• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    飛秒泵浦-探測(cè)激光場(chǎng)中NaI 解離和電離的場(chǎng)依賴

    2022-02-15 11:52:56郭瑋陳曉芳路興強(qiáng)
    光子學(xué)報(bào) 2022年12期
    關(guān)鍵詞:泵浦飛秒煙臺(tái)

    郭瑋,陳曉芳,路興強(qiáng)

    (1 煙臺(tái)大學(xué) 核裝備與核工程學(xué)院,山東 煙臺(tái) 264005)

    (2 山東大學(xué) 前沿交叉科學(xué)青島研究院 分子科學(xué)與工程研究院,山東 青島 266237)

    0 Introduction

    With the advances in ultra-strong and ultra-short laser pulses,many research works have concentrated on the real-time control of molecular dynamics.Apart from plotting the wave packet dynamics data of electronic state,the state population is also capable of reflecting the excitation,dissociation and ionization of molecules.By controlling the wave packet evolution,the state population can be manipulated,thereby facilitating the optical control over the molecular processes experimentally.

    NaI molecule is a typical molecule with an avoided crossing between two nonadiabatically coupled electronic states at the internuclear separationRx=0.693 nm,and has been studied for monitoring wave packet evolution experimentally and theoretically.Some studies have considered photoelectron spectra.For instance,BRAUN M et al[1]introduced that for the NaI molecule,periodical motion of the wave packets on the electronic state potentials is possible,which results in the periodic fluctuation in the spectral of photoelectrons ARASAKI Y et al[2,3],TAKATUKA K et al[4],YAO H B et al[5]and LIU Y F et al[6]explored how the pump-probe pulse delay duration affects the photoelectron spectra of NaI.They proposed that the photoelectron spectrum can be used to map the bifurcation of the wave packets via the crossing region.Although the photoelectron spectrum offers the significant plotting of the exited state movement of wave packets and ionization yields,it is not enough to reflect the excitation,dissociation as well as ionization processes of molecules.

    Some studies have presented some additional data.JOUVET C et al[7],CHARRON E et al[8]and MIAO X Y et al[9]explored the femtosecond dynamics of NaI photoionization and dissociative photoionization experimentally or theoretically.ROSE T S et al[10]experimentally studied the predissociation dynamics of NaI molecules with the use of Femtosecond Transition-state Spectroscopy(FTS)and examined the impact of laser wavelength and intensity on the dynamics of the dissociation.Moreover,the findings with classical and quantum mechanical calculations were compared in detail.ENGEL V et al[11-13]studied the predissociation dynamics of NaI molecules using LIF(laser-induced fluorescence)technique,and examined the LIF signal dependence on the pump and probe pulses properties(laser wavelength and pulse width).LIU Y X et al[14,15],HAN Y C et al[16]and SUN Z P et al[17]proposed that NaI predissociation at the laser-induced crossing can be regulated using a controlled laser pulse(in addition to pump and probe pulses).Besides,the influences of the control pulse's delay time,intensity,frequency,carrier-envelope phase,and chirping on the predissociation dynamics were discussed.YAO H B et al[18]and GUO X Q et al[19,20]investigated the impact of pump wavelength,pulse width,and pulse profile on the dissociation probabilities following the initial passage through the crossing zone when the pump and probe pulse widths were varied at the same time.According to MA X G et al[21],several wavelength regions can efficiently trigger the excitation and photoionization.

    The aforementioned literature mainly includes the photoelectron spectrum,the competitive ionization channel and the predissociation dynamics of the first passage through the crossing region.Herein,this work focuses on the study of the respective parameter effects of pump and probe pulses on the probabilities of excitation and ionization,and the total probability of dissociation of NaI molecules.By appropriately changing the laser parameters,the population in each state can be controlled,and so can the excitation,dissociation and ionization probabilities,which will benefit the molecular spectroscopy and light manipulation of molecular processes.This paper presents new and complete data on the influence of the laser parameters on the excitation,dissociation,and ionization by pump-probe pulses of NaI molecular by using time-dependent quantum wave packet method.

    1 Computation details

    The computational details,described elsewhere[2,14-16],are outlined here.Fig.1 depicts the potential energy graphs for the NaI molecule in our quantum calculation[11,13].A femtosecond pump laser pulse prepares a wave packet on the covalent excited state(A),nonadiabatically coupling the ionic ground state(X)atRx=0.693 nm.Besides,the production from the covalent/ionic channel is ionized by a time-delayed probe pulse,and can derive emitted photoelectron from the ionic ground state(I).Additionally,the ionic channel describes a process of nonadiabatic transition,whereas the covalent channel depicts a process of dissociation,i.e.,predissociation.

    Fig.1 Potential energy graphs

    The core of the time-dependent quantum wave packet method is to solve the time-dependent Schr?dinger equation.The time-dependent wave packet method has many advantages.In addition to the efficient numerical calculation,this method provides definite physical meanings and intuitive image for the dynamic.And it has the intuition of classical mechanics and no lack of accuracy of quantum mechanics.Besides,the time-dependent wave packet method is especially suitable for the study of molecular evolution after excitation by femosecond laser pulse,thus it becomes a powerful tool for the research of molecular photoionization problems[2,14-16].

    Solving the three-state-coupled time-dependent Schr?dinger equation yields the nuclear wave functions.

    whereΨX,ΨAandΨIrepresent the wave functions for three states(X,A,andI),respectively.Ris the internuclear separation andmis the reduced mass.

