• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Viscous effects on plasmoid formation from nonlinear resistive tearing growth in a Harris sheet

    2022-02-15 11:07:58NisarAHMADPingZHU朱平AhmadALIandShiyongZENG曾市勇
    Plasma Science and Technology 2022年1期

    Nisar AHMAD,Ping ZHU(朱平),Ahmad ALI and Shiyong ZENG(曾市勇)

    1 CAS Key Laboratory of Geospace Environment and Department of Engineering and Applied Physics,University of Science and Technology of China, Hefei 230026, People's Republic of China

    2 International Joint Research Laboratory of Magnetic Confinement Fusion and Plasma Physics, State Key Laboratory of Advanced Electromagnetic Engineering and Technology, School of Electrical and Electronic Engineering,Huazhong University of Science and Technology,Wuhan 430074,People's Republic of China

    3 Department of Engineering Physics, University of Wisconsin-Madison, Madison, Wisconsin 53706,United States of America

    4 Pakistan Tokamak Plasma Research Institute, Islamabad 44000, Pakistan

    5 Department of Plasma Physics and Fusion Engineering,University of Science and Technology of China,Hefei 230026, People's Republic of China

    Abstract In this work, the evolution of a highly unstable m=1 resistive tearing mode, leading to plasmoid formation in a Harris sheet, is studied in the framework of full MHD model using the Non-Ideal Magnetohydrodynamics with Rotation,Open Discussion simulation.Following the initial nonlinear growth of the primary m=1 island,the X-point develops into a secondary elongated current sheet that eventually breaks into plasmoids.Two distinctive viscous regimes are found for the plasmoid formation and saturation.In the low viscosity regime (i.e.Pr 1), the plasmoid width increases sharply with viscosity, whereas in the viscosity dominant regime (i.e.Pr 1), the plasmoid size gradually decreases with viscosity.Such a finding quantifies the role of viscosity in modulating the plasmoid formation process through its effects on the plasma flow and the reconnection itself.

    Keywords: viscosity, reconnection, plasmoids, Prandtl number

    1.Introduction

    Plasmoid instability(PI)is known to develop on the elongated current sheet formed during the externally driven Sweet–Parker(SP) reconnection, or from the intrinsically growing nonlinear kink or tearing mode.In general, when the aspect ratio of the elongated current sheet becomes sufficiently large, unstable secondary tearing can lead to the formation of plasmoids[1–5].The problem of the transition from the laminar reconnection during the early nonlinear stage, to the subsequent highly unstable one, characterized by sporadic production of plasmoids inside the sheet itself, with faster average reconnection rates, has been addressed by a number of past numerical and theoretical studies [6, 7], in the context of PIs following the externally driven SP reconnection [8–12], or the intrinsically nonlinear tearing mode[2,13–15],on the scaling and dynamics of plasmoid formation with different Lundquist numbers.

    Previous studies have found the critical roles of plasma flow in the processes of reconnection in general and plasmoid formation in particular[16–21].Whereas the plasma outflow is stabilizing on the primary tearing mode or reconnection process [16–19], the effects of plasma flow itself, including both inflow and outflow,may contribute to the initial onset of PI[8].The plasma viscosity can affect the properties and topologies of plasma flow close to the thin current sheet as well as the reconnection rate.Because of the narrowness of the current sheet, viscosity can influence the nonlinear regime.In fact,viscosity increases the possibility of local changes in the flow topology.The robustness of the flow cells around the sheet might be weakened or even unstable due to the existence of strong flow gradients in the current sheet region [22].Finite viscosity inserts dissipation to the flow patterns that in turn interact with the island evolution and reconnection [22].Thus the plasma viscosity, both collisional and collisionless, is expected to be one of the key parameters that determine the onset and saturation conditions for the PI.

    The effects of viscosity on linear and nonlinear resistive tearing mode as well as PI have been studied by many[12, 13, 22–31].In this paper we focus on exploring the impact of viscosity on the onset and saturation of PI.Most of the past studies on visco-resistive tearing and kink modes were made in a 2D reduced MHD model, however in this study, we use the complete resistive MHD equations implemented in Non-Ideal Magnetohydrodynamics with Rotation,Open Discussion (NIMROD) code [32].Both the onset and the dynamics of plasmoid differ greatly from those found in previous reduced MHD simulations [21, 22].

    The rest of the paper is organized as follows.In section 2,we briefly describe our simulation model.In section 3, both linear and nonlinear simulation results are reported.At the end in section 4, summary and discussion are presented.

