• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    飛秒泵浦-探測(cè)激光場(chǎng)中NaI 解離和電離的場(chǎng)依賴

    2022-02-15 11:52:56郭瑋陳曉芳路興強(qiáng)
    光子學(xué)報(bào) 2022年12期
    關(guān)鍵詞:泵浦飛秒煙臺(tái)

    郭瑋,陳曉芳,路興強(qiáng)

    (1 煙臺(tái)大學(xué) 核裝備與核工程學(xué)院,山東 煙臺(tái) 264005)

    (2 山東大學(xué) 前沿交叉科學(xué)青島研究院 分子科學(xué)與工程研究院,山東 青島 266237)

    0 Introduction

    With the advances in ultra-strong and ultra-short laser pulses,many research works have concentrated on the real-time control of molecular dynamics.Apart from plotting the wave packet dynamics data of electronic state,the state population is also capable of reflecting the excitation,dissociation and ionization of molecules.By controlling the wave packet evolution,the state population can be manipulated,thereby facilitating the optical control over the molecular processes experimentally.

    NaI molecule is a typical molecule with an avoided crossing between two nonadiabatically coupled electronic states at the internuclear separationRx=0.693 nm,and has been studied for monitoring wave packet evolution experimentally and theoretically.Some studies have considered photoelectron spectra.For instance,BRAUN M et al[1]introduced that for the NaI molecule,periodical motion of the wave packets on the electronic state potentials is possible,which results in the periodic fluctuation in the spectral of photoelectrons ARASAKI Y et al[2,3],TAKATUKA K et al[4],YAO H B et al[5]and LIU Y F et al[6]explored how the pump-probe pulse delay duration affects the photoelectron spectra of NaI.They proposed that the photoelectron spectrum can be used to map the bifurcation of the wave packets via the crossing region.Although the photoelectron spectrum offers the significant plotting of the exited state movement of wave packets and ionization yields,it is not enough to reflect the excitation,dissociation as well as ionization processes of molecules.

    Some studies have presented some additional data.JOUVET C et al[7],CHARRON E et al[8]and MIAO X Y et al[9]explored the femtosecond dynamics of NaI photoionization and dissociative photoionization experimentally or theoretically.ROSE T S et al[10]experimentally studied the predissociation dynamics of NaI molecules with the use of Femtosecond Transition-state Spectroscopy(FTS)and examined the impact of laser wavelength and intensity on the dynamics of the dissociation.Moreover,the findings with classical and quantum mechanical calculations were compared in detail.ENGEL V et al[11-13]studied the predissociation dynamics of NaI molecules using LIF(laser-induced fluorescence)technique,and examined the LIF signal dependence on the pump and probe pulses properties(laser wavelength and pulse width).LIU Y X et al[14,15],HAN Y C et al[16]and SUN Z P et al[17]proposed that NaI predissociation at the laser-induced crossing can be regulated using a controlled laser pulse(in addition to pump and probe pulses).Besides,the influences of the control pulse's delay time,intensity,frequency,carrier-envelope phase,and chirping on the predissociation dynamics were discussed.YAO H B et al[18]and GUO X Q et al[19,20]investigated the impact of pump wavelength,pulse width,and pulse profile on the dissociation probabilities following the initial passage through the crossing zone when the pump and probe pulse widths were varied at the same time.According to MA X G et al[21],several wavelength regions can efficiently trigger the excitation and photoionization.

    The aforementioned literature mainly includes the photoelectron spectrum,the competitive ionization channel and the predissociation dynamics of the first passage through the crossing region.Herein,this work focuses on the study of the respective parameter effects of pump and probe pulses on the probabilities of excitation and ionization,and the total probability of dissociation of NaI molecules.By appropriately changing the laser parameters,the population in each state can be controlled,and so can the excitation,dissociation and ionization probabilities,which will benefit the molecular spectroscopy and light manipulation of molecular processes.This paper presents new and complete data on the influence of the laser parameters on the excitation,dissociation,and ionization by pump-probe pulses of NaI molecular by using time-dependent quantum wave packet method.

    1 Computation details

    The computational details,described elsewhere[2,14-16],are outlined here.Fig.1 depicts the potential energy graphs for the NaI molecule in our quantum calculation[11,13].A femtosecond pump laser pulse prepares a wave packet on the covalent excited state(A),nonadiabatically coupling the ionic ground state(X)atRx=0.693 nm.Besides,the production from the covalent/ionic channel is ionized by a time-delayed probe pulse,and can derive emitted photoelectron from the ionic ground state(I).Additionally,the ionic channel describes a process of nonadiabatic transition,whereas the covalent channel depicts a process of dissociation,i.e.,predissociation.

    Fig.1 Potential energy graphs

    The core of the time-dependent quantum wave packet method is to solve the time-dependent Schr?dinger equation.The time-dependent wave packet method has many advantages.In addition to the efficient numerical calculation,this method provides definite physical meanings and intuitive image for the dynamic.And it has the intuition of classical mechanics and no lack of accuracy of quantum mechanics.Besides,the time-dependent wave packet method is especially suitable for the study of molecular evolution after excitation by femosecond laser pulse,thus it becomes a powerful tool for the research of molecular photoionization problems[2,14-16].

    Solving the three-state-coupled time-dependent Schr?dinger equation yields the nuclear wave functions.

    whereΨX,ΨAandΨIrepresent the wave functions for three states(X,A,andI),respectively.Ris the internuclear separation andmis the reduced mass.

