• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Viscous effects on plasmoid formation from nonlinear resistive tearing growth in a Harris sheet

    2022-02-15 11:07:58NisarAHMADPingZHU朱平AhmadALIandShiyongZENG曾市勇
    Plasma Science and Technology 2022年1期

    Nisar AHMAD,Ping ZHU(朱平),Ahmad ALI and Shiyong ZENG(曾市勇)

    1 CAS Key Laboratory of Geospace Environment and Department of Engineering and Applied Physics,University of Science and Technology of China, Hefei 230026, People's Republic of China

    2 International Joint Research Laboratory of Magnetic Confinement Fusion and Plasma Physics, State Key Laboratory of Advanced Electromagnetic Engineering and Technology, School of Electrical and Electronic Engineering,Huazhong University of Science and Technology,Wuhan 430074,People's Republic of China

    3 Department of Engineering Physics, University of Wisconsin-Madison, Madison, Wisconsin 53706,United States of America

    4 Pakistan Tokamak Plasma Research Institute, Islamabad 44000, Pakistan

    5 Department of Plasma Physics and Fusion Engineering,University of Science and Technology of China,Hefei 230026, People's Republic of China

    Abstract In this work, the evolution of a highly unstable m=1 resistive tearing mode, leading to plasmoid formation in a Harris sheet, is studied in the framework of full MHD model using the Non-Ideal Magnetohydrodynamics with Rotation,Open Discussion simulation.Following the initial nonlinear growth of the primary m=1 island,the X-point develops into a secondary elongated current sheet that eventually breaks into plasmoids.Two distinctive viscous regimes are found for the plasmoid formation and saturation.In the low viscosity regime (i.e.Pr 1), the plasmoid width increases sharply with viscosity, whereas in the viscosity dominant regime (i.e.Pr 1), the plasmoid size gradually decreases with viscosity.Such a finding quantifies the role of viscosity in modulating the plasmoid formation process through its effects on the plasma flow and the reconnection itself.

    Keywords: viscosity, reconnection, plasmoids, Prandtl number

    1.Introduction

    Plasmoid instability(PI)is known to develop on the elongated current sheet formed during the externally driven Sweet–Parker(SP) reconnection, or from the intrinsically growing nonlinear kink or tearing mode.In general, when the aspect ratio of the elongated current sheet becomes sufficiently large, unstable secondary tearing can lead to the formation of plasmoids[1–5].The problem of the transition from the laminar reconnection during the early nonlinear stage, to the subsequent highly unstable one, characterized by sporadic production of plasmoids inside the sheet itself, with faster average reconnection rates, has been addressed by a number of past numerical and theoretical studies [6, 7], in the context of PIs following the externally driven SP reconnection [8–12], or the intrinsically nonlinear tearing mode[2,13–15],on the scaling and dynamics of plasmoid formation with different Lundquist numbers.

    Previous studies have found the critical roles of plasma flow in the processes of reconnection in general and plasmoid formation in particular[16–21].Whereas the plasma outflow is stabilizing on the primary tearing mode or reconnection process [16–19], the effects of plasma flow itself, including both inflow and outflow,may contribute to the initial onset of PI[8].The plasma viscosity can affect the properties and topologies of plasma flow close to the thin current sheet as well as the reconnection rate.Because of the narrowness of the current sheet, viscosity can influence the nonlinear regime.In fact,viscosity increases the possibility of local changes in the flow topology.The robustness of the flow cells around the sheet might be weakened or even unstable due to the existence of strong flow gradients in the current sheet region [22].Finite viscosity inserts dissipation to the flow patterns that in turn interact with the island evolution and reconnection [22].Thus the plasma viscosity, both collisional and collisionless, is expected to be one of the key parameters that determine the onset and saturation conditions for the PI.

    The effects of viscosity on linear and nonlinear resistive tearing mode as well as PI have been studied by many[12, 13, 22–31].In this paper we focus on exploring the impact of viscosity on the onset and saturation of PI.Most of the past studies on visco-resistive tearing and kink modes were made in a 2D reduced MHD model, however in this study, we use the complete resistive MHD equations implemented in Non-Ideal Magnetohydrodynamics with Rotation,Open Discussion (NIMROD) code [32].Both the onset and the dynamics of plasmoid differ greatly from those found in previous reduced MHD simulations [21, 22].

    The rest of the paper is organized as follows.In section 2,we briefly describe our simulation model.In section 3, both linear and nonlinear simulation results are reported.At the end in section 4, summary and discussion are presented.