    2.Simulation model and equilibrium

    Our simulations are based on the single-fluid full MHD model implemented in the NIMROD code [32].

    where ρ,N,p,T,J,v,B,η,γ and ν are the plasma mass density,number density, pressure, temperature, current density, velocity,magnetic field, heat flux, resistivity, specific heat ratio, and viscosity respectively.The resistive-viscous MHD model equations(1)–(4)used in the simulations are all dimensionless.In particular, the spatial normalization unit x0is of the same order as the Harris sheet width a, i.e.x0~a.The magnetic field is normalized by the field magnitude B0at the edge of the Harris sheet, i.e.x →±∞.The mass density is normalized by the field magnitude ρ0at the center of the current sheet x=0.The normalization units for velocity, time, and pressure areandrespectively.In addition, the heat flux is zero and the adiabatic index γ=5/3.In the dimensionless equations(1)–(4), both the resistivity η and the viscosity ν are the normalized dimensionless parameters,with η=S?1, andν=where S is the Lundquist numberis the unnormalized dimensionless resistivity,and Pr=μ0νD/ηDis the magnetic Prandtl number,νDis the unnormalized dimensionless viscosity,withThe Harris current sheet model is adopted for the equilibrium magnetic field [33]

    Figure 1.(a)Harris sheet equilibrium magnetic field and(b)pressure profiles.

    The corresponding pressure profile from the static MHD force balance is determined as

    Figure 1 shows the above mentioned equilibrium magnetic field and pressure profiles.The resistive MHD equations(1)–(6)are numerically solved in a rectangular domain[?Lx,Lx]×[?Ly,Ly], where Lx=(?2.5, 2.5) and Ly=(?5, 5).The periodic boundary conditions are imposed at the y-boundaries, and the solid, perfect conducting walls are assumed at the x-boundaries.For the Harris current sheetΔ′a= 2 [(ka)?1?ka][34],so that the unstable modes have wave vector satisfying ka<1.HereΔ′is the discontinuity of logarithmic derivative of the outer flux function when approaching the singular layer at x=0,which is a measure of the free energy of the system.Here k is the mode wave number along y,and Ly=2πm/k,with m being the mode number.In our linear simulations, resistivity and viscosity are varied but nonlinear simulations are performed for a uniform plasma resistivity η=2.8×10?4and a wide range of viscosity(Pr=0.33–10).

    Figure 2.(a)Linear growth rates as functions of the resistivity for the fixed value of ν=0.000 28 and Δ′ = 49.66.The blue and red lines,represent the theoretical scaling of the linear growth rate for low(γ ~η0.33) and large (γ ~η0.66) Prandtl number regimes respectively, whereas, the green line represents the simulation results.(b)Linear growth rates as functions of the viscosity for the fixed value of instability parameter Δ′ = 49.66 and various values of resistivity η.

    Figure 3.Kinetic energy evolution for different numerical resolutions at Δ′ = 49.66.

    Figure 4.Kinetic energy evolution for Δ′ = 9.306, 12.057, 13.462,14.05, 14.53, 15.6419, 17.31, 24.5007, 39.35 and 49.66.

    Figure 5.(a) Primary island evolution and (b) primary plasmoid evolution for different instability parameters.

    3.Simulation results

    3.1.Linear scaling

    Figure 6.2D contours of the current density in z-direction and the 2D magnetic field lines at (a) time=450 and (b) time=570 for Δ′ = 13.462.

    The PI tends to develop from the primary tearing growth in the largeΔ′ regime [2].One such case,Δ′ = 49.66 is examined first in simulations for its linear scaling in comparison with theory.The linear growth rate of the m=1 resistive tearing mode obtained from our NIMROD simulations scales with the resistivity η as γ ~η0.30for low Prandtl and γ ~η0.67for large Prandtl number regimes.These scalings are close to the resistive tearing scalings of γ ~η0.33and γ ~η0.66in the large Δ′ regime previously derived in theory [24, 29, 35](figure 2(a)).Viscosity in general introduces dissipation that reduces the linear growth of resistive tearing mode.This viscous dissipation is stronger in the Pr>1 regime, where the growth rate γ of the m=1 resistive tearing scales with the viscosity as γ ~ν?0.33,similar to the viscosity scaling obtained in previous reduced MHD simulations [29] and theory [24](figure 2(b)).

    3.2.Nonlinear results

    3.2.1.Critical Δ′for the X-point collapse and PI.Our nonlinear simulations find that the onset of secondary tearing instability and plasmoid formation occur only when theΔ′ is above a certain threshold value.In our nonlinear simulation, we mostly employ 64×48 2D finite elements with a polynomial degree of 5, which ensures the numerical convergence (figure 3).

    Figure 7.2D contours of the current density in z-direction and the 2D magnetic field lines at (a) time=300 and (b) time=470 for Δ′ = 14.05.

    The evolution of kinetic energy reaches its maximum sooner as we increase the value ofΔ′ (figure 4).In figure 5 the evolutions of the width of the primary island and plasmoids are shown which match the earlier simulation results[36].We have measured the width of primary plasmoid(i.e.secondary island)at the stage just before its ejection.Also at this stage we have referred to the primary island as the saturated island,since by this stage the width of the primary island has approached constant.

