• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Trajectory tracking control of characteristic model for nonplanar hex-rotor UAV①

    2022-02-11 08:58:08PENGChengQIAOGuanyuCAILihua
    High Technology Letters 2022年4期

    PENG Cheng(彭 程),QIAO Guanyu,CAI Lihua

    (Changchun Institute of Optics,Fine Mechanics and Physics,Chinese Academy of Sciences,Changchun 130033,P.R.China)

    Abstract

    Key words:nonplanar hex-rotor unmanned aerial vehicle(UAV),characteristic model,golden section adaptive controller,stability analysis,trajectory tracking control

    0 Introduction

    Recently,multi-rotor unmanned aerial vehicle(UAV)has been more and more widely used in military and civil fields due to its advantages of small size,light weight,vertical take-off and landing,strong mobility,free hovering,and even flexible shuttle in narrow and complex environment[1-2].Since multi-rotor UAV is a multi-input multi-output,strong coupling,high-order nonlinear system[3],its flight control technology has become a key issue affecting its practical engineering application.Accurate trajectory tracking is the basic requirement of autonomous flight and has been widely concerned.

    For the trajectory tracking control problem of multi-rotor UAV,researchers have carried a lot of researches on quad-rotor UAV as a typical representative.Rios et al.[4]used continuous sliding mode control algorithm to achieve robust tracking of position and attitude for quadrotor UAV with uncertain parameters and external disturbance.Mofid et al.[5]proposed an adaptive super-twisting terminal sliding mode trajectory tracking control algorithm for a quadrotor with input delay.Zakaria et al.[6]designed an H∞r(nóng)obust tracking control method against wind disturbance for quadrotor UAV based on adaptive neural network.Adaptive disturbance compensation trajectory tracking control strategy for quadrotor UAV was proposed and the generalized regression neural network was designed to estimate unknown external disturbances[7].Wang et al.[8]introduced a deep learning method to realize trajectory tracking control of quadrotor UAV.

    Thus,for the trajectory tracking control of multirotor UAV,the multi-rotor model is usually greatly simplified to achieve low-order controller design,or a complex nonlinear trajectory tracking controller is designed to control the high-order model.However,complex trajectory tracking methods are difficult to be applied in practical engineering.

    In the 1980s,the characteristic model theory was proposed from the perspective of practical application[9].It is a model established by the combination of the dynamic characteristics,environmental characteristics and control performance requirements of the object[10],and its form is simpler than the original dynamic model,easy to design the controller and implement in actual engineering.The characteristic model theory has achieved fruitful results after years of development.Tao et al.[11]designed an adaptive control algorithm based on characteristic model to solve the problem of path tracking control of surface unmanned vehicle under variable environment and time-varying speed.The characteristic model theory and the full coefficient adaptive control method were applied to the joint control of foot robot.The simulation results showed that the method had good control effect and adaptive ability to the model parameter uncertainty in Ref.[12].Considering the attitude control problem of three-axis stable geosynchronous orbit satellites,an improved golden section control method based on characteristic model was adopted.Numerical simulation proved that this method improved the system control performance without increasing energy consumption[13].The characteristic model theory has also been well applied in satellite transient heat flow control,hydraulic kettle control,electrolytic aluminum control and spacecraft return and re-entry control.

    Therefore,a trajectory tracking control method based on characteristic model theory for nonplanarhexrotor UAV(simplified as hex-rotor)is proposed.The hex-rotor has a different rotor configuration from the traditional quadrotor UAV,which fundamentally overcomes the problem of the under-actuation of the quadrotor restricting the flight maneuverability,and can realize any configuration of the 6-degree-of-freedom(DOF)motion in space.The characteristic model of the hex-rotor is constructed,the high-order terms and uncertain terms of the hex-rotor are compressed into time-varying characteristic parameters,and the model information is not lost.Moreover,the description form of characteristic model is simple,which is easy to controller design and engineering implementation.Based on the characteristic model of the hex-rotor,a golden section adaptive controller is designed to control the trajectory tracking.Then,the stability of the closedloop system is analyzed and demonstrated in detail.Finally,the trajectory tracking numerical simulation experiments and prototype experiments of the hex-rotor effectively corroborate that the proposed control method in this paper has accurate trajectory tracking control performance and strong robustness against disturbances,which has good practical application value.

