗷嗷叫费观| 日韩欧美一区视频在线观看| 宅男免费午夜| 在线天堂最新版资源| 欧美精品人与动牲交sv欧美| 操美女的视频在线观看| 日本猛色少妇xxxxx猛交久久| 91老司机精品| 国产 精品1| 高清在线视频一区二区三区| 国产毛片在线视频| 男女免费视频国产| 国产一区亚洲一区在线观看| 日韩成人av中文字幕在线观看| 国产一区二区三区av在线| 国产精品 欧美亚洲| www日本在线高清视频| 青春草视频在线免费观看| 久久精品熟女亚洲av麻豆精品| 在线免费观看不下载黄p国产| 少妇被粗大的猛进出69影院| 国产精品偷伦视频观看了| 色视频在线一区二区三区| 亚洲国产成人一精品久久久| 国产免费现黄频在线看| 亚洲美女视频黄频| 午夜日韩欧美国产| 十八禁高潮呻吟视频| 国产成人精品久久久久久| 菩萨蛮人人尽说江南好唐韦庄| 老司机深夜福利视频在线观看 | 国产探花极品一区二区| 国产精品国产三级专区第一集| 丰满乱子伦码专区| 国产精品人妻久久久影院| 人妻人人澡人人爽人人| 久久人人爽人人片av| 麻豆乱淫一区二区| 尾随美女入室| 国产女主播在线喷水免费视频网站| 在线观看免费午夜福利视频| av国产精品久久久久影院| 国产精品久久久久久精品古装| 久久人人97超碰香蕉20202| 国产精品麻豆人妻色哟哟久久| a级片在线免费高清观看视频| 精品福利永久在线观看| 18禁裸乳无遮挡动漫免费视频| xxxhd国产人妻xxx| 曰老女人黄片| 日韩电影二区| 美女高潮到喷水免费观看| 亚洲一区二区三区欧美精品| 黑人猛操日本美女一级片| av电影中文网址| 亚洲av成人不卡在线观看播放网 | 下体分泌物呈黄色| 久久久国产欧美日韩av| 99香蕉大伊视频| 久久久久精品性色| 叶爱在线成人免费视频播放| 在线观看免费高清a一片| 在线观看免费视频网站a站| 精品一区二区三区四区五区乱码 | 狠狠精品人妻久久久久久综合| 精品国产一区二区三区久久久樱花| 丰满迷人的少妇在线观看| 欧美精品高潮呻吟av久久| 日本午夜av视频| 国产片特级美女逼逼视频| 久久久久久久久久久免费av| 日本av手机在线免费观看| 国产色婷婷99| 精品一区二区三区四区五区乱码 | 九九爱精品视频在线观看| 一级,二级,三级黄色视频| 天天躁日日躁夜夜躁夜夜| 国产毛片在线视频| 欧美日韩一级在线毛片| 亚洲成人手机| 黄色一级大片看看| xxxhd国产人妻xxx| 18禁国产床啪视频网站| √禁漫天堂资源中文www| 韩国精品一区二区三区| 欧美日韩福利视频一区二区| 另类精品久久| 麻豆av在线久日| 亚洲自偷自拍图片 自拍| www.av在线官网国产| 精品午夜福利在线看| 亚洲专区中文字幕在线 | 久久久久久人妻| 18在线观看网站| 亚洲精品日本国产第一区| 午夜福利免费观看在线| 国产成人av激情在线播放| 午夜福利乱码中文字幕| 中文精品一卡2卡3卡4更新| 国产爽快片一区二区三区| 18在线观看网站| 国产精品嫩草影院av在线观看| 亚洲,欧美,日韩| 高清av免费在线| 极品少妇高潮喷水抽搐| 精品久久久久久电影网| 老司机在亚洲福利影院| 中文字幕人妻丝袜制服| 精品国产国语对白av| 中文字幕人妻丝袜一区二区 | 国产日韩欧美亚洲二区| a级毛片在线看网站| 国产成人午夜福利电影在线观看| 国产av精品麻豆| 亚洲激情五月婷婷啪啪| 色吧在线观看| 亚洲,一卡二卡三卡| 亚洲伊人色综图| 最近中文字幕2019免费版| 视频区图区小说| 最近手机中文字幕大全| 无遮挡黄片免费观看| av.在线天堂| 亚洲精品乱久久久久久| 美国免费a级毛片| 丁香六月天网| 中文字幕人妻丝袜制服| 久久这里只有精品19| 国产精品av久久久久免费| 国产激情久久老熟女| 丰满饥渴人妻一区二区三| 久久亚洲国产成人精品v| 最近最新中文字幕大全免费视频 | 亚洲一区二区三区欧美精品| 一级片'在线观看视频| 国产精品国产三级国产专区5o| 国产一区二区激情短视频 | 国产一区二区激情短视频 | 国产精品三级大全| 精品国产一区二区三区四区第35| 色综合欧美亚洲国产小说| 午夜福利视频在线观看免费| 国产精品亚洲av一区麻豆 | 欧美中文综合在线视频| 