• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Viscous effects on plasmoid formation from nonlinear resistive tearing growth in a Harris sheet

    2022-02-15 11:07:58NisarAHMADPingZHU朱平AhmadALIandShiyongZENG曾市勇
    Plasma Science and Technology 2022年1期

    Nisar AHMAD,Ping ZHU(朱平),Ahmad ALI and Shiyong ZENG(曾市勇)

    1 CAS Key Laboratory of Geospace Environment and Department of Engineering and Applied Physics,University of Science and Technology of China, Hefei 230026, People's Republic of China

    2 International Joint Research Laboratory of Magnetic Confinement Fusion and Plasma Physics, State Key Laboratory of Advanced Electromagnetic Engineering and Technology, School of Electrical and Electronic Engineering,Huazhong University of Science and Technology,Wuhan 430074,People's Republic of China

    3 Department of Engineering Physics, University of Wisconsin-Madison, Madison, Wisconsin 53706,United States of America

    4 Pakistan Tokamak Plasma Research Institute, Islamabad 44000, Pakistan

    5 Department of Plasma Physics and Fusion Engineering,University of Science and Technology of China,Hefei 230026, People's Republic of China

    Abstract In this work, the evolution of a highly unstable m=1 resistive tearing mode, leading to plasmoid formation in a Harris sheet, is studied in the framework of full MHD model using the Non-Ideal Magnetohydrodynamics with Rotation,Open Discussion simulation.Following the initial nonlinear growth of the primary m=1 island,the X-point develops into a secondary elongated current sheet that eventually breaks into plasmoids.Two distinctive viscous regimes are found for the plasmoid formation and saturation.In the low viscosity regime (i.e.Pr 1), the plasmoid width increases sharply with viscosity, whereas in the viscosity dominant regime (i.e.Pr 1), the plasmoid size gradually decreases with viscosity.Such a finding quantifies the role of viscosity in modulating the plasmoid formation process through its effects on the plasma flow and the reconnection itself.

    Keywords: viscosity, reconnection, plasmoids, Prandtl number

    1.Introduction

    Plasmoid instability(PI)is known to develop on the elongated current sheet formed during the externally driven Sweet–Parker(SP) reconnection, or from the intrinsically growing nonlinear kink or tearing mode.In general, when the aspect ratio of the elongated current sheet becomes sufficiently large, unstable secondary tearing can lead to the formation of plasmoids[1–5].The problem of the transition from the laminar reconnection during the early nonlinear stage, to the subsequent highly unstable one, characterized by sporadic production of plasmoids inside the sheet itself, with faster average reconnection rates, has been addressed by a number of past numerical and theoretical studies [6, 7], in the context of PIs following the externally driven SP reconnection [8–12], or the intrinsically nonlinear tearing mode[2,13–15],on the scaling and dynamics of plasmoid formation with different Lundquist numbers.

    Previous studies have found the critical roles of plasma flow in the processes of reconnection in general and plasmoid formation in particular[16–21].Whereas the plasma outflow is stabilizing on the primary tearing mode or reconnection process [16–19], the effects of plasma flow itself, including both inflow and outflow,may contribute to the initial onset of PI[8].The plasma viscosity can affect the properties and topologies of plasma flow close to the thin current sheet as well as the reconnection rate.Because of the narrowness of the current sheet, viscosity can influence the nonlinear regime.In fact,viscosity increases the possibility of local changes in the flow topology.The robustness of the flow cells around the sheet might be weakened or even unstable due to the existence of strong flow gradients in the current sheet region [22].Finite viscosity inserts dissipation to the flow patterns that in turn interact with the island evolution and reconnection [22].Thus the plasma viscosity, both collisional and collisionless, is expected to be one of the key parameters that determine the onset and saturation conditions for the PI.

    The effects of viscosity on linear and nonlinear resistive tearing mode as well as PI have been studied by many[12, 13, 22–31].In this paper we focus on exploring the impact of viscosity on the onset and saturation of PI.Most of the past studies on visco-resistive tearing and kink modes were made in a 2D reduced MHD model, however in this study, we use the complete resistive MHD equations implemented in Non-Ideal Magnetohydrodynamics with Rotation,Open Discussion (NIMROD) code [32].Both the onset and the dynamics of plasmoid differ greatly from those found in previous reduced MHD simulations [21, 22].

    The rest of the paper is organized as follows.In section 2,we briefly describe our simulation model.In section 3, both linear and nonlinear simulation results are reported.At the end in section 4, summary and discussion are presented.