    2.Simulation model and equilibrium

    Our simulations are based on the single-fluid full MHD model implemented in the NIMROD code [32].

    where ρ,N,p,T,J,v,B,η,γ and ν are the plasma mass density,number density, pressure, temperature, current density, velocity,magnetic field, heat flux, resistivity, specific heat ratio, and viscosity respectively.The resistive-viscous MHD model equations(1)–(4)used in the simulations are all dimensionless.In particular, the spatial normalization unit x0is of the same order as the Harris sheet width a, i.e.x0~a.The magnetic field is normalized by the field magnitude B0at the edge of the Harris sheet, i.e.x →±∞.The mass density is normalized by the field magnitude ρ0at the center of the current sheet x=0.The normalization units for velocity, time, and pressure areandrespectively.In addition, the heat flux is zero and the adiabatic index γ=5/3.In the dimensionless equations(1)–(4), both the resistivity η and the viscosity ν are the normalized dimensionless parameters,with η=S?1, andν=where S is the Lundquist numberis the unnormalized dimensionless resistivity,and Pr=μ0νD/ηDis the magnetic Prandtl number,νDis the unnormalized dimensionless viscosity,withThe Harris current sheet model is adopted for the equilibrium magnetic field [33]

    Figure 1.(a)Harris sheet equilibrium magnetic field and(b)pressure profiles.

    The corresponding pressure profile from the static MHD force balance is determined as

    Figure 1 shows the above mentioned equilibrium magnetic field and pressure profiles.The resistive MHD equations(1)–(6)are numerically solved in a rectangular domain[?Lx,Lx]×[?Ly,Ly], where Lx=(?2.5, 2.5) and Ly=(?5, 5).The periodic boundary conditions are imposed at the y-boundaries, and the solid, perfect conducting walls are assumed at the x-boundaries.For the Harris current sheetΔ′a= 2 [(ka)?1?ka][34],so that the unstable modes have wave vector satisfying ka<1.HereΔ′is the discontinuity of logarithmic derivative of the outer flux function when approaching the singular layer at x=0,which is a measure of the free energy of the system.Here k is the mode wave number along y,and Ly=2πm/k,with m being the mode number.In our linear simulations, resistivity and viscosity are varied but nonlinear simulations are performed for a uniform plasma resistivity η=2.8×10?4and a wide range of viscosity(Pr=0.33–10).

    Figure 2.(a)Linear growth rates as functions of the resistivity for the fixed value of ν=0.000 28 and Δ′ = 49.66.The blue and red lines,represent the theoretical scaling of the linear growth rate for low(γ ~η0.33) and large (γ ~η0.66) Prandtl number regimes respectively, whereas, the green line represents the simulation results.(b)Linear growth rates as functions of the viscosity for the fixed value of instability parameter Δ′ = 49.66 and various values of resistivity η.

    Figure 3.Kinetic energy evolution for different numerical resolutions at Δ′ = 49.66.

    Figure 4.Kinetic energy evolution for Δ′ = 9.306, 12.057, 13.462,14.05, 14.53, 15.6419, 17.31, 24.5007, 39.35 and 49.66.

    Figure 5.(a) Primary island evolution and (b) primary plasmoid evolution for different instability parameters.

    3.Simulation results

    3.1.Linear scaling

    Figure 6.2D contours of the current density in z-direction and the 2D magnetic field lines at (a) time=450 and (b) time=570 for Δ′ = 13.462.

    The PI tends to develop from the primary tearing growth in the largeΔ′ regime [2].One such case,Δ′ = 49.66 is examined first in simulations for its linear scaling in comparison with theory.The linear growth rate of the m=1 resistive tearing mode obtained from our NIMROD simulations scales with the resistivity η as γ ~η0.30for low Prandtl and γ ~η0.67for large Prandtl number regimes.These scalings are close to the resistive tearing scalings of γ ~η0.33and γ ~η0.66in the large Δ′ regime previously derived in theory [24, 29, 35](figure 2(a)).Viscosity in general introduces dissipation that reduces the linear growth of resistive tearing mode.This viscous dissipation is stronger in the Pr>1 regime, where the growth rate γ of the m=1 resistive tearing scales with the viscosity as γ ~ν?0.33,similar to the viscosity scaling obtained in previous reduced MHD simulations [29] and theory [24](figure 2(b)).

    3.2.Nonlinear results

    3.2.1.Critical Δ′for the X-point collapse and PI.Our nonlinear simulations find that the onset of secondary tearing instability and plasmoid formation occur only when theΔ′ is above a certain threshold value.In our nonlinear simulation, we mostly employ 64×48 2D finite elements with a polynomial degree of 5, which ensures the numerical convergence (figure 3).

    Figure 7.2D contours of the current density in z-direction and the 2D magnetic field lines at (a) time=300 and (b) time=470 for Δ′ = 14.05.

    The evolution of kinetic energy reaches its maximum sooner as we increase the value ofΔ′ (figure 4).In figure 5 the evolutions of the width of the primary island and plasmoids are shown which match the earlier simulation results[36].We have measured the width of primary plasmoid(i.e.secondary island)at the stage just before its ejection.Also at this stage we have referred to the primary island as the saturated island,since by this stage the width of the primary island has approached constant.

