• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Viscous effects on plasmoid formation from nonlinear resistive tearing growth in a Harris sheet

    2022-02-15 11:07:58NisarAHMADPingZHU朱平AhmadALIandShiyongZENG曾市勇
    Plasma Science and Technology 2022年1期

    Nisar AHMAD,Ping ZHU(朱平),Ahmad ALI and Shiyong ZENG(曾市勇)

    1 CAS Key Laboratory of Geospace Environment and Department of Engineering and Applied Physics,University of Science and Technology of China, Hefei 230026, People's Republic of China

    2 International Joint Research Laboratory of Magnetic Confinement Fusion and Plasma Physics, State Key Laboratory of Advanced Electromagnetic Engineering and Technology, School of Electrical and Electronic Engineering,Huazhong University of Science and Technology,Wuhan 430074,People's Republic of China

    3 Department of Engineering Physics, University of Wisconsin-Madison, Madison, Wisconsin 53706,United States of America

    4 Pakistan Tokamak Plasma Research Institute, Islamabad 44000, Pakistan

    5 Department of Plasma Physics and Fusion Engineering,University of Science and Technology of China,Hefei 230026, People's Republic of China

    Abstract In this work, the evolution of a highly unstable m=1 resistive tearing mode, leading to plasmoid formation in a Harris sheet, is studied in the framework of full MHD model using the Non-Ideal Magnetohydrodynamics with Rotation,Open Discussion simulation.Following the initial nonlinear growth of the primary m=1 island,the X-point develops into a secondary elongated current sheet that eventually breaks into plasmoids.Two distinctive viscous regimes are found for the plasmoid formation and saturation.In the low viscosity regime (i.e.Pr 1), the plasmoid width increases sharply with viscosity, whereas in the viscosity dominant regime (i.e.Pr 1), the plasmoid size gradually decreases with viscosity.Such a finding quantifies the role of viscosity in modulating the plasmoid formation process through its effects on the plasma flow and the reconnection itself.

    Keywords: viscosity, reconnection, plasmoids, Prandtl number

    1.Introduction

    Plasmoid instability(PI)is known to develop on the elongated current sheet formed during the externally driven Sweet–Parker(SP) reconnection, or from the intrinsically growing nonlinear kink or tearing mode.In general, when the aspect ratio of the elongated current sheet becomes sufficiently large, unstable secondary tearing can lead to the formation of plasmoids[1–5].The problem of the transition from the laminar reconnection during the early nonlinear stage, to the subsequent highly unstable one, characterized by sporadic production of plasmoids inside the sheet itself, with faster average reconnection rates, has been addressed by a number of past numerical and theoretical studies [6, 7], in the context of PIs following the externally driven SP reconnection [8–12], or the intrinsically nonlinear tearing mode[2,13–15],on the scaling and dynamics of plasmoid formation with different Lundquist numbers.

    Previous studies have found the critical roles of plasma flow in the processes of reconnection in general and plasmoid formation in particular[16–21].Whereas the plasma outflow is stabilizing on the primary tearing mode or reconnection process [16–19], the effects of plasma flow itself, including both inflow and outflow,may contribute to the initial onset of PI[8].The plasma viscosity can affect the properties and topologies of plasma flow close to the thin current sheet as well as the reconnection rate.Because of the narrowness of the current sheet, viscosity can influence the nonlinear regime.In fact,viscosity increases the possibility of local changes in the flow topology.The robustness of the flow cells around the sheet might be weakened or even unstable due to the existence of strong flow gradients in the current sheet region [22].Finite viscosity inserts dissipation to the flow patterns that in turn interact with the island evolution and reconnection [22].Thus the plasma viscosity, both collisional and collisionless, is expected to be one of the key parameters that determine the onset and saturation conditions for the PI.

    The effects of viscosity on linear and nonlinear resistive tearing mode as well as PI have been studied by many[12, 13, 22–31].In this paper we focus on exploring the impact of viscosity on the onset and saturation of PI.Most of the past studies on visco-resistive tearing and kink modes were made in a 2D reduced MHD model, however in this study, we use the complete resistive MHD equations implemented in Non-Ideal Magnetohydrodynamics with Rotation,Open Discussion (NIMROD) code [32].Both the onset and the dynamics of plasmoid differ greatly from those found in previous reduced MHD simulations [21, 22].

    The rest of the paper is organized as follows.In section 2,we briefly describe our simulation model.In section 3, both linear and nonlinear simulation results are reported.At the end in section 4, summary and discussion are presented.