    2.Simulation model and equilibrium

    Our simulations are based on the single-fluid full MHD model implemented in the NIMROD code [32].

    where ρ,N,p,T,J,v,B,η,γ and ν are the plasma mass density,number density, pressure, temperature, current density, velocity,magnetic field, heat flux, resistivity, specific heat ratio, and viscosity respectively.The resistive-viscous MHD model equations(1)–(4)used in the simulations are all dimensionless.In particular, the spatial normalization unit x0is of the same order as the Harris sheet width a, i.e.x0~a.The magnetic field is normalized by the field magnitude B0at the edge of the Harris sheet, i.e.x →±∞.The mass density is normalized by the field magnitude ρ0at the center of the current sheet x=0.The normalization units for velocity, time, and pressure areandrespectively.In addition, the heat flux is zero and the adiabatic index γ=5/3.In the dimensionless equations(1)–(4), both the resistivity η and the viscosity ν are the normalized dimensionless parameters,with η=S?1, andν=where S is the Lundquist numberis the unnormalized dimensionless resistivity,and Pr=μ0νD/ηDis the magnetic Prandtl number,νDis the unnormalized dimensionless viscosity,withThe Harris current sheet model is adopted for the equilibrium magnetic field [33]

    Figure 1.(a)Harris sheet equilibrium magnetic field and(b)pressure profiles.

    The corresponding pressure profile from the static MHD force balance is determined as

    Figure 1 shows the above mentioned equilibrium magnetic field and pressure profiles.The resistive MHD equations(1)–(6)are numerically solved in a rectangular domain[?Lx,Lx]×[?Ly,Ly], where Lx=(?2.5, 2.5) and Ly=(?5, 5).The periodic boundary conditions are imposed at the y-boundaries, and the solid, perfect conducting walls are assumed at the x-boundaries.For the Harris current sheetΔ′a= 2 [(ka)?1?ka][34],so that the unstable modes have wave vector satisfying ka<1.HereΔ′is the discontinuity of logarithmic derivative of the outer flux function when approaching the singular layer at x=0,which is a measure of the free energy of the system.Here k is the mode wave number along y,and Ly=2πm/k,with m being the mode number.In our linear simulations, resistivity and viscosity are varied but nonlinear simulations are performed for a uniform plasma resistivity η=2.8×10?4and a wide range of viscosity(Pr=0.33–10).

    Figure 2.(a)Linear growth rates as functions of the resistivity for the fixed value of ν=0.000 28 and Δ′ = 49.66.The blue and red lines,represent the theoretical scaling of the linear growth rate for low(γ ~η0.33) and large (γ ~η0.66) Prandtl number regimes respectively, whereas, the green line represents the simulation results.(b)Linear growth rates as functions of the viscosity for the fixed value of instability parameter Δ′ = 49.66 and various values of resistivity η.

    Figure 3.Kinetic energy evolution for different numerical resolutions at Δ′ = 49.66.

    Figure 4.Kinetic energy evolution for Δ′ = 9.306, 12.057, 13.462,14.05, 14.53, 15.6419, 17.31, 24.5007, 39.35 and 49.66.

    Figure 5.(a) Primary island evolution and (b) primary plasmoid evolution for different instability parameters.

    3.Simulation results

    3.1.Linear scaling

    Figure 6.2D contours of the current density in z-direction and the 2D magnetic field lines at (a) time=450 and (b) time=570 for Δ′ = 13.462.

    The PI tends to develop from the primary tearing growth in the largeΔ′ regime [2].One such case,Δ′ = 49.66 is examined first in simulations for its linear scaling in comparison with theory.The linear growth rate of the m=1 resistive tearing mode obtained from our NIMROD simulations scales with the resistivity η as γ ~η0.30for low Prandtl and γ ~η0.67for large Prandtl number regimes.These scalings are close to the resistive tearing scalings of γ ~η0.33and γ ~η0.66in the large Δ′ regime previously derived in theory [24, 29, 35](figure 2(a)).Viscosity in general introduces dissipation that reduces the linear growth of resistive tearing mode.This viscous dissipation is stronger in the Pr>1 regime, where the growth rate γ of the m=1 resistive tearing scales with the viscosity as γ ~ν?0.33,similar to the viscosity scaling obtained in previous reduced MHD simulations [29] and theory [24](figure 2(b)).

    3.2.Nonlinear results

    3.2.1.Critical Δ′for the X-point collapse and PI.Our nonlinear simulations find that the onset of secondary tearing instability and plasmoid formation occur only when theΔ′ is above a certain threshold value.In our nonlinear simulation, we mostly employ 64×48 2D finite elements with a polynomial degree of 5, which ensures the numerical convergence (figure 3).

    Figure 7.2D contours of the current density in z-direction and the 2D magnetic field lines at (a) time=300 and (b) time=470 for Δ′ = 14.05.

    The evolution of kinetic energy reaches its maximum sooner as we increase the value ofΔ′ (figure 4).In figure 5 the evolutions of the width of the primary island and plasmoids are shown which match the earlier simulation results[36].We have measured the width of primary plasmoid(i.e.secondary island)at the stage just before its ejection.Also at this stage we have referred to the primary island as the saturated island,since by this stage the width of the primary island has approached constant.