    The minimum value ofΔ′ at which the X-point evolves into the Y-type is 14.04.ForΔ′ = 13.42, the current sheet remains the shape of X-point over the entire time(figure 6).As the value ofΔ′ increases to above 14.05, the X-point evolves into a Y-type current sheet as shown in figures 7 and 8.Waelbroeck[37]first predicted the criterion for the collapse of X-point into Y-type current sheet to beW>Wc≈ 25Δ′,where W represents the width of primary island and Wcrepresents the critical width at which X-point collapses.This conversion of X-point into Y-type current sheet is termed as the secondary instability (SI) [37].The subsequent collapse of the Y-type current sheet into plasmoids is known as the PI [38].

    Figure 8.2D contours of the current density in z-direction and the 2D magnetic field lines at(a)time=200,(b)time=340,(c)time=360 and (d) time=365 for Δ′ = 17.31.

    Figure 9.Kinetic energy evolution for Δ′ = 49.66 at Pr=0.33, 0.5, 1 and Pr=10.

    Figure 10.Primary island evolution and (b) primary plasmoid evolution for Δ′ = 49.66 at Pr=0.33, 0.5, 1 and Pr=10.

    For η=2.8×10?4and Pr=1 the criticalΔ′value for the onset of PI isΔ′ = 17.31, which is in agreement with the previous reduced MHD simulation [21].In this case, at time 200(figure 8(a)),an X-point is formed as shown.At time 340(figure 8(b)), the Y-type current sheet develops during the nonlinear stage[6,9,39].At time 360(figure 8(c)),the current density reaches maximum and the current sheet becomes more stretched and thinner.Finally, at time 365 (figure 8(d)),formation of plasmoid takes place.

    3.2.2.Effect of viscosity on the nonlinear evolution of resistive tearing mode for highly unstable system.In the following cases, to explore the viscosity effects, we only vary the viscosity in terms of Prby keeping the resistivity and instability parameter constant, which are η=2.8×10?4and Δ′ = 49.66 respectively.To study the effect of viscosity, we choose four different cases with Pr=0.33, 0.5, 1 and 10(figure 9).The evolution of the width of primary island and primary plasmoid for the above mentioned different Prandtl number cases is shown in figure 10.

    In figure 11, the dynamics of the visco-resistive tearing mode growth are divided in 5 stages.The first stage is the initial transient stage when the linear instability starts to grow.The second stage is the FKR stage, during which both the reconnection rate and the magnetic island width grow exponentially.In the third stage, the so-called Rutherford stage, the island evolves toward saturation and subsequent decay.The X-point collapse and the Y-type, SP-like current sheet forms during the fourth stage (figures 12(a)–(c)).The transition from the X-type geometry to the Y-type current sheet is known as the SI.The first peak that appears in the kinetic energy evolution is due to the X-point collapse with the onset of SI at t=160 as shown in figure 9.After the X-point collapse, the SP-like current sheet starts to become elongated in the poloidal direction.During the fifth stage,the Y-type current sheet starts to become more elongated and SPlike.After the collapse of SP-like current sheet,the secondary island appears along with two X-points on both ends(figure 12(e)).After t=160,the growth rate starts to decrease up to t=170, and a significant change in the growth rate occurs due to the collapse of the Y-type current sheet and the formation of small plasmoid chain.

    Figure 11.Growth rate evolution for all Pr=0.33, 0.5, 1 and 10 cases with Δ′=49.66.

    The size of the secondary island increases up to some extent and both X-points collapse to form two tertiary current sheets with the passage of time.The second large peaks in the growth rate and the kinetic energy plots represent the collapse of these two tertiary current sheets.As the width of the secondary island approaches some critical value, the ejection of the secondary island takes place.At this point kinetic energy increases abruptly and the secondary island coalesces with the primary one(figure 13(d)).As the Y-type current sheet collapse and the PI appears, a drastic increase in the growth rate takes place (figure 11) which is much larger as compared to the growth rate of the SI.

    The nonlinear stages of our simulation results described above are quite similar to the nonlinear secondary island evolution reported by Loureiro et al [2].But the collapse of the secondary island and direction of ejection are different in our cases.For example in our simulations for the Pr=0.5 and the Pr=5 cases,the direction of plasmoid ejection is upward,whereas for the Pr=1 and the Pr=10 cases the direction is downward.The directions of plasmoid ejection are different for different Prcases.Prmay not be the fundamental parameter that determines the direction of the plasmoid ejection, which may also depend on the initial condition.We leave this issue for future study.