    2.Simulation model and equilibrium

    Our simulations are based on the single-fluid full MHD model implemented in the NIMROD code [32].

    where ρ,N,p,T,J,v,B,η,γ and ν are the plasma mass density,number density, pressure, temperature, current density, velocity,magnetic field, heat flux, resistivity, specific heat ratio, and viscosity respectively.The resistive-viscous MHD model equations(1)–(4)used in the simulations are all dimensionless.In particular, the spatial normalization unit x0is of the same order as the Harris sheet width a, i.e.x0~a.The magnetic field is normalized by the field magnitude B0at the edge of the Harris sheet, i.e.x →±∞.The mass density is normalized by the field magnitude ρ0at the center of the current sheet x=0.The normalization units for velocity, time, and pressure areandrespectively.In addition, the heat flux is zero and the adiabatic index γ=5/3.In the dimensionless equations(1)–(4), both the resistivity η and the viscosity ν are the normalized dimensionless parameters,with η=S?1, andν=where S is the Lundquist numberis the unnormalized dimensionless resistivity,and Pr=μ0νD/ηDis the magnetic Prandtl number,νDis the unnormalized dimensionless viscosity,withThe Harris current sheet model is adopted for the equilibrium magnetic field [33]

    Figure 1.(a)Harris sheet equilibrium magnetic field and(b)pressure profiles.

    The corresponding pressure profile from the static MHD force balance is determined as

    Figure 1 shows the above mentioned equilibrium magnetic field and pressure profiles.The resistive MHD equations(1)–(6)are numerically solved in a rectangular domain[?Lx,Lx]×[?Ly,Ly], where Lx=(?2.5, 2.5) and Ly=(?5, 5).The periodic boundary conditions are imposed at the y-boundaries, and the solid, perfect conducting walls are assumed at the x-boundaries.For the Harris current sheetΔ′a= 2 [(ka)?1?ka][34],so that the unstable modes have wave vector satisfying ka<1.HereΔ′is the discontinuity of logarithmic derivative of the outer flux function when approaching the singular layer at x=0,which is a measure of the free energy of the system.Here k is the mode wave number along y,and Ly=2πm/k,with m being the mode number.In our linear simulations, resistivity and viscosity are varied but nonlinear simulations are performed for a uniform plasma resistivity η=2.8×10?4and a wide range of viscosity(Pr=0.33–10).

    Figure 2.(a)Linear growth rates as functions of the resistivity for the fixed value of ν=0.000 28 and Δ′ = 49.66.The blue and red lines,represent the theoretical scaling of the linear growth rate for low(γ ~η0.33) and large (γ ~η0.66) Prandtl number regimes respectively, whereas, the green line represents the simulation results.(b)Linear growth rates as functions of the viscosity for the fixed value of instability parameter Δ′ = 49.66 and various values of resistivity η.

    Figure 3.Kinetic energy evolution for different numerical resolutions at Δ′ = 49.66.

    Figure 4.Kinetic energy evolution for Δ′ = 9.306, 12.057, 13.462,14.05, 14.53, 15.6419, 17.31, 24.5007, 39.35 and 49.66.

    Figure 5.(a) Primary island evolution and (b) primary plasmoid evolution for different instability parameters.

    3.Simulation results

    3.1.Linear scaling

    Figure 6.2D contours of the current density in z-direction and the 2D magnetic field lines at (a) time=450 and (b) time=570 for Δ′ = 13.462.

    The PI tends to develop from the primary tearing growth in the largeΔ′ regime [2].One such case,Δ′ = 49.66 is examined first in simulations for its linear scaling in comparison with theory.The linear growth rate of the m=1 resistive tearing mode obtained from our NIMROD simulations scales with the resistivity η as γ ~η0.30for low Prandtl and γ ~η0.67for large Prandtl number regimes.These scalings are close to the resistive tearing scalings of γ ~η0.33and γ ~η0.66in the large Δ′ regime previously derived in theory [24, 29, 35](figure 2(a)).Viscosity in general introduces dissipation that reduces the linear growth of resistive tearing mode.This viscous dissipation is stronger in the Pr>1 regime, where the growth rate γ of the m=1 resistive tearing scales with the viscosity as γ ~ν?0.33,similar to the viscosity scaling obtained in previous reduced MHD simulations [29] and theory [24](figure 2(b)).

    3.2.Nonlinear results

    3.2.1.Critical Δ′for the X-point collapse and PI.Our nonlinear simulations find that the onset of secondary tearing instability and plasmoid formation occur only when theΔ′ is above a certain threshold value.In our nonlinear simulation, we mostly employ 64×48 2D finite elements with a polynomial degree of 5, which ensures the numerical convergence (figure 3).

    Figure 7.2D contours of the current density in z-direction and the 2D magnetic field lines at (a) time=300 and (b) time=470 for Δ′ = 14.05.

    The evolution of kinetic energy reaches its maximum sooner as we increase the value ofΔ′ (figure 4).In figure 5 the evolutions of the width of the primary island and plasmoids are shown which match the earlier simulation results[36].We have measured the width of primary plasmoid(i.e.secondary island)at the stage just before its ejection.Also at this stage we have referred to the primary island as the saturated island,since by this stage the width of the primary island has approached constant.

