• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Chemical constituents, cytotoxic, antifungal and antimicrobial properties of Centaurea diluta Ait. subsp. algeriensis (Coss. & Dur.) Maire

    2016-09-12 02:22:21HanneZaterJolleHuetroniqueFontaineSamirBenayacheCarolineStvignyPierreDuezFadilaBenayacheUnitderechercheValorisationdesRessourcesNaturellesMolculesBioactivesetAnalysesPhysicochimiquesetBiologiquesVARENBIOMOLFacultdesScienc

    Hanne Zater, Jo?lle Huet, Véronique Fontaine, Samir Benayache, Caroline Stévigny,Pierre Duez,6*, Fadila Benayache*Unité de recherche : Valorisation des Ressources Naturelles, Molécules Bioactives et Analyses Physicochimiques et Biologiques (VARENBIOMOL), Faculté des Sciences Exactes, Université Frères Mentouri Constantine , 2000 Constantine, Algérie

    2Université Ziane Achour, Cité du 5 Juillet, Route Moudjbara BP : 3117, 17000 Djelfa, Algérie

    3Laboratoire de Pharmacognosie, de Bromatologie et de Nutrition Humaine, Université Libre de Bruxelles (ULB), 1050 Bruxelles, Belgique

    4Laboratoire de Biopolymère et nanomatériaux supramoléculaire, Université Libre de Bruxelles (ULB), 1050 Bruxelles, Belgique

    5Unité de Microbiologie Pharmaceutique et Hygiène, Faculté de Pharmacie, Université Libre de Bruxelles (ULB), 1050 Bruxelles, Belgique

    6Service de Chimie Thérapeutique et de Pharmacognosie, Université de Mons (UMONS), 7000 Mons, Belgique

    ?

    Chemical constituents, cytotoxic, antifungal and antimicrobial properties of Centaurea diluta Ait. subsp. algeriensis (Coss. & Dur.) Maire

    2Université Ziane Achour, Cité du 5 Juillet, Route Moudjbara BP : 3117, 17000 Djelfa, Algérie

    3Laboratoire de Pharmacognosie, de Bromatologie et de Nutrition Humaine, Université Libre de Bruxelles (ULB), 1050 Bruxelles, Belgique

    4Laboratoire de Biopolymère et nanomatériaux supramoléculaire, Université Libre de Bruxelles (ULB), 1050 Bruxelles, Belgique

    5Unité de Microbiologie Pharmaceutique et Hygiène, Faculté de Pharmacie, Université Libre de Bruxelles (ULB), 1050 Bruxelles, Belgique

    6Service de Chimie Thérapeutique et de Pharmacognosie, Université de Mons (UMONS), 7000 Mons, Belgique

    ARTICLE INFO ABSTRACT

    Article history:

    in revised form 16 March 2016 Accepted 15 April 2016

    Available online 20 June 2016

    Flavonoids

    Lignans

    Centaurea diluta

    Asteraceae

    Cytotoxic activity

    Direct and indirect antimicrobial activity

    MRSA

    Objective: To investigate the chemical composition of a moderately polar extract (CHCl3soluble part of the MeOH-H2O extract) obtained from the aerial parts (leaves and flowers) of Centaurea diluta Ait. subsp. algeriensis (Coss. & Dur.) Maire, a species endemic to Algeria and Morocco on which no reports are available to date. To evaluate in vitro the cytotoxic, antifungal and antimicrobial activities of this extract and the cytotoxic and antimicrobial activities of its isolated secondary metabolites. Methods: The cytotoxic effects of the extract were investigated on 3 human cancer cell lines i.e. the A549 non-small-cell lung carcinoma (NSCLC), the MCF7 breast adenocarcinoma and the U373 glioblastoma using a MTT colorimetric assay. Biological data allowed to guide the fractionation of the extract by separation and purification on silica gel 60 (CC and TLC). The isolated compounds which were characterized by spectral analysis, mainly HR-ESIMS, HR-EIMS,UV and NMR experiments (1H,13C, COSY, ROESY, HSQC and HMBC) and comparison of their spectroscopic data with those reported in the literature, were evaluated for cytotoxic activities on six cancer cell lines (A549, MCF7, U373, Hs683 human glioma, PC3 human prostate and B16-F10 murine melanoma). The direct and indirect antibacterial and antifungal activities were determined using microdilution methods for the raw extract and TLC-bioautography and microdilution methods against standard and clinical strains for the isolated compounds. Results: The raw extract reduced cell viability with IC50s of 27, 25 and 21 μg/mL on A549, MCF7 and U373, respectively. Five secondary metabolites: two phenolic compounds (vanillin 1, paridol 3), a lignan [(-)-arctigenin 2]and two flavonoid aglycones (eupatilin 4 and jaceosidin 5), were then isolated from this extract. Moderate cytotoxic effects were observed for (-)-arctigenin 2 (IC50s: 28 and 33 μM on Hs683 and B16-F10, respectively), eupatilin 4 (IC50s: 33 and 47 μM on B16-F10 and PC3, respectively) and jaceosidin 5 (IC50s: 32 and 40 μM on PC3 and B16-F10, respectively). Conclusions: All the isolated compounds were described for the first time from this species. Although inactive against 7 tested microorganisms (fungi, bacteria and yeast, human or plant pathogens), the raw extract was able to potentiate the effect of beta-lactam antibiotics on methicillin-resistant Staphylococcus aureus (MRSA),reducing the minimal inhibitory concentrations (MICs) by a factor of 2-32-fold. No synergy was found between the extract and streptomycin. From the five isolated compounds only jaseosidin 5 showed a moderate antimicrobial activity.

    1. Introduction

    The genus Centaurea (tribe Cynareae, family Asteraceae) is one of the most widely distributed plant genera in the world. Centaurea includes more than 500 species, 45 of which grow spontaneouslyin Algeria, with 7 species localized in the Sahara[1, 2]. Although, to our best knowledge, no traditional uses or pharmacological studies are reported so far for the species Centaurea diluta (C. diluta), many other Centaurea species are well known in traditherapy. For example,in Turkey, dried flowers of Centaurea cyanus are used in infusion to relieve diarrhea, gain energy, increase appetite, and to relieve chest tightness; Centaurea calcitrapa is used (infusion) as a febrifuge;Centaurea jacea is used to reduce fever, to start menstruation, to relieve constipation and increase appetite[3, 4]. In Tunisia, Centaurea furfuracea, an endemic species from the desert regions of the North of Africa[5], is used as astringent and diuretic[6], while, in Algeria,the roots of Centaurea incana are used in the area of Aurès for the treatment of liver diseases[7] and Centaurea pullata is used in the preparation of a local traditional dish called “El Hammama”[8]. Various studies have shown medicinal properties of Centaurea species, mainly as analgesic[9], cytotoxic[10], antibacterial[11] and antifungal[12].

    Centaurea typically present high structural diversity in major bioactive compounds, including triterpenes, flavonoids, lignans and sesquiterpene lactones[13-21]. In specimens of C. diluta, cultivated in the botanical garden of the Technical University of Braunschweig,Germany, polyacetylenic compounds have been reported[22-24]. In the essential oil of C. diluta Aiton aerial parts, collected from Sicily, Italy[25], the most abundant compounds were fatty acids and derivatives, notably hexadecanoic acid (21.3%) and (Z,Z)-9,12-octadecadienoic acid methyl ester (12.2%), followed by hydrocarbons (15.3%), terpenoids being present in low amounts(2.8 %).

    Given the interest of Centaurea pharmacology and phytochemistry,the present paper concentrates on a relatively unknown subspecies,C. diluta Ait. subsp. algeriensis (Coss. & Durieu) Maire[26], endemic to Algeria and Morocco[2].

    2. Material and methods

    2.1. Chemicals, reagents and general

    Solvents were analytical grade. Trypsin 0.5% in EDTA, RPMI1640 red phenol and fetal bovine serum (FBS) were purchased from Gibco? Invitrogen (Merelbeke, Belgium). 3- (4,5-dimethylthiazol-2-yl) -2,5-diphenyl tetrazolium bromide (MTT) was obtained from Sigma Aldrich?(Bornem, Belgium). Dimethyl sulfoxide(DMSO) was obtained from Merck?(Overijse, Belgium). RNAsefree water was from Braun?(Machelen, Belgium). The Penicillin V was purchased from Certa SA ACA Pharma NV, the ampicillin,amoxicillin and oxacillin were purchased from Sigma-Aldrich.

    The absorbance of the reaction mixture of MTT test was measured by spectrophotometer microplate reader Model 680XR, Bio-Rad?,Nazareth Eke (Belgium). The cells were counted by Cells Culture Counter, Beckman (Analis?, Suarlée, Belgium). The following apparatus were also used: optical microscope PCM-type Axiovert S100 (Zeiss, Nederlands) and laminar flow hood class II (IKS?,Leerdam, Nederlands).