    The minimum value ofΔ′ at which the X-point evolves into the Y-type is 14.04.ForΔ′ = 13.42, the current sheet remains the shape of X-point over the entire time(figure 6).As the value ofΔ′ increases to above 14.05, the X-point evolves into a Y-type current sheet as shown in figures 7 and 8.Waelbroeck[37]first predicted the criterion for the collapse of X-point into Y-type current sheet to beW>Wc≈ 25Δ′,where W represents the width of primary island and Wcrepresents the critical width at which X-point collapses.This conversion of X-point into Y-type current sheet is termed as the secondary instability (SI) [37].The subsequent collapse of the Y-type current sheet into plasmoids is known as the PI [38].

    Figure 8.2D contours of the current density in z-direction and the 2D magnetic field lines at(a)time=200,(b)time=340,(c)time=360 and (d) time=365 for Δ′ = 17.31.

    Figure 9.Kinetic energy evolution for Δ′ = 49.66 at Pr=0.33, 0.5, 1 and Pr=10.

    Figure 10.Primary island evolution and (b) primary plasmoid evolution for Δ′ = 49.66 at Pr=0.33, 0.5, 1 and Pr=10.

    For η=2.8×10?4and Pr=1 the criticalΔ′value for the onset of PI isΔ′ = 17.31, which is in agreement with the previous reduced MHD simulation [21].In this case, at time 200(figure 8(a)),an X-point is formed as shown.At time 340(figure 8(b)), the Y-type current sheet develops during the nonlinear stage[6,9,39].At time 360(figure 8(c)),the current density reaches maximum and the current sheet becomes more stretched and thinner.Finally, at time 365 (figure 8(d)),formation of plasmoid takes place.

    3.2.2.Effect of viscosity on the nonlinear evolution of resistive tearing mode for highly unstable system.In the following cases, to explore the viscosity effects, we only vary the viscosity in terms of Prby keeping the resistivity and instability parameter constant, which are η=2.8×10?4and Δ′ = 49.66 respectively.To study the effect of viscosity, we choose four different cases with Pr=0.33, 0.5, 1 and 10(figure 9).The evolution of the width of primary island and primary plasmoid for the above mentioned different Prandtl number cases is shown in figure 10.

    In figure 11, the dynamics of the visco-resistive tearing mode growth are divided in 5 stages.The first stage is the initial transient stage when the linear instability starts to grow.The second stage is the FKR stage, during which both the reconnection rate and the magnetic island width grow exponentially.In the third stage, the so-called Rutherford stage, the island evolves toward saturation and subsequent decay.The X-point collapse and the Y-type, SP-like current sheet forms during the fourth stage (figures 12(a)–(c)).The transition from the X-type geometry to the Y-type current sheet is known as the SI.The first peak that appears in the kinetic energy evolution is due to the X-point collapse with the onset of SI at t=160 as shown in figure 9.After the X-point collapse, the SP-like current sheet starts to become elongated in the poloidal direction.During the fifth stage,the Y-type current sheet starts to become more elongated and SPlike.After the collapse of SP-like current sheet,the secondary island appears along with two X-points on both ends(figure 12(e)).After t=160,the growth rate starts to decrease up to t=170, and a significant change in the growth rate occurs due to the collapse of the Y-type current sheet and the formation of small plasmoid chain.

    Figure 11.Growth rate evolution for all Pr=0.33, 0.5, 1 and 10 cases with Δ′=49.66.

    The size of the secondary island increases up to some extent and both X-points collapse to form two tertiary current sheets with the passage of time.The second large peaks in the growth rate and the kinetic energy plots represent the collapse of these two tertiary current sheets.As the width of the secondary island approaches some critical value, the ejection of the secondary island takes place.At this point kinetic energy increases abruptly and the secondary island coalesces with the primary one(figure 13(d)).As the Y-type current sheet collapse and the PI appears, a drastic increase in the growth rate takes place (figure 11) which is much larger as compared to the growth rate of the SI.

    The nonlinear stages of our simulation results described above are quite similar to the nonlinear secondary island evolution reported by Loureiro et al [2].But the collapse of the secondary island and direction of ejection are different in our cases.For example in our simulations for the Pr=0.5 and the Pr=5 cases,the direction of plasmoid ejection is upward,whereas for the Pr=1 and the Pr=10 cases the direction is downward.The directions of plasmoid ejection are different for different Prcases.Prmay not be the fundamental parameter that determines the direction of the plasmoid ejection, which may also depend on the initial condition.We leave this issue for future study.