    We can discretize the state of ionization continuum state into multiple levels of quasi-continuum.Accordingly,the wave functionΨIcan be written as

    whereEI,l=(l-1)ΔEI(l=1,2,...,n) is the emitted photoelectron energy,ndenotes the discrete state counts of the NaI ion.Apparently,the value range ofEI,lis 0~1.2 eV,while the value ofnis assigned as 120.

    In the dimensions of(n+2)×(n+2),where the number of discrete states isnand the number of bound states is 2,the potential matrixV(R,t).

    whereVX,VAandVIare the potential matrix elements of three states in the scenario without laser field.VXAis the nonadiabatic coupling element.The nonzero elements for off-diagonal matrix are the coupling between two states via external laser field,are given as follows

    whereμare the transition dipole moments,e1ande2are the pulse amplitudes,ω1andω2are the angular frequencies.f1(t) andf2(t) are the pulse profiles and take the Gaussian form

    whereτrefers to the FWHM(full width at half maximum)of pulse and Δtindicates the pump-probe delay time.

    Split-operator fast-Fourier methods are used for solving the time-dependent Schr?dinger equation[2,14-16],wherein the state population can be determined following the earlier studies[6,8-9,16,18-20,22]

    We take the transition dipole moments from Ref.[8].The nonadiabatic coupling element is taken from Refs.[19,11].The pump wavelength is taken 268-368 nm around the resonance wavelength 328 nm(3.78 eV[1]).The wave packet moves between the internal(R=0.27 nm,markedain Fig.1)and the external turning points(R=1.1 nm,markedbin Fig.1).The ionization occurs when the probe photon energy is greater than the ionization energy at the internuclear distanceRbetweenaandb.The probe wavelength is taken 190~270 nm around 240 nm(corresponding to the maximum potential energy difference 5.14 eV between the potentials of statesX/AandI[13])to guarantee ionization.Laser intensities and pulse widths are 1.0×1011~1.0×1015W/cm2and 10~200 fs,respectively.A complete motion period of the wave packet is about 1 000 fs(see Fig.2 below),and the time delay of 3 000 fs is taken for completely observing more periods.

    2 Results and discussions

    Fig.2 shows the evolutions of wave packet motions((a)and(b))and state populations((c)and(f))when the laser parameters are as follows:pump intensityI1=5.0×1012W/cm2=5I0(I0=1.0×1012W/cm2),probe intensityI2=5I0,pump wavelengthλ1=328 nm,probe wavelengthλ2=228 nm,pump and probe pulse widthsτ1=τ2=30 fs,and time delay Δt=3 000 fs.The wave packet moves periodically between the internal and external turning points with an oscillation period of 1 000 fs.The excited state population following excitation from the ground state isPA(peak1 in Fig.2(d)).On the excited state,the outward motion of wave packets hit the crossing point(Rx=0.693 nm)at 180 fs and bifurcates due to the nonadiabatic couplingVXA.Although the majority(populationPX)of the wave packets pass to the ground state(Fig.2(a)),a slight portion(populationPA-PX)exhibits irreversible motion towards a long internuclear distance in the excited state(Fig.2(b)).This leads to dissociate into Na and I atoms,ultimately elevating the ground state population to 1-PA+PX(Fig.2(c)),and diminishing the excited state population toPA-PX,which can eventually reach 0 because of the dissociation(Fig.2(d)).Moreover,the sum of populations of three states declines to 1-PA+PX(Fig.2(f)).As defined and discussed in previous reports,(PA-PX)/PAreflects the predissociation probability following the initial passage through the crossing zone[14-20].On the ground state,the wave packets hit the external turning point(R=1.24 nm)at 500 fs,which split again after returning to the crossing point at 800 fs.At this point,most(populationP'A)shift to the excited state,while a slight portion(populationPX-P'A,peak2 in Fig.2(d))remains on the ground state.On the excited state,the wave packets hit the internal turning point(R=0.27 nm)at 1 000 fs,finishing one periodic movement.Thereafter,the second period commences,and the wave packets repeat the identical process continually.Apart from that,the wave packet passes the ioniccovalent crossing point twice per cycle.The predissociation mechanism occurs at the crossing point due to the nonadiabatic coupling.The heights of the four successive peaks decrease successively,i.e.,P'A<PA,indicating the dissociation in each passage via the crossing zone as the delay duration is prolonged,which agrees with the ion signal-based results[2,13].

    Fig.2 The evolutions of wave packet motions and state populations

    After about three periodical motions(3 000 fs),the probe laser is present,and the population of the ionization state enhances toPI(Fig.2(e)),while the sum of populations of three states decreases toPS(Fig.2(f)).The total dissociation probability after three back and forth crossings is(1-PS)/PA.The femtosecond laser conditions for controlling the excitation,dissociation and ionization can be obtained by analyzing the effects of femtosecond laser parameters on excitation populationPA,total dissociation probability(1-PS)/PA,and ionization probabilityPI/PAof NaI.