    Melting points were determined on a SMP10 Büchi B-540 Stuart Biocote apparatus and are uncorrected. Plant material powdering: Mill: Culatti, CZ13 model, Reference DCFH48. TLC: pre-coated aluminium foil silica gel 60F254& TLC silica gel 60F254Plastic roll 500×20 cm (Merck KGaA, Germany), visualized using UV lamp(CAMAG 254 nm & 366 nm) and by detection with a spraying reagent (vanillin-sulfuric at 10% and/or anisaldehyde) followed by heating at 100 ℃ for 3-5 minutes. Column chromatography (CC): silica gel 60 (Merck KGaA, Germany, 230-400 mesh ASTM). Routine Preparative thin-layer chromatography (PLC): silica gel plates (20×20 cm Silica gel 60 PF254, Merck), Optical rotation: Perkin-Elmer 241 polarimeter atλNa589 nm.

    UV spectra were recorded using a Thermo Electron Corporation evolution 300 spectrophotometer.1H NMR and13C NMR spectra were recorded on Bruker Avance 300, 400 MHz and Varian 600 MHz; 2D-NMR experiments (COSY, HSQC, HMBC, NOESY and ROESY) were performed on Bruker Avance 400 MHz or Varian 600 MHz spectrometers. Spectra of compounds 1, 2 and 3 were recorded in CDCl3, compound 4 in DMSO-d6and compound 5 in CD3OD. A Shigemi tube was used for compound 2.

    High resolution mass spectra in positive mode were recorded by direct infusion using a 6520 series quadrupole time-of-flight(Q-TOF) mass spectrometer (Agilent, Palo Alto, CA, USA) fitted with an electrospray ionization (ESI) source in positive mode. The error between the observed and calculated masses is expressed in ppm; below 5 ppm, the compounds were considered to correspond to predicted formula.

    2.2. Plant material

    The aerial parts of C. diluta Ait. subsp. algeriensis (Coss. & Dur.)were collected in the flowering stage in the area of Djelfa (1 038 m, 34o53′39.6′′N, 3o3′56.3′′E) in June 2012. The plant was authenticated by Professor Mohamed Kaabache, specialist in the identification of Algerian Centaurea species (Ferhat Abbas University,Setif, Algeria). A voucher specimen has been deposited in the National Herbarium of Belgium (National Botanical Garden of Meise) under the number BR0000013666187.

    2.3. Extraction and isolation

    Air-dried aerial parts (leaves and flowers, 1.5 kg) of C. diluta Ait. subsp. algeriensis (Coss. & Dur.) were powdered (slight grinding with controlled temperature, up to 35 ℃) and macerated at room temperature with MeOH-H2O (77:23, v/v) (25 L) for 48 h, four times. The filtrates were combined, concentrated under reduced pressure, diluted in H2O (600 mL) under magnetic stirring and maintained at 4 ℃for one night to precipitate a maximum of chlorophylls. After filtration, the resulting solution was successively extracted with solvents with increasing polarities (petroleum ether,chloroform, ethyl acetate and n-butanol) [27,28]. The present study focused on the chloroform soluble part which was dried with anhydrous Na2SO4, filtered and concentrated under vacuum at room temperature to yield the CHCl3extract (4.0 g, yield: 0.27%, w/w). The chloroform extract was fractionated by column chromatography(120 g of silica gel; CH2Cl2/EtOAc/MeOH step gradients) to yield 23 fractions (F1-F23), combined according to their TLC profiles.

    Fraction F3 (26.2 mg) (CH2Cl2/EtOAc 98:2) was subjected to preparative TLC on silica gel; eluting with petroleum ether/EtOAc /acetone (6:3:1) yielded vanillin 1 as white crystals (3.5 mg) [29,30]. Fractions F4 (12.2 mg) (CH2Cl2/EtOAc 98:2), F5 (13.0 mg)(CH2Cl2/EtOAc 98:2) and F6 (28.5 mg) (CH2Cl2/EtOAc 95:5) were combined and rechromatographed by CC (600 mg of silica gel;cyclohexane/EtOAc/acetone step gradients) to yield 21 subfractions(F’1-F’21) according to TLC profiles. Subtraction F’3 (cyclohexane/ EtOAc/acetone 6:6:2) yielded (-)-arctigenin 2 (3.2 mg) [17, 31] and Subtraction F’4 (cyclohexane/EtOAc/acetone 5:2.5:2.5) gave paridol 3 (4.5 mg) [32, 33]. Fraction F8 (CH2Cl2/EtOAc 95:5) (44.4 mg) yielded up on concentration a yellowish compound which was washed with MeOH to obtain eupatilin 4 (7.5 mg) as needles [11, 34]. Fraction F10 (CH2Cl2/EtOAc 87.5:12.5) (19.60 mg) was chromatographed on preparative plates of silica gel eluted with CH2Cl2/EtOAc (4:1) to give jaceosidin 5 as a yellowish powder (5.0 mg) [35, 36].

    2.4. Cell cultures

    The human cancer cell lines included the A549 (Deutsche Sammlung von Mikroorganismen und Zellkulturen, DSMZ code ACC107), NSCLC carcinoma, the U373 (European Collection of Cell Culture, ECACC 08061901) glioblastoma, the PC3 prostate carcinoma (DSMZ code ACC465), the Hs683 glioma (American Type Culture Collection, ATCC code HTB-138) and the MCF7(DSMZ code ACC115) breast adenocarcinoma. The murine tumor cell line included the B16-F10 (American Type Culture Collection ATCC code CRL-6475) melanoma.

    2.4.1. Viability assay

    The cytotoxic properties of the raw chloroform extract and isolated compounds were assessed, using a 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay [37,38]. Briefly, this test is based on the capability of living cells to reduce the yellow MTT to a blue formazan compound, a reaction mediated by the mitochondrial succinate dehydrogenase. Cells were seeded (cells per well, A549: 1 500; B16F10: 1 000; Hs683:1 500; MCF7:2 800; PC3:3 000;U373:1 800) and allowed to adhere for 24 h before adding test compounds (100 μL; final concentrations from 10-4M to 10-8M). In the same condition, for the chloroform extract, cells were seeded(cells per well, A549: 1 200; MCF7: 2 500; U373: 1 800); 100 μL;final concentrations from 100 μg/mL to 10-2μg/mL). The cells in medium alone without drug were considered as a negative control. After 72 h contact, the culture medium was replaced by a 0.5 mg/mL MTT solution in RPMI medium without phenol red (100 μL/well). After 3 h incubation, the formazan crystals were centrifuged and dissolved in 100 μL/well of DMSO. The absorbance of each well was then measured at 570 nm and 690 nm (reference) wavelength. The IC50values were calculated as follows:

    IC50= [(X2 - X1) x (50 - Y1) / ( Y2 - Y1)]+ X1, where

    X1 and X2: are the higher and lower concentrations that border the concentration that reduces the global cell growth by the value closest to 50 %.

    Y1 and Y2: are the mean percentages of viable cells at the X1 and X2 concentrations.

    2.5. Antimicrobial and antifungal assays

    2.5.1. Microorganisms

    The microorganisms used in the antimicrobial tests were: (1)Gram-positive bacteria: Staphylococcus aureus ATCC 6538 (S. aureus ATCC6538 ), Staphylococcus aureus C98506 (S. aureus C98506), Staphylococcus aureus C100459 (S. aureus C100459)and Staphylococcus aureus ATCC 33591(S. aureus ATCC 33591);(2) Gram-negative bacteria: Escherichia coli ATCC 25922 (E. coli ATCC 25922) and a plant pathogen, Pseudomonas syringae DC 3000; (3) plant pathogen fungi: Fusarium oxysporum, Fusarium oxysporum sporulent, Cladosporium cucumerinum, Botrytis cinerea,Colletotrichum lagenarium and Pythium aphanidermatum; and (4)a plant pathogen yeast: Rhodotorula aurantiaca. The ATCC strains were obtained from the American Type Culture Collection; strains C98506 and C100459 were clinical isolates, a generous gift from the Centre Hospitalier Universitaire of Charleroi, Belgium (Mr. Lerson). Strains C98506, C100459 and ATCC 33591 are methicillin-resistant S. aureus (MRSA). The different plant pathogens were provided by the Centre Wallon de Biologie Industrielle, Bio-Industrie Unité Gembloux Agro-Bio Tech, Université de Liège, 5030 Gembloux,Belgique (Dr. Ongena).