    We can discretize the state of ionization continuum state into multiple levels of quasi-continuum.Accordingly,the wave functionΨIcan be written as

    whereEI,l=(l-1)ΔEI(l=1,2,...,n) is the emitted photoelectron energy,ndenotes the discrete state counts of the NaI ion.Apparently,the value range ofEI,lis 0~1.2 eV,while the value ofnis assigned as 120.

    In the dimensions of(n+2)×(n+2),where the number of discrete states isnand the number of bound states is 2,the potential matrixV(R,t).

    whereVX,VAandVIare the potential matrix elements of three states in the scenario without laser field.VXAis the nonadiabatic coupling element.The nonzero elements for off-diagonal matrix are the coupling between two states via external laser field,are given as follows

    whereμare the transition dipole moments,e1ande2are the pulse amplitudes,ω1andω2are the angular frequencies.f1(t) andf2(t) are the pulse profiles and take the Gaussian form

    whereτrefers to the FWHM(full width at half maximum)of pulse and Δtindicates the pump-probe delay time.

    Split-operator fast-Fourier methods are used for solving the time-dependent Schr?dinger equation[2,14-16],wherein the state population can be determined following the earlier studies[6,8-9,16,18-20,22]

    We take the transition dipole moments from Ref.[8].The nonadiabatic coupling element is taken from Refs.[19,11].The pump wavelength is taken 268-368 nm around the resonance wavelength 328 nm(3.78 eV[1]).The wave packet moves between the internal(R=0.27 nm,markedain Fig.1)and the external turning points(R=1.1 nm,markedbin Fig.1).The ionization occurs when the probe photon energy is greater than the ionization energy at the internuclear distanceRbetweenaandb.The probe wavelength is taken 190~270 nm around 240 nm(corresponding to the maximum potential energy difference 5.14 eV between the potentials of statesX/AandI[13])to guarantee ionization.Laser intensities and pulse widths are 1.0×1011~1.0×1015W/cm2and 10~200 fs,respectively.A complete motion period of the wave packet is about 1 000 fs(see Fig.2 below),and the time delay of 3 000 fs is taken for completely observing more periods.

    2 Results and discussions

    Fig.2 shows the evolutions of wave packet motions((a)and(b))and state populations((c)and(f))when the laser parameters are as follows:pump intensityI1=5.0×1012W/cm2=5I0(I0=1.0×1012W/cm2),probe intensityI2=5I0,pump wavelengthλ1=328 nm,probe wavelengthλ2=228 nm,pump and probe pulse widthsτ1=τ2=30 fs,and time delay Δt=3 000 fs.The wave packet moves periodically between the internal and external turning points with an oscillation period of 1 000 fs.The excited state population following excitation from the ground state isPA(peak1 in Fig.2(d)).On the excited state,the outward motion of wave packets hit the crossing point(Rx=0.693 nm)at 180 fs and bifurcates due to the nonadiabatic couplingVXA.Although the majority(populationPX)of the wave packets pass to the ground state(Fig.2(a)),a slight portion(populationPA-PX)exhibits irreversible motion towards a long internuclear distance in the excited state(Fig.2(b)).This leads to dissociate into Na and I atoms,ultimately elevating the ground state population to 1-PA+PX(Fig.2(c)),and diminishing the excited state population toPA-PX,which can eventually reach 0 because of the dissociation(Fig.2(d)).Moreover,the sum of populations of three states declines to 1-PA+PX(Fig.2(f)).As defined and discussed in previous reports,(PA-PX)/PAreflects the predissociation probability following the initial passage through the crossing zone[14-20].On the ground state,the wave packets hit the external turning point(R=1.24 nm)at 500 fs,which split again after returning to the crossing point at 800 fs.At this point,most(populationP'A)shift to the excited state,while a slight portion(populationPX-P'A,peak2 in Fig.2(d))remains on the ground state.On the excited state,the wave packets hit the internal turning point(R=0.27 nm)at 1 000 fs,finishing one periodic movement.Thereafter,the second period commences,and the wave packets repeat the identical process continually.Apart from that,the wave packet passes the ioniccovalent crossing point twice per cycle.The predissociation mechanism occurs at the crossing point due to the nonadiabatic coupling.The heights of the four successive peaks decrease successively,i.e.,P'A<PA,indicating the dissociation in each passage via the crossing zone as the delay duration is prolonged,which agrees with the ion signal-based results[2,13].

    Fig.2 The evolutions of wave packet motions and state populations

    After about three periodical motions(3 000 fs),the probe laser is present,and the population of the ionization state enhances toPI(Fig.2(e)),while the sum of populations of three states decreases toPS(Fig.2(f)).The total dissociation probability after three back and forth crossings is(1-PS)/PA.The femtosecond laser conditions for controlling the excitation,dissociation and ionization can be obtained by analyzing the effects of femtosecond laser parameters on excitation populationPA,total dissociation probability(1-PS)/PA,and ionization probabilityPI/PAof NaI.