    The minimum value ofΔ′ at which the X-point evolves into the Y-type is 14.04.ForΔ′ = 13.42, the current sheet remains the shape of X-point over the entire time(figure 6).As the value ofΔ′ increases to above 14.05, the X-point evolves into a Y-type current sheet as shown in figures 7 and 8.Waelbroeck[37]first predicted the criterion for the collapse of X-point into Y-type current sheet to beW>Wc≈ 25Δ′,where W represents the width of primary island and Wcrepresents the critical width at which X-point collapses.This conversion of X-point into Y-type current sheet is termed as the secondary instability (SI) [37].The subsequent collapse of the Y-type current sheet into plasmoids is known as the PI [38].

    Figure 8.2D contours of the current density in z-direction and the 2D magnetic field lines at(a)time=200,(b)time=340,(c)time=360 and (d) time=365 for Δ′ = 17.31.

    Figure 9.Kinetic energy evolution for Δ′ = 49.66 at Pr=0.33, 0.5, 1 and Pr=10.

    Figure 10.Primary island evolution and (b) primary plasmoid evolution for Δ′ = 49.66 at Pr=0.33, 0.5, 1 and Pr=10.

    For η=2.8×10?4and Pr=1 the criticalΔ′value for the onset of PI isΔ′ = 17.31, which is in agreement with the previous reduced MHD simulation [21].In this case, at time 200(figure 8(a)),an X-point is formed as shown.At time 340(figure 8(b)), the Y-type current sheet develops during the nonlinear stage[6,9,39].At time 360(figure 8(c)),the current density reaches maximum and the current sheet becomes more stretched and thinner.Finally, at time 365 (figure 8(d)),formation of plasmoid takes place.

    3.2.2.Effect of viscosity on the nonlinear evolution of resistive tearing mode for highly unstable system.In the following cases, to explore the viscosity effects, we only vary the viscosity in terms of Prby keeping the resistivity and instability parameter constant, which are η=2.8×10?4and Δ′ = 49.66 respectively.To study the effect of viscosity, we choose four different cases with Pr=0.33, 0.5, 1 and 10(figure 9).The evolution of the width of primary island and primary plasmoid for the above mentioned different Prandtl number cases is shown in figure 10.

    In figure 11, the dynamics of the visco-resistive tearing mode growth are divided in 5 stages.The first stage is the initial transient stage when the linear instability starts to grow.The second stage is the FKR stage, during which both the reconnection rate and the magnetic island width grow exponentially.In the third stage, the so-called Rutherford stage, the island evolves toward saturation and subsequent decay.The X-point collapse and the Y-type, SP-like current sheet forms during the fourth stage (figures 12(a)–(c)).The transition from the X-type geometry to the Y-type current sheet is known as the SI.The first peak that appears in the kinetic energy evolution is due to the X-point collapse with the onset of SI at t=160 as shown in figure 9.After the X-point collapse, the SP-like current sheet starts to become elongated in the poloidal direction.During the fifth stage,the Y-type current sheet starts to become more elongated and SPlike.After the collapse of SP-like current sheet,the secondary island appears along with two X-points on both ends(figure 12(e)).After t=160,the growth rate starts to decrease up to t=170, and a significant change in the growth rate occurs due to the collapse of the Y-type current sheet and the formation of small plasmoid chain.

    Figure 11.Growth rate evolution for all Pr=0.33, 0.5, 1 and 10 cases with Δ′=49.66.

    The size of the secondary island increases up to some extent and both X-points collapse to form two tertiary current sheets with the passage of time.The second large peaks in the growth rate and the kinetic energy plots represent the collapse of these two tertiary current sheets.As the width of the secondary island approaches some critical value, the ejection of the secondary island takes place.At this point kinetic energy increases abruptly and the secondary island coalesces with the primary one(figure 13(d)).As the Y-type current sheet collapse and the PI appears, a drastic increase in the growth rate takes place (figure 11) which is much larger as compared to the growth rate of the SI.

    The nonlinear stages of our simulation results described above are quite similar to the nonlinear secondary island evolution reported by Loureiro et al [2].But the collapse of the secondary island and direction of ejection are different in our cases.For example in our simulations for the Pr=0.5 and the Pr=5 cases,the direction of plasmoid ejection is upward,whereas for the Pr=1 and the Pr=10 cases the direction is downward.The directions of plasmoid ejection are different for different Prcases.Prmay not be the fundamental parameter that determines the direction of the plasmoid ejection, which may also depend on the initial condition.We leave this issue for future study.