    Fig.3 demonstrates state populationsPA,1-PS,andPI,the probabilitiesPI/PAand(1-PS)/PA,and the pathway ratio(1-PS)/PIat different delay times(0~3 000 fs)when other laser parameters as in Fig.2.It can be observed that in the excited state,the population is not affected by the delay time.As the delay time is prolonged,the dissociation becomes more possible,whereas the ionization turns more impossible.The longer the delay time,the longer the duration of wave packet movement prior to the ionization.Accordingly,the crossing point is reached multiple times by the wave packet,so that more wave packets are dissociated into the Na and I atoms.Besides,the onset time for photodissociation is 300 fs and the photodissociation enhances with the enhancement of delay time.The obtained findings are in consistence with those of MIAO X Y et al[22].The pump-probe delay time evolution of the total dissociation probability reveals a series of increasing stair-stepped plateaus,which are indicative of the individual parts of the wave packet reaching the asymptotic region i.e.,discontinuous dissociation process.The asymptotic zone(R=1.06 nm)can be arrived at by the first portion of wave packet around 300 fs due to the bifurcation at its initial passage through the crossing point,and till 1 200 fs,the asymptotic region is occupied by this portion of wave packet only.At around 1 300 fs,the asymptotic region is arrived at by a second wave packet,and till 2 300 fs,and the presence of 2 well-branchedwave packets is noted inside the asymptotic zone.As a result,the regular steps reflect these well-branched wave packets that are dissociating[23].

    Fig.3 The state populations,the probabilities and the pathway ratio at different delay times

    The effects of the laser intensity on excitation,dissociation and ionization are investigated.Figs.4(a)~4(c)show state populationPA,1-PS,andPI,probabilitiesPI/PAand(1-PS)/PA,and pathway ratio(1-PS)/PIvs.pump laser intensityI1.Other laser parameters are:I2=5I0,λ1=328 nm,λ2=228 nm,τ1=τ2=30 fs.The results reveal an increase in the excitation,marginally decrease in dissociation probability,and marginally increase in ionization probability with the increase of pump laser intensities.The FTS signal intensity is linear with the pump pulse intensities(over a reasonable range)and the off-resonant FTS transient shape is independent of the pump intensity,which indicates the invariance of the dissociation probability to pump intensity[10,24].SUN et al suggested that the dissociation probability after the first passage of the curve crossing is nearly independent of the pump intensity[17].However,our result appears to be different with the result of SUN et al,which can be due to the examination of a wide range(1011~1015W/cm2)of pump intensities that is far wider than those in previous reports.It can be observed from the Fig.4(c)that the pathway ratio decreases with the increase of the pump laser intensity.

    Figs.4(d)~4(f)show thePA,1-PS,PI,PI/PA,(1-PS)/PA,and(1-PS)/PIvs.probe laser intensityI2.Other laser parameters are:I1=5I0,λ1=328 nm,λ2=228 nm,τ1=τ2=30 fs.It is observed that the probe laser intensity has not affected excitation and dissociation.The intensity of FTS transients is linear with the probe pulse intensities(over a reasonable range)and the off-resonant FTS transient shape is independent of the probe intensity,which indicates the invariance of the dissociation probability with the probe intensity[10].Our result is consistent with previous reports.The ionization probability increases as the probe laser intensity enhances,whenI2<10I0,and it does not change whenI2≥10I0,i.e.,ionization saturation.The ionization is lower than the dissociation,whenI2<3I0,but is larger than the dissociation whenI2≥3I0.It can be observed from Fig.4(f)that the pathway ratio decreases with increasing pump laser intensities.The ratio,however,has no change when the intensity is above 1.0×1013W/cm2.

    Fig.4 State populations,the probabilities and the pathway ratio for various pump/probe laser intensities

    The dependence of excitation,dissociation and ionization on the laser wavelength is examined.Figs.5(a)~5(c)showPA,1-PS,PI,PI/PA,(1-PS)/PA,and(1-PS)/PIvs.pump laser wavelengthλ1(278~368 nm).Other laser parameters are:I1=I2=5I0,λ2=228 nm,τ1=τ2=30 fs.With the increase in pump wavelength,the excited state population increases initially and then decreases,reflecting the resonant region of 313~328 nm.An increase in the wavelength(278~368 nm)monotonically drops the dissociation probability,which is consistent with the result obtained from the FTS measurements and the dissociation probability associates with the wave packet propagation velocity[10].This is because a pulse with shorter wavelength,i.e.,the higher energy,causes a wave packet with a higher velocity at the crossing point,increasing the predissociation.The tendency of the increasing ionization probability with the increasing pump wavelengths is consistent with the conclusion obtained from the NaI+signal[8].The dissociation is higher than the ionization whenλ1≤323 nm,while it is lower than the ionization whenλ1>323 nm.It can be observed from Fig.5(c)that the pathway ratio decreases when pump wavelengths increase.Figs.5(d)~(f)exhibit thePA,1-PS,PI,PI/PA,(1-PS)/PAand(1-PS)/PIvs.probe wavelengthλ2.Other laser parameters are:I1=I2=5I0,λ1=328 nm,τ1=τ2=30 fs.The probe laser wavelength has no effect on excitation and dissociation.This is manifested by that the shape of the FTS transient is essentially independent of the probe wavelength experimentally[10].The ionization probability initially increases,later remains constant,and finally decreases with the increase of probe laser wavelength.The peaks corresponding to a longer probe wavelength decay faster than those corresponding to a shorter probe wavelength in the Na+signal,indicating the decrease in ionization with the increasing probe wavelengths(248~302 nm)[13].The ionization is lower than the dissociation whenλ2<210 nm/λ2>244 nm,while it is larger than the dissociation when 210 nm≤λ2≤244 nm.This indicates that the region of the probe wavelength 210~244 nm efficiently triggered the photoionization process,which is an expected wavelength region for triggering ionization indicated in Ref.[21].It can be confirmed that in the region of 210~244 nm,NaI molecules are promoted to some ionic continuum states(0~1.2 eV).