    The minimum value ofΔ′ at which the X-point evolves into the Y-type is 14.04.ForΔ′ = 13.42, the current sheet remains the shape of X-point over the entire time(figure 6).As the value ofΔ′ increases to above 14.05, the X-point evolves into a Y-type current sheet as shown in figures 7 and 8.Waelbroeck[37]first predicted the criterion for the collapse of X-point into Y-type current sheet to beW>Wc≈ 25Δ′,where W represents the width of primary island and Wcrepresents the critical width at which X-point collapses.This conversion of X-point into Y-type current sheet is termed as the secondary instability (SI) [37].The subsequent collapse of the Y-type current sheet into plasmoids is known as the PI [38].

    Figure 8.2D contours of the current density in z-direction and the 2D magnetic field lines at(a)time=200,(b)time=340,(c)time=360 and (d) time=365 for Δ′ = 17.31.

    Figure 9.Kinetic energy evolution for Δ′ = 49.66 at Pr=0.33, 0.5, 1 and Pr=10.

    Figure 10.Primary island evolution and (b) primary plasmoid evolution for Δ′ = 49.66 at Pr=0.33, 0.5, 1 and Pr=10.

    For η=2.8×10?4and Pr=1 the criticalΔ′value for the onset of PI isΔ′ = 17.31, which is in agreement with the previous reduced MHD simulation [21].In this case, at time 200(figure 8(a)),an X-point is formed as shown.At time 340(figure 8(b)), the Y-type current sheet develops during the nonlinear stage[6,9,39].At time 360(figure 8(c)),the current density reaches maximum and the current sheet becomes more stretched and thinner.Finally, at time 365 (figure 8(d)),formation of plasmoid takes place.

    3.2.2.Effect of viscosity on the nonlinear evolution of resistive tearing mode for highly unstable system.In the following cases, to explore the viscosity effects, we only vary the viscosity in terms of Prby keeping the resistivity and instability parameter constant, which are η=2.8×10?4and Δ′ = 49.66 respectively.To study the effect of viscosity, we choose four different cases with Pr=0.33, 0.5, 1 and 10(figure 9).The evolution of the width of primary island and primary plasmoid for the above mentioned different Prandtl number cases is shown in figure 10.

    In figure 11, the dynamics of the visco-resistive tearing mode growth are divided in 5 stages.The first stage is the initial transient stage when the linear instability starts to grow.The second stage is the FKR stage, during which both the reconnection rate and the magnetic island width grow exponentially.In the third stage, the so-called Rutherford stage, the island evolves toward saturation and subsequent decay.The X-point collapse and the Y-type, SP-like current sheet forms during the fourth stage (figures 12(a)–(c)).The transition from the X-type geometry to the Y-type current sheet is known as the SI.The first peak that appears in the kinetic energy evolution is due to the X-point collapse with the onset of SI at t=160 as shown in figure 9.After the X-point collapse, the SP-like current sheet starts to become elongated in the poloidal direction.During the fifth stage,the Y-type current sheet starts to become more elongated and SPlike.After the collapse of SP-like current sheet,the secondary island appears along with two X-points on both ends(figure 12(e)).After t=160,the growth rate starts to decrease up to t=170, and a significant change in the growth rate occurs due to the collapse of the Y-type current sheet and the formation of small plasmoid chain.

    Figure 11.Growth rate evolution for all Pr=0.33, 0.5, 1 and 10 cases with Δ′=49.66.

    The size of the secondary island increases up to some extent and both X-points collapse to form two tertiary current sheets with the passage of time.The second large peaks in the growth rate and the kinetic energy plots represent the collapse of these two tertiary current sheets.As the width of the secondary island approaches some critical value, the ejection of the secondary island takes place.At this point kinetic energy increases abruptly and the secondary island coalesces with the primary one(figure 13(d)).As the Y-type current sheet collapse and the PI appears, a drastic increase in the growth rate takes place (figure 11) which is much larger as compared to the growth rate of the SI.

    The nonlinear stages of our simulation results described above are quite similar to the nonlinear secondary island evolution reported by Loureiro et al [2].But the collapse of the secondary island and direction of ejection are different in our cases.For example in our simulations for the Pr=0.5 and the Pr=5 cases,the direction of plasmoid ejection is upward,whereas for the Pr=1 and the Pr=10 cases the direction is downward.The directions of plasmoid ejection are different for different Prcases.Prmay not be the fundamental parameter that determines the direction of the plasmoid ejection, which may also depend on the initial condition.We leave this issue for future study.