    Our simulations for various Prnumbers show viscous effects on both the timing and the spatial structure of PI.In the Pr=0.33 (i.e.very low viscosity), we find secondary islands that saturate early at smaller size(figure 12(f)).As we increase the viscosity further (Pr=0.5), the appearance and ejection of the secondary island become more prominent,along with the larger saturated island and plasmoid(figure 13).A clear transition occurs at Pr=1, when the size of the primary plasmoid becomes the maximum, and the onsets of the SI, the PI and the island saturation are significantly postponed(figure 14).The direction of plasmoid ejection also switches to the opposite.The second peak of kinetic energy increases with viscosity and reaches maximum at Pr=1 too.For higher Prandtl number(Pr=10,with η=2.8×10?4and viscosity=0.0028)the size of the plasmoid becomes smaller(figure 15).Figure 16 summarizes the relationships among plasmoid width, saturated island width, and Prnumber.At lower Pr, the width of saturated island is small, but as we increase viscosity, the width of saturated island increases sharply up to Pr=1,beyond which the saturated island width becomes almost independent of the Prnumber.The Pr=1 number also separates two regimes for the plasmoid width.In the Pr<1 regime,the width of plasmoid increases drastically with viscosity, whereas in the Pr>1 regime, the width of plasmoid slowly decreases with the viscosity.

    Figure 12.2D contours of the current density in z-direction and the 2D magnetic field lines at(a)time=70,(b)time=100,(c)time=152,(d) time=168, (e) time=172 and (f) time=176 for Δ′=49.66, Pr=0.33.

    4.Summary

    Figure 13.2D contours of the current density in z-direction and the 2D magnetic field lines at(a)time=100,(b)time=156,(c)time=180,(d) time=196, (e) time=204 and (f) time=208 for Δ′=49.66, Pr=0.5.

    The key objective of this study is to explore the viscous effects on SI, plasmoid formation, their merging and ejection process during the nonlinear evolution of a resistive tearing mode in the largeΔ′ regime.For our equilibrium, we find the critical instability parameter for the onset of the SI, and the minimum value ofΔ′at which PI can take place.Two distinctive regimes of the Prnumber are found for the PI, which are separated by the value of Pr=1.In the Pr1 regime, the amplitude of the second peak for kinetic energy increases up to Pr=1,whereas in the Pr1 regime, this amplitude decreases with the viscosity.Both the saturated island width and the plasmoid size increase sharply with the viscosity in the Pr1 regime, however, the former slowly increases whereas the latter decreases with the viscosity in the Pr1 regime.In other words, the plasmoid size reaches maximum at Pr?1.We plan to further explore the significance of such a finding in future work.

    Figure 14.2D contours of the current density in z-direction and the 2D magnetic field lines at(a)time=100,(b)time=150,(c)time=190,(d) time=200, (e) time=205 and (f) time=215 for Δ′=49.66, Pr=1.

    Figure 15.2D contours of the current density in z-direction and the 2D magnetic field lines at(a)time=150,(b)time=200,(c)time=280,(d) time=292, (e) time=296 and (f) time=340 for Δ′=49.66, Pr=10.

    Figure 16.(a) Saturated island width and (b) plasmoid width as functions of the Prandtl number.

    Acknowledgments

    This research was supported by the National Magnetic Confinement Fusion Science Program of China (No.2019YFE03050004),National Natural Science Foundation of China (Nos.11 775 221 and 51 821 005), U.S.DOE (Nos.DE-FG02-86ER53218 and DESC0018001), and the Fundamental Research Funds for the Central Universities at Huazhong University of Science and Technology (No.2019kfyXJJS193).We are grateful for the support from NIMROD team.This research used the computing resources from the Supercomputing Center of University of Science and Technology of China.The author Nisar Ahmad acknowledges the support from the Chinese Government Scholarship.