    Our simulations for various Prnumbers show viscous effects on both the timing and the spatial structure of PI.In the Pr=0.33 (i.e.very low viscosity), we find secondary islands that saturate early at smaller size(figure 12(f)).As we increase the viscosity further (Pr=0.5), the appearance and ejection of the secondary island become more prominent,along with the larger saturated island and plasmoid(figure 13).A clear transition occurs at Pr=1, when the size of the primary plasmoid becomes the maximum, and the onsets of the SI, the PI and the island saturation are significantly postponed(figure 14).The direction of plasmoid ejection also switches to the opposite.The second peak of kinetic energy increases with viscosity and reaches maximum at Pr=1 too.For higher Prandtl number(Pr=10,with η=2.8×10?4and viscosity=0.0028)the size of the plasmoid becomes smaller(figure 15).Figure 16 summarizes the relationships among plasmoid width, saturated island width, and Prnumber.At lower Pr, the width of saturated island is small, but as we increase viscosity, the width of saturated island increases sharply up to Pr=1,beyond which the saturated island width becomes almost independent of the Prnumber.The Pr=1 number also separates two regimes for the plasmoid width.In the Pr<1 regime,the width of plasmoid increases drastically with viscosity, whereas in the Pr>1 regime, the width of plasmoid slowly decreases with the viscosity.

    Figure 12.2D contours of the current density in z-direction and the 2D magnetic field lines at(a)time=70,(b)time=100,(c)time=152,(d) time=168, (e) time=172 and (f) time=176 for Δ′=49.66, Pr=0.33.

    4.Summary

    Figure 13.2D contours of the current density in z-direction and the 2D magnetic field lines at(a)time=100,(b)time=156,(c)time=180,(d) time=196, (e) time=204 and (f) time=208 for Δ′=49.66, Pr=0.5.

    The key objective of this study is to explore the viscous effects on SI, plasmoid formation, their merging and ejection process during the nonlinear evolution of a resistive tearing mode in the largeΔ′ regime.For our equilibrium, we find the critical instability parameter for the onset of the SI, and the minimum value ofΔ′at which PI can take place.Two distinctive regimes of the Prnumber are found for the PI, which are separated by the value of Pr=1.In the Pr1 regime, the amplitude of the second peak for kinetic energy increases up to Pr=1,whereas in the Pr1 regime, this amplitude decreases with the viscosity.Both the saturated island width and the plasmoid size increase sharply with the viscosity in the Pr1 regime, however, the former slowly increases whereas the latter decreases with the viscosity in the Pr1 regime.In other words, the plasmoid size reaches maximum at Pr?1.We plan to further explore the significance of such a finding in future work.

    Figure 14.2D contours of the current density in z-direction and the 2D magnetic field lines at(a)time=100,(b)time=150,(c)time=190,(d) time=200, (e) time=205 and (f) time=215 for Δ′=49.66, Pr=1.

    Figure 15.2D contours of the current density in z-direction and the 2D magnetic field lines at(a)time=150,(b)time=200,(c)time=280,(d) time=292, (e) time=296 and (f) time=340 for Δ′=49.66, Pr=10.

    Figure 16.(a) Saturated island width and (b) plasmoid width as functions of the Prandtl number.

    Acknowledgments

    This research was supported by the National Magnetic Confinement Fusion Science Program of China (No.2019YFE03050004),National Natural Science Foundation of China (Nos.11 775 221 and 51 821 005), U.S.DOE (Nos.DE-FG02-86ER53218 and DESC0018001), and the Fundamental Research Funds for the Central Universities at Huazhong University of Science and Technology (No.2019kfyXJJS193).We are grateful for the support from NIMROD team.This research used the computing resources from the Supercomputing Center of University of Science and Technology of China.The author Nisar Ahmad acknowledges the support from the Chinese Government Scholarship.