    Our simulations for various Prnumbers show viscous effects on both the timing and the spatial structure of PI.In the Pr=0.33 (i.e.very low viscosity), we find secondary islands that saturate early at smaller size(figure 12(f)).As we increase the viscosity further (Pr=0.5), the appearance and ejection of the secondary island become more prominent,along with the larger saturated island and plasmoid(figure 13).A clear transition occurs at Pr=1, when the size of the primary plasmoid becomes the maximum, and the onsets of the SI, the PI and the island saturation are significantly postponed(figure 14).The direction of plasmoid ejection also switches to the opposite.The second peak of kinetic energy increases with viscosity and reaches maximum at Pr=1 too.For higher Prandtl number(Pr=10,with η=2.8×10?4and viscosity=0.0028)the size of the plasmoid becomes smaller(figure 15).Figure 16 summarizes the relationships among plasmoid width, saturated island width, and Prnumber.At lower Pr, the width of saturated island is small, but as we increase viscosity, the width of saturated island increases sharply up to Pr=1,beyond which the saturated island width becomes almost independent of the Prnumber.The Pr=1 number also separates two regimes for the plasmoid width.In the Pr<1 regime,the width of plasmoid increases drastically with viscosity, whereas in the Pr>1 regime, the width of plasmoid slowly decreases with the viscosity.

    Figure 12.2D contours of the current density in z-direction and the 2D magnetic field lines at(a)time=70,(b)time=100,(c)time=152,(d) time=168, (e) time=172 and (f) time=176 for Δ′=49.66, Pr=0.33.

    4.Summary

    Figure 13.2D contours of the current density in z-direction and the 2D magnetic field lines at(a)time=100,(b)time=156,(c)time=180,(d) time=196, (e) time=204 and (f) time=208 for Δ′=49.66, Pr=0.5.

    The key objective of this study is to explore the viscous effects on SI, plasmoid formation, their merging and ejection process during the nonlinear evolution of a resistive tearing mode in the largeΔ′ regime.For our equilibrium, we find the critical instability parameter for the onset of the SI, and the minimum value ofΔ′at which PI can take place.Two distinctive regimes of the Prnumber are found for the PI, which are separated by the value of Pr=1.In the Pr1 regime, the amplitude of the second peak for kinetic energy increases up to Pr=1,whereas in the Pr1 regime, this amplitude decreases with the viscosity.Both the saturated island width and the plasmoid size increase sharply with the viscosity in the Pr1 regime, however, the former slowly increases whereas the latter decreases with the viscosity in the Pr1 regime.In other words, the plasmoid size reaches maximum at Pr?1.We plan to further explore the significance of such a finding in future work.

    Figure 14.2D contours of the current density in z-direction and the 2D magnetic field lines at(a)time=100,(b)time=150,(c)time=190,(d) time=200, (e) time=205 and (f) time=215 for Δ′=49.66, Pr=1.

    Figure 15.2D contours of the current density in z-direction and the 2D magnetic field lines at(a)time=150,(b)time=200,(c)time=280,(d) time=292, (e) time=296 and (f) time=340 for Δ′=49.66, Pr=10.

    Figure 16.(a) Saturated island width and (b) plasmoid width as functions of the Prandtl number.

    Acknowledgments

    This research was supported by the National Magnetic Confinement Fusion Science Program of China (No.2019YFE03050004),National Natural Science Foundation of China (Nos.11 775 221 and 51 821 005), U.S.DOE (Nos.DE-FG02-86ER53218 and DESC0018001), and the Fundamental Research Funds for the Central Universities at Huazhong University of Science and Technology (No.2019kfyXJJS193).We are grateful for the support from NIMROD team.This research used the computing resources from the Supercomputing Center of University of Science and Technology of China.The author Nisar Ahmad acknowledges the support from the Chinese Government Scholarship.