    Fig.3 demonstrates state populationsPA,1-PS,andPI,the probabilitiesPI/PAand(1-PS)/PA,and the pathway ratio(1-PS)/PIat different delay times(0~3 000 fs)when other laser parameters as in Fig.2.It can be observed that in the excited state,the population is not affected by the delay time.As the delay time is prolonged,the dissociation becomes more possible,whereas the ionization turns more impossible.The longer the delay time,the longer the duration of wave packet movement prior to the ionization.Accordingly,the crossing point is reached multiple times by the wave packet,so that more wave packets are dissociated into the Na and I atoms.Besides,the onset time for photodissociation is 300 fs and the photodissociation enhances with the enhancement of delay time.The obtained findings are in consistence with those of MIAO X Y et al[22].The pump-probe delay time evolution of the total dissociation probability reveals a series of increasing stair-stepped plateaus,which are indicative of the individual parts of the wave packet reaching the asymptotic region i.e.,discontinuous dissociation process.The asymptotic zone(R=1.06 nm)can be arrived at by the first portion of wave packet around 300 fs due to the bifurcation at its initial passage through the crossing point,and till 1 200 fs,the asymptotic region is occupied by this portion of wave packet only.At around 1 300 fs,the asymptotic region is arrived at by a second wave packet,and till 2 300 fs,and the presence of 2 well-branchedwave packets is noted inside the asymptotic zone.As a result,the regular steps reflect these well-branched wave packets that are dissociating[23].

    Fig.3 The state populations,the probabilities and the pathway ratio at different delay times

    The effects of the laser intensity on excitation,dissociation and ionization are investigated.Figs.4(a)~4(c)show state populationPA,1-PS,andPI,probabilitiesPI/PAand(1-PS)/PA,and pathway ratio(1-PS)/PIvs.pump laser intensityI1.Other laser parameters are:I2=5I0,λ1=328 nm,λ2=228 nm,τ1=τ2=30 fs.The results reveal an increase in the excitation,marginally decrease in dissociation probability,and marginally increase in ionization probability with the increase of pump laser intensities.The FTS signal intensity is linear with the pump pulse intensities(over a reasonable range)and the off-resonant FTS transient shape is independent of the pump intensity,which indicates the invariance of the dissociation probability to pump intensity[10,24].SUN et al suggested that the dissociation probability after the first passage of the curve crossing is nearly independent of the pump intensity[17].However,our result appears to be different with the result of SUN et al,which can be due to the examination of a wide range(1011~1015W/cm2)of pump intensities that is far wider than those in previous reports.It can be observed from the Fig.4(c)that the pathway ratio decreases with the increase of the pump laser intensity.

    Figs.4(d)~4(f)show thePA,1-PS,PI,PI/PA,(1-PS)/PA,and(1-PS)/PIvs.probe laser intensityI2.Other laser parameters are:I1=5I0,λ1=328 nm,λ2=228 nm,τ1=τ2=30 fs.It is observed that the probe laser intensity has not affected excitation and dissociation.The intensity of FTS transients is linear with the probe pulse intensities(over a reasonable range)and the off-resonant FTS transient shape is independent of the probe intensity,which indicates the invariance of the dissociation probability with the probe intensity[10].Our result is consistent with previous reports.The ionization probability increases as the probe laser intensity enhances,whenI2<10I0,and it does not change whenI2≥10I0,i.e.,ionization saturation.The ionization is lower than the dissociation,whenI2<3I0,but is larger than the dissociation whenI2≥3I0.It can be observed from Fig.4(f)that the pathway ratio decreases with increasing pump laser intensities.The ratio,however,has no change when the intensity is above 1.0×1013W/cm2.

    Fig.4 State populations,the probabilities and the pathway ratio for various pump/probe laser intensities

    The dependence of excitation,dissociation and ionization on the laser wavelength is examined.Figs.5(a)~5(c)showPA,1-PS,PI,PI/PA,(1-PS)/PA,and(1-PS)/PIvs.pump laser wavelengthλ1(278~368 nm).Other laser parameters are:I1=I2=5I0,λ2=228 nm,τ1=τ2=30 fs.With the increase in pump wavelength,the excited state population increases initially and then decreases,reflecting the resonant region of 313~328 nm.An increase in the wavelength(278~368 nm)monotonically drops the dissociation probability,which is consistent with the result obtained from the FTS measurements and the dissociation probability associates with the wave packet propagation velocity[10].This is because a pulse with shorter wavelength,i.e.,the higher energy,causes a wave packet with a higher velocity at the crossing point,increasing the predissociation.The tendency of the increasing ionization probability with the increasing pump wavelengths is consistent with the conclusion obtained from the NaI+signal[8].The dissociation is higher than the ionization whenλ1≤323 nm,while it is lower than the ionization whenλ1>323 nm.It can be observed from Fig.5(c)that the pathway ratio decreases when pump wavelengths increase.Figs.5(d)~(f)exhibit thePA,1-PS,PI,PI/PA,(1-PS)/PAand(1-PS)/PIvs.probe wavelengthλ2.Other laser parameters are:I1=I2=5I0,λ1=328 nm,τ1=τ2=30 fs.The probe laser wavelength has no effect on excitation and dissociation.This is manifested by that the shape of the FTS transient is essentially independent of the probe wavelength experimentally[10].The ionization probability initially increases,later remains constant,and finally decreases with the increase of probe laser wavelength.The peaks corresponding to a longer probe wavelength decay faster than those corresponding to a shorter probe wavelength in the Na+signal,indicating the decrease in ionization with the increasing probe wavelengths(248~302 nm)[13].The ionization is lower than the dissociation whenλ2<210 nm/λ2>244 nm,while it is larger than the dissociation when 210 nm≤λ2≤244 nm.This indicates that the region of the probe wavelength 210~244 nm efficiently triggered the photoionization process,which is an expected wavelength region for triggering ionization indicated in Ref.[21].It can be confirmed that in the region of 210~244 nm,NaI molecules are promoted to some ionic continuum states(0~1.2 eV).