    2.5.2. Direct and indirect antimicrobial effects

    Direct and indirect antibacterial effects were evaluated by a broth microdilution method[39]. The raw extract and isolated compounds,dissolved in DMSO, were further diluted in Mueller Hinton broth(MHB), the final DMSO concentration being maximum 4%. These solutions were transferred into 96-wells plates and serially diluted using MHB. The bacterial inoculum prepared from an overnight culture, diluted in 0.85 % NaCl to achieve 0.5 Mc Farland (108cells/mL), was further diluted 1/100 to be inoculated in the 96-wells plates (100 μL/well). The plates were incubated at 37 ℃for 24 h, added with an aqueous solution of MTT (0.8 mg/mL)and reincubated for 4 h. The minimum inhibitory concentrations(MIC) were the lowest concentrations that completely inhibited the growth of microorganisms, detected by unaided eyes using the MTT staining.

    2.5.3. Direct and indirect antibacterial bioautography

    TLC was performed for the extract and the purified compounds on precoated silica gel 60 F254glass plates (Merck, Darmstadt,Germany). Plates were thoroughly dried at room temperature. One mL of 0.5 Mc Farland microorganism suspension was added to 9 mL MH agar (107CFU/mL) at 37 ℃ and poured on the TLC plates. After solidification, the plates were incubated overnight at 37 ℃. The bioautography was subsequently visualized by spraying MTT(0.8 mg/mL) followed by an additional incubation at 37 ℃ for 4 h[40].

    To study indirect antibacterial activity against MRSA, a subinhibitory concentration of penicillin V (1 μg/mL) was incorporated in the mixture of MHB and agar; products with no direct antibacterial activity were selected, chromatographed, and bioautographed with this medium as described above.

    3. Results

    3.1. Structural elucidation of compounds 1-5

    The structures of the isolated compounds were established by spectral analysis, mainly UV-Vis, HRESI-MS,1H-,13C-, and 2DNMR (COSY, ROESY, HSQC and HMBC) as well as by comparing their spectroscopic data with those reported in the literature.

    Vanillin 1: White crystals; MP = 82 ℃;UV (MeOH)λmax(nm): 230,279, 309; HRESI-QTOF -MS (positive mode) m/z: 153.0545 [M+H]+(calculated for C8H9O3: 153.0546), 175. 0372 [M+Na]+(calculated for C8H8O3Na: 175.0366), 191.0216 [M+K]+(calculated for C8H8O3K: 191.0105), measured exact mass: 152.0471 (calculated for C8H8O3: 152.0473), molecular formula C8H8O3;1H NMR (300 MHz, CDCl3)δ(ppm, J /Hz): 9.83 (1H, s, H-7) ,7.44 (1H, d, J = 1.8 Hz, H-2),7.41 (1H, dd, J = 9.0, 1.8 Hz, H-6), 7.03, 1H, d, J = 9.0 Hz, H-5),6.62 (1H, brs, 4-OH) , 3.98 (3H, s, OCH3-3);13C NMR (75 MHz,CDCl3)δ (ppm): 190.86 (C, C-7), 151.62 (C, C-4), 147.05 (C, C-3),130.33 (C, C-1), 127.45 (CH, C-6), 114.04 (CH, C-5), 108.75 (CH,C-2), 56.40 (CH3, OCH3-3).

    (-)-Arctigenin 2: White powder; MP = 103 ℃; [α]20D= -17.27o(EtOH, c, 0.145); HRESI-QTOF-MS (positive mode) m/z: 373.1655 [M+H]+(calculated for C21H25O6: 373.1646), 395.1478[M+Na]+(calculated for C21H24O6Na: 395.1467), measured exact mass:372.1569 (calculated for C21H24O6: 372.1577). These data led to the molecular formula C21H24O6; HRESI-QTOF-MS/MS: m/z: 355.1556 [M+H-H2O]+(C21H23O5) which confirm the presence of a hydroxyl group;1HNMR (600 MHz, CDCl3)δ(ppm, J /Hz): 6.80(1H, d, J = 7.9 Hz, H-5’), 6.72 (1H, d, J = 8.1 Hz, H-5), 6.62 (1H,d, J= 1.7 Hz, H-2’), 6.59 (1H, dd, J = 7.9, 1.7 Hz, H-6’), 6.53 (1H,dd, J = 8.1, 1.7 Hz, H-6), 6.44 (1H, d, J = 1.7 Hz, H-2), 5.50 (1H,brs, 4’-OH), 4.12 (1H, dd, J=9.0, 7.4 Hz, H-9α), 3.87 (1H, dd, J = 9.0, 7.6 Hz, H-9β), 3.83 (3H, s, OCH3-3’), 3.80 (3H, s, OCH3-4),3.79 (3H, s, OCH3-3), 2.92 (1H, dd, J = 14.1, 5.3 Hz, H-7’a), 2.89(1H, dd, J = 14.1, 7.1 Hz, H-7’b), 2.61(1H, dd, J = 14.7, 7.4 Hz,H-7a), 2.54 (1H, m, H-8’), 2.52 (1H, m*, H-7b), 2.47 (1H, m, H-8),*: partially overlapped by the signal of H-8’;13C NMR (150 MHz,CDCl3) δ (ppm): 178.96 (C, C-9’), 149.24 (C, C-3), 148.05 (C, C-3’),146.91 (C, C-4), 144.76 (C, C-4’), 130.65 (C, C-1), 129.72 (C, C-1’),122.32 (CH, C-6’), 120.80 (CH, C-6), 114.31 (CH, C-5’), 111.97(CH, C-2’), 111.71 (CH, C-2), 111.48 (CH, C-5), 71.53 (CH2, C-9),56.12 (CH3, OCH3-4), 56.07 (CH3, OCH3-3’), 56.02 (CH3, OCH3-3),46.82 (CH, C-8’), 41.14 (CH, C-8), 38.42 (CH2, C-7), 34.74 (CH2,C-7’). Our results which were confirmed by the analysis of the ROESY spectrum experiment complete the spectroscopic data previously reported for this molecule [31, 41].

    Paridol 3: White powder; MP = 128 ℃; HRESI-QTOF-MS(positive mode) m/z: 153.0544 [M+H]+(calculated for C8H9O3: 153.0546), 175.0369 [M+Na]+(calculated for C8H8O3Na: 175.0369),343.0543 [2M+K]+(calculated for C16H16O6K: 343.0546), measured exact mass: 152.0472, (calculated for C8H8O3: 152.0473), molecular formula C8H8O3.

    HRESI-QTOF-MS/MS of [M+H]+: 153.0547 [M+H]+, 135.0239[M+H-H2O]+, 121.0289 [M+H- CH3OH]+, these two last ions confirmed the presence of the hydroxyl and methoxyl groups in the molecule;1H NMR (300 MHz, CDCl3)δ(ppm, J /Hz): 7.95 (2H, d,J = 8.9 Hz, H-2 & H-6), 6.86 (2H, d, J= 8.9 Hz, H-3 & H-5), 5.98(1H, brs, 4-OH), 3.88 (3H, s, OCH3-7) ;13C NMR (75 MHz, CDCl3) δ167.08 (C, C-7), 159.90 (C, C-4), 132.06 (CH, C-2 & C-6),122.93 (C, C-1), 115.33 (CH, C-3 & C-5), 52.08 (CH3, OCH3-7). Eupatilin 4: Yellow crystals; MP = 236 ℃; UV (MeOH)λmax(nm):276, 340; +NaOH: 276, 320, 360 (with hypochromic effect);+AlCl3: 282, 368; + AlCl3+ HCl: 283, 361; + NaOAc: 276, 366;+NaOAc +H3BO3: 276, 357; HRESI-QTOF-MS (positive mode)m/z:345.0968 [M+H]+(calculated for C18H17O7: 345.0969), 367.0788[M+Na]+(calculated for C18H16O7Na: 367. 0788), 383.0537[M+K]+(calculated for C18H16O7K: 383.0528), 689.1736 [2M+H]+(calculated for C36H33O14: 689.1865), 712.1717 [2M+Na]+(calculated for C36H32O14Na: 712.1718), 727.1077 [2M+K]+(calculated for C36H32O14K: 712.1424), measured exact mass: 344.0888 (calculated for C18H16O7: 344.0896), molecular formula C18H16O7;1H NMR (400 MHz, DMSO-d6)δ(ppm, J/Hz): 13.04 (1H, s, OH-5), 7.68 (1H,dd, J = 8.5, 2.0 Hz, H-6’), 7.56 (1H, d, J = 2.0 Hz, H-2’), 7.13 (1H,d, J = 8.5 Hz, H-5’), 6.97 (1H, s, H-3), 6.64, (1H, s, H-8), 3.88(3H,s, 3’-OCH3), 3.85, (3H, s, 4’-OCH3) 3.75, (3H, s, 6-OCH3) ;13C NMR (100 MHz, DMSO-d6); δ (ppm): 182.01 (C, C-4), 163.26 (C,C-2),157.12 (C, C-7), 152.83 (C, C-5), 151.96 (C, C-9), 149.06 (C,C-4’), 148.84 (C, C-3’), 131.11 (C, C-6), 122.83 (C, C-1’), 120.10(CH, C-6’), 111.55 (CH, C-5’), 109.26 (CH, C-2’), 104.22 (C,C-10), 103.36 (CH, C-3), 94.33 (CH, C-8), 59.97 (CH3, OCH3-6),55.88 (CH3, OCH3-4’), 55.76 (CH3, OCH3-3’).