    午夜激情福利司机影院| 日韩欧美精品免费久久| 久久久久久久大尺度免费视频| 插阴视频在线观看视频| a级毛片免费高清观看在线播放| 一区二区av电影网| 超色免费av| 永久免费av网站大全| 国产精品一区二区三区四区免费观看| 成人综合一区亚洲| 国产日韩欧美在线精品| 99热这里只有精品一区| 日本黄色片子视频| 热99国产精品久久久久久7| 久久97久久精品| 日韩成人av中文字幕在线观看| 国产成人av激情在线播放 | 中国美白少妇内射xxxbb| 一个人免费看片子| www.av在线官网国产| 欧美亚洲 丝袜 人妻 在线| 亚洲综合色网址| 18禁在线无遮挡免费观看视频| 国产视频内射| 少妇的逼水好多| 在线看a的网站| 国产精品秋霞免费鲁丝片| 美女xxoo啪啪120秒动态图| 久久久久网色| 午夜免费男女啪啪视频观看| 国产永久视频网站| 国产片内射在线| 免费日韩欧美在线观看| 午夜福利视频在线观看免费| 大陆偷拍与自拍| 婷婷色综合大香蕉| av国产精品久久久久影院| 建设人人有责人人尽责人人享有的| 精品久久久噜噜| 99视频精品全部免费 在线| 3wmmmm亚洲av在线观看| 国产高清有码在线观看视频| 亚洲av不卡在线观看| 色5月婷婷丁香| 一级,二级,三级黄色视频| 亚洲怡红院男人天堂| 精品国产乱码久久久久久小说| 午夜精品国产一区二区电影| 国产精品人妻久久久影院| 2022亚洲国产成人精品| 日韩在线高清观看一区二区三区| 99久久精品一区二区三区| 午夜免费男女啪啪视频观看| 成年美女黄网站色视频大全免费 | 日韩 亚洲 欧美在线| 日韩 亚洲 欧美在线| 老熟女久久久| 久久久久国产网址| 少妇丰满av| 国产高清有码在线观看视频| 国产在视频线精品| 国产免费一区二区三区四区乱码| 久久久久国产网址| 国产白丝娇喘喷水9色精品| 91精品国产九色| 新久久久久国产一级毛片| 91精品国产九色| 国产乱人偷精品视频| 美女视频免费永久观看网站| 国产乱来视频区| 欧美精品亚洲一区二区| 亚洲国产色片| 春色校园在线视频观看| 国产精品99久久99久久久不卡 | 成人无遮挡网站| 嫩草影院入口| 老司机影院成人| 国产精品麻豆人妻色哟哟久久| 久久久久久久久久人人人人人人| 99热网站在线观看| av女优亚洲男人天堂| 国产色婷婷99| 婷婷色麻豆天堂久久| 国产亚洲最大av| 一级黄片播放器| 国产成人午夜福利电影在线观看| 婷婷色综合大香蕉| 亚洲精品国产av成人精品| 久久久a久久爽久久v久久| 精品国产一区二区三区久久久樱花| 精品国产一区二区久久| 99久久综合免费| 内地一区二区视频在线| 欧美日韩综合久久久久久| 一级毛片 在线播放| 最近手机中文字幕大全| 日韩一区二区视频免费看| 中文天堂在线官网| 视频中文字幕在线观看| 久久精品国产亚洲av天美| 免费高清在线观看日韩| 亚洲内射少妇av| 丝袜脚勾引网站| 欧美变态另类bdsm刘玥| 亚洲色图 男人天堂 中文字幕 | 亚洲国产最新在线播放| 国产淫语在线视频| 亚洲精品,欧美精品| 亚洲精品久久午夜乱码| 精品亚洲成a人片在线观看| 肉色欧美久久久久久久蜜桃| 免费av中文字幕在线| 在线免费观看不下载黄p国产| 国产又色又爽无遮挡免| 在线观看免费日韩欧美大片 | 全区人妻精品视频| 国产亚洲欧美精品永久| 欧美3d第一页| 日韩,欧美,国产一区二区三区| 亚洲天堂av无毛| 国精品久久久久久国模美| 欧美成人午夜免费资源| 高清黄色对白视频在线免费看| 国产亚洲午夜精品一区二区久久| 久热久热在线精品观看| 免费观看在线日韩| 美女xxoo啪啪120秒动态图| 国产精品久久久久久久久免| av.在线天堂| 十分钟在线观看高清视频www| 99久久精品国产国产毛片| 亚洲图色成人| 高清黄色对白视频在线免费看| 2018国产大陆天天弄谢| 晚上一个人看的免费电影| videosex国产| 九色成人免费人妻av| 国产精品熟女久久久久浪| 欧美成人午夜免费资源| 男人添女人高潮全过程视频| 国产免费视频播放在线视频| 亚洲精品中文字幕在线视频| 99九九在线精品视频| 国产日韩欧美视频二区| 国产日韩欧美在线精品| 不卡视频在线观看欧美| 久热这里只有精品99| .