    Fig.5 State populations,the probabilities and the pathway ratio for various pump/probe laser wavelengths

    The impact of the laser pulse width on excitation,dissociation,and ionization is also examined.Figs.6(a)~(c)showPA,1-PS,PI,PI/PA,(1-PS)/PA,and(1-PS)/PIvs.pump pulse widthτ1(10~200 fs).Other laser parameters are:I1=I2=5I0,λ1=328 nm,λ2=228 nm,τ2=30 fs.The population of excitation,dissociation,and ionization all increase with the increase of the pump pulse width,because the increase of the pulse width means the increase of the laser on time,which will increase the population[11].The dissociation probability decreases slightly and the ionization probability enhances slightly with enhancing pump pulse width forτ1<100 fs.This is in consistence with the result acquired from the LIF signal[11,12,25].The dissociation probability increases slightly and the ionization probability reduces slightly with rising pump pulse width for 100 fs≤τ1≤180 fs.The dissociation probability associates with the propagation velocity[10]and time taken for passing through the crossing zone[11].The larger the propagation velocity[10]or the longer the time spends in the crossing region[11],the higher the dissociation probability.These two processes coexist and compete.If propagate velocity dominates,a lower dissociation probability for longer pulse width is anticipated,owing to longer pulses indicative of lower laser energy,which can cause a wave packet with low velocity at the crossing point,decreasing the predissociation.It is clearly the case in our results for shorter pulse widths(τ1<100 fs).If the propagated time dominates,this should result in a larger dissociation probability for longer pulse width,because a longer pulse causes a wider wave packet in spatial terms,and accordingly,longer time is consumed through the crossing zone,leading to a relative larger dissociation probability.It is the case in our results for longer pulse widths(100 fs≤τ1≤180 fs).Whenτ1>180 fs,the sum of the dissociation probability and the ionization probability is more than 1(Fig.6(b)).In other words,the sum of the dissociation population and the ionization population is more than the excited state population.The reason is that multi-time excitation of the molecules is probable when the pulse width is broad.According to Fig.6(c)that the pathway ratio exhibits a decline when the pump pulse widens forτ1<100 fs,and it increases with the increase of the pump pulse width for 100 fs≤τ1≤180 fs.Figs.6(d)~(f)show thePA,1-PS,PI,PI/PA,(1-PS)/PA,and(1-PS)/PIvs.probe pulse widthτ2.Other laser parameters are:I1=I2=5I0,λ1=328 nm,λ2=228 nm,τ1=30 fs.The population of ionization increases as the probe pulse width enhances due that the increase of the pulse width means the increase of the laser on time,which will increase the population[11].The ionization probability increases with the rise of the probe pulse width whenτ2<100 fs,and it shows no significant change whenτ2≥100 fs,i.e.,ionization saturation.The ionization is lower than the dissociation whenτ2<20 fs,while is larger than the dissociation whenτ2≥20 fs.It can be observed from Fig.6(f)that the pathway ratio initially decreases and then does not change with the increase of the pump pulse width.

    Fig.6 State populations,the probabilities and the pathway ratio for various pump/probe pulse widths

    3 Conclusion

    The wave packet dynamics of nonadiabatic coupling NaI molecule driven by a pump-probe pulse is investigated via a time-dependent wave packet approach.The impacts of pump and probe laser parameters on the excitation,dissociation and ionization are studied in detail and are analyzed quantitatively.The excitation and dissociation are affected only by the pump laser,while the ionization is affected by both the pump and the probe lasers.Combined the discussion above,the seemingly counterintuitive understanding:the pump pulse affects the ionization probability,can be clarified.The pump laser parameters affect the dissociation of the wave packets moving between the internal and external points before the probe pulse appears.Then ionization may occur when the probe pulse appears at 3 000 fs.The ionization follows the general understanding of photoionization:ionization occurs when the photon energy is greater than the ionization energy,and the ionization probability is determined by the ionization dipole moment at the internuclear distanceRfor the delay time of 3 000 fs.In other words,due to the competition of dissociation and ionization,the pump pulse affects the wave packets before ionization through affecting the dissociation,thus affects the ionization.This provides an additional control means for controlling ionization,and even in a very effective way.For example,the pump laser wavelength can effectively control the ionization.

    The excitation probability of molecules can be selected by adjusting pump laser parameters.For instance,in order to obtain a higher excitation probability,the pump laser field needs to work under a stronger laser intensity,longer pulse duration(<180 fs),and resonant region(303~328 nm).

    The control of the dissociation probability of molecules can be possible by adjusting pump laser parameters.For example,with the purpose of acquiring a higher dissociation probability,the pump laser field needs to work under a stronger laser intensity,shorter pulse duration,near-resonant region(303~328 nm),and longer delay time.

    The control of the ionization probability of molecules can be done by adjusting the pump and probe laser parameters.For example,in order to obtain a higher ionization probability,the pump laser field needs to work under a stronger laser intensity,longer pulse duration(<180 fs),and near-resonant region(303~328 nm).The probe laser field must operate with higher laser intensity,longer pulse duration,a wavelength range of 210~244 nm,and a shorter delay time.

    The dissociation and ionization coexist and compete.The dissociation dominates whenI2<3I0,λ1<323 nm,λ2<210 nm/λ2>244 nm,τ2<20 fs.The ionization dominates whenI2≥3I0,λ1≥323 nm,210 nm≤λ2≤244 nm,τ2≥20 fs.

    Apart from being vital for the molecular spectroscopy,the obtained novel findings also contribute to attaining an optical molecular control in experimental settings,as well as providing some essential foundation for future theoretical research in this area.