    Jaceosidin 5: Yellowish powder; MP = 237 C, UV (MeOH)λmax:276,346; + NaOH: 276, 314, 360 (with hyperchromic effect); + AlCl3: 282, 368; + AlCl3+ HCl: 283, 361; + NaOAc: 278, 366; + NaOAc + H3BO3: 276, 357; HRESI-QTOF-MS (positive mode) m/z: 331.0811(calculated for C17H15O7: 331.0812), 353.0625 [M+Na]+(calculated for C17H14O7Na: 353.0632), 661.1542 [2M+H]+(calculated for C34H29O14: 661.1552), 683.1485 [2M+Na]+(calculated for C34H28O14Na: 683.1371),701.0942 [2M+K]+(calculated for C34H28O14K: 701.1137), 991.2454 [3M+H]+(calculated for C51H43O21: 991.2291), measured exact mass: 330.0744, (calculated for C17H14O7: 330.0740), molecular formula C17H14O7;1H NMR (400 MHz, CH3OH-d4)δ(ppm, J /Hz): 7.52 (1H, dd, J = 8.5, 2.0 Hz,H-6’), 7.50 (1H, d, J = 1.9 Hz, H-2’), 7.48 (1H, d, J = 8.5 Hz, H-5’),6.94 (1H, s, H-8), 6.64 (1H, s, H-3), 3.96 (3H, s, OCH3-3’), 3.88(3H, s, OCH3-6).13C NMR (75 MHz, CH3OH-d4)δ(ppm): 184.21(C, C-4), 166.36 (C, C-2), 158.92 (C, C-7), 154.83 (C, C-5), 154.70(C, C-9), 151.70 (C, C-4’), 149.44 (C, C-3’), 132.92 (C, C- 6),123.90 (C, C-1’), 121.64 (C, C-6’), 116.91 (CH, C-5’), 110.34 (CH,C-2’), 105.58 (C, C-10), 103.59 (CH, C-3), 95.65 (CH, C- 8), 61.04(CH3, OCH3-6), 56.50 (CH3, OCH3-3’).

    3.2. Biological activities

    3.2.1. Cytotoxic effects

    The CHCl3extract showed cell growth inhibitory activity against all 3 tested cell lines in the μg/mL range (Figure 1). These results are in agreement with previous data from an Algerian Centaurea species;the raw chloroformic extract of Centaurea musimomum (musimonum)Maire showed on KB cells, cytotoxic activity with growth inhibition of 89% at 10 μg/mL and 26% at 1 μg/mL[10].

    The evaluation of the isolated compounds 1 to 5 indicated moderate growth inhibitory/cytotoxic activities for eupatilin 4 (33 - 85 μM),jaceosidin 5 (32 - 49 μM), and (-)-arctigenin 2 (28 - 82 μM) (Figure 1).

    Figure 1. Cytotoxic effects (IC50) of the chloroform extract and the isolated compounds on different tumor cell lines.

    Our results showed that the chloroformic extract displayed more significant cytotoxic effects on cancer cells A549, MCF7 and U373 than the isolated pure compounds. This could be attributed to the synergetic interactions, more especially as this extract contains flavonoids for which it is thought that they may have a role to play in increasing the biological activity of other compounds by synergistic or other mechanisms[42].

    3.2.2. Antifungal and antimicrobial activities

    Although inactive against 7 tested microorganisms (fungi,bacteria and yeast, human or plant pathogens, Table 1), the raw extract was able to potentiate the effect of beta-lactam antibiotics on methicillin-resistant S. aureus (MRSA), reducing the minimal inhibitory concentrations (MICs) by a factor of 2-32-fold (Table 2). In a direct antibacterial TLC-bioautography assay, compound 5(jaceosidin), showed the highest activity (Tables 3 and 4). This was further investigated in a direct antibacterial assay, but the activity was relatively quite low on Gram positive and negative bacteria(MIC of 200 μg/mL on MRSA C98506, MRSA C100459, MRSA ATCC33591, MSSA ATCC6538, E. coli ATCC25922).

    Table 1MIC of the chloroform extract (μg/mL).

    Table 2Impact of the chloroform extract (200 μg/mL) on the susceptibility of the MRSA towards various beta-lactam antibiotics.

    Table 3Antibacterial activity of the purified compounds (1-5) measured by a direct TLC-bioautography.

    Table 4Antibacterial activity of eupatilin 4 and jaceosidin 5, measured by a direct TLC- bioautography with different amounts spotted.

    4. Discussion

    4.1. Phytochemical investigation

    We report in this work the isolation, purification and structural elucidation of chemical components of the chloroform soluble part of the MeOH-H2O (77%) extract obtained from the aerial parts(leaves and flowers) of C. diluta Ait. subsp. algeriensis (Coss. & Durieu) Maire (Asteraceae). No report is available so far on the phytochemistry of this species endemic to Algeria and Morocco. The present phytochemical investigation allowed the isolation of a lignan[(-)-arctigenin], flavonoids (eupatilin and jaceosidin) and phenols(vanillin and paridol). These results are in agreement with major studies reported on different Centaurea species[14,43-48].

    4.2. Biological activities

    4.2.1. Cytotoxic effects

    The raw extract and the isolated compounds were evaluated for cytotoxic activity. Moderate cytotoxic effects were observed for three compounds, (-)-arctigenin 2, eupatilin 4 and jaceosidin 5, with IC50s in the range 25-50 μg/mL. These data are in agreement with previous studies. Indeed, arctigenin (unspecified stereoisomer) as tumor specific agent that showed cytotoxicity to lung cancer (A549),liver cancer (HepG2) and stomach cancer (KATO III) cells, but not cytotoxic to several normal cell lines[49]. Arctigenin specifically inhibited the proliferation of cancer cells, which might consequently lead to the induction of apoptosis and is cytotoxic for human hepatocellular carcinoma cell lines, the IC50values after 12 h, 24 h and 48 h of treatment were respectively 38.29, 1.99 and 0.24 μM[50], the highest activity was demonstrated with IC50values of 0.73 μM (HeLa), 3.47 μM (MCF7) and 4.47 μM (A431)[46]. Eupatilin reduces aortic smooth muscle cell proliferation and migration by inhibiting PI3K, MKK3/6, and MKK4 activities (IC50, in Hec1A and KLE cells was 82.2 and 85.5 μM) [51, 52] and jaceosidin can induce G2/M cell cycle arrest by inactivating cdc25C-cdc2 via ATMChk1/2 activation[53].

    4.2.2. Antifungal and antimicrobial activities

    The raw extract and the isolated secondary metabolites were evaluated for antimicrobial activity. Although the raw extract didn’t show any antimicrobial effect on various bacteria or fungi, it could potentiate the effect of beta-lactam antibiotics on methicillinresistant S. aureus (MRSA), reducing the minimal inhibitory concentrations (MICs) by a factor of 2-32- fold. Jaceosidin 5 showed a moderate antimicrobial activity (MIC of 200 μg/mL on MRSA C98506, MRSA C100459, MRSA ATCC33591, MSSA ATCC6538,E. coli ATCC25922). This is in agreement with previous results [54]. Jaceosidin 5 had the greatest potency (MICs 16-32 μg/mL) against most S. aureus isolates [55].

    The identification of five compounds, vanillin, (-)-arctigenin,paridol, eupatilin and jaceosidin, from the aerial parts (leaves and flowers) of C. diluta Ait. subsp. algeriensis (Coss. & Dur.) M.(Asteraceae) emphasized the possible relevance of this plant for Algerian traditional medicine and it is surprising that no report has been published so far on eventual ethnomedical uses of this species. This may be due to a low distribution of this species or to an eventual toxicity that could have discouraged its use in traditherapy;this warrants investigation. A promising effect on bacterial resistance needs to be further investigated to identify the compound(s) able to reverse bacterial betalactam resistance.

    Declare of interest statement

    We declare that we have no conflict of interest.

    Acknowledgements

    We thank Algerian government for financial support, HCDS Djelfa for helping us in the process of exploration and the harvest of plant material, professor M. Kaabeche for the identification of the plant material and C. Delporte (Laboratoire de Chimie Pharmaceutique Organique, Faculté de Pharmacie, Université Libre de Bruxelles(ULB) for the mass spectrometry measurement.