    国内精品一区二区在线观看| 欧美三级亚洲精品| 全区人妻精品视频| 久久热精品热| 最后的刺客免费高清国语| 国产精品一区www在线观看| 国产综合懂色| 国产成人freesex在线| 天天躁夜夜躁狠狠久久av| 国产成年人精品一区二区| 99国产精品一区二区蜜桃av| 秋霞在线观看毛片| 国产精品人妻久久久久久| 小说图片视频综合网站| 日韩中字成人| 搡老妇女老女人老熟妇| 极品教师在线视频| 不卡视频在线观看欧美| 神马国产精品三级电影在线观看| 激情 狠狠 欧美| 国产成人aa在线观看| 亚洲国产精品国产精品| 中文亚洲av片在线观看爽| 亚洲av成人精品一二三区| 日本av手机在线免费观看| 麻豆乱淫一区二区| 色5月婷婷丁香| 久久久午夜欧美精品| 有码 亚洲区| 插阴视频在线观看视频| 三级毛片av免费| 国产精品美女特级片免费视频播放器| 午夜激情欧美在线| 国产真实乱freesex| 99热这里只有是精品在线观看| 蜜桃亚洲精品一区二区三区| 99久久成人亚洲精品观看| 成人一区二区视频在线观看| 欧美+日韩+精品| 在线观看66精品国产| 国产女主播在线喷水免费视频网站 | 99热全是精品| 久久午夜福利片| 欧美成人a在线观看| 一夜夜www| 国产人妻一区二区三区在| 成年av动漫网址| 少妇的逼水好多| 久久久久久久久久久免费av| 色综合亚洲欧美另类图片| 毛片一级片免费看久久久久| 中文在线观看免费www的网站| 一级黄色大片毛片| 免费电影在线观看免费观看| 亚洲国产色片| 波多野结衣巨乳人妻| 中文天堂在线官网| АⅤ资源中文在线天堂| 热99re8久久精品国产| 波多野结衣巨乳人妻| 亚洲精品亚洲一区二区| 日本免费a在线| 麻豆av噜噜一区二区三区| 中文资源天堂在线| 婷婷色麻豆天堂久久 | 国产精品乱码一区二三区的特点| 久久久久精品久久久久真实原创| av国产久精品久网站免费入址| 久久久久久久久久久丰满| 亚洲经典国产精华液单| 长腿黑丝高跟| 国产精品久久久久久精品电影小说 | 亚洲国产精品sss在线观看| 国产精品女同一区二区软件| 蜜桃久久精品国产亚洲av| 99久久九九国产精品国产免费| 成人国产麻豆网| 男女视频在线观看网站免费| 级片在线观看| 国产乱人视频| av在线天堂中文字幕| 久久99热6这里只有精品| 日韩成人伦理影院| 在线观看一区二区三区| 禁无遮挡网站| 亚洲成av人片在线播放无| 汤姆久久久久久久影院中文字幕 | 一边摸一边抽搐一进一小说| 联通29元200g的流量卡| 成人毛片a级毛片在线播放| 长腿黑丝高跟| 国产一级毛片在线| 三级男女做爰猛烈吃奶摸视频| 七月丁香在线播放| 在线免费十八禁| 午夜免费男女啪啪视频观看| 久久99蜜桃精品久久| 搡老妇女老女人老熟妇| 最近最新中文字幕大全电影3| 熟女电影av网| 噜噜噜噜噜久久久久久91| 麻豆av噜噜一区二区三区| 国产成人freesex在线| 精华霜和精华液先用哪个| 国产欧美另类精品又又久久亚洲欧美| 欧美精品国产亚洲| 视频中文字幕在线观看| 日本欧美国产在线视频| 午夜精品国产一区二区电影 | 国产一区亚洲一区在线观看| 免费观看人在逋| 在现免费观看毛片| 欧美另类亚洲清纯唯美| 亚洲人成网站在线观看播放| 亚洲国产高清在线一区二区三| 国产 一区精品| 色哟哟·www| 91精品伊人久久大香线蕉| 亚洲欧美一区二区三区国产| 亚洲美女搞黄在线观看| 久久久a久久爽久久v久久| 在线播放无遮挡| 大话2 男鬼变身卡| 亚洲欧美成人精品一区二区| 国产成人freesex在线| 午夜日本视频在线| 国产精品,欧美在线| 69人妻影院| 热99re8久久精品国产| 日本一本二区三区精品| 国产精品.久久久| 中文欧美无线码| 床上黄色一级片| 69av精品久久久久久| 国产精品美女特级片免费视频播放器| 久久久久免费精品人妻一区二区| 少妇被粗大猛烈的视频| 老司机影院成人| 国产大屁股一区二区在线视频| 老女人水多毛片| 天天躁日日操中文字幕| 一本久久精品| av线在线观看网站| 秋霞伦理黄片| 日韩欧美在线乱码| 日本黄大片高清| 免费播放大片免费观看视频在线观看 | 插逼视频在线观看| 国产精品福利在线免费观看| 免费不卡的大黄色大毛片视频在线观看 | 久久99蜜桃精品久久| 精品午夜福利在线看| 亚洲国产欧美人成| 激情 狠狠 欧美| 久久久国产成人免费| 精品久久久久久久久久久久久| 亚洲国产精品合色在线| 哪个播放器可以免费观看大片| 