    1 Dynamic model of hex-rotor

    The structure of the hex-rotor is depicted in Fig.1.The plane of the body is composed of six light and equal length connecting rods in the same plane evenly distributed around the center point of the hexrotor.Six drive units(motor and rotor)are mounted vertically at the end of each connecting rod.Among them,rotor 1,3 and 5 rotate counterclockwise,while rotor 2,4 and 6 rotate clockwise.The angle between body plane and rotating shaft isvj(0<vj<90°).Two mutually centrosymmetric rotors(rotor 1 and rotor 4,rotor 2 and rotor 5,and rotor 3 and rotor 6)are in the same plane,and the rotation axes of the two adjacent rotors are opposite.The hex-rotor completes horizontal motion and attitude rotation by changing rotor speed,the nonplanar design structure ensures that the hex-rotor can achieve any configuration of the 6-DOF movement in space within the driving capacity of rotors.

    Fig.1 The structure of the hex-rotor

    The earth-fixed inertial frameEand the bodyfixed frameBare defined to describe the dynamics of the hex-rotor.The translational space position of the hex-rotor is expressed asP=[Px,Py,Pz]Tand the attitude is defined by Euler anglesη=[φ,θ,ψ]T.The hex-rotor can be regarded as a symmetrical rigid body with 6-DOF in space in the case that the elastic deformation of the rotor is ignored and the aerodynamic characteristics of the rotor are simplified,thus,the rotational dynamic equation is established based on Newton-Euler formula

    whereω=[p,q,r]Tdenotes the rotational angular velocity in body-fixed frame,the angular momentumH=J·ωwithJ=diag(Ix,Iy,Iz)andIx,Iy,Izare moment of inertia in three axis.The resultant moment of body-fixed frameMis expressed as

    whereDi∈R3andNi∈R3,i=1,2,…,6 respectively represent the position vector and direction vector of the rotor in the body-fixed frame,which can be obtained as

    wherelrepresents the distance between the rotor and the center of the hex-rotor,fi=k1Ω2idenotes thrust generated by theith rotor,as well asτi=(-1)i-1k2Ω2iexpresses the reactive torque,withΩias the speed of theith rotor.k1andk2are the thrust factor and drag factor.

    The relationship between Euler rates and the body angular velocity is described as?η=T·ωwith transfer matrixTas

    Then,the rotational dynamic equation can be derived as

    whereMx,MyandMzare the axial component of bodyfixed frame.

    The translational dynamics equation of the hex-rotor inearth-fixed inertial frame is established as

    whereRis called the rotation matrix maps vectors from the body-fixed frame to the inertial frame[14].G=[0 0g]Twithgas the acceleration of gravity,the resultant forceF=[Fx Fy Fz]Tis written by

    Substituting Eq.(6)into Eq.(5),then,the translational dynamics equation can be given by

    2 Characteristic modelling of hex-rotor

    It can be noted from the dynamic model that the hex-rotor is a multi-input multi-output nonlinear complex system with strong coupling.It is often difficult to design a low order controller that is easy to implement in engineering to achieve high performance control for such complex nonlinear system.Therefore,the trajectory tracking control method based on characteristic model for the hex-rotor is proposed in this paper to solve the problem in the design of low level controller under accurate modeling to meet high performance control requirements,so as to improve the track tracking control performance of the hex-rotor.The difference equation between the control input and system output variables can be established based on characteristic model theory to facilitate the design of the controller[15-16].The characteristic model is not a reduction of the high order model,but concentrates the relevant information of the system model into the characteristic parameters without losing information.It is equivalent to the output of the real object under the same input control,and has much simpler form,which is easy to design the subsequent controller and facilitate the realization in actual engineering.

    In the general case of small attitude angles of the hex-rotor,the translational error dynamics equation is rewritten as

    wherePr=[Prx,Pry,Prz]Texpresses the desired translational position of the hex-rotor,andPe=[Pex,Pey,Pez]Tis the translational position error,namely,it is the difference between the desired translational position and the actual translational position.Taking the fourth derivative of Eq.(8)can be obtained

    whereAjexpresses theith row vector of matrixA,Bs(x)=(bs,ij(x))3×4(s=0,1,2;i=1,2,3),and then adding?xjto both sides of Eq.(10)the following can be obtained as

    Eq.(13)can be obtained by adding Eq.(11)and Eq.(12)after discretization.