    Our simulations for various Prnumbers show viscous effects on both the timing and the spatial structure of PI.In the Pr=0.33 (i.e.very low viscosity), we find secondary islands that saturate early at smaller size(figure 12(f)).As we increase the viscosity further (Pr=0.5), the appearance and ejection of the secondary island become more prominent,along with the larger saturated island and plasmoid(figure 13).A clear transition occurs at Pr=1, when the size of the primary plasmoid becomes the maximum, and the onsets of the SI, the PI and the island saturation are significantly postponed(figure 14).The direction of plasmoid ejection also switches to the opposite.The second peak of kinetic energy increases with viscosity and reaches maximum at Pr=1 too.For higher Prandtl number(Pr=10,with η=2.8×10?4and viscosity=0.0028)the size of the plasmoid becomes smaller(figure 15).Figure 16 summarizes the relationships among plasmoid width, saturated island width, and Prnumber.At lower Pr, the width of saturated island is small, but as we increase viscosity, the width of saturated island increases sharply up to Pr=1,beyond which the saturated island width becomes almost independent of the Prnumber.The Pr=1 number also separates two regimes for the plasmoid width.In the Pr<1 regime,the width of plasmoid increases drastically with viscosity, whereas in the Pr>1 regime, the width of plasmoid slowly decreases with the viscosity.

    Figure 12.2D contours of the current density in z-direction and the 2D magnetic field lines at(a)time=70,(b)time=100,(c)time=152,(d) time=168, (e) time=172 and (f) time=176 for Δ′=49.66, Pr=0.33.

    4.Summary

    Figure 13.2D contours of the current density in z-direction and the 2D magnetic field lines at(a)time=100,(b)time=156,(c)time=180,(d) time=196, (e) time=204 and (f) time=208 for Δ′=49.66, Pr=0.5.

    The key objective of this study is to explore the viscous effects on SI, plasmoid formation, their merging and ejection process during the nonlinear evolution of a resistive tearing mode in the largeΔ′ regime.For our equilibrium, we find the critical instability parameter for the onset of the SI, and the minimum value ofΔ′at which PI can take place.Two distinctive regimes of the Prnumber are found for the PI, which are separated by the value of Pr=1.In the Pr1 regime, the amplitude of the second peak for kinetic energy increases up to Pr=1,whereas in the Pr1 regime, this amplitude decreases with the viscosity.Both the saturated island width and the plasmoid size increase sharply with the viscosity in the Pr1 regime, however, the former slowly increases whereas the latter decreases with the viscosity in the Pr1 regime.In other words, the plasmoid size reaches maximum at Pr?1.We plan to further explore the significance of such a finding in future work.

    Figure 14.2D contours of the current density in z-direction and the 2D magnetic field lines at(a)time=100,(b)time=150,(c)time=190,(d) time=200, (e) time=205 and (f) time=215 for Δ′=49.66, Pr=1.

    Figure 15.2D contours of the current density in z-direction and the 2D magnetic field lines at(a)time=150,(b)time=200,(c)time=280,(d) time=292, (e) time=296 and (f) time=340 for Δ′=49.66, Pr=10.

    Figure 16.(a) Saturated island width and (b) plasmoid width as functions of the Prandtl number.

    Acknowledgments

    This research was supported by the National Magnetic Confinement Fusion Science Program of China (No.2019YFE03050004),National Natural Science Foundation of China (Nos.11 775 221 and 51 821 005), U.S.DOE (Nos.DE-FG02-86ER53218 and DESC0018001), and the Fundamental Research Funds for the Central Universities at Huazhong University of Science and Technology (No.2019kfyXJJS193).We are grateful for the support from NIMROD team.This research used the computing resources from the Supercomputing Center of University of Science and Technology of China.The author Nisar Ahmad acknowledges the support from the Chinese Government Scholarship.