天堂√8在线中文| 久久99热这里只频精品6学生 | 日日摸夜夜添夜夜添av毛片| 欧美一区二区精品小视频在线| 久久精品夜夜夜夜夜久久蜜豆| 国产精品女同一区二区软件| 又爽又黄无遮挡网站| 国产精品人妻久久久久久| 国产极品精品免费视频能看的| 搡女人真爽免费视频火全软件| 久久久久久大精品| 性插视频无遮挡在线免费观看| 麻豆av噜噜一区二区三区| 可以在线观看毛片的网站| 亚洲色图av天堂| 日韩精品青青久久久久久| 免费电影在线观看免费观看| 超碰av人人做人人爽久久| 狂野欧美白嫩少妇大欣赏| 亚洲人成网站在线播| 内射极品少妇av片p| 波多野结衣高清无吗| 久久这里只有精品19| 国产精品免费大片| 咕卡用的链子| 国产成人欧美| 成人综合一区亚洲| 99re6热这里在线精品视频| 99精国产麻豆久久婷婷| 国产黄频视频在线观看| 一级毛片 在线播放| 看免费av毛片| 最近2019中文字幕mv第一页| 丁香六月天网| 黄色一级大片看看| 国产成人精品久久久久久| 国产成人91sexporn| 人人妻人人添人人爽欧美一区卜| 欧美人与性动交α欧美软件 | 精品国产一区二区三区久久久樱花| 日产精品乱码卡一卡2卡三| 色婷婷av一区二区三区视频| 午夜老司机福利剧场| 亚洲国产毛片av蜜桃av| 亚洲第一区二区三区不卡| 国产欧美另类精品又又久久亚洲欧美| 黄色毛片三级朝国网站| 青春草国产在线视频| 国产午夜精品一二区理论片| 制服丝袜香蕉在线| 又大又黄又爽视频免费| 制服人妻中文乱码| 国产 精品1| 亚洲国产精品国产精品| 午夜福利乱码中文字幕| 亚洲成人av在线免费| 亚洲激情五月婷婷啪啪| 国产成人91sexporn| 日韩成人av中文字幕在线观看| 色婷婷久久久亚洲欧美| 国产精品蜜桃在线观看| 男人添女人高潮全过程视频| 国产白丝娇喘喷水9色精品| 母亲3免费完整高清在线观看 | 国产成人午夜福利电影在线观看| 国产精品久久久久久久电影| 只有这里有精品99| 国产老妇伦熟女老妇高清| 一级毛片电影观看| 国产成人免费无遮挡视频| 麻豆精品久久久久久蜜桃| 男女午夜视频在线观看 | 欧美亚洲 丝袜 人妻 在线| 国产成人91sexporn| 26uuu在线亚洲综合色| 免费高清在线观看视频在线观看| 狂野欧美激情性xxxx在线观看| 久久久久精品性色| 国产亚洲av片在线观看秒播厂| 亚洲久久久国产精品| 一级片免费观看大全| 黑人高潮一二区| 久久韩国三级中文字幕| 欧美成人午夜精品| 涩涩av久久男人的天堂| 黑丝袜美女国产一区| 亚洲av成人精品一二三区| 国产免费一区二区三区四区乱码| 亚洲国产成人一精品久久久| 看免费成人av毛片| 亚洲av.av天堂| 中文乱码字字幕精品一区二区三区| 免费人成在线观看视频色| 亚洲一区二区三区欧美精品| 黑人欧美特级aaaaaa片| 乱人伦中国视频| 亚洲国产精品一区二区三区在线| 黑人猛操日本美女一级片| 水蜜桃什么品种好| 高清在线视频一区二区三区| 国产白丝娇喘喷水9色精品| 亚洲欧美成人综合另类久久久| 国产成人免费无遮挡视频| 国产69精品久久久久777片| av在线app专区| 亚洲精品美女久久久久99蜜臀 | 女性生殖器流出的白浆| 天堂中文最新版在线下载| 91aial.com中文字幕在线观看| 最近最新中文字幕免费大全7| 美国免费a级毛片| 侵犯人妻中文字幕一二三四区| 亚洲精品久久成人aⅴ小说| 色网站视频免费| av播播在线观看一区| 中国国产av一级| 丰满饥渴人妻一区二区三| 18禁国产床啪视频网站| 一区二区三区精品91| 狂野欧美激情性xxxx在线观看| 国产精品熟女久久久久浪| 精品亚洲成a人片在线观看| 国产成人精品福利久久| 最新中文字幕久久久久| 精品一区在线观看国产| 国产 精品1| 免费人成在线观看视频色| 国产永久视频网站| 国产成人精品福利久久| 欧美日韩综合久久久久久| 久久久久久久久久久免费av| 只有这里有精品99| 久久人人爽av亚洲精品天堂| 亚洲av综合色区一区| 尾随美女入室| 久久99蜜桃精品久久| 天堂8中文在线网| 久久精品久久久久久久性| 97超碰精品成人国产| 满18在线观看网站| 少妇人妻久久综合中文| 国产1区2区3区精品| 人妻系列 视频| 涩涩av久久男人的天堂| 另类亚洲欧美激情| 寂寞人妻少妇视频99o| 色吧在线观看| 久久午夜福利片| 自线自在国产av| 国产一区二区三区综合在线观看 | 观看美女的网站| 亚洲人与动物交配视频| 两个人免费观看高清视频| 大话2 男鬼变身卡| 菩萨蛮人人尽说江南好唐韦庄| 久久精品久久精品一区二区三区| 欧美 日韩 精品 国产| 国产日韩欧美亚洲二区| 亚洲精华国产精华液的使用体验| 老司机影院毛片| 免费高清在线观看视频在线观看| 一级片'在线观看视频| 国产精品一区www在线观看| 不卡视频在线观看欧美| 26uuu在线亚洲综合色| 最近手机中文字幕大全| 国产色婷婷99| 一级片免费观看大全| 日本爱情动作片www.