国产精品久久| 久久99一区二区三区| 精品国产乱码久久久久久小说| 亚洲精品国产色婷婷电影| 午夜老司机福利剧场| 一本一本综合久久| 青春草国产在线视频| 婷婷成人精品国产| 中文字幕制服av| 夜夜爽夜夜爽视频| 人人妻人人爽人人添夜夜欢视频| 欧美日韩综合久久久久久| 五月开心婷婷网| 我的老师免费观看完整版| 最黄视频免费看| 有码 亚洲区| av电影中文网址| 欧美3d第一页| av在线app专区| 高清视频免费观看一区二区| 亚洲成色77777| 国产 一区精品| 中国国产av一级| 国产爽快片一区二区三区| 精品国产露脸久久av麻豆| 97在线视频观看| 特大巨黑吊av在线直播| 边亲边吃奶的免费视频| 王馨瑶露胸无遮挡在线观看| 国产不卡av网站在线观看| 69精品国产乱码久久久| 狂野欧美白嫩少妇大欣赏| 欧美激情 高清一区二区三区| 伊人亚洲综合成人网| 久久热精品热| 秋霞伦理黄片| 人妻制服诱惑在线中文字幕| 国产精品偷伦视频观看了| 久久人人爽人人爽人人片va| 国产高清有码在线观看视频| 日韩一区二区三区影片| 欧美一级a爱片免费观看看| a级片在线免费高清观看视频| 在现免费观看毛片| 一边摸一边做爽爽视频免费| 精品亚洲成国产av| 伊人久久精品亚洲午夜| 全区人妻精品视频| 夜夜看夜夜爽夜夜摸| 欧美日韩一区二区视频在线观看视频在线| 国产又色又爽无遮挡免| 午夜影院在线不卡| 国产在线一区二区三区精| 亚洲国产欧美日韩在线播放| 国产精品久久久久久精品电影小说| 国内精品宾馆在线| 午夜老司机福利剧场| xxxhd国产人妻xxx| av天堂久久9| xxx大片免费视频| 亚洲av成人精品一二三区| 亚洲欧洲国产日韩| 精品国产乱码久久久久久小说| 九色成人免费人妻av| 一本久久精品| 国产成人精品一,二区| 久久精品人人爽人人爽视色| 久久精品久久久久久噜噜老黄| 亚洲情色 制服丝袜| 人妻少妇偷人精品九色| 一区二区日韩欧美中文字幕 | 国产无遮挡羞羞视频在线观看| 久久这里有精品视频免费| 你懂的网址亚洲精品在线观看| 中文精品一卡2卡3卡4更新| 丰满饥渴人妻一区二区三| 色94色欧美一区二区| 一级a做视频免费观看| 国产精品久久久久久久久免| 亚洲精品亚洲一区二区| 中文字幕精品免费在线观看视频 | 日本黄大片高清| www.色视频.com| 18禁在线播放成人免费| 日本欧美国产在线视频| 欧美成人午夜免费资源| 日日摸夜夜添夜夜添av毛片| 免费看光身美女| 亚洲精品乱码久久久久久按摩| 日日撸夜夜添| 搡老乐熟女国产| 免费黄色在线免费观看| 久热这里只有精品99| 亚洲经典国产精华液单| 如日韩欧美国产精品一区二区三区 | 不卡视频在线观看欧美| 母亲3免费完整高清在线观看 | 国产男人的电影天堂91| 97超碰精品成人国产| 日本免费在线观看一区| 亚洲国产精品一区三区| 日本91视频免费播放| 亚洲精品,欧美精品| 性色avwww在线观看| 欧美老熟妇乱子伦牲交| 又粗又硬又长又爽又黄的视频| 国产精品久久久久久久久免| freevideosex欧美| 美女国产高潮福利片在线看| 欧美日韩一区二区视频在线观看视频在线| 啦啦啦视频在线资源免费观看| 精品一区二区三卡| 99热网站在线观看| 美女视频免费永久观看网站| 亚洲精品久久久久久婷婷小说| 99九九在线精品视频| 午夜福利,免费看| 亚洲一级一片aⅴ在线观看| 超碰97精品在线观看| 午夜福利在线观看免费完整高清在| 精品少妇久久久久久888优播| 大又大粗又爽又黄少妇毛片口| 日本色播在线视频| 丝袜脚勾引网站| 国产男女超爽视频在线观看| 久久青草综合色| h视频一区二区三区| 人人妻人人澡人人看| 一级黄片播放器| 欧美三级亚洲精品| 精品卡一卡二卡四卡免费| 亚洲,欧美,日韩| 色婷婷av一区二区三区视频| av不卡在线播放| 狠狠精品人妻久久久久久综合| 有码 亚洲区| 建设人人有责人人尽责人人享有的| 日本黄色日本黄色录像| 蜜臀久久99精品久久宅男| av在线播放精品| 午夜福利视频在线观看免费| 日本-黄色视频高清免费观看| 中国三级夫妇交换| 免费日韩欧美在线观看| 免费人成在线观看视频色| 一级,二级,三级黄色视频| 亚洲伊人久久精品综合| 免费人成在线观看视频色| 精品人妻熟女毛片av久久网站| 男女免费视频国产| 日本wwww免费看| 亚洲内射少妇av| 黄色毛片三级朝国网站| 纯流量卡能插随身wifi吗| videosex国产| 蜜桃久久精品国产亚洲av| 一区二区三区四区激情视频| 黄色毛片三级朝国网站| av在线播放精品| 在现免费观看毛片| 