    Fig.5 State populations,the probabilities and the pathway ratio for various pump/probe laser wavelengths

    The impact of the laser pulse width on excitation,dissociation,and ionization is also examined.Figs.6(a)~(c)showPA,1-PS,PI,PI/PA,(1-PS)/PA,and(1-PS)/PIvs.pump pulse widthτ1(10~200 fs).Other laser parameters are:I1=I2=5I0,λ1=328 nm,λ2=228 nm,τ2=30 fs.The population of excitation,dissociation,and ionization all increase with the increase of the pump pulse width,because the increase of the pulse width means the increase of the laser on time,which will increase the population[11].The dissociation probability decreases slightly and the ionization probability enhances slightly with enhancing pump pulse width forτ1<100 fs.This is in consistence with the result acquired from the LIF signal[11,12,25].The dissociation probability increases slightly and the ionization probability reduces slightly with rising pump pulse width for 100 fs≤τ1≤180 fs.The dissociation probability associates with the propagation velocity[10]and time taken for passing through the crossing zone[11].The larger the propagation velocity[10]or the longer the time spends in the crossing region[11],the higher the dissociation probability.These two processes coexist and compete.If propagate velocity dominates,a lower dissociation probability for longer pulse width is anticipated,owing to longer pulses indicative of lower laser energy,which can cause a wave packet with low velocity at the crossing point,decreasing the predissociation.It is clearly the case in our results for shorter pulse widths(τ1<100 fs).If the propagated time dominates,this should result in a larger dissociation probability for longer pulse width,because a longer pulse causes a wider wave packet in spatial terms,and accordingly,longer time is consumed through the crossing zone,leading to a relative larger dissociation probability.It is the case in our results for longer pulse widths(100 fs≤τ1≤180 fs).Whenτ1>180 fs,the sum of the dissociation probability and the ionization probability is more than 1(Fig.6(b)).In other words,the sum of the dissociation population and the ionization population is more than the excited state population.The reason is that multi-time excitation of the molecules is probable when the pulse width is broad.According to Fig.6(c)that the pathway ratio exhibits a decline when the pump pulse widens forτ1<100 fs,and it increases with the increase of the pump pulse width for 100 fs≤τ1≤180 fs.Figs.6(d)~(f)show thePA,1-PS,PI,PI/PA,(1-PS)/PA,and(1-PS)/PIvs.probe pulse widthτ2.Other laser parameters are:I1=I2=5I0,λ1=328 nm,λ2=228 nm,τ1=30 fs.The population of ionization increases as the probe pulse width enhances due that the increase of the pulse width means the increase of the laser on time,which will increase the population[11].The ionization probability increases with the rise of the probe pulse width whenτ2<100 fs,and it shows no significant change whenτ2≥100 fs,i.e.,ionization saturation.The ionization is lower than the dissociation whenτ2<20 fs,while is larger than the dissociation whenτ2≥20 fs.It can be observed from Fig.6(f)that the pathway ratio initially decreases and then does not change with the increase of the pump pulse width.

    Fig.6 State populations,the probabilities and the pathway ratio for various pump/probe pulse widths

    3 Conclusion

    The wave packet dynamics of nonadiabatic coupling NaI molecule driven by a pump-probe pulse is investigated via a time-dependent wave packet approach.The impacts of pump and probe laser parameters on the excitation,dissociation and ionization are studied in detail and are analyzed quantitatively.The excitation and dissociation are affected only by the pump laser,while the ionization is affected by both the pump and the probe lasers.Combined the discussion above,the seemingly counterintuitive understanding:the pump pulse affects the ionization probability,can be clarified.The pump laser parameters affect the dissociation of the wave packets moving between the internal and external points before the probe pulse appears.Then ionization may occur when the probe pulse appears at 3 000 fs.The ionization follows the general understanding of photoionization:ionization occurs when the photon energy is greater than the ionization energy,and the ionization probability is determined by the ionization dipole moment at the internuclear distanceRfor the delay time of 3 000 fs.In other words,due to the competition of dissociation and ionization,the pump pulse affects the wave packets before ionization through affecting the dissociation,thus affects the ionization.This provides an additional control means for controlling ionization,and even in a very effective way.For example,the pump laser wavelength can effectively control the ionization.

    The excitation probability of molecules can be selected by adjusting pump laser parameters.For instance,in order to obtain a higher excitation probability,the pump laser field needs to work under a stronger laser intensity,longer pulse duration(<180 fs),and resonant region(303~328 nm).

    The control of the dissociation probability of molecules can be possible by adjusting pump laser parameters.For example,with the purpose of acquiring a higher dissociation probability,the pump laser field needs to work under a stronger laser intensity,shorter pulse duration,near-resonant region(303~328 nm),and longer delay time.

    The control of the ionization probability of molecules can be done by adjusting the pump and probe laser parameters.For example,in order to obtain a higher ionization probability,the pump laser field needs to work under a stronger laser intensity,longer pulse duration(<180 fs),and near-resonant region(303~328 nm).The probe laser field must operate with higher laser intensity,longer pulse duration,a wavelength range of 210~244 nm,and a shorter delay time.

    The dissociation and ionization coexist and compete.The dissociation dominates whenI2<3I0,λ1<323 nm,λ2<210 nm/λ2>244 nm,τ2<20 fs.The ionization dominates whenI2≥3I0,λ1≥323 nm,210 nm≤λ2≤244 nm,τ2≥20 fs.

    Apart from being vital for the molecular spectroscopy,the obtained novel findings also contribute to attaining an optical molecular control in experimental settings,as well as providing some essential foundation for future theoretical research in this area.