    波多野结衣av一区二区av| 老鸭窝网址在线观看| 别揉我奶头~嗯~啊~动态视频 | 久久人人爽av亚洲精品天堂| 久久国产精品影院| 蜜桃在线观看..| 久久精品熟女亚洲av麻豆精品| 国产淫语在线视频| 国产精品 国内视频| 婷婷丁香在线五月| 黄色视频在线播放观看不卡| av欧美777| 免费观看人在逋| bbb黄色大片| 久久青草综合色| 日韩一区二区三区影片| 久热这里只有精品99| 丝袜美腿诱惑在线| 亚洲国产欧美在线一区| 不卡av一区二区三区| 午夜免费成人在线视频| 五月开心婷婷网| 男人操女人黄网站| 亚洲,一卡二卡三卡| 国产精品久久久久久精品古装| 宅男免费午夜| 日韩人妻精品一区2区三区| 国产男人的电影天堂91| 欧美日韩精品网址| 国产午夜精品一二区理论片| 91国产中文字幕| 国产精品一区二区在线不卡| 亚洲精品中文字幕在线视频| 免费在线观看完整版高清| 黄频高清免费视频| 一本—道久久a久久精品蜜桃钙片| 亚洲成人手机| 亚洲专区中文字幕在线| 99精国产麻豆久久婷婷| 精品久久蜜臀av无| 午夜福利影视在线免费观看| 欧美在线黄色| 国产成人精品久久久久久| 国产国语露脸激情在线看| 久久精品久久精品一区二区三区| 伊人久久大香线蕉亚洲五| 国产欧美亚洲国产| 国产成人91sexporn| 精品高清国产在线一区| av线在线观看网站| 久久人妻福利社区极品人妻图片 | 少妇精品久久久久久久| 欧美精品一区二区大全| 亚洲av电影在线观看一区二区三区| 97精品久久久久久久久久精品| 人妻 亚洲 视频| 天天躁夜夜躁狠狠久久av| 国产男女内射视频| 亚洲三区欧美一区| 捣出白浆h1v1| 男人操女人黄网站| 国语对白做爰xxxⅹ性视频网站| 精品人妻一区二区三区麻豆| 精品免费久久久久久久清纯 | 久久狼人影院| 国产女主播在线喷水免费视频网站| 色综合欧美亚洲国产小说| 色婷婷久久久亚洲欧美| 91麻豆精品激情在线观看国产 | 黑人欧美特级aaaaaa片| 亚洲专区中文字幕在线| 90打野战视频偷拍视频| 狂野欧美激情性xxxx| 高清欧美精品videossex| 一个人免费看片子| 一级,二级,三级黄色视频| 欧美国产精品一级二级三级| 一级黄色大片毛片| 欧美精品高潮呻吟av久久| 热re99久久国产66热| 一本综合久久免费| 国产精品国产三级国产专区5o| 日韩视频在线欧美| 成在线人永久免费视频| 亚洲一卡2卡3卡4卡5卡精品中文| 欧美日韩亚洲国产一区二区在线观看 | 亚洲,欧美精品.| 午夜福利,免费看| 精品人妻熟女毛片av久久网站| 日本午夜av视频| 国精品久久久久久国模美| 丝瓜视频免费看黄片| 亚洲精品美女久久av网站| 高清黄色对白视频在线免费看| 交换朋友夫妻互换小说| 国产精品国产三级国产专区5o| 狠狠精品人妻久久久久久综合| 18禁国产床啪视频网站| 免费在线观看黄色视频的| 少妇猛男粗大的猛烈进出视频| 好男人电影高清在线观看| 久久女婷五月综合色啪小说| www.精华液| 黄网站色视频无遮挡免费观看| 亚洲男人天堂网一区| 免费观看a级毛片全部| 亚洲精品av麻豆狂野| 亚洲图色成人| 国产有黄有色有爽视频| 青春草亚洲视频在线观看| 亚洲av综合色区一区| 成人免费观看视频高清| 一边亲一边摸免费视频| 免费在线观看影片大全网站 | 精品久久久久久电影网| 侵犯人妻中文字幕一二三四区| 91麻豆精品激情在线观看国产 | 亚洲精品久久午夜乱码| 女性被躁到高潮视频| 日本欧美视频一区| 老司机影院毛片| 香蕉国产在线看| 一区二区三区四区激情视频| 国产在线一区二区三区精| 欧美激情高清一区二区三区| 日韩av免费高清视频| 国产免费福利视频在线观看| 一边亲一边摸免费视频| 男人舔女人的私密视频| 亚洲七黄色美女视频| 欧美中文综合在线视频| 久久久久久久大尺度免费视频| 色网站视频免费| 欧美日韩亚洲国产一区二区在线观看 | 欧美变态另类bdsm刘玥| 亚洲国产av新网站| 老司机在亚洲福利影院| 午夜福利,免费看| 亚洲av成人精品一二三区| 国产精品久久久久成人av| 久久亚洲精品不卡| 国产成人一区二区三区免费视频网站 | 国产亚洲av片在线观看秒播厂| 精品福利永久在线观看| 国产1区2区3区精品| 久久久国产欧美日韩av| 欧美亚洲 丝袜 人妻 在线| av在线播放精品| 午夜福利视频在线观看免费| 成人手机av| 王馨瑶露胸无遮挡在线观看| 免费看不卡的av| 国产欧美日韩综合在线一区二区| a 