在线免费观看不下载黄p国产| 韩国高清视频一区二区三区| 国产一级毛片在线| 三级国产精品片| 亚洲av不卡在线观看| 夜夜爽夜夜爽视频| 国产毛片在线视频| 你懂的网址亚洲精品在线观看| 日本猛色少妇xxxxx猛交久久| 国产精品一区www在线观看| 两个人免费观看高清视频| 日本与韩国留学比较| 一区二区三区四区激情视频| 国产午夜精品一二区理论片| 国产国拍精品亚洲av在线观看| 亚洲少妇的诱惑av| 99热国产这里只有精品6| 婷婷色av中文字幕| 一级,二级,三级黄色视频| 国产片特级美女逼逼视频| 国产白丝娇喘喷水9色精品| 中国国产av一级| 国产淫语在线视频| 一级片'在线观看视频| av黄色大香蕉| av免费在线看不卡| 涩涩av久久男人的天堂| 色婷婷av一区二区三区视频| 十八禁高潮呻吟视频| 最新中文字幕久久久久| 女的被弄到高潮叫床怎么办| 免费观看a级毛片全部| 青春草国产在线视频| 男女啪啪激烈高潮av片| 99热6这里只有精品| 伊人亚洲综合成人网| 女性被躁到高潮视频| 熟女电影av网| 亚洲欧美清纯卡通| 亚洲成色77777| 啦啦啦视频在线资源免费观看| 精品少妇黑人巨大在线播放| 精品少妇久久久久久888优播| 成人午夜精彩视频在线观看| 少妇人妻 视频| 啦啦啦中文免费视频观看日本| 久久人人爽人人爽人人片va| 热re99久久精品国产66热6| 黄色配什么色好看| 国产国拍精品亚洲av在线观看| 欧美成人午夜免费资源| 久久久午夜欧美精品| 精品久久久精品久久久| 国产探花极品一区二区| 国产精品欧美亚洲77777| 国产亚洲av片在线观看秒播厂| 欧美人与性动交α欧美精品济南到 | 99久久人妻综合| 91国产中文字幕| 国产 精品1| 久久久久久久久久人人人人人人| av国产精品久久久久影院| kizo精华| 午夜久久久在线观看| 欧美一级a爱片免费观看看| 少妇人妻久久综合中文| 亚洲精品456在线播放app| 久久免费观看电影| 午夜91福利影院| 久久婷婷青草| 久久99精品国语久久久| 在线观看免费高清a一片| 精品久久久噜噜| 男女免费视频国产| 中国国产av一级| 性色av一级| 国产毛片在线视频| 国产一区二区在线观看日韩| 一区二区三区免费毛片| 午夜视频国产福利| 妹子高潮喷水视频| 性高湖久久久久久久久免费观看| 亚洲av福利一区| 国产69精品久久久久777片| 看十八女毛片水多多多| 在线观看三级黄色| 久久久精品区二区三区| 国产精品一区二区在线观看99| 啦啦啦在线观看免费高清www| 国产成人精品一,二区| 日韩中文字幕视频在线看片| 精品一品国产午夜福利视频| 欧美国产精品一级二级三级| 色5月婷婷丁香| 色视频在线一区二区三区| 精品人妻熟女毛片av久久网站| 久久青草综合色| 女性生殖器流出的白浆| 精品国产国语对白av| 久久久久久久久久人人人人人人| 国产亚洲精品久久久com| 欧美日韩一区二区视频在线观看视频在线| 国产片特级美女逼逼视频| av网站免费在线观看视频| 欧美日韩av久久| 纵有疾风起免费观看全集完整版| 少妇 在线观看| 日产精品乱码卡一卡2卡三| 在线观看www视频免费| 国产精品无大码| 国产精品久久久久久久久免| 亚洲国产精品专区欧美| 亚洲av成人精品一区久久| 精品午夜福利在线看| 欧美一级a爱片免费观看看| 最新中文字幕久久久久| 狂野欧美激情性bbbbbb| 99精国产麻豆久久婷婷| 夫妻午夜视频| 亚洲成人一二三区av| 日韩熟女老妇一区二区性免费视频| √禁漫天堂资源中文www| 18禁观看日本| 在线看a的网站| a级毛片免费高清观看在线播放| 久久99热6这里只有精品| .国产精品久久| 亚洲国产精品一区三区| 夜夜爽夜夜爽视频| 国产精品成人在线| 国产高清有码在线观看视频| 九九爱精品视频在线观看| 一级,二级,三级黄色视频| 91精品国产国语对白视频| 考比视频在线观看| 一级毛片 在线播放| 国产精品久久久久久精品古装| 久久人妻熟女aⅴ| 在线观看美女被高潮喷水网站| 中文字幕制服av| 纵有疾风起免费观看全集完整版| 美女福利国产在线| 日韩在线高清观看一区二区三区| 国产成人免费观看mmmm| 999精品在线视频| 亚洲精品乱码久久久久久按摩| 大香蕉97超碰在线| av有码第一页| 亚洲情色 制服丝袜| 少妇的逼水好多| 2018国产大陆天天弄谢| 丝袜喷水一区| 欧美人与性动交α欧美精品济南到 | av网站免费在线观看视频| 少妇的逼好多水| 国产黄色免费在线视频| 国产亚洲精品久久久com| 伦理电影大哥的女人| 成人漫画全彩无遮挡| 久久精品熟女亚洲av麻豆精品| 欧美亚洲 丝袜 人妻 在线| 国产精品熟女久久久久浪| 亚洲av二区三区四区| 校园人妻丝袜中文字幕| 秋霞伦理黄片| 亚州av有码| 亚洲少妇的诱惑av| av免费观看日本| 韩国高清视频一区二区三区| 亚洲精品自拍成人| 成年人午夜在线观看视频| 人体艺术视频欧美日本| 国产免费一区二区三区四区乱码| 亚洲中文av在线| 免费观看性生交大片5| 日韩成人伦理影院| 日韩强制内射视频| 考比视频在线观看| 日韩av免费高清视频| 婷婷成人精品国产| 国产免费又黄又爽又色| 婷婷色综合大香蕉| 嘟嘟电影网在线观看| 永久免费av网站大全| 午夜91福利影院| 成人亚洲精品一区在线观看| 热re99久久国产66热| 老司机影院毛片| 午夜福利视频精品| 少妇被粗大的猛进出69影院 | 亚洲经典国产精华液单| 久久韩国三级中文字幕| 久久久国产精品麻豆| 国产成人a∨麻豆精品| 久久精品人人爽人人爽视色| 精品卡一卡二卡四卡免费| 国产男女超爽视频在线观看| 国产精品久久久久成人av| 欧美日韩一区二区视频在线观看视频在线| 久久韩国三级中文字幕| videosex国产| 精品国产国语对白av| 国产男女超爽视频在线观看| 美女内射精品一级片tv| 国产在线视频一区二区| 天堂8中文在线网| 免费看不卡的av| 有码 亚洲区| 一级毛片aaaaaa免费看小| 丰满乱子伦码专区| 亚洲人成网站在线观看播放| 美女xxoo啪啪120秒动态图| h视频一区二区三区| 欧美人与性动交α欧美精品济南到 | av黄色大香蕉| 久久精品久久久久久噜噜老黄| 一级黄片播放器| 亚洲精品久久久久久婷婷小说| 精品久久久精品久久久| 欧美日韩一区二区视频在线观看视频在线| 丰满少妇做爰视频| 国产成人精品在线电影| 91久久精品国产一区二区三区| 新久久久久国产一级毛片| 成人国产麻豆网| 国产日韩欧美在线精品| 高清av免费在线| 99九九线精品视频在线观看视频| 精品人妻熟女毛片av久久网站| 亚洲高清免费不卡视频| 午夜福利在线观看免费完整高清在| a级毛片黄视频| av在线观看视频网站免费| 丰满饥渴人妻一区二区三| av播播在线观看一区| 久久精品国产亚洲网站| av在线观看视频网站免费| 午夜精品国产一区二区电影| av福利片在线| 内地一区二区视频在线| 最新中文字幕久久久久| 国产亚洲av片在线观看秒播厂| 亚洲综合色网址| 亚洲欧美色中文字幕在线| 2018国产大陆天天弄谢| 人妻 亚洲 视频| 黄片播放在线免费| 国产在线视频一区二区| 草草在线视频免费看| 日本91视频免费播放| 又粗又硬又长又爽又黄的视频| 免费看不卡的av| 日韩成人av中文字幕在线观看| 人妻制服诱惑在线中文字幕| 久久久久久久精品精品| 性高湖久久久久久久久免费观看| 久久人人爽av亚洲精品天堂| 国产日韩欧美在线精品| 一级毛片 在线播放| 国产在线一区二区三区精| 国产在线视频一区二区| 97在线视频观看| 成人综合一区亚洲| 最新中文字幕久久久久| 蜜桃久久精品国产亚洲av| 久久久久视频综合| 国产乱来视频区| 欧美精品一区二区大全| 国产精品99久久99久久久不卡 | 亚洲精品日本国产第一区| 国产成人freesex在线| 久久国产亚洲av麻豆专区| 成年人免费黄色播放视频| 国产男人的电影天堂91| 国产一区有黄有色的免费视频| 欧美精品一区二区免费开放| 老熟女久久久| 精品久久久久久电影网| 韩国av在线不卡| 亚洲精品久久久久久婷婷小说| 久久人人爽人人片av| 一级,二级,三级黄色视频| 亚洲国产成人一精品久久久| 亚洲精品色激情综合| 少妇精品久久久久久久| 精品一区在线观看国产| 99re6热这里在线精品视频| 精品午夜福利在线看| kizo精华| xxxhd国产人妻xxx| 女的被弄到高潮叫床怎么办| 午夜日本视频在线| 国产爽快片一区二区三区| 亚洲av男天堂| 精品一品国产午夜福利视频| 在线观看国产h片| 国产深夜福利视频在线观看| 亚洲一级一片aⅴ在线观看| 日韩视频在线欧美| 激情五月婷婷亚洲| 成年人免费黄色播放视频| av电影中文网址| 伊人亚洲综合成人网| 免费日韩欧美在线观看| 超色免费av| 亚洲精品一区蜜桃| 欧美少妇被猛烈插入视频| 在线播放无遮挡|