    免费黄频网站在线观看国产| 桃花免费在线播放| 极品少妇高潮喷水抽搐| 一级a做视频免费观看| 成人亚洲欧美一区二区av| 国产男女内射视频| 永久免费av网站大全| 精品国产一区二区三区四区第35| 中文字幕最新亚洲高清| 26uuu在线亚洲综合色| 最近最新中文字幕大全免费视频 | 少妇 在线观看| 国产日韩一区二区三区精品不卡| 亚洲av国产av综合av卡| 国产一区二区三区综合在线观看 | 日韩欧美一区视频在线观看| 妹子高潮喷水视频| 国产1区2区3区精品| 黄色怎么调成土黄色| 纵有疾风起免费观看全集完整版| tube8黄色片| 久久韩国三级中文字幕| 精品久久久久久电影网| 成人亚洲精品一区在线观看| 欧美3d第一页| 久久人人爽av亚洲精品天堂| 亚洲天堂av无毛| 久久女婷五月综合色啪小说| 伊人久久国产一区二区| 国产成人av激情在线播放| 免费高清在线观看视频在线观看| 性高湖久久久久久久久免费观看| 丁香六月天网| 日韩 亚洲 欧美在线| 色视频在线一区二区三区| 亚洲天堂av无毛| 日本-黄色视频高清免费观看| 国产亚洲精品第一综合不卡 | 亚洲精品456在线播放app| 丝袜美足系列| 国产高清国产精品国产三级| 日韩精品有码人妻一区| 成年美女黄网站色视频大全免费| 久久毛片免费看一区二区三区| 国产 精品1| av国产精品久久久久影院| 观看av在线不卡| 久久精品人人爽人人爽视色| kizo精华| 欧美xxxx性猛交bbbb| 视频中文字幕在线观看| 日韩大片免费观看网站| 在线观看免费日韩欧美大片| 久久久久国产网址| av视频免费观看在线观看| 九九爱精品视频在线观看| 一二三四在线观看免费中文在 | 街头女战士在线观看网站| 国产白丝娇喘喷水9色精品| 日韩精品免费视频一区二区三区 | 曰老女人黄片| 亚洲情色 制服丝袜| 777米奇影视久久| 中文欧美无线码| www.av在线官网国产| av线在线观看网站| 成人二区视频| 久久国内精品自在自线图片| 男女国产视频网站| 五月伊人婷婷丁香| 久久免费观看电影| www.av在线官网国产| 国产伦理片在线播放av一区| 免费在线观看完整版高清| 97超碰精品成人国产| 日韩精品免费视频一区二区三区 | 少妇精品久久久久久久| 在线免费观看不下载黄p国产| 美女福利国产在线| 久久97久久精品| 大片电影免费在线观看免费| 久久精品久久久久久噜噜老黄| 人成视频在线观看免费观看| 九草在线视频观看| 久热这里只有精品99| 国产成人欧美| 亚洲精品成人av观看孕妇| 亚洲精品日本国产第一区| 搡老乐熟女国产| 菩萨蛮人人尽说江南好唐韦庄| 午夜日本视频在线| 你懂的网址亚洲精品在线观看| 免费看光身美女| 热99久久久久精品小说推荐| 乱码一卡2卡4卡精品| 另类精品久久| 亚洲欧美一区二区三区国产| 一区二区三区乱码不卡18| 日日摸夜夜添夜夜爱| 国产日韩一区二区三区精品不卡| 国产在线视频一区二区| 亚洲国产看品久久| 999精品在线视频| 人妻系列 视频| 春色校园在线视频观看| 亚洲精品乱久久久久久| 26uuu在线亚洲综合色| 亚洲精品自拍成人| 免费女性裸体啪啪无遮挡网站| 久久鲁丝午夜福利片| 国产日韩欧美在线精品| 午夜91福利影院| 免费观看无遮挡的男女| 黑人猛操日本美女一级片| 精品久久蜜臀av无| 日本wwww免费看| 午夜日本视频在线| 最近最新中文字幕大全免费视频 | 国产av码专区亚洲av| 亚洲在久久综合| 热99久久久久精品小说推荐| 少妇精品久久久久久久| 侵犯人妻中文字幕一二三四区| 精品少妇内射三级| 久久人人爽av亚洲精品天堂| 日本猛色少妇xxxxx猛交久久| 成人国产麻豆网| 五月伊人婷婷丁香| 99国产综合亚洲精品| 午夜福利视频在线观看免费| 国产在视频线精品| 黄色毛片三级朝国网站| 激情五月婷婷亚洲| 观看av在线不卡| 男女下面插进去视频免费观看 | 热99久久久久精品小说推荐| 乱码一卡2卡4卡精品| 国产乱人偷精品视频| 国产精品久久久久久精品古装| 中文乱码字字幕精品一区二区三区| 日本欧美国产在线视频| av卡一久久| 美女福利国产在线| 亚洲婷婷狠狠爱综合网| 一级毛片我不卡| 女性被躁到高潮视频| 一二三四在线观看免费中文在 | 国产亚洲一区二区精品| 最近的中文字幕免费完整| 国产成人aa在线观看| 水蜜桃什么品种好| 三上悠亚av全集在线观看| av在线老鸭窝| 