    猜你喜歡
    泵浦飛秒煙臺(tái)
    全飛秒與半飛秒的區(qū)別
    人人健康(2021年16期)2021-12-01 07:08:33
    《煙臺(tái)果樹》征稿簡章
    煙臺(tái) 身在蓬萊就是仙
    煙臺(tái)優(yōu)利機(jī)電設(shè)備制造有限公司
    基于飛秒激光的固體危化品切割機(jī)床設(shè)計(jì)與開發(fā)
    鮮美煙臺(tái) 四月芳菲
    走向世界(2019年18期)2019-08-16 13:06:02
    溴丙烯在800nm和400nm飛秒激光強(qiáng)場(chǎng)下的解離電離
    基于980nm泵浦激光器的恒溫驅(qū)動(dòng)設(shè)計(jì)
    電子制作(2018年9期)2018-08-04 03:30:54
    LD面陣側(cè)面泵浦Nd:YAG光場(chǎng)均勻性研究
    N d:Y A G電光調(diào)Q泵浦固體激光器輸出特性研究
    久久ye,这里只有精品| 成人午夜精彩视频在线观看| 免费观看人在逋| 日本色播在线视频| 多毛熟女@视频| 午夜福利影视在线免费观看| 999久久久国产精品视频| 免费看不卡的av| 欧美日韩一区二区视频在线观看视频在线| 亚洲av男天堂| 一级毛片我不卡| 久久久精品区二区三区| 免费看av在线观看网站| 亚洲精品中文字幕在线视频| 丝袜在线中文字幕| 婷婷成人精品国产| 久热爱精品视频在线9| 一边摸一边抽搐一进一出视频| 国产黄色视频一区二区在线观看| 精品一品国产午夜福利视频| 日韩av不卡免费在线播放| 精品久久蜜臀av无| 777久久人妻少妇嫩草av网站| 天天影视国产精品| 成人免费观看视频高清| 久久久国产精品麻豆| 天堂中文最新版在线下载| 最近最新中文字幕大全免费视频 | 午夜福利乱码中文字幕| 久久久精品免费免费高清| 亚洲欧美精品自产自拍| 国产精品免费大片| 亚洲五月色婷婷综合| 久久精品熟女亚洲av麻豆精品| 中文字幕另类日韩欧美亚洲嫩草| xxx大片免费视频| 亚洲综合精品二区| 精品亚洲成国产av| 久久精品国产亚洲av高清一级| e午夜精品久久久久久久| 午夜福利视频精品| 国产欧美日韩一区二区三区在线| 亚洲中文av在线| av福利片在线| 99九九在线精品视频| 免费黄网站久久成人精品| 国产在线视频一区二区| 久久精品久久久久久噜噜老黄| 午夜免费鲁丝| 嫩草影视91久久| 国产欧美亚洲国产| 亚洲国产av新网站| 亚洲自偷自拍图片 自拍| 精品亚洲成国产av| 一级片免费观看大全| 高清av免费在线| 老司机影院成人| 午夜影院在线不卡| 婷婷色麻豆天堂久久| 丰满乱子伦码专区| 999精品在线视频| 亚洲,欧美,日韩| 大香蕉久久成人网| 亚洲精品av麻豆狂野| 黄色 视频免费看| 在线精品无人区一区二区三| 人人妻人人澡人人看| 啦啦啦视频在线资源免费观看| 老司机靠b影院| 深夜精品福利| 国产熟女午夜一区二区三区| 嫩草影院入口| 丝袜喷水一区| 亚洲av欧美aⅴ国产| 亚洲精品国产一区二区精华液| 一边摸一边抽搐一进一出视频| h视频一区二区三区| 中文天堂在线官网| 国产精品三级大全| 一级黄片播放器| 蜜桃在线观看..| 亚洲精品久久久久久婷婷小说| 美女大奶头黄色视频| 1024视频免费在线观看| 免费在线观看黄色视频的| 亚洲综合色网址| 亚洲色图综合在线观看| av电影中文网址| 2021少妇久久久久久久久久久| 国产精品久久久久久精品电影小说| 超碰97精品在线观看| 久久狼人影院| 亚洲av国产av综合av卡| 中国国产av一级| 亚洲欧美激情在线| 成人亚洲精品一区在线观看| 色婷婷av一区二区三区视频| 欧美日韩av久久| 亚洲精品一二三| 欧美日韩成人在线一区二区| 少妇猛男粗大的猛烈进出视频| 三上悠亚av全集在线观看| 90打野战视频偷拍视频| 一边亲一边摸免费视频| 国产成人欧美| 夫妻性生交免费视频一级片| 国产激情久久老熟女| 国产精品一区二区精品视频观看| 精品人妻熟女毛片av久久网站| 国产熟女午夜一区二区三区| 久久精品亚洲熟妇少妇任你| 日韩 欧美 亚洲 中文字幕| 母亲3免费完整高清在线观看| 亚洲精品国产色婷婷电影| 韩国av在线不卡| 一本一本久久a久久精品综合妖精| 国产一区二区三区av在线| 免费观看性生交大片5| 亚洲图色成人| 最近最新中文字幕大全免费视频 | 久久精品亚洲熟妇少妇任你| 久久久欧美国产精品| 国产精品成人在线| 高清不卡的av网站| 免费少妇av软件| 中文天堂在线官网| 黄色毛片三级朝国网站| 