久热这里只有精品99| 国产成人91sexporn| 国产精品久久久久久精品古装| 亚洲精品自拍成人| 日本av手机在线免费观看| 亚洲男人天堂网一区| 欧美精品av麻豆av| h视频一区二区三区| 亚洲综合色网址| 天天躁狠狠躁夜夜躁狠狠躁| 亚洲精品乱久久久久久| 午夜影院在线不卡| 日韩中文字幕视频在线看片| 国产成人系列免费观看| 狂野欧美激情性xxxx| 丁香六月天网| 精品久久蜜臀av无| 欧美精品高潮呻吟av久久| 最新在线观看一区二区三区 | 日韩中文字幕欧美一区二区 | 久久久久国产一级毛片高清牌| 精品亚洲成a人片在线观看| 精品一区二区免费观看| 亚洲图色成人| 日韩一卡2卡3卡4卡2021年| 久久人人97超碰香蕉20202| 免费在线观看黄色视频的| 老司机靠b影院| 日本av免费视频播放| 亚洲精品在线美女| 免费观看a级毛片全部| 黄网站色视频无遮挡免费观看| 亚洲精品自拍成人| 韩国av在线不卡| 丝袜人妻中文字幕| 一区二区三区激情视频| 成人黄色视频免费在线看| 啦啦啦啦在线视频资源| 一区二区三区精品91| 国产日韩欧美视频二区| 欧美精品一区二区免费开放| 亚洲欧美一区二区三区久久| 亚洲成人av在线免费| 99久久99久久久精品蜜桃| 亚洲av日韩精品久久久久久密 | 亚洲精品日本国产第一区| 美女高潮到喷水免费观看| 久久久久精品国产欧美久久久 | 一本色道久久久久久精品综合| 一本大道久久a久久精品| 91成人精品电影| 日韩大码丰满熟妇| 午夜福利影视在线免费观看| 久久国产精品男人的天堂亚洲| 亚洲人成电影观看| 91精品国产国语对白视频| 美女午夜性视频免费| 天天躁夜夜躁狠狠久久av| 午夜久久久在线观看| 伊人久久大香线蕉亚洲五| 一级片免费观看大全| 久久韩国三级中文字幕| 欧美人与善性xxx| 又粗又硬又长又爽又黄的视频| 国产精品蜜桃在线观看| 成年美女黄网站色视频大全免费| 天堂8中文在线网| tube8黄色片| 男人操女人黄网站| 免费日韩欧美在线观看| 久久鲁丝午夜福利片| 成人三级做爰电影| 国产精品久久久久久久久免| 国产高清不卡午夜福利| 日韩av免费高清视频| 午夜精品国产一区二区电影| 久久精品人人爽人人爽视色| 亚洲欧美成人综合另类久久久| 日本猛色少妇xxxxx猛交久久| 久久 成人 亚洲| 亚洲第一av免费看| 亚洲国产欧美一区二区综合| 看免费av毛片| 国产成人系列免费观看| 一级片免费观看大全| 天美传媒精品一区二区| 久久人人97超碰香蕉20202| 免费女性裸体啪啪无遮挡网站| 久久久久人妻精品一区果冻| 十八禁高潮呻吟视频| 伊人亚洲综合成人网| 热re99久久国产66热| 免费看不卡的av| 国产一区二区在线观看av| 777久久人妻少妇嫩草av网站| 新久久久久国产一级毛片| 哪个播放器可以免费观看大片| 亚洲精品日本国产第一区| 在线精品无人区一区二区三| 国产精品人妻久久久影院| 久久久久久人妻| 国产精品 国内视频| 久久精品久久精品一区二区三区| 日韩 欧美 亚洲 中文字幕| 又大又爽又粗| 91精品国产国语对白视频| 看免费成人av毛片| 丰满少妇做爰视频| 满18在线观看网站| 亚洲欧美中文字幕日韩二区| 欧美在线一区亚洲| 男女下面插进去视频免费观看| 欧美 亚洲 国产 日韩一| 亚洲欧美一区二区三区黑人| 国产黄色视频一区二区在线观看| 国产精品一国产av| 久久久久久人妻| 亚洲美女视频黄频| 美女午夜性视频免费| 免费av中文字幕在线| 欧美黑人欧美精品刺激| 大片免费播放器 马上看| 91精品三级在线观看| 校园人妻丝袜中文字幕| 亚洲av电影在线进入| 超碰成人久久| 欧美亚洲 丝袜 人妻 在线| 国产成人欧美| 国产97色在线日韩免费| 国产精品久久久人人做人人爽| 精品一区二区三区av网在线观看 | 欧美日韩福利视频一区二区| 涩涩av久久男人的天堂| 日本猛色少妇xxxxx猛交久久| 蜜桃在线观看..| 久久97久久精品| 叶爱在线成人免费视频播放| 777久久人妻少妇嫩草av网站| 日本av免费视频播放| www.自偷自拍.com| 国产亚洲欧美精品永久| 蜜桃在线观看..