毛片基地| 欧美黑人欧美精品刺激| 性少妇av在线| 丝袜脚勾引网站| 欧美人与善性xxx| 国产一区二区在线观看av| www日本在线高清视频| 国产一卡二卡三卡精品| 国产成人免费观看mmmm| 妹子高潮喷水视频| 最近最新中文字幕大全免费视频 | 成在线人永久免费视频| 黄片播放在线免费| 久久精品熟女亚洲av麻豆精品| 成年人黄色毛片网站| 大片免费播放器 马上看| 精品一品国产午夜福利视频| 精品久久久久久电影网| 国产精品99久久99久久久不卡| 高清视频免费观看一区二区| 一级片'在线观看视频| 一区二区三区激情视频| 免费高清在线观看日韩| 黄片播放在线免费| av欧美777| 观看av在线不卡| 无限看片的www在线观看| 国产又色又爽无遮挡免| 一本—道久久a久久精品蜜桃钙片| 亚洲欧美日韩另类电影网站| 香蕉丝袜av| 成人影院久久| 精品人妻1区二区| 亚洲国产欧美一区二区综合| 咕卡用的链子| 久久毛片免费看一区二区三区| 国产成人av教育| 亚洲一区中文字幕在线| 99精国产麻豆久久婷婷| 久久精品久久精品一区二区三区| 热99久久久久精品小说推荐| 国产一区亚洲一区在线观看| 丝瓜视频免费看黄片| 大话2 男鬼变身卡| 日本wwww免费看| 亚洲国产日韩一区二区| 成人亚洲欧美一区二区av| 成人手机av| 色视频在线一区二区三区| 丝袜在线中文字幕| 国产欧美日韩精品亚洲av| 日韩av在线免费看完整版不卡| 欧美另类一区| 亚洲成人免费电影在线观看 | 欧美亚洲 丝袜 人妻 在线| av一本久久久久| 国产成人a∨麻豆精品| 国产精品久久久久久精品电影小说| av视频免费观看在线观看| 99热国产这里只有精品6| 国产片特级美女逼逼视频| 国产欧美日韩精品亚洲av| 成年女人毛片免费观看观看9 | 国产亚洲精品久久久久5区| 久久人人爽av亚洲精品天堂| 欧美在线黄色| 国产精品一国产av| 老司机亚洲免费影院| 日本黄色日本黄色录像| 欧美精品av麻豆av| 亚洲第一av免费看| 性少妇av在线| 热re99久久精品国产66热6| 国产亚洲精品久久久久5区| 亚洲欧美日韩高清在线视频 | 国产成人啪精品午夜网站| 国产一区二区三区综合在线观看| 性色av乱码一区二区三区2| 七月丁香在线播放| 黄色 视频免费看| 国产福利在线免费观看视频| 国产免费一区二区三区四区乱码| 中文字幕人妻丝袜一区二区| 久久久久精品国产欧美久久久 | 久久久久久人人人人人| 日韩av不卡免费在线播放| 热re99久久国产66热| 熟女av电影| 爱豆传媒免费全集在线观看| 精品亚洲乱码少妇综合久久| 日韩伦理黄色片| 亚洲五月色婷婷综合| 天天添夜夜摸| 我的亚洲天堂| 久久精品熟女亚洲av麻豆精品| bbb黄色大片| 麻豆乱淫一区二区| 男的添女的下面高潮视频| 日韩av免费高清视频| 高清黄色对白视频在线免费看| 黄片小视频在线播放| 香蕉国产在线看| 久久久久视频综合| 少妇 在线观看| 美女中出高潮动态图| 黄色一级大片看看| 久久久久久亚洲精品国产蜜桃av| 精品少妇内射三级| 日本91视频免费播放| 天天操日日干夜夜撸| 丰满人妻熟妇乱又伦精品不卡| 精品免费久久久久久久清纯 | 伊人亚洲综合成人网| 99热国产这里只有精品6| 黑人欧美特级aaaaaa片| 日韩中文字幕欧美一区二区 | 日本wwww免费看| 免费在线观看视频国产中文字幕亚洲 | 亚洲色图综合在线观看| 亚洲av成人不卡在线观看播放网 | 满18在线观看网站| 男女高潮啪啪啪动态图| 一本综合久久免费| 国产xxxxx性猛交| 国产精品国产三级专区第一集| 丰满人妻熟妇乱又伦精品不卡| 亚洲专区国产一区二区| 午夜福利乱码中文字幕| 如日韩欧美国产精品一区二区三区| 亚洲欧洲精品一区二区精品久久久| 在线 av 中文字幕| 亚洲图色成人| 国产91精品成人一区二区三区 | 91麻豆精品激情在线观看国产 | 中文乱码字字幕精品一区二区三区| 女人久久www免费人成看片| 在线观看国产h片| 久久精品熟女亚洲av麻豆精品| 桃花免费在线播放| 国产日韩欧美亚洲二区| 国产成人91sexporn| 亚洲国产欧美日韩在线播放| 久久精品亚洲av国产电影网| 丝袜脚勾引网站| 国产伦人伦偷精品视频| 咕卡用的链子| 成人免费观看视频高清| 真人做人爱边吃奶动态| 国产三级黄色录像| av在线播放精品| 午夜福利,免费看| 激情五月婷婷亚洲| 国产淫语在线视频| 自拍欧美九色日韩亚洲蝌蚪91| 