在线观看| 晚上一个人看的免费电影| 欧美日韩综合久久久久久| 免费播放大片免费观看视频在线观看| 欧美日韩国产mv在线观看视频| 国产一区有黄有色的免费视频| 男女边摸边吃奶| 一级a做视频免费观看| 久久国内精品自在自线图片| 深夜精品福利| www.色视频.com| 侵犯人妻中文字幕一二三四区| 国产白丝娇喘喷水9色精品| 国产国拍精品亚洲av在线观看| 美女视频免费永久观看网站| 最近最新中文字幕大全免费视频 | 日本欧美国产在线视频| 男人添女人高潮全过程视频| 香蕉国产在线看| 国产成人免费无遮挡视频| 免费在线观看完整版高清| 一级毛片 在线播放| 中文字幕精品免费在线观看视频 | 少妇的丰满在线观看| 黄色 视频免费看| 人成视频在线观看免费观看| 久久韩国三级中文字幕| 国产一区有黄有色的免费视频| 91国产中文字幕| 国精品久久久久久国模美| 考比视频在线观看| 久久99精品国语久久久| 亚洲欧美清纯卡通| 亚洲性久久影院| 亚洲精品色激情综合| 亚洲成人一二三区av| 你懂的网址亚洲精品在线观看| 国产综合精华液| 巨乳人妻的诱惑在线观看| 波多野结衣一区麻豆| 成年人午夜在线观看视频| 黄色配什么色好看| 国产精品免费大片| 熟妇人妻不卡中文字幕| 伊人亚洲综合成人网| 国产1区2区3区精品| kizo精华| 中国三级夫妇交换| 国产精品久久久久成人av| 亚洲成av片中文字幕在线观看 | 欧美激情 高清一区二区三区| 精品一区二区免费观看| 免费看av在线观看网站| 成人亚洲欧美一区二区av| 中国国产av一级| 国产高清三级在线| 在线天堂最新版资源| 久久久久人妻精品一区果冻| 国产日韩欧美在线精品| 久久免费观看电影| 久久国产亚洲av麻豆专区| 亚洲国产毛片av蜜桃av| 超色免费av| 美女国产高潮福利片在线看| 国产av精品麻豆| av天堂久久9| 免费黄频网站在线观看国产| 寂寞人妻少妇视频99o| www.熟女人妻精品国产 | 免费在线观看黄色视频的| 欧美国产精品va在线观看不卡| 国产精品.久久久| 精品一区在线观看国产| 午夜福利视频在线观看免费| 一区二区三区精品91| 亚洲精品久久午夜乱码| 十八禁高潮呻吟视频| 久久国产精品大桥未久av| 成人影院久久| 久久久久国产精品人妻一区二区| 男人添女人高潮全过程视频| 91aial.com中文字幕在线观看| 91久久精品国产一区二区三区| 下体分泌物呈黄色| 看免费成人av毛片| 菩萨蛮人人尽说江南好唐韦庄| 啦啦啦啦在线视频资源| 中文字幕另类日韩欧美亚洲嫩草| 美女xxoo啪啪120秒动态图| 日韩电影二区| 日本av免费视频播放| 99久国产av精品国产电影| 免费黄频网站在线观看国产| 26uuu在线亚洲综合色| 热re99久久精品国产66热6| 成人毛片60女人毛片免费| 卡戴珊不雅视频在线播放| 高清视频免费观看一区二区| 一边亲一边摸免费视频| 国产色爽女视频免费观看| 亚洲av中文av极速乱| 精品久久久精品久久久| 久久鲁丝午夜福利片| 亚洲欧洲日产国产| 熟妇人妻不卡中文字幕| 国产精品一国产av| 欧美成人午夜精品| 亚洲经典国产精华液单| 精品久久蜜臀av无| 蜜桃国产av成人99| 天天躁夜夜躁狠狠久久av| 精品少妇久久久久久888优播| 午夜视频国产福利| 99久久中文字幕三级久久日本| 中文字幕制服av| 汤姆久久久久久久影院中文字幕| 亚洲av免费高清在线观看| 夫妻性生交免费视频一级片| √禁漫天堂资源中文www| 久久精品aⅴ一区二区三区四区 | 亚洲av免费高清在线观看| 女人久久www免费人成看片| 国产精品免费大片| 久久久a久久爽久久v久久| 看非洲黑人一级黄片| 一二三四在线观看免费中文在 | 九色成人免费人妻av| 亚洲美女搞黄在线观看| 黄片无遮挡物在线观看| 一二三四在线观看免费中文在 | 男女边吃奶边做爰视频| 三上悠亚av全集在线观看| 黄片无遮挡物在线观看| 少妇人妻精品综合一区二区| 