亚洲第一av免费看| 最新的欧美精品一区二区| 校园人妻丝袜中文字幕| 波多野结衣av一区二区av| 男女免费视频国产| 人人妻人人添人人爽欧美一区卜| 久久久国产欧美日韩av| 亚洲av国产av综合av卡| 日韩欧美精品免费久久| 国产精品久久久人人做人人爽| 国产精品无大码| 一二三四中文在线观看免费高清| 国产淫语在线视频| 一区在线观看完整版| 中文字幕高清在线视频| 久久久精品免费免费高清| 日本av免费视频播放| 丝袜美足系列| 精品人妻在线不人妻| 亚洲精品,欧美精品| 黄片播放在线免费| 精品亚洲乱码少妇综合久久| 国产黄色免费在线视频| 好男人视频免费观看在线| 国产xxxxx性猛交| 国产在线免费精品| 欧美在线一区亚洲| 欧美精品人与动牲交sv欧美| 国产av精品麻豆| 人体艺术视频欧美日本| videosex国产| 青草久久国产| 狂野欧美激情性xxxx| 热re99久久国产66热| 中文乱码字字幕精品一区二区三区| 晚上一个人看的免费电影| 少妇被粗大的猛进出69影院| 欧美日韩综合久久久久久| 国产一区二区三区av在线| 亚洲欧洲日产国产| 一区二区三区四区激情视频| 亚洲国产精品成人久久小说| 国产爽快片一区二区三区| 午夜免费观看性视频| 亚洲av日韩精品久久久久久密 | 人妻一区二区av| 男女边摸边吃奶| 午夜激情久久久久久久| 看免费av毛片| 你懂的网址亚洲精品在线观看| 精品国产乱码久久久久久小说| 久久影院123| 精品少妇内射三级| 亚洲国产欧美日韩在线播放| 欧美精品高潮呻吟av久久| 成人免费观看视频高清| 国产97色在线日韩免费| 建设人人有责人人尽责人人享有的| 人人妻人人澡人人爽人人夜夜| 国产成人欧美在线观看 | 精品人妻一区二区三区麻豆| 欧美精品人与动牲交sv欧美| 欧美乱码精品一区二区三区| 中文字幕人妻丝袜一区二区 | 久久久欧美国产精品| 亚洲欧洲国产日韩| 国产黄色视频一区二区在线观看| 欧美日韩亚洲综合一区二区三区_| av一本久久久久| 纯流量卡能插随身wifi吗| 久久人妻熟女aⅴ| 丰满迷人的少妇在线观看| 亚洲国产精品国产精品| 91国产中文字幕| 欧美日韩国产mv在线观看视频| 日韩欧美一区视频在线观看| 亚洲国产av影院在线观看| av女优亚洲男人天堂| 精品少妇黑人巨大在线播放| 大片电影免费在线观看免费| 三上悠亚av全集在线观看| 国产女主播在线喷水免费视频网站| 日本av手机在线免费观看| 天天躁狠狠躁夜夜躁狠狠躁| 欧美人与性动交α欧美精品济南到| 亚洲美女搞黄在线观看| 国产极品天堂在线| 一级毛片我不卡| 精品人妻在线不人妻| 日韩不卡一区二区三区视频在线| 亚洲欧美激情在线| 中文天堂在线官网| 久久精品国产综合久久久| 国产av一区二区精品久久| 操出白浆在线播放| 黄网站色视频无遮挡免费观看| 成人亚洲欧美一区二区av| av天堂久久9| 九九爱精品视频在线观看| av有码第一页| av免费观看日本| 日韩成人av中文字幕在线观看| 国产精品久久久久久精品电影小说| h视频一区二区三区| 1024视频免费在线观看| xxx大片免费视频| 最近手机中文字幕大全| 乱人伦中国视频| 最近的中文字幕免费完整| 成年人午夜在线观看视频| 亚洲av在线观看美女高潮| 女人久久www免费人成看片| 午夜av观看不卡| 久久热在线av| 丝袜在线中文字幕| av线在线观看网站| 黄片无遮挡物在线观看| 亚洲国产精品成人久久小说| 免费女性裸体啪啪无遮挡网站| 精品一区二区三区av网在线观看 | 久久天躁狠狠躁夜夜2o2o | 亚洲精品一区蜜桃| 欧美精品一区二区免费开放| 9热在线视频观看99| 亚洲av电影在线进入| 国产一区二区 视频在线| 天天影视国产精品| 视频区图区小说| 免费黄色在线免费观看| 免费观看人在逋| 国精品久久久久久国模美| 国产精品久久久人人做人人爽| 制服诱惑二区| 丝袜美足系列| 亚洲男人天堂网一区| 亚洲欧美成人综合另类久久久| netflix在线观看网站| 欧美变态另类bdsm刘玥| 午夜久久久在线观看| 国产亚洲精品第一综合不卡| 久久久久精品久久久久真实原创| 国产日韩欧美视频二区| 国产成人精品久久久久久| 在线观看免费高清a一片| 久久亚洲国产成人精品v| 操出白浆在线播放| 国精品久久久久久国模美| 国产成人91sexporn| 在线观看免费高清a一片| 欧美精品高潮呻吟av久久| 最近最新中文字幕大全免费视频 | 91国产中文字幕| av在线播放精品| 丝瓜视频免费看黄片| 国产高清不卡午夜福利| 各种免费的搞黄视频| 曰老女人黄片| 满18在线观看网站| 久久97久久精品| 波多野结衣av一区二区av| 