    猜你喜歡
    泵浦飛秒煙臺(tái)
    全飛秒與半飛秒的區(qū)別
    人人健康(2021年16期)2021-12-01 07:08:33
    《煙臺(tái)果樹》征稿簡章
    煙臺(tái) 身在蓬萊就是仙
    煙臺(tái)優(yōu)利機(jī)電設(shè)備制造有限公司
    基于飛秒激光的固體危化品切割機(jī)床設(shè)計(jì)與開發(fā)
    鮮美煙臺(tái) 四月芳菲
    走向世界(2019年18期)2019-08-16 13:06:02
    溴丙烯在800nm和400nm飛秒激光強(qiáng)場(chǎng)下的解離電離
    基于980nm泵浦激光器的恒溫驅(qū)動(dòng)設(shè)計(jì)
    電子制作(2018年9期)2018-08-04 03:30:54
    LD面陣側(cè)面泵浦Nd:YAG光場(chǎng)均勻性研究
    N d:Y A G電光調(diào)Q泵浦固體激光器輸出特性研究
    av在线app专区| 18禁在线无遮挡免费观看视频| 亚洲精品色激情综合| www.熟女人妻精品国产 | 亚洲中文av在线| 久久免费观看电影| 免费av中文字幕在线| 咕卡用的链子| 国产亚洲av片在线观看秒播厂| 亚洲,欧美,日韩| 日韩人妻精品一区2区三区| 国产一区亚洲一区在线观看| www日本在线高清视频| 亚洲美女搞黄在线观看| 女性生殖器流出的白浆| 一级毛片 在线播放| 久久国产亚洲av麻豆专区| 免费看av在线观看网站| 久久久久精品人妻al黑| 18在线观看网站| 高清av免费在线| 国产在视频线精品| 国产成人精品一,二区| 黑丝袜美女国产一区| 日韩伦理黄色片| 大码成人一级视频| 激情五月婷婷亚洲| 美女国产视频在线观看| 色婷婷av一区二区三区视频| 国产亚洲欧美精品永久| 夫妻午夜视频| av天堂久久9| 精品国产国语对白av| 高清毛片免费看| 国产欧美亚洲国产| 美女国产视频在线观看| 99香蕉大伊视频| 久久久精品免费免费高清| 大陆偷拍与自拍| 亚洲国产av影院在线观看| 亚洲 欧美一区二区三区| 麻豆精品久久久久久蜜桃| 久热这里只有精品99| 免费观看av网站的网址| 久久人人爽人人爽人人片va| 最近2019中文字幕mv第一页| 国产精品不卡视频一区二区| 国产 一区精品| 在线观看美女被高潮喷水网站| 国产69精品久久久久777片| 午夜免费男女啪啪视频观看| 国产一区二区三区av在线| 综合色丁香网| 久久人人97超碰香蕉20202| 亚洲精品美女久久av网站| 黄片无遮挡物在线观看| 亚洲精品久久午夜乱码| 久久人人97超碰香蕉20202| 看十八女毛片水多多多| 视频区图区小说| 免费观看无遮挡的男女| 高清在线视频一区二区三区| 大话2 男鬼变身卡| 高清av免费在线| 亚洲欧美中文字幕日韩二区| 亚洲精品一二三| av在线观看视频网站免费| 久久久精品94久久精品| 久久99热6这里只有精品| 欧美日韩国产mv在线观看视频| 中文乱码字字幕精品一区二区三区| 九色亚洲精品在线播放| 下体分泌物呈黄色| 欧美亚洲日本最大视频资源| 激情视频va一区二区三区| 99热6这里只有精品| 免费黄色在线免费观看| 国产成人欧美| 九九爱精品视频在线观看| 青春草视频在线免费观看| 精品少妇黑人巨大在线播放| 亚洲欧美精品自产自拍| 制服诱惑二区| 日韩中文字幕视频在线看片| 黑人欧美特级aaaaaa片| 久久精品国产综合久久久 | 国产一区二区激情短视频 | 久久精品国产自在天天线| 91在线精品国自产拍蜜月| 欧美 日韩 精品 国产| 久久久久精品人妻al黑| 国产精品国产三级国产av玫瑰| 2021少妇久久久久久久久久久| 日韩视频在线欧美| 国产精品偷伦视频观看了| 人人澡人人妻人| 国产精品久久久久久久久免| 人人妻人人澡人人爽人人夜夜| 久久这里只有精品19| 亚洲综合精品二区| 精品一区二区三卡| 国产一区二区三区av在线| 精品少妇久久久久久888优播| 久热久热在线精品观看| 国产熟女欧美一区二区| 欧美精品av麻豆av| 高清黄色对白视频在线免费看| 欧美日韩综合久久久久久| 成人国产av品久久久| 国产成人免费观看mmmm| 久久精品国产综合久久久 | 两个人看的免费小视频| 婷婷成人精品国产| 香蕉丝袜av| 亚洲综合色网址| 午夜激情av网站| 人妻一区二区av| 亚洲天堂av无毛| 毛片一级片免费看久久久久| 男女无遮挡免费网站观看| 精品福利永久在线观看| 国产精品一区二区在线不卡| 18禁动态无遮挡网站| 久久久久久久久久人人人人人人| 