    We thank Professor V. Mathieu (Laboratoire de Cancérologie et Toxicologie, Université Libre de Bruxelles) for access to her laboratory and help in performing the cytotoxicity experiments,Dr. Ongena Marc for access to her laboratory (Centre Wallon de Biologie Industrielle, Bio-Industrie Unité Gembloux Agro-Bio Tech,Université de Liège, 5030 Gembloux, Belgique) and Dr. E. Gicquel and J. Vancautenberg for the measurement of the optical rotation(Institut Meurice - Service de Chimie Organique Haute Ecole Lucia de Brouckère Avenue Emile Gryzon, 11070 Bruxelles).

    References

    [1] Ozenda P. Flore du Sahara septentrional et central. CNRS: Paris; 1958,p. 450-454.

    [2] Quezel P, Santa S. Nouvelle flore d’Algérie et des régions désertiques méridionales. Centre National de La Recherche Scientifique (CNRS): Paris; 1963,p.1016-1032.

    [3] Arif R, Küpeli E, Ergun F. The biological activity of Centaurea L. species. GU J Sci 2004; 17(4):149-164.

    [4] Baytop T. Türkiye’de bitkiler ile tedavi (Ge?mi?te ve bugün). Istanbul : Nobel T?p Kitabevleri; 1999,p.316.

    [5] Alapetite GP. Flore de la tunisie. Imprimerie Officielle de la République Tunisienne: Tunis; 1981, p. 1060.

    [6] Fakhfakh JA, Damak M. Sesquineolignans from the flowers of Centaurea furfuracea Coss. et Dur. (Asteraceae). Nat Prod Res 2007; 21(12):1037-1041.

    [7] Aclinou P, Boukerb A, Bouquant J, Massiot G, Le Men-Olivier, L. Plantes des Aures: Constituants des racines de Centaurea incana. Plant Med Phytother 1982; 16:303-309.

    [8] Djeddi S, Karioti A, Sokovic M, Stojkovic D, Seridi R, Skaltsa H. Minor sesquiterpene lactones from Centaurea pullata and their antimicrobial activity. J Nat Prod 2007; 70(11):1796-1799.

    [9] Djeddi S, Argyropoulou C, Chatter R. Analgesic properties of secondary metabolites from Algerian Centaurea pullata and Greek C. grisebachii ssp. grisebachii. J Appl Sci Res 2012; 8(6):2876-2880.

    [10] Medjroubi K, Benayache F, Bermejo J. Sesquiterpene lactones from Centaurea musimomum. Antiplasmodial and cytotoxic activities. Fitoterapia 2005; 76:744-746.

    [11] Ciric A, Karioti A, Glamoclija J, Sokovic M, Skaltsa H. Antimicrobial activity of secondary metabolites isolated from Centaurea spruneri Boiss. & Heldr. J Serb Chem Soc 2011; 76:27-34.

    [12] Koukoulitsa C, Geromichalos GD, Skaltsa H. VolSurf analysis of pharmacokinetic properties for several antifungal sesquiterpene lactones isolated from Greek Centaurea sp. J Comput Aid Mol Des 2005; 19(8): 617-623.

    [13] Seghiri R, Boumaza O, Mekkiou R, Benayache S, Mosset P, Quintana J, et al. A flavonoid with cytotoxic activity and other constituents from Centaurea africana. Phytochem Lett 2009; 2:114-118.

    [14] Kolli EH, León F, Benayache F, Estévez S, Quintana J, Estévez F, et al.Cytotoxic sesquiterpene lactones and other constituents from Centaurea omphalotricha. J Braz Chem Soc 2012; 23(5):977-983.

    [15] López-Rodríguez M, GarcíaV P, Zater H, Benayache S, Benayache F. Cynaratriol, a sesquiterpene lactone from Centaurea musimomum. Acta Cryst 2009; E65: o1867-o1868.

    [16] Shoeb M, MacManus SMM, Nahar L, Jaspars M, Celik S, Sarker SD,et al. Bioactivity of two Turkish endemic Centaurea species, and their major constituents. Braz J Pharmacog 2007; 17:155-159.

    [17] Shoeb M, Jaspars M, MacManus S, Celik S, Kong-Thoo-Lin P, Sarker S. Bioactivity of the extracts and the isolation of lignans from Centaurea dealbata. Ars Pharm 2006; 47(4): 315-322.

    [18] Shoeb M, MacManus SM, Kumarasamy Y, Jaspars M, Nahar L, Thoo-Lin PK, et al. Americanin, a bioactive dibenzylbutyrolactone lignan,from the seeds of Centaurea americana. Phytochemistry 2006; 67(21): 2370-2375.

    [19] Demir S, Karaalp C, Bedir E. Unusual sesquiterpenes from Centaurea athoa DC. Phytochem Lett 2016; 15: 245-250.

    [20] Aktumsek A, Zengin G, Guler GO, Cakmak YS, Duran A. Assessment of the antioxidant potential and fatty acid composition of four Centaurea L. taxa from Turkey. Food Chem 2013; 141(1): 91-97.

    [21] Milo?evi? Ifantis T, Soluji? S, Pavlovi?-Muratspahi? D, Skaltsa H. Secondary metabolites from the aerial parts of Centaurea pannonica(Heuff.) Simonk. from Serbia and their chemotaxonomic importance. Phytochemistry 2013; 94: 159-170.

    [22] Bohlmann F, Postulka S, Ruhnke J. Polyacetylenverbindungen, XXlV. Die Polyine der gattung Centaurea L. Chem Ber 1958; 91:1642-1656.

    [23] Bohlmann F, Rode KM, Zdero C. Polyacetylenverbindungen, CXVII. Neue polyine der gattung Centaurea. Chem Ber 1966; 99:3544-3551.

    [24] Bohlmann F, Wotschokowsky M, Laser J, Zdero C, Bach KD. Polyacetylenverbindungen, 15 1. Uber die Biogenese von Tri- und Tetraacetylenverbindungen. Chem Ber 1968; 101(6):2056-2061.

    [25] Ben Jemia M, Senatore F, Bruno M, Bancheva S. Components from the Essential oil of Centaurea aeolica Guss. and C. diluta Aiton from Sicily,Italy. Rec Nat Prod 2015; 9: 580-585.

    [26] Jahandiez E, Maire R. Catalogue des plantes du Maroc. Tome III. Dicotylédones et Supplément aux volumes I et II. Cat Pl Maroc 1934;3:813-814.

    [27] Boudjerda A, Zater H, Benayache S, Chalchat JC, Gonzalez-Platas J,Leon F, et al. A new guaianolide and other constituents from Achillea ligustica. Biochem Syst Ecol 2008;36:461-466.

    [28] Aliouche L, Zater H, Zama D, Bentamene A, Seghiri R, Mekkiou R,et al. Flavonoids of Serratula cichoracea and their antioxidant activity. Chem Nat Compd 2007; 43(5):618-619.

    [29] Wang YL, Huang W, Chen S, Chen SQ, Wang SF. Synthesis, structure and tyrosinase inhibition of natural phenols derivatives. J Chin Pharmaceut Sci 2011; 20(3):235-244.

    [30] Mohamad Nasir MI, Mohamad Yusof N, Mohd Salleh N, Coswald SS,Sollehuddin S. Separation of vanillin from oil palm empty fruit bunch lignin. Clean 2008; 36(3):287- 291.

    [31] Aslan ü, ?ksüz S. Chemical constituents of Centaurea cuneifolia. Turk J Chem 1999;23:15-20.

    [32] Gelbrich T, Braun DE, Ellern A, Griesser UJ. Four polymorphs of methylparaben:structural relationships and relative energy differences. Cryst Growth Des 2013; 13:1206-1217.

    [33] Sajan D, Joe H, Jayakumar VS, Zaleski J. Structural and electronic contributions to hyperpolarizabilityin methyl p-hydroxy benzoate. J Mol Struct 2006; 785:43-53.

    [34] Kitouni R, Benayache F, Benayache S. Flavonoids of the exudate of Centaurea calcitrapa. Chem Nat Compd 2015; 51(4):762-763.

    [35] Belkacem S, Belbache H, Boubekri C, Mosset P, Rached-Mosbah O,Marchioni E, et al. Chemical constituents from Centaurea parviflora Desf. Res J Pharm Biol Chem Sci 2014; 5(3):1275-1279.

    [36] Kubacey TM, Haggag EG, El-Toumy SA, Ahmed AA, El-Ashmawy IM, Youns MM. Biological activity and flavonoids from Centaurea alexanderina leaf extract. J Pharm Res 2012; 5(6):3352-3361.