免费女性裸体啪啪无遮挡网站| 欧美日韩亚洲国产一区二区在线观看 | 免费看av在线观看网站| 国产成人一区二区在线| 久久精品亚洲av国产电影网| 黄片播放在线免费| 欧美 日韩 精品 国产| 久久久久精品人妻al黑| bbb黄色大片| netflix在线观看网站| 国产精品久久久av美女十八| 午夜日本视频在线| 9热在线视频观看99| 一级毛片黄色毛片免费观看视频| 中文字幕av电影在线播放| 亚洲欧美成人精品一区二区| 国产成人啪精品午夜网站| 丝袜喷水一区| 成人国语在线视频| 韩国精品一区二区三区| 久久精品久久久久久噜噜老黄| 另类精品久久| 青草久久国产| 国产亚洲av高清不卡| 亚洲七黄色美女视频| 好男人视频免费观看在线| 黄色视频不卡| 久久精品久久精品一区二区三区| 精品人妻熟女毛片av久久网站| 国产精品一区二区在线不卡| 国产又色又爽无遮挡免| 中文字幕最新亚洲高清| 另类亚洲欧美激情| 国产片内射在线| 欧美97在线视频| 亚洲免费av在线视频| 日韩制服丝袜自拍偷拍| 成人国产麻豆网| 亚洲av综合色区一区| 一级片免费观看大全| 免费日韩欧美在线观看| 满18在线观看网站| 亚洲国产精品成人久久小说| 中文天堂在线官网| 在线观看免费高清a一片| 国产av一区二区精品久久| 一本—道久久a久久精品蜜桃钙片| 伊人久久大香线蕉亚洲五| 香蕉国产在线看| 秋霞在线观看毛片| 超色免费av| 99热全是精品| 欧美亚洲 丝袜 人妻 在线| a 毛片基地| 国产成人精品久久久久久| 婷婷色综合www| 美女脱内裤让男人舔精品视频| 国精品久久久久久国模美| 十八禁网站网址无遮挡| 中文字幕av电影在线播放| 欧美日本中文国产一区发布| 91精品国产国语对白视频| 亚洲在久久综合| 精品第一国产精品| 亚洲国产精品999| 搡老乐熟女国产| 国产成人午夜福利电影在线观看| 丰满迷人的少妇在线观看| 亚洲精品一二三| 成人影院久久| 亚洲,欧美精品.| 成人漫画全彩无遮挡| 两个人免费观看高清视频| 欧美中文综合在线视频| 秋霞伦理黄片| 制服人妻中文乱码| 国产伦理片在线播放av一区| 最近中文字幕高清免费大全6| 精品少妇黑人巨大在线播放| 国产1区2区3区精品| 精品一品国产午夜福利视频| 少妇人妻 视频| 一边摸一边抽搐一进一出视频| 国产一区二区三区综合在线观看| 七月丁香在线播放| 欧美国产精品va在线观看不卡| 日韩一区二区视频免费看| 如日韩欧美国产精品一区二区三区| 女人爽到高潮嗷嗷叫在线视频| 少妇被粗大的猛进出69影院| 亚洲av成人精品一二三区| 久久久久精品性色| 日韩,欧美,国产一区二区三区| 精品午夜福利在线看| 女的被弄到高潮叫床怎么办| 亚洲欧美精品自产自拍| 亚洲 欧美一区二区三区| 国产免费又黄又爽又色| 欧美日韩福利视频一区二区| 男人爽女人下面视频在线观看| 不卡视频在线观看欧美| 国产激情久久老熟女| 男人舔女人的私密视频| 亚洲av国产av综合av卡| 一二三四中文在线观看免费高清| 久久国产精品男人的天堂亚洲| 中文欧美无线码| 五月天丁香电影| 黄色一级大片看看| 激情五月婷婷亚洲| 91成人精品电影| 波多野结衣一区麻豆| 美女国产高潮福利片在线看| 黄色一级大片看看| 国产免费视频播放在线视频| 国产有黄有色有爽视频| 国产老妇伦熟女老妇高清| 男女下面插进去视频免费观看| 黄色视频在线播放观看不卡| 91国产中文字幕| 晚上一个人看的免费电影| 国产国语露脸激情在线看| 伊人久久大香线蕉亚洲五| 精品一区二区免费观看| 国产又爽黄色视频| 夫妻午夜视频| 亚洲在久久综合| 久久韩国三级中文字幕| av.在线天堂| 国产精品熟女久久久久浪| 久久久久久久久久久久大奶| 妹子高潮喷水视频| 国产麻豆69| av在线老鸭窝| 男女国产视频网站| 亚洲国产日韩一区二区| 人妻人人澡人人爽人人| 交换朋友夫妻互换小说| 国产日韩欧美视频二区| 午夜av观看不卡| www.自偷自拍.com| 777米奇影视久久| 伊人久久大香线蕉亚洲五| 久久精品亚洲av国产电影网| 中文字幕亚洲精品专区| e午夜精品久久久久久久| 久久久久久久大尺度免费视频| 亚洲精品久久久久久婷婷小说| 超碰97精品在线观看| 国产国语露脸激情在线看| 在线观看人妻少妇| 亚洲国产中文字幕在线视频| 1024香蕉在线观看| 亚洲 欧美一区二区三区| 久久国产精品大桥未久av| 欧美国产精品va在线观看不卡| 久久久亚洲精品成人影院| 在线 av 中文字幕| 在线天堂最新版资源| 久久 成人 亚洲| 一区福利在线观看| 色吧在线观看| 中文字幕亚洲精品专区| 色精品久久人妻99蜜桃| 黑人欧美特级aaaaaa片| 