国产国拍精品亚洲av在线观看| 欧美精品亚洲一区二区| 尾随美女入室| 亚洲伊人久久精品综合| 最近2019中文字幕mv第一页| 少妇高潮的动态图| 久久人人爽人人爽人人片va| 黄色 视频免费看| 国产白丝娇喘喷水9色精品| 亚洲精品乱久久久久久| 99热全是精品| 黑丝袜美女国产一区| 啦啦啦在线观看免费高清www| 熟女人妻精品中文字幕| 女人久久www免费人成看片| 菩萨蛮人人尽说江南好唐韦庄| 国产精品熟女久久久久浪| 免费人成在线观看视频色| 亚洲少妇的诱惑av| 永久网站在线| 成人影院久久| 亚洲伊人色综图| 亚洲欧美一区二区三区黑人 | 97人妻天天添夜夜摸| 少妇的逼水好多| 波多野结衣一区麻豆| 国产成人a∨麻豆精品| 老女人水多毛片| 母亲3免费完整高清在线观看 | 成人无遮挡网站| 国产色爽女视频免费观看| 天天操日日干夜夜撸| 久久午夜综合久久蜜桃| 亚洲av在线观看美女高潮| 你懂的网址亚洲精品在线观看| 亚洲欧洲日产国产| 亚洲av综合色区一区| 大陆偷拍与自拍| 色哟哟·www| 啦啦啦啦在线视频资源| 国产熟女欧美一区二区| 日韩成人av中文字幕在线观看| 熟妇人妻不卡中文字幕| 亚洲一区二区三区欧美精品| 国产成人免费无遮挡视频| 亚洲第一av免费看| 日本色播在线视频| 人妻少妇偷人精品九色| videosex国产| 男女高潮啪啪啪动态图| 九九爱精品视频在线观看| 满18在线观看网站| 黄色怎么调成土黄色| 亚洲精品一区蜜桃| 免费高清在线观看视频在线观看| 夜夜骑夜夜射夜夜干| 成人午夜精彩视频在线观看| 国产精品久久久久久久电影| 两性夫妻黄色片 | 久久久欧美国产精品| 国产欧美日韩综合在线一区二区| 欧美日韩av久久| 亚洲在久久综合| av片东京热男人的天堂| 另类精品久久| 男女下面插进去视频免费观看 | 久久久久久久久久人人人人人人| 91久久精品国产一区二区三区| 欧美成人精品欧美一级黄| 国产有黄有色有爽视频| 视频区图区小说| 国国产精品蜜臀av免费| 欧美少妇被猛烈插入视频| 久久国产亚洲av麻豆专区| 欧美xxⅹ黑人| 亚洲国产欧美在线一区| 国产老妇伦熟女老妇高清| 国产成人精品一,二区| 永久网站在线| 免费不卡的大黄色大毛片视频在线观看| 卡戴珊不雅视频在线播放| 青春草国产在线视频| 国产又色又爽无遮挡免| 亚洲精品视频女| 99香蕉大伊视频| 九色成人免费人妻av| 久久久久久人人人人人| 日韩一本色道免费dvd| 久久韩国三级中文字幕| 秋霞伦理黄片| 国产成人91sexporn| 国产精品99久久99久久久不卡 | 少妇人妻精品综合一区二区| 亚洲欧美成人精品一区二区| 亚洲av.av天堂| 99热全是精品| 免费女性裸体啪啪无遮挡网站| 美女xxoo啪啪120秒动态图| 精品亚洲成a人片在线观看| 亚洲精品视频女| 欧美日韩国产mv在线观看视频| kizo精华| 少妇的丰满在线观看| a级毛色黄片| 免费观看在线日韩| 国产成人免费无遮挡视频| 成人午夜精彩视频在线观看| av又黄又爽大尺度在线免费看| 成人二区视频| 丝袜人妻中文字幕| 国产精品久久久久成人av| 午夜福利,免费看| 日韩大片免费观看网站| 国产精品久久久久久精品古装| 国产精品久久久久久久电影| 观看美女的网站| 一级爰片在线观看| www.色视频.com| 建设人人有责人人尽责人人享有的| 亚洲成人av在线免费| 中文字幕最新亚洲高清| 久久99热这里只频精品6学生| 久久综合国产亚洲精品| 少妇被粗大的猛进出69影院 | 国产精品国产三级国产专区5o| 国产熟女欧美一区二区| 嫩草影院入口| 免费大片黄手机在线观看| 夫妻午夜视频| 国产xxxxx性猛交| 一区在线观看完整版| 日韩欧美精品免费久久| 欧美激情极品国产一区二区三区 | 看十八女毛片水多多多| 91在线精品国自产拍蜜月| 人妻 亚洲 视频| 制服诱惑二区| 国产黄色视频一区二区在线观看| 亚洲中文av在线| 国产精品一区二区在线不卡| 人妻 亚洲 视频| 成人国语在线视频| 丝瓜视频免费看黄片| 日本与韩国留学比较| 一级毛片我不卡| 欧美+日韩+精品| 亚洲一级一片aⅴ在线观看| 女人被躁到高潮嗷嗷叫费观| 香蕉国产在线看| 老司机影院成人| 90打野战视频偷拍视频| 在线观看美女被高潮喷水网站| 久久这里有精品视频免费| 看非洲黑人一级黄片| 99热全是精品| 男女边摸边吃奶| 亚洲四区av| 久久久久国产网址| 亚洲国产精品一区三区| 80岁老熟妇乱子伦牲交| 中文精品一卡2卡3卡4更新| 老熟女久久久| 欧美bdsm另类| 日韩一区二区三区影片| 久久免费观看电影| 