日本五十路高清| 国产极品粉嫩免费观看在线| svipshipincom国产片| 欧美日韩国产mv在线观看视频| 日本一区二区免费在线视频| 制服人妻中文乱码| 国产无遮挡羞羞视频在线观看| 国产在线免费精品| 99热网站在线观看| 国产片特级美女逼逼视频| 高清视频免费观看一区二区| av片东京热男人的天堂| 精品福利观看| 亚洲,欧美,日韩| 男人操女人黄网站| 国产片内射在线| 欧美亚洲日本最大视频资源| 国产成人精品久久久久久| 中文字幕色久视频| 一边摸一边抽搐一进一出视频| 欧美变态另类bdsm刘玥| 免费观看a级毛片全部| 美女福利国产在线| 亚洲av成人不卡在线观看播放网 | 美女高潮到喷水免费观看| 亚洲天堂av无毛| 久久久久久久久免费视频了| 欧美亚洲日本最大视频资源| 精品国产乱码久久久久久男人| 精品熟女少妇八av免费久了| 久久久久久久精品精品| 亚洲精品第二区| 亚洲av日韩精品久久久久久密 | 久久综合国产亚洲精品| 婷婷色综合www| 尾随美女入室| 中国美女看黄片| 丝袜美足系列| 午夜精品国产一区二区电影| 亚洲av美国av| 国产精品国产三级专区第一集| 一区二区三区四区激情视频| 在线观看www视频免费| 搡老岳熟女国产| 美女脱内裤让男人舔精品视频| 亚洲精品国产一区二区精华液| 免费日韩欧美在线观看| 亚洲国产成人一精品久久久| 中文字幕人妻丝袜一区二区| 亚洲综合色网址| 男人舔女人的私密视频| 亚洲激情五月婷婷啪啪| 免费在线观看视频国产中文字幕亚洲 | 午夜福利视频精品| 少妇 在线观看| 国产在线视频一区二区| 国产成人免费观看mmmm| 超碰97精品在线观看| 国产亚洲精品久久久久5区| 亚洲av男天堂| 国产免费一区二区三区四区乱码| 午夜免费成人在线视频| 汤姆久久久久久久影院中文字幕| av电影中文网址| 国产亚洲精品第一综合不卡| 又大又爽又粗| 精品一区在线观看国产| 黑人巨大精品欧美一区二区蜜桃| 岛国毛片在线播放| 国产成人一区二区三区免费视频网站 | 女性被躁到高潮视频| 国产精品香港三级国产av潘金莲 | 亚洲专区中文字幕在线| 99国产精品免费福利视频| 亚洲欧美成人综合另类久久久| 99热全是精品| 老汉色av国产亚洲站长工具| 久9热在线精品视频| 精品高清国产在线一区| 亚洲精品久久成人aⅴ小说| 一区在线观看完整版| 老司机靠b影院| 黄色一级大片看看| 老司机午夜十八禁免费视频| 老司机亚洲免费影院| 人人妻人人爽人人添夜夜欢视频| 一本—道久久a久久精品蜜桃钙片| 亚洲av片天天在线观看| 国产主播在线观看一区二区 | 久久久久久久大尺度免费视频| 国产成人精品久久二区二区91| 日日爽夜夜爽网站| 国产免费又黄又爽又色| 亚洲国产av影院在线观看| 中文字幕精品免费在线观看视频| 免费看不卡的av| 国产精品一国产av| 亚洲中文日韩欧美视频| 天天躁狠狠躁夜夜躁狠狠躁| 后天国语完整版免费观看| 99国产精品99久久久久| 欧美黑人欧美精品刺激| 观看av在线不卡| av在线播放精品| 纯流量卡能插随身wifi吗| 老汉色av国产亚洲站长工具| 国产一区亚洲一区在线观看| 国产精品一二三区在线看| 久久女婷五月综合色啪小说| 久久热在线av| 欧美日韩黄片免| 亚洲国产精品999| 制服诱惑二区| 久久国产精品影院| 久久99精品国语久久久| 超碰97精品在线观看| 欧美成狂野欧美在线观看| 国产精品一二三区在线看| 免费人妻精品一区二区三区视频| 超碰97精品在线观看| 亚洲色图 男人天堂 中文字幕| 热re99久久精品国产66热6| 成年人黄色毛片网站| 蜜桃国产av成人99| 久久精品久久久久久噜噜老黄| 丝瓜视频免费看黄片| 久久这里只有精品19| 亚洲精品一区蜜桃| 少妇的丰满在线观看| 免费少妇av软件| 亚洲综合色网址| 国产淫语在线视频| 男女国产视频网站| 国产av一区二区精品久久| √禁漫天堂资源中文www| 亚洲人成网站在线观看播放| 制服人妻中文乱码| 捣出白浆h1v1| 在线观看免费高清a一片| 亚洲av电影在线进入| 王馨瑶露胸无遮挡在线观看| 国产亚洲精品久久久久5区| 99国产精品一区二区三区| 亚洲av日韩在线播放| 丝袜脚勾引网站| 日韩av在线免费看完整版不卡| 亚洲五月色婷婷综合| 在线观看免费日韩欧美大片| 丝袜在线中文字幕| av片东京热男人的天堂| 久久国产精品男人的天堂亚洲| 亚洲精品国产色婷婷电影| 欧美变态另类bdsm刘玥| 在线观看国产h片| 