    [37] Mathieu V, Wauthoz N, Lefranc F, Niemann H, Amighi K, Kiss R, et al. Cyclic versus hemi-bastadins pleiotropic anti-cancer effects: from apoptosis to anti-angiogenic and anti-migratory effects. Molecules 2013;18(3):3543-3461.

    [38] Mosmann T. Rapid colorimetric assay for cellular growth and survival application to proliferation and cytotoxicity assays. J Immunol Methods 1983; 65:55-63.

    [39] Okusa PN, Stévigny C, Devleeschouwer M, Duez P. Direct and indirect antimicrobial effects and antioxidant activity of Cordia gilletii De Wild(Boraginaceae). J Ethnopharmacol 2007; 112:476-481.

    [40] Okusa PN, Stévigny C, Devleeschouwer M, Duez P. Optimization of the culture medium used for direct TLC-bioautography. Application to the detection of antimicrobial compounds from Cordia gilletii De Wild(Boraginaceae). J Planar Chromatogr 2010; 23(4):245-249.

    [41] Damak N, Ghorbel H, Bahroun A, Damak M, Mc Killop A, Simmonds M. Contribution to structural investigation of Centaurea dimorpha compounds. J Soc Chim Tunis 2000; 4: 653-658.

    [42] Williamson EM. Synergy and other interactions in phytomedicines. Phytomedicine 2001; 8:401-409.

    [43] Yaglioglu AS, Demirtas I, Goren N. Bioactivity-guided isolation of antiproliferative compounds from Centaurea carduiformis DC. Phytochem Lett 2014; 8(5): 213-219.

    [44] Khammar A, Djeddi S. Pharmacological and biological properties of some Centaurea species. Eur J Sci Res 2012; 84(3): 398-416.

    [45] Erol-Dayi ?, Pekmez M, Bona M, Aras-Perk A, Arda N. Total phenolic contents, antioxidant activities and cytotoxicity of three Centaurea species: C. calcitrapa subsp. calcitrapa, C. ptosimopappa and C. spicata. Free Rad Antiox 2011; 1(2):32-36.

    [46] Csapi B, Hajdú Z, Zupkó I, Berényi á, Forgo P, Szabó P, et al. Bioactivity-guided isolation of antiproliferative compounds from Centaurea arenaria. Phytother Res 2010;24:1664-1669.

    [47] Karamenderes C, KhanS, Tekwani BL, Jacob MR, Khan IA. Antiprotozoal and antimicrobial activities of Centaurea species growing in Turkey. Pharm Biol 2006; 44(7):534-539.

    [48] Sarker SD, Kumarasamy Y, Shoeb M, Celik S, Eucel E, Middleton M,Nahar L. Antibacterial and antioxidant activities of three Turkish species of the genus Centaurea. Orient Pharm Exp Med 2005; 5(3):246-250.

    [49] Susanti S, Iwasaki H, Itokazu Y, Nago M, Taira N, Saitoh S, et al. Tumor specific cytotoxicity of arctigenin isolated from herbal plant Arctium lappa L. J Nat Med 2012;66:614-621.

    [50] Lu Z, Cao S, Zhou H, Hua L, Zhang S, Cao J. Mechanism of Arctigenin-Induced specific cytotoxicity against human hepatocellular carcinoma cell lines: Hep G2 and SMMC7721. PLoS One 2015; 10(5):e0125727.

    [51] Cho J H, Lee J G, YangY I, Kim J H, Ahn J H, Baek N I, et al. Eupatilin,a dietary flavonoid, induces G2/M cell cycle arrest in human endometrial cancer cells. Food Chem Toxicol 2011; 49(8):1737-1744.

    [52] Son JE, Lee E, Seo SG, Lee J, Kim JE, Kim J, et al. Eupatilin, a major flavonoid of Artemisia, attenuates aortic smooth muscle cell proliferation and migration by inhibiting PI3K, MKK3/6, and MKK4 activities. Planta Med 2013; 79(12):1009-1016.

    [53] Lee JG, Kim JH, Ahn JH, Lee KT, Baek NI, Choi JH. Jaceosidin,isolated from dietary mugwort (Artemisia princeps), induces G2/M cell cycle arrest by inactivating cdc25C- cdc2 via ATM-Chk1/2 activation. Food Chem Toxicol 2013; 55:214-221.

    [54] Song GC, Ryu SY, Kim YS, Lee JY, Choi JS, Ryu CM. Elicitation of induced resistance against Pectobacterium carotovorum and Pseudomonas syringae by specific individual compounds derived from native Korean plant species. Molecules 2013; 18(10):12877- 12895.

    [55] Barnes EC, Kavanagh AM, Ramu S, Blaskovich MA, Cooper MA,Davis RA. Antibacterial serrulatane diterpenes from the Australian native plant Eremophila microtheca. Phytochemistry 2013; 93:162-169.

    Document heading 10.1016/j.apjtm.2016.04.016

    15 February 2016

    *Corresponding author: Corresponding authors: Pierre Duez, Laboratoire de Pharmacognosie, de Bromatologie et de Nutrition Humaine, Université Libre de Bruxelles (ULB), 1050 Bruxelles, Belgique.

    E-mail : pierre.duez@umons.ac.be

    Fadila Benayache, Unité de recherche : Valorisation des Ressources Naturelles, Molécules Bioactives et Analyses Physicochimiques et Biologiques(VARENBIOMOL), Faculté des Sciences Exactes, Université Frères Mentouri Constantine 1, 25000 Constantine, Algérie.