18禁国产床啪视频网站| 日本黄色日本黄色录像| 纵有疾风起免费观看全集完整版| av播播在线观看一区| 免费播放大片免费观看视频在线观看| 久久精品久久久久久噜噜老黄| 免费久久久久久久精品成人欧美视频 | 欧美最新免费一区二区三区| 亚洲av欧美aⅴ国产| 久久精品国产自在天天线| 亚洲av电影在线观看一区二区三区| 亚洲精品国产av成人精品| 建设人人有责人人尽责人人享有的| 欧美成人午夜精品| 免费看av在线观看网站| 香蕉精品网在线| 18禁观看日本| 久久久国产欧美日韩av| 免费av不卡在线播放| av播播在线观看一区| 国产熟女午夜一区二区三区| 精品国产一区二区久久| 亚洲一级一片aⅴ在线观看| 在线观看免费高清a一片| 欧美 亚洲 国产 日韩一| 中文字幕亚洲精品专区| 国产又爽黄色视频| 你懂的网址亚洲精品在线观看| 99久久中文字幕三级久久日本| 在现免费观看毛片| 国产深夜福利视频在线观看| 国产免费现黄频在线看| av播播在线观看一区| 色哟哟·www| 免费看av在线观看网站| 国产精品人妻久久久久久| 亚洲成人av在线免费| 国产精品人妻久久久影院| 午夜老司机福利剧场| 精品人妻一区二区三区麻豆| 90打野战视频偷拍视频| 亚洲精品自拍成人| 国产一区二区在线观看av| 国产69精品久久久久777片| 欧美丝袜亚洲另类| 国产色爽女视频免费观看| 亚洲性久久影院| 久久国产精品大桥未久av| 日韩人妻精品一区2区三区| 成人国产av品久久久| 国产黄色免费在线视频| 一区二区av电影网| 激情五月婷婷亚洲| 成人无遮挡网站| 亚洲精品中文字幕在线视频| 成人综合一区亚洲| 在线天堂中文资源库| 满18在线观看网站| 中文字幕人妻熟女乱码| 亚洲欧洲日产国产| av国产久精品久网站免费入址| 国产一级毛片在线| 伦精品一区二区三区| 久久久久精品性色| 日韩一区二区三区影片| 国产精品麻豆人妻色哟哟久久| 捣出白浆h1v1| 超色免费av| 亚洲国产av影院在线观看| 亚洲内射少妇av| 久久青草综合色| 精品少妇内射三级| 久久久久国产精品人妻一区二区| 中文字幕精品免费在线观看视频 | 99视频精品全部免费 在线| 国产成人精品久久久久久| 男人操女人黄网站| 久久久国产一区二区| 王馨瑶露胸无遮挡在线观看| 18禁动态无遮挡网站| 久久婷婷青草| 久久久久久久久久久免费av| 亚洲精品aⅴ在线观看| 久久这里只有精品19| 搡老乐熟女国产| 曰老女人黄片| av黄色大香蕉| 国产成人午夜福利电影在线观看| 色网站视频免费| 亚洲天堂av无毛| 国产片内射在线| 热99国产精品久久久久久7| 中文字幕制服av| 午夜免费男女啪啪视频观看| 美女大奶头黄色视频| 亚洲精品色激情综合| 亚洲成人手机| 久久久久久人妻| 亚洲经典国产精华液单| 两性夫妻黄色片 | 热99国产精品久久久久久7| 日日啪夜夜爽| 国产精品.久久久| 中文欧美无线码| 亚洲欧洲精品一区二区精品久久久 | 日本av手机在线免费观看| 99热全是精品| 成年女人在线观看亚洲视频| 久久人妻熟女aⅴ| 一级毛片 在线播放| 中文字幕av电影在线播放| 晚上一个人看的免费电影| 精品少妇黑人巨大在线播放| 波多野结衣一区麻豆| 在线观看美女被高潮喷水网站| 亚洲五月色婷婷综合| 国产日韩欧美亚洲二区| 久久女婷五月综合色啪小说| 亚洲一级一片aⅴ在线观看| 最后的刺客免费高清国语| 国产欧美日韩一区二区三区在线| 免费在线观看完整版高清| 亚洲精品aⅴ在线观看| 777米奇影视久久| 热99国产精品久久久久久7| 天天影视国产精品| 99精国产麻豆久久婷婷| 一级毛片 在线播放| 一二三四中文在线观看免费高清| 久久精品久久久久久久性| 欧美日本中文国产一区发布| 日韩一本色道免费dvd| 日本wwww免费看| 一本久久精品| 久久久精品免费免费高清| 如日韩欧美国产精品一区二区三区| 午夜免费鲁丝| 亚洲av在线观看美女高潮| 国产精品 国内视频| 久久精品久久精品一区二区三区| 老女人水多毛片| 蜜臀久久99精品久久宅男| 久久精品国产综合久久久 | 99热国产这里只有精品6| 97在线视频观看| 一级黄片播放器| 国产成人一区二区在线| 免费观看a级毛片全部| 精品第一国产精品| 国产精品久久久久久精品电影小说| 亚洲精品国产av蜜桃| 日韩在线高清观看一区二区三区| 99九九在线精品视频| 九色亚洲精品在线播放| 伊人久久国产一区二区| 