    wherefj1(k)=2-T,fj2(k)=T-1,Tdenotes system sampling period,gjl(k)=T2b0(x(k))+2Tb0(x(k))-Tb0(x(k-1)),gj,p+l(k)=-Tb0(x(k)),Wj(k)=(T2+T)K(k)-TK(k-1),fj1(k)andfj2(k)can be determined directly whenTis fixed.The elements ofAjare bounded due to the bounded derivatives ofulandxj.|Wj(k)|≤2MjT+MjT2whereMjis positive coefficient.Then,|Wj(k)|=0,That is,whenTis sufficiently small,the modeling error can be less than the given error limit.As a result,the characteristic model of the hex-rotor can be expressed as

    wherex(k+1)represents the discrete vector of the output trajectory error at timek+1,similarly,x(k)andx(k-1)denote the discrete vector of the output trajectory error at timekandk-1,respectively.u(k)andu(k-1)are the discrete vector of the controlling quantity at timekandk-1;F1(k),F2(k),G0(k)andG1(k)express characteristic parameters with slow time-varying.

    3 Trajectory tracking adaptive controller design

    In the system startup stage,for the controlled object with unknown parameters,the general adaptive control algorithm is difficult to ensure the stability of the system,which results in running by mistake.Thereby,the golden section ratio combined with minimum variance is introduced in this paper,the golden section adaptive controller is designed as follows based on characteristic model of the hex-rotor for the sake of stability in transition.

    withi=1,2,3;j=1,2,3,4;N1andN2are positive numbers;G0(k)andG1(k)are estimated based on recursive least square method with forgetting factor devised as

    4 Closed loop stability analysis

    The stability of closed loophex-rotor system is analyzed and the following proposition is described.

    Proposition 1Taking consideration of characteristic model of the hex-rotor shown in Eq.(14)and golden section adaptive controller expressed in Eq.(15),if the following two conditions are met:

    ProofSubstituting Eq.(15)into Eq.(14),it can be derived that

    Utilizing Gronwall-Bellman inequality,it can be obtained as

    Therefore,it is obviously noted that the closed loop hex-rotor system with adaptive controller based on characteristic model is exponentially stable.

    5 Numerical simulation results

    From the point of view of practical application,firstly,the trajectory tracking control simulations of the hex-rotor between the proposed method and proportional integral derivative(PID)method widely used in engineering are carried out to demonstrate the validity and robustness of the proposed method in two cases.The parameters of model in simulations are taken from the hex-rotor prototype,as listed in Table 1.The adaptive controller coefficients are taken asl1=0.382,l2=0.618,andμ0=0.01.The sampling period is set asT=0.01s,andN1=1,N2=100,forgetting factor is chosen asλ=0.996,ξ(0)is randomly selected in the following range

    Table 1 Parameters of the hex-rotor prototype

    Angle between rotor shaft and body plane vj 60 °Thrust factor k1 54.2×10-6 Ns2 Drag factor k2 1.1×10-6 Nm/s2

    In the first case,assume the initial trajectory positon asP0=[0 0 0]Tm,and the desired trajectory is inclined space rectangle depicted as

    Fig.2 and Fig.3 describe the rectangular trajectory tracking three dimensional curves based on the proposed method and PID algorithm,respectively,in which it can be noted that the hex-rotor system has more accurate trajectory tracking control performance with the proposed method.To further clarify the comparison results of two algorithms,the rectangular trajectory in positionx,yandzdirections with two algorithms are depicted in Fig.4.It is clear to see that the adaptive controller based on characteristic model has much smaller overshoot,faster response time and more satisfied trajectory tracking effect with zero stable error in three directions.

    Fig.2 Rectangular trajectory tracking three dimensional curves with the proposed method

    Fig.3 Rectangular trajectory tracking three dimensional curves with PID method

    Fig.4 Rectangular trajectory tracking simulation results in three directions

    Additionally,the estimations of characteristic parameters based on recursive least square method with forgetting factor are shown in Fig.5 and Fig.6.It can be remarkably obtained that the estimated values ofG0(k)andG1(k)eventually tend to the constant value with fast convergence rate.

    Fig.5 Estimation results of characteristic parameter G0(k)

    Fig.6 Estimation results of characteristic parameter G1(k)

    Further,the second simulation is implemented for sake of verifying the robustness of the proposed method.The white noise with the amplitude of 0.15 Nm as external disturbance is acted on the three position directions.The initial trajectory positon is also assumed asP0=[0 0 0]Tm,and the desired trajectory is space ellipse described as

    The ellipse trajectory tracking results based on the proposed method and PID are shown in Fig.7 and Fig.8.The proposed controller has significantly smaller overshoot and much stronger robustness against external disturbance than PID method.The trajectory errors in three directions of the two strategies are exhibited in Fig.9,in the meanwhile,the maximum absolute error(MAX)and root mean square(RMS)error in three directions from 4-50 s are provided quantitatively in Table 2.The results illustrate that the ellipse trajectory tracking stable errors in three directions of the proposed method are maintained in the smaller magnitude with a faster response speed under external disturbance.