    Tel. /Fax: +213 31 81 11 03

    E-mail: fbenayache@yahoo.fr

    久久久a久久爽久久v久久| 有码 亚洲区| 国产国拍精品亚洲av在线观看| 91精品三级在线观看| 日本黄色片子视频| 97精品久久久久久久久久精品| 精品亚洲成a人片在线观看| 国产在线免费精品| 一区二区av电影网| 久久 成人 亚洲| 亚洲精品456在线播放app| 80岁老熟妇乱子伦牲交| 久久久午夜欧美精品| 亚洲综合色网址| 午夜福利影视在线免费观看| 日本欧美视频一区| 中文天堂在线官网| 午夜久久久在线观看| 热99国产精品久久久久久7| 久久精品国产鲁丝片午夜精品| 欧美激情极品国产一区二区三区 | 一本—道久久a久久精品蜜桃钙片| 日本av手机在线免费观看| 午夜激情av网站| 欧美97在线视频| 中文字幕人妻丝袜制服| 自拍欧美九色日韩亚洲蝌蚪91| av卡一久久| 欧美亚洲日本最大视频资源| 日本黄色日本黄色录像| 欧美精品一区二区免费开放| 一级毛片我不卡| 亚洲精品乱码久久久v下载方式| 久久精品国产亚洲av涩爱| 蜜臀久久99精品久久宅男| 伦理电影免费视频| 国产精品久久久久久精品古装| 秋霞伦理黄片| 亚洲精品美女久久av网站| 在线观看人妻少妇| 99九九在线精品视频| 午夜福利视频精品| 国模一区二区三区四区视频| 简卡轻食公司| 亚洲精品456在线播放app| 夜夜爽夜夜爽视频| 亚洲无线观看免费| 女人久久www免费人成看片| 高清黄色对白视频在线免费看| 亚洲国产av影院在线观看| 啦啦啦视频在线资源免费观看| 飞空精品影院首页| 波野结衣二区三区在线| 日本vs欧美在线观看视频| 91精品伊人久久大香线蕉| 亚洲av不卡在线观看| 精品人妻熟女毛片av久久网站| 国产黄色免费在线视频| 最近中文字幕高清免费大全6| 亚洲欧美清纯卡通| 91精品国产九色| 久久婷婷青草| 免费高清在线观看日韩| 日韩av免费高清视频| 热99国产精品久久久久久7| 国产成人精品一,二区| 国产免费福利视频在线观看| 免费av中文字幕在线| 国产成人aa在线观看| 日韩电影二区| 日韩av不卡免费在线播放| 日韩av免费高清视频| 国产精品99久久99久久久不卡 | 久久人人爽人人爽人人片va| 熟女人妻精品中文字幕| 人人妻人人爽人人添夜夜欢视频| 日本wwww免费看| 丝袜美足系列| 免费黄频网站在线观看国产| 母亲3免费完整高清在线观看 | 午夜日本视频在线| 天美传媒精品一区二区| 亚洲国产欧美日韩在线播放| 一级毛片黄色毛片免费观看视频| 国产精品三级大全| 亚洲精品456在线播放app| 九草在线视频观看| 久久久久视频综合| 麻豆乱淫一区二区| 少妇高潮的动态图| 美女国产视频在线观看| 午夜激情av网站| 久久久欧美国产精品| 免费高清在线观看视频在线观看| 黑人欧美特级aaaaaa片| 久久精品国产a三级三级三级| 大陆偷拍与自拍| 成人国产av品久久久| 久久久国产精品麻豆| 日本vs欧美在线观看视频| 美女cb高潮喷水在线观看| 免费少妇av软件| 亚洲av欧美aⅴ国产| 欧美另类一区| 热re99久久精品国产66热6| 高清视频免费观看一区二区| 亚洲怡红院男人天堂| 精品久久久精品久久久| 精品一区二区三卡| 国产精品一国产av| 午夜福利影视在线免费观看| 在线播放无遮挡| 亚洲精品日韩av片在线观看| 中文字幕精品免费在线观看视频 | 制服丝袜香蕉在线| 国产精品女同一区二区软件| 亚洲精品乱码久久久v下载方式| 老司机影院毛片| 国产欧美另类精品又又久久亚洲欧美| 国产 精品1| 尾随美女入室| 精品久久久久久电影网| 人妻人人澡人人爽人人| 欧美变态另类bdsm刘玥| 日韩伦理黄色片| 精品久久久精品久久久| 熟女av电影| 成人黄色视频免费在线看| 日日爽夜夜爽网站| 男女无遮挡免费网站观看| 18在线观看网站| 天堂8中文在线网| 国产精品蜜桃在线观看| 伊人久久精品亚洲午夜| 大码成人一级视频| 在线观看www视频免费| 久久久久国产网址| 亚洲欧美成人综合另类久久久| 午夜老司机福利剧场| 国产色婷婷99| 日本午夜av视频| 日韩欧美精品免费久久| 久久久欧美国产精品| 国产一区二区在线观看日韩| 国产片特级美女逼逼视频| kizo精华| av福利片在线| av电影中文网址| 久热这里只有精品99| 国产精品成人在线| 免费观看的影片在线观看| 考比视频在线观看| 99热网站在线观看| 一级黄片播放器| 国产一区二区三区综合在线观看 | 欧美日韩国产mv在线观看视频| 精品一区二区三卡| 国产精品一国产av| 曰老女人黄片| 久久久国产精品麻豆| 人成视频在线观看免费观看| 中文字幕av电影在线播放| 国产高清三级在线| 日本av免费视频播放| 亚洲婷婷狠狠爱综合网| 少妇的逼水好多| av免费观看日本| 中文字幕精品免费在线观看视频 | 91aial.com中文字幕在线观看| 91精品伊人久久大香线蕉| 国产日韩欧美在线精品| 少妇被粗大猛烈的视频| 狂野欧美激情性bbbbbb| 国产精品一区二区三区四区免费观看| 精品久久国产蜜桃| 伊人久久国产一区二区| 国产午夜精品久久久久久一区二区三区| 在线观看免费高清a一片| 亚洲三级黄色毛片| 人人妻人人澡人人看| 日韩亚洲欧美综合| 精品酒店卫生间| 亚洲欧美中文字幕日韩二区| 午夜影院在线不卡| 只有这里有精品99| 热99国产精品久久久久久7| 国产毛片在线视频| 久久久久久伊人网av| 欧美xxxx性猛交bbbb| 欧美激情极品国产一区二区三区 | 成年人午夜在线观看视频| 国产毛片在线视频| 国产精品免费大片| 女的被弄到高潮叫床怎么办| 午夜福利网站1000一区二区三区| 毛片一级片免费看久久久久| 尾随美女入室| 日韩av免费高清视频| 中文字幕制服av| 交换朋友夫妻互换小说| 精品国产国语对白av| 成人午夜精彩视频在线观看| 亚洲av男天堂| 晚上一个人看的免费电影| 亚洲国产精品一区二区三区在线| 午夜福利视频精品| 日韩在线高清观看一区二区三区| 精品午夜福利在线看| 婷婷成人精品国产| 亚洲国产精品一区二区三区在线| 亚洲国产精品一区三区| 久久精品久久久久久久性| 亚洲精品色激情综合| 中文字幕av电影在线播放| 九九爱精品视频在线观看| 国产精品不卡视频一区二区| 18在线观看网站| 男女国产视频网站| 老司机亚洲免费影院| 国产日韩欧美视频二区| 国产亚洲av片在线观看秒播厂| 中国美白少妇内射xxxbb| 欧美亚洲 丝袜 人妻 在线| 国产精品女同一区二区软件| 建设人人有责人人尽责人人享有的| 欧美激情国产日韩精品一区| 最新中文字幕久久久久| 日韩欧美精品免费久久| 一个人看视频在线观看www免费| 欧美bdsm另类| 免费av中文字幕在线| 欧美精品亚洲一区二区| 欧美人与善性xxx| 日韩中文字幕视频在线看片| 久久久久久久国产电影| 国产一区二区三区av在线| 五月天丁香电影| 国产精品.久久久| 丰满乱子伦码专区| 久久狼人影院| 色吧在线观看| 乱人伦中国视频| av在线观看视频网站免费| 欧美 亚洲 国产 日韩一| 亚洲国产精品999| 亚洲精品色激情综合| 女的被弄到高潮叫床怎么办| 91aial.com中文字幕在线观看| 久久久久网色| 亚洲第一区二区三区不卡| 天堂8中文在线网| 久久狼人影院| 国产一区亚洲一区在线观看| 高清在线视频一区二区三区| 国产国语露脸激情在线看| 在线免费观看不下载黄p国产| 老司机影院毛片| 综合色丁香网| 国产伦理片在线播放av一区| 97在线视频观看| 亚洲少妇的诱惑av| 日本色播在线视频| 建设人人有责人人尽责人人享有的| 成年美女黄网站色视频大全免费 | 99国产精品免费福利视频| 高清av免费在线| 自线自在国产av| 欧美日韩成人在线一区二区| 久久久久国产精品人妻一区二区| 精品熟女少妇av免费看| 国产欧美另类精品又又久久亚洲欧美| 少妇人妻久久综合中文| 欧美精品一区二区大全| 亚洲欧美成人综合另类久久久| 国产免费一区二区三区四区乱码| 新久久久久国产一级毛片| 亚洲美女黄色视频免费看| 2021少妇久久久久久久久久久| 不卡视频在线观看欧美| 亚洲国产精品一区三区| 国产av一区二区精品久久| 日韩三级伦理在线观看| 丝袜喷水一区| 久久久久久伊人网av| 欧美 日韩 精品 国产| 视频在线观看一区二区三区| 九色亚洲精品在线播放| 伊人亚洲综合成人网| 婷婷色综合www| www.av在线官网国产| 亚洲国产精品一区三区| 国产精品不卡视频一区二区| 中文字幕最新亚洲高清| 18+在线观看网站| 亚洲综合色网址| videos熟女内射| 26uuu在线亚洲综合色| 建设人人有责人人尽责人人享有的| 人成视频在线观看免费观看| 男人爽女人下面视频在线观看| 亚洲成人av在线免费| 久久久久久久精品精品| 亚洲久久久国产精品| 男女国产视频网站| 另类亚洲欧美激情| 亚洲av福利一区| 