国产免费福利视频在线观看| 成人无遮挡网站| 日韩,欧美,国产一区二区三区| 久久热在线av| 久久久久久人妻| 在线观看免费日韩欧美大片| 亚洲av免费高清在线观看| 波野结衣二区三区在线| 黄片播放在线免费| 18禁国产床啪视频网站| 一级a做视频免费观看| 精品亚洲成a人片在线观看| 少妇人妻 视频| 欧美成人精品欧美一级黄| 国产精品成人在线| 一本大道久久a久久精品| 久久国产精品大桥未久av| 91精品伊人久久大香线蕉| 伦精品一区二区三区| 各种免费的搞黄视频| 中文字幕亚洲精品专区| 国产一区二区三区av在线| 国产亚洲一区二区精品| 亚洲一区二区三区欧美精品| 下体分泌物呈黄色| 午夜福利网站1000一区二区三区| 国产免费视频播放在线视频| 久久久久久久久久成人| 久久综合国产亚洲精品| kizo精华| √禁漫天堂资源中文www| 久久婷婷青草| 一级毛片 在线播放| 国产亚洲精品第一综合不卡 | 内地一区二区视频在线| 日韩制服骚丝袜av| 黑人巨大精品欧美一区二区蜜桃 | 女人被躁到高潮嗷嗷叫费观| 国产精品国产三级专区第一集| 亚洲精品第二区| 日韩人妻精品一区2区三区| 熟女人妻精品中文字幕| 男女边摸边吃奶| 日韩 亚洲 欧美在线| 22中文网久久字幕| 最近2019中文字幕mv第一页| a级毛片在线看网站| 九色亚洲精品在线播放| 国产黄色免费在线视频| 久久久久国产精品人妻一区二区| 日韩人妻精品一区2区三区| 国产精品一区www在线观看| 国产免费一级a男人的天堂| 日本欧美国产在线视频| 国产福利在线免费观看视频| 中文字幕精品免费在线观看视频 | 天堂8中文在线网| 亚洲精品一二三| 成人漫画全彩无遮挡| 国产不卡av网站在线观看| 国产亚洲午夜精品一区二区久久| h视频一区二区三区| 午夜激情久久久久久久| 男女无遮挡免费网站观看| 精品久久蜜臀av无| 亚洲欧美色中文字幕在线| 极品人妻少妇av视频| 国产深夜福利视频在线观看| 免费播放大片免费观看视频在线观看| 亚洲精品国产av蜜桃| 国产欧美日韩综合在线一区二区| 黄色 视频免费看| 国产极品粉嫩免费观看在线| 中文字幕免费在线视频6| 一区二区av电影网| 极品少妇高潮喷水抽搐| av片东京热男人的天堂| 国产亚洲av片在线观看秒播厂| 美女国产视频在线观看| 涩涩av久久男人的天堂| 久久久久久伊人网av| 国产乱人偷精品视频| 中国三级夫妇交换| 国产又爽黄色视频| 国产激情久久老熟女| 热99久久久久精品小说推荐| 精品第一国产精品| 不卡视频在线观看欧美| 91精品伊人久久大香线蕉| 人体艺术视频欧美日本| 老司机亚洲免费影院| 男女边摸边吃奶| 在线观看www视频免费| 99香蕉大伊视频| av黄色大香蕉| av免费在线看不卡| 天天影视国产精品| 久久久精品94久久精品| 人人妻人人爽人人添夜夜欢视频| 久久青草综合色| 90打野战视频偷拍视频| 中文字幕精品免费在线观看视频 | 中文字幕最新亚洲高清| 国产成人精品一,二区| 中文字幕最新亚洲高清| 五月开心婷婷网| 美国免费a级毛片| 亚洲精品aⅴ在线观看| 欧美日韩亚洲高清精品| 久久久国产一区二区| 在线天堂中文资源库| 九色亚洲精品在线播放| 亚洲综合色惰| 欧美激情国产日韩精品一区| 亚洲精品日本国产第一区| 国产国语露脸激情在线看| 国产成人午夜福利电影在线观看| 亚洲欧美清纯卡通| 婷婷色综合大香蕉| 精品人妻在线不人妻| 欧美日韩国产mv在线观看视频| 蜜臀久久99精品久久宅男| 亚洲欧美色中文字幕在线| 日日爽夜夜爽网站| 视频在线观看一区二区三区| 丝袜喷水一区| 日本av手机在线免费观看| 午夜福利网站1000一区二区三区| 自线自在国产av| 亚洲av电影在线观看一区二区三区| 天堂中文最新版在线下载| 亚洲精品国产av蜜桃| 国产高清国产精品国产三级| 午夜福利在线观看免费完整高清在| 中文字幕制服av| 久久ye,这里只有精品| 天堂中文最新版在线下载| 男人舔女人的私密视频| 成人18禁高潮啪啪吃奶动态图| 制服丝袜香蕉在线| 日韩制服丝袜自拍偷拍| 久久影院123| 成人毛片60女人毛片免费| av线在线观看网站| 国产成人av激情在线播放| 久久久久久久久久久久大奶| 99久久人妻综合| 两个人看的免费小视频| 人成视频在线观看免费观看| av黄色大香蕉| 久久97久久精品| 日产精品乱码卡一卡2卡三| 精品一区二区三卡| 99九九在线精品视频| 欧美人与性动交α欧美精品济南到 |