99re6热这里在线精品视频| xxxhd国产人妻xxx| 视频区欧美日本亚洲| 咕卡用的链子| 99国产精品一区二区蜜桃av | 免费在线观看完整版高清| 国产精品一区二区免费欧美 | 狠狠婷婷综合久久久久久88av| 我要看黄色一级片免费的| 大型av网站在线播放| 777久久人妻少妇嫩草av网站| 视频在线观看一区二区三区| 婷婷成人精品国产| 两性夫妻黄色片| 欧美性长视频在线观看| 日韩一区二区三区影片| 满18在线观看网站| 色婷婷久久久亚洲欧美| 亚洲黑人精品在线| 亚洲国产精品成人久久小说| 久久99一区二区三区| 老司机在亚洲福利影院| 一级片免费观看大全| 久久久久网色| 欧美在线一区亚洲| 我要看黄色一级片免费的| 成人亚洲欧美一区二区av| av国产久精品久网站免费入址| 夫妻性生交免费视频一级片| 国产1区2区3区精品| 99re6热这里在线精品视频| √禁漫天堂资源中文www| 精品视频人人做人人爽| 亚洲国产欧美在线一区| 亚洲成人免费av在线播放| 69精品国产乱码久久久| 午夜两性在线视频| 免费高清在线观看视频在线观看| 999久久久国产精品视频| 自拍欧美九色日韩亚洲蝌蚪91| 亚洲av美国av| 亚洲精品国产av成人精品| 久久女婷五月综合色啪小说| 国产成人精品久久二区二区免费| 久久女婷五月综合色啪小说| 又大又黄又爽视频免费| 女人精品久久久久毛片| 好男人电影高清在线观看| 少妇人妻 视频| 黄色 视频免费看| 成人手机av| 丰满饥渴人妻一区二区三| 欧美精品一区二区免费开放| 国产精品一二三区在线看| 亚洲av国产av综合av卡| 午夜激情av网站| 久久久亚洲精品成人影院| www日本在线高清视频| 满18在线观看网站| 成年人午夜在线观看视频| av网站免费在线观看视频| a 毛片基地| 免费看十八禁软件| 亚洲三区欧美一区| 国产精品偷伦视频观看了| 亚洲精品国产区一区二| 制服诱惑二区| 免费在线观看影片大全网站 | 免费久久久久久久精品成人欧美视频| 久久精品熟女亚洲av麻豆精品| 日本猛色少妇xxxxx猛交久久| 亚洲欧美色中文字幕在线| 国产精品人妻久久久影院| 蜜桃在线观看..| 天堂8中文在线网| 亚洲精品美女久久久久99蜜臀 | 亚洲九九香蕉| 在线观看www视频免费| 99精品久久久久人妻精品| 伊人久久大香线蕉亚洲五| 日韩大片免费观看网站| 99re6热这里在线精品视频| 热99国产精品久久久久久7| 成人手机av| 亚洲第一av免费看| 亚洲精品av麻豆狂野| av网站免费在线观看视频| 伊人久久大香线蕉亚洲五| www.熟女人妻精品国产| 久久女婷五月综合色啪小说| 久久久久国产精品人妻一区二区| 日本vs欧美在线观看视频| 尾随美女入室| 在现免费观看毛片| 免费在线观看黄色视频的| 日韩精品免费视频一区二区三区| 精品高清国产在线一区| 汤姆久久久久久久影院中文字幕| 午夜福利视频在线观看免费| 亚洲精品久久午夜乱码| 男的添女的下面高潮视频| 亚洲av成人不卡在线观看播放网 | 妹子高潮喷水视频| 国产一卡二卡三卡精品| 一区二区三区乱码不卡18| 久久久亚洲精品成人影院| www.自偷自拍.com| www.熟女人妻精品国产| 美女脱内裤让男人舔精品视频| 免费日韩欧美在线观看| 男人操女人黄网站| 国产主播在线观看一区二区 | 一级,二级,三级黄色视频| 精品亚洲乱码少妇综合久久| 久久人人爽av亚洲精品天堂| 国产福利在线免费观看视频| 黑人巨大精品欧美一区二区蜜桃| 欧美大码av| 免费女性裸体啪啪无遮挡网站| 飞空精品影院首页| 夫妻午夜视频| 成人免费观看视频高清| 欧美日韩精品网址| av片东京热男人的天堂| 国产欧美日韩精品亚洲av| 水蜜桃什么品种好| 国产97色在线日韩免费| 久久鲁丝午夜福利片| 水蜜桃什么品种好| 十分钟在线观看高清视频www| 日本黄色日本黄色录像| 国产精品免费视频内射| 亚洲免费av在线视频| 人妻一区二区av| 免费日韩欧美在线观看| 午夜老司机福利片| 亚洲av美国av| 9热在线视频观看99| 性少妇av在线| 一二三四社区在线视频社区8| 九色亚洲精品在线播放| 成人国产av品久久久| 国产深夜福利视频在线观看| 久久热在线av| 精品福利永久在线观看| 国产亚洲精品第一综合不卡| 日日夜夜操网爽| 国产精品国产三级专区第一集| 国产真人三级小视频在线观看| 亚洲国产欧美网| 中文欧美无线码| 精品人妻在线不人妻| 我要看黄色一级片免费的| 视频区图区小说|