国产精品香港三级国产av潘金莲 | 欧美日韩一级在线毛片| 亚洲欧美日韩另类电影网站| 国产成人精品久久二区二区91 | 国产xxxxx性猛交| 国产亚洲av片在线观看秒播厂| 精品久久久久久电影网| 精品视频人人做人人爽| 色视频在线一区二区三区| 亚洲成色77777| 色婷婷久久久亚洲欧美| av在线观看视频网站免费| 国产精品蜜桃在线观看| 操美女的视频在线观看| 考比视频在线观看| 色视频在线一区二区三区| 午夜福利,免费看| 亚洲欧洲精品一区二区精品久久久 | 国产色婷婷99| 操美女的视频在线观看| 亚洲国产精品国产精品| 久久这里只有精品19| 老汉色∧v一级毛片| 日韩一本色道免费dvd| 夜夜骑夜夜射夜夜干| 伦理电影大哥的女人| 我的亚洲天堂| 宅男免费午夜| 男女边吃奶边做爰视频| 午夜影院在线不卡| 亚洲免费av在线视频| 人人妻,人人澡人人爽秒播 | 人成视频在线观看免费观看| 日韩免费高清中文字幕av| 欧美激情高清一区二区三区 | 国产欧美日韩综合在线一区二区| 欧美在线黄色| 青青草视频在线视频观看| 黑丝袜美女国产一区| 一边摸一边抽搐一进一出视频| 国产一区二区三区av在线| 涩涩av久久男人的天堂| 一级毛片电影观看| 性高湖久久久久久久久免费观看| www日本在线高清视频| 在线观看免费日韩欧美大片| 乱人伦中国视频| 亚洲国产中文字幕在线视频| 岛国毛片在线播放| 欧美国产精品va在线观看不卡| 91国产中文字幕| 男女午夜视频在线观看| 久久久久人妻精品一区果冻| 波野结衣二区三区在线| 黄色视频在线播放观看不卡| 日本一区二区免费在线视频| 秋霞伦理黄片| 在线观看免费高清a一片| 纵有疾风起免费观看全集完整版| 女人被躁到高潮嗷嗷叫费观| 最近的中文字幕免费完整| av福利片在线| 精品视频人人做人人爽| 国精品久久久久久国模美| 最近最新中文字幕大全免费视频 | 亚洲第一青青草原| 好男人视频免费观看在线| 男女边摸边吃奶| 自线自在国产av| √禁漫天堂资源中文www| 欧美日本中文国产一区发布| 亚洲一区中文字幕在线| 看非洲黑人一级黄片| 精品一区二区三卡| 国产av国产精品国产| 欧美xxⅹ黑人| 老司机靠b影院| 自拍欧美九色日韩亚洲蝌蚪91| 精品少妇黑人巨大在线播放| 五月天丁香电影| 美女主播在线视频| 成年动漫av网址| av国产精品久久久久影院| 高清黄色对白视频在线免费看| 亚洲精品成人av观看孕妇| 国产一区二区在线观看av| 国产精品国产av在线观看| 9191精品国产免费久久| 亚洲精品自拍成人| 男女午夜视频在线观看| 国产精品女同一区二区软件| 亚洲欧美精品自产自拍| 女的被弄到高潮叫床怎么办| 亚洲精品国产一区二区精华液| 精品酒店卫生间| 国产黄色视频一区二区在线观看| 精品久久久久久电影网| 亚洲,欧美精品.| 我要看黄色一级片免费的| 午夜av观看不卡| 精品一区二区三卡| 少妇猛男粗大的猛烈进出视频| 日韩av不卡免费在线播放| 亚洲国产精品国产精品| 黑人欧美特级aaaaaa片| 亚洲欧美精品自产自拍| 中文字幕制服av| 国产精品免费大片| 亚洲成色77777| 国产日韩欧美视频二区| 亚洲成国产人片在线观看| 精品少妇黑人巨大在线播放| 亚洲国产精品成人久久小说| 日本wwww免费看| 亚洲第一青青草原| 国产精品久久久久成人av| 观看av在线不卡| 一区二区日韩欧美中文字幕| 久久精品国产综合久久久| 国产精品偷伦视频观看了| 免费少妇av软件| 国产成人免费无遮挡视频| 久久久久久久久久久久大奶| 十八禁高潮呻吟视频| 91老司机精品| 国产精品久久久久久人妻精品电影 | 一个人免费看片子| 一边亲一边摸免费视频| 久久天堂一区二区三区四区| 国产一区二区 视频在线| 欧美人与善性xxx| 黄色毛片三级朝国网站| 日韩熟女老妇一区二区性免费视频| 大片免费播放器 马上看| 人体艺术视频欧美日本| 久久久久网色| 国产精品 国内视频| 天堂俺去俺来也www色官网| 国产精品一国产av| 亚洲精品一区蜜桃| 精品久久蜜臀av无| 国产午夜精品一二区理论片| 校园人妻丝袜中文字幕| 黑丝袜美女国产一区| 亚洲欧美中文字幕日韩二区| 丝袜人妻中文字幕| 亚洲国产成人一精品久久久| 中国三级夫妇交换| 人妻 亚洲 视频| 校园人妻丝袜中文字幕| 香蕉丝袜av| 国产精品免费视频内射| 男人操女人黄网站| 老熟女久久久| 在线观看三级黄色| 久久亚洲国产成人精品v| 91精品国产国语对白视频| 精品国产一区二区三区久久久樱花| 热99国产精品久久久久久7| 麻豆av在线久日| 国产精品蜜桃在线观看| 亚洲精品乱久久久久久| 精品人妻在线不人妻|