欧美精品亚洲一区二区| av网站免费在线观看视频| av国产精品久久久久影院| 青春草视频在线免费观看| 亚洲av男天堂| av黄色大香蕉| 久久精品久久久久久噜噜老黄| 国产亚洲一区二区精品| 一级,二级,三级黄色视频| 大香蕉97超碰在线| 亚洲第一区二区三区不卡| 国产1区2区3区精品| 高清视频免费观看一区二区| 亚洲情色 制服丝袜| 亚洲三级黄色毛片| 国产精品人妻久久久影院| 精品亚洲乱码少妇综合久久| 久久亚洲国产成人精品v| 亚洲第一区二区三区不卡| 毛片一级片免费看久久久久| 免费大片黄手机在线观看| 在线观看国产h片| 午夜影院在线不卡| 亚洲成国产人片在线观看| 国产欧美日韩一区二区三区在线| 蜜臀久久99精品久久宅男| 国产精品嫩草影院av在线观看| 久久国产精品大桥未久av| 黄色怎么调成土黄色| 18禁国产床啪视频网站| 精品久久国产蜜桃| 久久久精品免费免费高清| 一级片'在线观看视频| 高清在线视频一区二区三区| 日日撸夜夜添| 日日啪夜夜爽| 亚洲国产av新网站| 亚洲国产精品国产精品| 久久久久精品久久久久真实原创| 晚上一个人看的免费电影| freevideosex欧美| 建设人人有责人人尽责人人享有的| 久久免费观看电影| 99热6这里只有精品| 国产永久视频网站| 狂野欧美激情性bbbbbb| 伊人亚洲综合成人网| 性色avwww在线观看| 女人久久www免费人成看片| 免费观看性生交大片5| 欧美人与善性xxx| 久久影院123| 日韩电影二区| 一边亲一边摸免费视频| 精品一品国产午夜福利视频| 777米奇影视久久| av在线app专区| 极品人妻少妇av视频| 自线自在国产av| 看非洲黑人一级黄片| 如何舔出高潮| 婷婷色综合大香蕉| 内地一区二区视频在线| 少妇人妻 视频| 欧美日韩亚洲高清精品| 视频区图区小说| 超碰97精品在线观看| 精品酒店卫生间| 亚洲国产欧美在线一区| 水蜜桃什么品种好| 在线精品无人区一区二区三| 亚洲欧美成人综合另类久久久| 国产欧美日韩一区二区三区在线| 精品国产露脸久久av麻豆| 制服人妻中文乱码| 九九爱精品视频在线观看| 亚洲av欧美aⅴ国产| 日日爽夜夜爽网站| 美女中出高潮动态图| 波多野结衣一区麻豆| 美女国产高潮福利片在线看| 国产一区二区激情短视频 | 中文欧美无线码| 在线观看www视频免费| 2022亚洲国产成人精品| 成人二区视频| 人人妻人人澡人人看| 晚上一个人看的免费电影| 欧美日韩精品成人综合77777| 999精品在线视频| 日本午夜av视频| 婷婷色av中文字幕| 美女主播在线视频| 自线自在国产av| 精品一区二区三区四区五区乱码 | 国产黄频视频在线观看| 欧美 日韩 精品 国产| 观看av在线不卡| 亚洲国产欧美日韩在线播放| 日韩中字成人| 日日啪夜夜爽| 亚洲av福利一区| 久久精品熟女亚洲av麻豆精品| 又粗又硬又长又爽又黄的视频| 日韩精品免费视频一区二区三区 | 久久久久久久亚洲中文字幕| 麻豆精品久久久久久蜜桃| 国产精品.久久久| 天堂8中文在线网| 久久av网站| 精品第一国产精品| 99国产精品免费福利视频| 欧美日韩视频高清一区二区三区二| 色5月婷婷丁香| 成人漫画全彩无遮挡| 亚洲欧美成人精品一区二区| 91在线精品国自产拍蜜月| 五月开心婷婷网| 在线观看免费高清a一片| 国产一区二区激情短视频 | 十八禁高潮呻吟视频| 亚洲一级一片aⅴ在线观看| 日本欧美视频一区| 精品久久国产蜜桃| 一本一本久久a久久精品综合妖精 国产伦在线观看视频一区 | 免费观看性生交大片5| 少妇高潮的动态图| 婷婷色综合www| 亚洲av日韩在线播放| 熟女人妻精品中文字幕| 欧美精品一区二区免费开放| 韩国精品一区二区三区 | 亚洲欧美成人精品一区二区| 91在线精品国自产拍蜜月| 90打野战视频偷拍视频| 老司机亚洲免费影院| 久久久久久久久久久久大奶| 亚洲精品第二区| 香蕉国产在线看| 18禁观看日本| 成人国语在线视频| 久久久精品免费免费高清| 精品第一国产精品| 久久精品人人爽人人爽视色| 99久国产av精品国产电影| 亚洲一码二码三码区别大吗| 丝袜脚勾引网站| 亚洲精品,欧美精品| 亚洲av综合色区一区| 成人国产麻豆网| 国产乱人偷精品视频| 亚洲欧洲国产日韩| 精品亚洲成国产av| 欧美另类一区| 久久精品国产亚洲av涩爱| 亚洲精品av麻豆狂野| 成人亚洲精品一区在线观看| 啦啦啦视频在线资源免费观看| 亚洲经典国产精华液单| 国产老妇伦熟女老妇高清| 这个男人来自地球电影免费观看 | 熟女人妻精品中文字幕| 亚洲色图 男人天堂 中文字幕 | 一区在线观看完整版| 亚洲av在线观看美女高潮| 