| 亚洲精品av麻豆狂野| 亚洲av电影在线进入| 不卡av一区二区三区| 亚洲一区二区三区欧美精品| 亚洲国产成人一精品久久久| 中文字幕色久视频| 国产伦理片在线播放av一区| 亚洲婷婷狠狠爱综合网| 大话2 男鬼变身卡| 国产亚洲一区二区精品| 亚洲欧洲国产日韩| 男人添女人高潮全过程视频| 天美传媒精品一区二区| 你懂的网址亚洲精品在线观看| 亚洲欧美一区二区三区国产| 精品国产乱码久久久久久小说| 一个人免费看片子| 久久久久人妻精品一区果冻| 国产精品一区二区在线观看99| 老司机影院成人| 国产精品偷伦视频观看了| 亚洲av在线观看美女高潮| 高清av免费在线| 国产毛片在线视频| 亚洲综合精品二区| 最新的欧美精品一区二区| 亚洲专区中文字幕在线 | 免费在线观看完整版高清| 毛片一级片免费看久久久久| av网站免费在线观看视频| 999精品在线视频| 一级毛片 在线播放| 另类亚洲欧美激情| 毛片一级片免费看久久久久| 国产女主播在线喷水免费视频网站| 妹子高潮喷水视频| 色吧在线观看| 亚洲精华国产精华液的使用体验| 美女福利国产在线| 精品福利永久在线观看| 女的被弄到高潮叫床怎么办| 啦啦啦在线观看免费高清www| 亚洲欧美成人精品一区二区| 国产免费一区二区三区四区乱码| 母亲3免费完整高清在线观看| 飞空精品影院首页| 狂野欧美激情性xxxx| 久久av网站| 欧美乱码精品一区二区三区| 国产黄色免费在线视频| 亚洲国产精品国产精品| 亚洲欧洲日产国产| 国产精品.久久久| 在现免费观看毛片| 国产黄频视频在线观看| 国产野战对白在线观看| 久久久久人妻精品一区果冻| 大陆偷拍与自拍| 麻豆乱淫一区二区| 国产成人免费观看mmmm| 久久天堂一区二区三区四区| 9191精品国产免费久久| 国产精品 国内视频| 熟妇人妻不卡中文字幕| www.精华液| 亚洲中文av在线| 国产 精品1| 久久久久精品久久久久真实原创| 亚洲国产看品久久| 高清不卡的av网站| 国产精品久久久久久人妻精品电影 | 欧美最新免费一区二区三区| 九色亚洲精品在线播放| bbb黄色大片| av视频免费观看在线观看| 中文字幕高清在线视频| 电影成人av| av线在线观看网站| 国产人伦9x9x在线观看| 国产av码专区亚洲av| 国产精品一二三区在线看| 在线观看免费午夜福利视频| 两个人免费观看高清视频| 91精品伊人久久大香线蕉| 日韩人妻精品一区2区三区| 国产深夜福利视频在线观看| 亚洲欧洲精品一区二区精品久久久 | 两性夫妻黄色片| 丝袜喷水一区| 久久久久久久精品精品| 成人毛片60女人毛片免费| 亚洲精品国产av蜜桃| 夫妻午夜视频| 老司机影院毛片| 亚洲三区欧美一区| 最近最新中文字幕免费大全7| 蜜桃在线观看..| 亚洲综合精品二区| 制服诱惑二区| 久久婷婷青草| 亚洲婷婷狠狠爱综合网| 免费人妻精品一区二区三区视频| 在线观看人妻少妇| 久久久久久久精品精品| 伊人亚洲综合成人网| 老熟女久久久| 亚洲欧洲精品一区二区精品久久久 | 波多野结衣一区麻豆| 国产精品香港三级国产av潘金莲 | 国产一级毛片在线| 国产精品秋霞免费鲁丝片| 国产一区有黄有色的免费视频| 2018国产大陆天天弄谢| 精品一区二区三卡| 亚洲欧洲精品一区二区精品久久久 | 亚洲国产看品久久| 精品一区在线观看国产| 日韩,欧美,国产一区二区三区| 天天躁日日躁夜夜躁夜夜| 久久韩国三级中文字幕| 久久久久精品人妻al黑| 精品一区二区三区av网在线观看 | 精品国产一区二区久久| 女人被躁到高潮嗷嗷叫费观| 99久久精品国产亚洲精品| 日韩 欧美 亚洲 中文字幕| 亚洲欧洲精品一区二区精品久久久 | 在线观看免费视频网站a站| 久久热在线av| 午夜福利免费观看在线| 2021少妇久久久久久久久久久| 老鸭窝网址在线观看| 另类精品久久| 精品久久久久久电影网| 男人添女人高潮全过程视频| 青春草亚洲视频在线观看| 国产一区二区激情短视频 | 黄片无遮挡物在线观看| 黑人巨大精品欧美一区二区蜜桃| 成年女人毛片免费观看观看9 | 丁香六月天网| 中文精品一卡2卡3卡4更新| 国产淫语在线视频| 午夜免费鲁丝| av.在线天堂| 亚洲欧美激情在线| 波多野结衣一区麻豆|