久久亚洲国产成人精品v| 寂寞人妻少妇视频99o| 国产精品国产三级国产av玫瑰| 亚洲综合精品二区| 久久久久久久亚洲中文字幕| 久久国产精品大桥未久av| 99热国产这里只有精品6| 美女xxoo啪啪120秒动态图| 在线观看www视频免费| 国产又色又爽无遮挡免| 久久久久精品久久久久真实原创| 人妻少妇偷人精品九色| 另类亚洲欧美激情| 免费观看a级毛片全部| 久久午夜福利片| 国产乱人偷精品视频| 肉色欧美久久久久久久蜜桃| 国产精品国产三级国产av玫瑰| 精品一区二区三区视频在线| h视频一区二区三区| 亚洲精品自拍成人| 国产日韩一区二区三区精品不卡| 久久久久久久大尺度免费视频| 久久精品国产亚洲av涩爱| 午夜av观看不卡| 黄色毛片三级朝国网站| 内地一区二区视频在线| 熟女电影av网| av又黄又爽大尺度在线免费看| 黄网站色视频无遮挡免费观看| 日本黄色日本黄色录像| 国产激情久久老熟女| 丝瓜视频免费看黄片| 丝袜人妻中文字幕| 一区二区三区乱码不卡18| 99国产精品免费福利视频| 十分钟在线观看高清视频www| 9热在线视频观看99| 18禁国产床啪视频网站| 国产 一区精品| 多毛熟女@视频| 99热6这里只有精品| 蜜桃在线观看..| 精品福利永久在线观看| 免费大片18禁| 中文字幕免费在线视频6| 国产高清不卡午夜福利| 少妇人妻 视频| av不卡在线播放| 久久国产精品男人的天堂亚洲 | 天美传媒精品一区二区| 亚洲图色成人| 免费女性裸体啪啪无遮挡网站| 男女边吃奶边做爰视频| 久久人人爽人人片av| 赤兔流量卡办理| 亚洲熟女精品中文字幕| 久久韩国三级中文字幕| 男女午夜视频在线观看 | 久久 成人 亚洲| 免费黄频网站在线观看国产| 国产一区二区三区av在线| 我要看黄色一级片免费的| 国产伦理片在线播放av一区| 亚洲av福利一区| 久久久久久久大尺度免费视频| 亚洲av欧美aⅴ国产| 午夜老司机福利剧场| 久久精品熟女亚洲av麻豆精品| 99热国产这里只有精品6| 黄色视频在线播放观看不卡| 在线天堂中文资源库| 久久久国产一区二区| 欧美丝袜亚洲另类| 熟女电影av网| 免费观看性生交大片5| 欧美3d第一页| 母亲3免费完整高清在线观看 | 免费观看a级毛片全部| 国产精品熟女久久久久浪| 国产精品不卡视频一区二区| 久久久久久伊人网av| 天堂俺去俺来也www色官网| 永久网站在线| 日韩成人av中文字幕在线观看| 国产亚洲精品第一综合不卡 | 亚洲欧美一区二区三区国产| 99re6热这里在线精品视频| 少妇的丰满在线观看| 国产成人aa在线观看| 日日啪夜夜爽| 国产黄色免费在线视频| 国产亚洲精品久久久com| 国产精品国产av在线观看| 一本色道久久久久久精品综合| 国产爽快片一区二区三区| 1024视频免费在线观看| 美女xxoo啪啪120秒动态图| 亚洲欧美色中文字幕在线| 两性夫妻黄色片 | 在线观看www视频免费| 中文字幕另类日韩欧美亚洲嫩草| 欧美另类一区| 国产一级毛片在线| 亚洲欧美精品自产自拍| 国产高清国产精品国产三级| 亚洲av在线观看美女高潮| 男女边摸边吃奶| 久久 成人 亚洲| 男女无遮挡免费网站观看| 免费观看a级毛片全部| 日韩免费高清中文字幕av| 考比视频在线观看| 久久久久精品久久久久真实原创| 成人无遮挡网站| 日韩在线高清观看一区二区三区| 哪个播放器可以免费观看大片| 卡戴珊不雅视频在线播放| 成年女人在线观看亚洲视频| av免费在线看不卡| 最近的中文字幕免费完整| 国产一区二区激情短视频 | 精品卡一卡二卡四卡免费| 日韩精品免费视频一区二区三区 | 日韩中文字幕视频在线看片| av女优亚洲男人天堂| 精品人妻熟女毛片av久久网站| 精品国产一区二区久久| 欧美xxxx性猛交bbbb| 日本黄色日本黄色录像| 日韩大片免费观看网站| 熟女人妻精品中文字幕| 久久女婷五月综合色啪小说| 日本猛色少妇xxxxx猛交久久| 高清黄色对白视频在线免费看| 日本猛色少妇xxxxx猛交久久| 韩国高清视频一区二区三区| 亚洲内射少妇av| 欧美日韩av久久| 90打野战视频偷拍视频| 男女高潮啪啪啪动态图| 亚洲国产欧美日韩在线播放| 国产精品 国内视频| 久久韩国三级中文字幕| 免费人成在线观看视频色| 国产精品无大码| 99久国产av精品国产电影| 亚洲精品美女久久av网站| 欧美精品国产亚洲| 国产日韩欧美亚洲二区| 