五月玫瑰六月丁香| 另类亚洲欧美激情| 国精品久久久久久国模美| 亚洲中文av在线| 99香蕉大伊视频| 丁香六月天网| 精品久久国产蜜桃| 久久精品国产亚洲av涩爱| 美女福利国产在线| 永久网站在线| 丰满饥渴人妻一区二区三| 2022亚洲国产成人精品| 亚洲美女搞黄在线观看| 2018国产大陆天天弄谢| 日韩在线高清观看一区二区三区| 91精品伊人久久大香线蕉| 国产成人精品久久久久久| 欧美精品高潮呻吟av久久| 一本色道久久久久久精品综合| 一区二区日韩欧美中文字幕 | 国产亚洲精品第一综合不卡 | 大香蕉久久网| 欧美人与性动交α欧美软件 | 99热全是精品| 搡女人真爽免费视频火全软件| 欧美成人午夜免费资源| 18禁裸乳无遮挡动漫免费视频| 少妇的逼水好多| 日日爽夜夜爽网站| 亚洲第一区二区三区不卡| 一级黄片播放器| 亚洲一区二区三区欧美精品| 内地一区二区视频在线| 2018国产大陆天天弄谢| 亚洲,欧美精品.| 亚洲婷婷狠狠爱综合网| av网站免费在线观看视频| 999精品在线视频| 女人精品久久久久毛片| 亚洲精华国产精华液的使用体验| 看免费av毛片| 全区人妻精品视频| 久久99热6这里只有精品| 日韩制服骚丝袜av| 久久婷婷青草| 天美传媒精品一区二区| 成年美女黄网站色视频大全免费| 又黄又粗又硬又大视频| 人人妻人人澡人人爽人人夜夜| 又大又黄又爽视频免费| 日韩大片免费观看网站| 欧美成人精品欧美一级黄| 国产一区二区在线观看日韩| 欧美丝袜亚洲另类| 制服诱惑二区| 亚洲精品成人av观看孕妇| 纵有疾风起免费观看全集完整版| 成人无遮挡网站| av有码第一页| 中国国产av一级| 人妻 亚洲 视频| 日本猛色少妇xxxxx猛交久久| 国产一区有黄有色的免费视频| 国产麻豆69| 熟女人妻精品中文字幕| 免费高清在线观看视频在线观看| 99热6这里只有精品| 1024视频免费在线观看| 免费黄色在线免费观看| 中文精品一卡2卡3卡4更新| 久久久久久久亚洲中文字幕| 爱豆传媒免费全集在线观看| 亚洲第一av免费看| 亚洲av福利一区| 久久久精品免费免费高清| 伦理电影免费视频| 国产成人午夜福利电影在线观看| 狂野欧美激情性xxxx在线观看| 宅男免费午夜| 狂野欧美激情性xxxx在线观看| 一本一本久久a久久精品综合妖精 国产伦在线观看视频一区 | 女性生殖器流出的白浆| 亚洲成人手机| 国产男女超爽视频在线观看| 亚洲欧美清纯卡通| videosex国产| 国产精品嫩草影院av在线观看| 99视频精品全部免费 在线| 丰满少妇做爰视频| 精品国产一区二区三区久久久樱花| 毛片一级片免费看久久久久| 插逼视频在线观看| 欧美xxxx性猛交bbbb| 成人毛片a级毛片在线播放| 狂野欧美激情性bbbbbb| 国产一区二区三区av在线| 国产成人欧美| 一区在线观看完整版| 精品人妻一区二区三区麻豆| av免费在线看不卡| 亚洲欧美色中文字幕在线| 男女国产视频网站| 欧美变态另类bdsm刘玥| 久久综合国产亚洲精品| 日韩熟女老妇一区二区性免费视频| 欧美人与性动交α欧美软件 | 欧美日韩国产mv在线观看视频| 欧美日韩综合久久久久久| 久久国内精品自在自线图片| 男的添女的下面高潮视频| 亚洲国产欧美日韩在线播放| 亚洲美女视频黄频| 丝袜喷水一区| 国产片内射在线| 亚洲久久久国产精品| av国产精品久久久久影院| 国产男女超爽视频在线观看| 国产精品熟女久久久久浪| 一区二区三区精品91| 妹子高潮喷水视频| 美女主播在线视频| videos熟女内射| 国产男女内射视频| 另类亚洲欧美激情| 中文字幕av电影在线播放| 日本免费在线观看一区| a级毛色黄片| 久久久久精品久久久久真实原创| 亚洲国产精品国产精品| 精品午夜福利在线看| 成人午夜精彩视频在线观看| 国产精品女同一区二区软件| 欧美最新免费一区二区三区| 男人爽女人下面视频在线观看| 交换朋友夫妻互换小说| 婷婷色av中文字幕| 深夜精品福利| 一区二区三区精品91| 久久久久久久大尺度免费视频| 少妇人妻久久综合中文| 国产又爽黄色视频| 久久久精品94久久精品| 高清视频免费观看一区二区| 精品少妇内射三级| 黑丝袜美女国产一区| av不卡在线播放| 超色免费av| 欧美 日韩 精品 国产| 七月丁香在线播放| 精品一区二区三卡| 9色porny在线观看| 女人久久www免费人成看片| 国内精品宾馆在线| 男女边摸边吃奶| 久久久久久久大尺度免费视频| 亚洲一级一片aⅴ在线观看| 国产av一区二区精品久久| 亚洲 欧美一区二区三区| 肉色欧美久久久久久久蜜桃| 熟女人妻精品中文字幕| 五月伊人婷婷丁香|