精品亚洲成a人片在线观看| 最新中文字幕久久久久| 成年av动漫网址| 亚洲色图 男人天堂 中文字幕 | 久久人妻熟女aⅴ| 狂野欧美激情性xxxx在线观看| 成人综合一区亚洲| 亚洲国产欧美在线一区| 免费少妇av软件| 最近最新中文字幕免费大全7| 熟妇人妻不卡中文字幕| 免费播放大片免费观看视频在线观看| 999精品在线视频| 蜜臀久久99精品久久宅男| 日韩 亚洲 欧美在线| 大话2 男鬼变身卡| 精品一区二区三区视频在线| 交换朋友夫妻互换小说| 国产老妇伦熟女老妇高清| 亚洲人成77777在线视频| 久久 成人 亚洲| 国产成人freesex在线| 制服人妻中文乱码| 人妻一区二区av| av天堂久久9| 考比视频在线观看| 久久ye,这里只有精品| 国产av一区二区精品久久| 九色成人免费人妻av| 在线观看一区二区三区激情| 成人国产麻豆网| 亚洲国产成人一精品久久久| 人人妻人人澡人人看| 中文字幕制服av| 观看av在线不卡| 久久精品久久久久久久性| 国产精品国产三级专区第一集| 亚洲人与动物交配视频| 国产极品天堂在线| 久久久精品区二区三区| 中文欧美无线码| 久久精品国产亚洲网站| 久久99精品国语久久久| 三级国产精品片| 蜜臀久久99精品久久宅男| 一级黄片播放器| 亚洲av国产av综合av卡| 99热这里只有是精品在线观看| freevideosex欧美| 欧美丝袜亚洲另类| av福利片在线| 亚洲精品一区蜜桃| 日韩大片免费观看网站| 精品一区二区三卡| 久久久精品94久久精品| 亚洲无线观看免费| 亚洲色图综合在线观看| 人人妻人人澡人人爽人人夜夜| 男男h啪啪无遮挡| 岛国毛片在线播放| 91精品伊人久久大香线蕉| 女人久久www免费人成看片| 国产成人免费无遮挡视频| 五月开心婷婷网| 日日爽夜夜爽网站| 夫妻性生交免费视频一级片| 亚洲欧美清纯卡通| 夜夜看夜夜爽夜夜摸| 99久久精品国产国产毛片| 天堂中文最新版在线下载| 免费日韩欧美在线观看| 久久久亚洲精品成人影院| 九色亚洲精品在线播放| 日本与韩国留学比较| 在线观看www视频免费| 国产一区二区三区av在线| 欧美亚洲日本最大视频资源| 亚洲欧美成人综合另类久久久| 黑人巨大精品欧美一区二区蜜桃 | 最后的刺客免费高清国语| 在线天堂最新版资源| 国产亚洲精品久久久com| 男女免费视频国产| 狂野欧美白嫩少妇大欣赏| 久久久午夜欧美精品| 国产黄色视频一区二区在线观看| 欧美亚洲 丝袜 人妻 在线| 久久精品久久久久久久性| 免费观看a级毛片全部| 久久久久久久国产电影| 一级毛片 在线播放| 日本91视频免费播放| 中国三级夫妇交换| 国产淫语在线视频| 中文字幕最新亚洲高清| 国产一区二区三区综合在线观看 | 成年av动漫网址| 国产一区二区在线观看av| 97在线人人人人妻| 自拍欧美九色日韩亚洲蝌蚪91| 一级毛片aaaaaa免费看小| 夫妻午夜视频| 在线精品无人区一区二区三| 男男h啪啪无遮挡| 美女脱内裤让男人舔精品视频| 亚洲av免费高清在线观看| 大话2 男鬼变身卡| 秋霞在线观看毛片| 精品久久久久久久久亚洲| 国产欧美日韩一区二区三区在线 | h视频一区二区三区| 亚洲精品国产色婷婷电影| 国产成人一区二区在线| 热re99久久国产66热| 在线天堂最新版资源| 精品一区二区三区视频在线| 国产黄色免费在线视频| 久久久久久久大尺度免费视频| 最新中文字幕久久久久| 久久久久久久亚洲中文字幕| 国产片内射在线| 欧美激情国产日韩精品一区| 好男人视频免费观看在线| 国产精品久久久久久久电影| 亚洲国产精品成人久久小说| 街头女战士在线观看网站| 午夜精品国产一区二区电影| 亚洲精品乱久久久久久| 考比视频在线观看| 一区二区三区四区激情视频| 老司机影院毛片| 国产精品嫩草影院av在线观看| 成人毛片a级毛片在线播放| 一边摸一边做爽爽视频免费| 国产熟女午夜一区二区三区 | 国产男人的电影天堂91| 欧美老熟妇乱子伦牲交| 久久韩国三级中文字幕| 亚洲精品aⅴ在线观看| 午夜免费观看性视频| 中国三级夫妇交换| 亚洲少妇的诱惑av| 哪个播放器可以免费观看大片| 狂野欧美白嫩少妇大欣赏| 午夜福利在线观看免费完整高清在| 能在线免费看毛片的网站| 国产精品一区二区三区四区免费观看| 黑人欧美特级aaaaaa片| 精品久久久噜噜| 亚洲美女视频黄频| 在线观看www视频免费| 免费观看a级毛片全部| 伊人久久国产一区二区| √禁漫天堂资源中文www| 99re6热这里在线精品视频| 午夜福利视频精品| 午夜福利网站1000一区二区三区| 欧美丝袜亚洲另类| 桃花免费在线播放| 赤兔流量卡办理| 日韩成人av中文字幕在线观看| 五月开心婷婷网| 亚洲色图综合在线观看| 国产精品久久久久久久电影| 久久精品国产亚洲网站| 国产黄频视频在线观看| 中文字幕人妻熟人妻熟丝袜美| 有码 亚洲区| 高清视频免费观看一区二区| 国语对白做爰xxxⅹ性视频网站| 欧美精品人与动牲交sv欧美| 亚洲精品中文字幕在线视频| 成人国语在线视频| kizo精华| 国产免费一区二区三区四区乱码| a级毛片在线看网站| 亚洲精品中文字幕在线视频| 18禁裸乳无遮挡动漫免费视频| 18+在线观看网站| 少妇猛男粗大的猛烈进出视频| 亚洲av日韩在线播放| 建设人人有责人人尽责人人享有的| 少妇人妻 视频| 精品一区二区三卡| 久久青草综合色| 夜夜看夜夜爽夜夜摸| 秋霞在线观看毛片| 菩萨蛮人人尽说江南好唐韦庄| 男人添女人高潮全过程视频| 黄色怎么调成土黄色| 在线天堂最新版资源| 亚洲精品成人av观看孕妇| 3wmmmm亚洲av在线观看| 青春草视频在线免费观看| 国产精品三级大全| 日韩,欧美,国产一区二区三区| 国产亚洲精品久久久com| 欧美日韩成人在线一区二区| av在线app专区| 国产视频首页在线观看| 国产男女超爽视频在线观看| 久久精品夜色国产| a级片在线免费高清观看视频| 日日爽夜夜爽网站| 精品熟女少妇av免费看| 在线观看www视频免费| 日日撸夜夜添| 亚洲欧美成人精品一区二区| 18禁在线无遮挡免费观看视频| 天天躁夜夜躁狠狠久久av| 99热6这里只有精品| 18在线观看网站| 日本av手机在线免费观看| 少妇熟女欧美另类| 日韩一本色道免费dvd| 欧美精品亚洲一区二区| 22中文网久久字幕| 亚洲欧美日韩另类电影网站| 国产精品成人在线| 国产色爽女视频免费观看| 9色porny在线观看| 成年美女黄网站色视频大全免费 | 交换朋友夫妻互换小说| 香蕉精品网在线| 各种免费的搞黄视频| 伦精品一区二区三区| 中文字幕精品免费在线观看视频 | 国产高清有码在线观看视频| 国产成人精品无人区| 欧美日韩亚洲高清精品| 午夜久久久在线观看| 在线精品无人区一区二区三| 热99国产精品久久久久久7| 国产 一区精品| 国产色婷婷99| 久久精品久久精品一区二区三区| 边亲边吃奶的免费视频| 蜜桃久久精品国产亚洲av| 国产精品三级大全| 国产精品一区二区在线观看99| 狂野欧美白嫩少妇大欣赏| 国产国语露脸激情在线看| 国产免费又黄又爽又色| 天堂8中文在线网| 国产成人精品久久久久久| 国产日韩欧美视频二区| 各种免费的搞黄视频| 国产成人freesex在线| 亚洲国产精品成人久久小说| 国产国语露脸激情在线看| 另类亚洲欧美激情| videossex国产| 国产黄色免费在线视频| 97在线人人人人妻| 免费大片18禁| 国产成人精品无人区| 亚洲人成网站在线播| 欧美少妇被猛烈插入视频| 人人妻人人澡人人爽人人夜夜| 日韩 亚洲 欧美在线| 99热网站在线观看| 欧美激情 高清一区二区三区| 国产精品久久久久成人av| 国产熟女午夜一区二区三区 | 久久综合国产亚洲精品| 在线看a的网站| 中文字幕免费在线视频6| 欧美精品国产亚洲| 久久久久国产网址| 国产老妇伦熟女老妇高清| 免费播放大片免费观看视频在线观看| 国产成人午夜福利电影在线观看| 亚洲婷婷狠狠爱综合网| 久久99蜜桃精品久久| 国产色婷婷99| 亚洲成人手机| 成人手机av| 精品视频人人做人人爽| av国产久精品久网站免费入址| 蜜臀久久99精品久久宅男| 国产日韩欧美在线精品| 国产成人a∨麻豆精品| 婷婷色麻豆天堂久久| av在线老鸭窝| 一二三四中文在线观看免费高清| 日韩av在线免费看完整版不卡| 日本91视频免费播放| 久久97久久精品| 国产黄色免费在线视频| 99热全是精品| 色吧在线观看| www.av在线官网国产| 久久精品国产亚洲网站| 国产男人的电影天堂91| 波野结衣二区三区在线| 亚洲成人一二三区av| 男女边吃奶边做爰视频| 一级毛片黄色毛片免费观看视频| 18禁动态无遮挡网站| 国产高清国产精品国产三级| 男女免费视频国产| av线在线观看网站| 人人妻人人添人人爽欧美一区卜| 国产女主播在线喷水免费视频网站| 久久久久久久久久久丰满| 天美传媒精品一区二区| 日韩av在线免费看完整版不卡| 亚洲欧美色中文字幕在线| 热re99久久国产66热|