国产熟女午夜一区二区三区| 久久久精品区二区三区| 国产福利在线免费观看视频| 黄色毛片三级朝国网站| 亚洲国产看品久久| 男人操女人黄网站| 少妇被粗大的猛进出69影院 | 黑人高潮一二区| 欧美 日韩 精品 国产| 亚洲精品aⅴ在线观看| 嫩草影院入口| 国产不卡av网站在线观看| 最近最新中文字幕免费大全7| 女的被弄到高潮叫床怎么办| 美女大奶头黄色视频| 精品卡一卡二卡四卡免费| 中国美白少妇内射xxxbb| 各种免费的搞黄视频| 伊人久久国产一区二区| 国产极品粉嫩免费观看在线| 啦啦啦啦在线视频资源| 1024视频免费在线观看| 精品国产国语对白av| 欧美日本中文国产一区发布| 日本av手机在线免费观看| 亚洲精华国产精华液的使用体验| 久久久精品94久久精品| 两个人免费观看高清视频| 国产欧美另类精品又又久久亚洲欧美| 国产日韩欧美亚洲二区| 日本wwww免费看| 精品亚洲乱码少妇综合久久| www.色视频.com| 男人舔女人的私密视频| 国产一区二区在线观看日韩| 国产一级毛片在线| 亚洲天堂av无毛| 啦啦啦啦在线视频资源| 亚洲精品乱码久久久久久按摩| 丝袜脚勾引网站| 视频在线观看一区二区三区| 51国产日韩欧美| 国产永久视频网站| www日本在线高清视频| 欧美日韩综合久久久久久| 又黄又粗又硬又大视频| 不卡视频在线观看欧美| 免费观看性生交大片5| 国产精品不卡视频一区二区| 视频中文字幕在线观看| 黄色配什么色好看| 美女内射精品一级片tv| 欧美日韩综合久久久久久| 亚洲婷婷狠狠爱综合网| 亚洲第一区二区三区不卡| 在线 av 中文字幕| 国产女主播在线喷水免费视频网站| 国产av国产精品国产| 亚洲成色77777| 我要看黄色一级片免费的| 国产有黄有色有爽视频| 国产老妇伦熟女老妇高清| 国产免费一级a男人的天堂| 美国免费a级毛片| 九九在线视频观看精品| 美女内射精品一级片tv| 精品人妻在线不人妻| 久久热在线av| 女性生殖器流出的白浆| 毛片一级片免费看久久久久| 色94色欧美一区二区| 一区二区三区乱码不卡18| 亚洲欧美精品自产自拍| 五月天丁香电影| 大话2 男鬼变身卡| 日本欧美国产在线视频| 男的添女的下面高潮视频| 人妻人人澡人人爽人人| 免费高清在线观看日韩| av电影中文网址| 精品福利永久在线观看| 国产乱来视频区| 街头女战士在线观看网站| 如何舔出高潮| 蜜臀久久99精品久久宅男| 18禁动态无遮挡网站| 日本wwww免费看| 国产色爽女视频免费观看| 亚洲av福利一区| 国产午夜精品一二区理论片| 久久热在线av| 久久久久国产网址| 大片免费播放器 马上看| 国产av精品麻豆| av不卡在线播放| 纵有疾风起免费观看全集完整版| 亚洲欧美中文字幕日韩二区| 精品福利永久在线观看| 九色亚洲精品在线播放| 汤姆久久久久久久影院中文字幕| 免费看av在线观看网站| 99香蕉大伊视频| 伊人久久国产一区二区| 大码成人一级视频| av线在线观看网站| 亚洲成国产人片在线观看| 精品视频人人做人人爽| 久久ye,这里只有精品| 国产不卡av网站在线观看| 色视频在线一区二区三区| 久久久久久久久久久免费av| 一本久久精品| 国产成人精品无人区| 最近2019中文字幕mv第一页| 亚洲av中文av极速乱| 妹子高潮喷水视频| 久久精品久久久久久噜噜老黄| 天天躁夜夜躁狠狠躁躁| 亚洲av.av天堂| 青春草视频在线免费观看| 欧美精品av麻豆av| 亚洲国产日韩一区二区| 丝袜美足系列| 国产精品久久久久久久电影| 熟女人妻精品中文字幕| 欧美人与性动交α欧美精品济南到 | 老女人水多毛片| 精品久久国产蜜桃| 韩国精品一区二区三区 | 老熟女久久久| 啦啦啦在线观看免费高清www| 国产精品不卡视频一区二区| 久久国产亚洲av麻豆专区| 国产有黄有色有爽视频| 曰老女人黄片| 一区在线观看完整版| 在线亚洲精品国产二区图片欧美| www.色视频.com| 成年动漫av网址| 9色porny在线观看| 五月开心婷婷网| 久久午夜福利片| 交换朋友夫妻互换小说| a 毛片基地| 哪个播放器可以免费观看大片| 男女午夜视频在线观看 | 国产色婷婷99| 搡老乐熟女国产| 久久久国产一区二区| 国产午夜精品一二区理论片| 日本av手机在线免费观看| 精品酒店卫生间| 老司机影院成人| 亚洲精品,欧美精品| 亚洲av在线观看美女高潮| 亚洲欧洲日产国产| 黄色配什么色好看|