    Fig.7 Ellipse trajectory tracking three dimensional curves with the proposed method

    Fig.8 Ellipse trajectory tracking three dimensional curves with PID method

    Fig.9 Ellipse trajectory tracking errors in three directions

    Table 2 Ellipse trajectory tracking compared errors of MAX and RMS

    6 Hex-rotor prototype experiments

    The schematic view of hex-rotor control platform is presented in Fig.10.It uses DSP with the series of TMS320F28335 that runs at 150 MHz,including 12 programmable pulse width modulation outputs,12-bit analog input as well as 16 channels with programmable gains,at the same time,it supports floating point calculations as the hex-rotor on-board control computer.

    Fig.10 The schematic view of hex-rotor control platform

    Distance laser sensor and inertial measurement unit(IMU)constituted by accelerometers,magnetometers and gyroscopes are installed on the hex-rotor prototype to measure flight states.The RS232 serial port can transmit the sensor data to the on-board control computer.Then,the host computer receives these data exported from on-board computer through wireless transfer and generates the corresponding analysis charts,which provides prototype experimental support.

    For the sake of demonstrating feasibility and robustness of the proposed adaptive controller in the actual engineering,the fixed point anti-disturbance experiment and triangle trajectory tracking experiment of the hex-rotor prototype outdoors are carried out.The parameters of the adaptive controller and estimation values of characteristic parameters are the same as those in simulations.The hex-rotor experimental flight picture is displayed in Fig.11.

    Fig.11 The hex-rotor prototype

    Firstly,the instantaneous maximum wind speed is about 4.5 m/s measured by the tachometer in the fixed point anti-disturbance experiment outdoors.The fixed point trajectory tracking results in three directions are shown in Fig.12.It is worthwhile to point out that although the track errors in the three directions are large due to wind disturbance,the hex-rotor quickly overcomes the influence of external disturbance based on the proposed method in this paper,and the stable errors of three directions all converge within±1 m.The results highlight the claim that the adaptive controller with characteristic model has favorable trajectory tracking control performance and strong robustness in the presence of wind disturbances.

    Fig.12 Fixed point trajectory tracking results in three directions of hex-rotor prototype

    Further,the triangle trajectory tracking prototype experiment is executed with three-level varied wind disturbance outdoors.Fig.13 clearly indicates that the proposed method can reach the desired trajectory and offer the great tracking control performance.It is obtained that the adaptive controller with characteristic model is well suited in dealing with the trajectory tracking control problem in actual engineering.

    Fig.13 Triangle trajectory tracking results in three directions of hex-rotor prototype

    7 Conclusion

    Aiming at the high performance trajectory tracking controller design problem for strongly coupled nonlinear hex-rotor UAV with high driving property,great payload capacity and damage tolerance in practical engineering,an adaptive trajectory tracking controller based on characteristic model is proposed in this paper.Firstly,the dynamic model and characteristic model of the nonplanar hex-rotor is constructed.On the basis of characteristic model,a golden section adaptive controller is designed.Then,the stability of the hexrotor closed loop system is analyzed in detail.Finally,numerical simulations in two cases demonstrate the effectiveness of the proposed method under disturbances.In the meanwhile,two kinds of prototype experiments indicate the hex-rotor system based on the proposed method can provide the favorable trajectory tracking control performance with stable error converging to±1 m as well as strong robustness in the presence of three-level wind disturbances outdoors.

    久久婷婷成人综合色麻豆| 天堂中文最新版在线下载| 国产精品九九99| 国产精品二区激情视频| 国产一区二区三区在线臀色熟女 | 最近最新中文字幕大全免费视频| 免费不卡黄色视频| 人妻丰满熟妇av一区二区三区 | 51午夜福利影视在线观看| 国产麻豆69| 两个人看的免费小视频| 在线观看免费视频日本深夜| 一进一出好大好爽视频| 青草久久国产| 我的亚洲天堂| 伊人久久大香线蕉亚洲五| 国产欧美日韩精品亚洲av| 久久精品成人免费网站| 亚洲成a人片在线一区二区| 久久 成人 亚洲| 国产99白浆流出| 午夜免费观看网址| 欧美亚洲 丝袜 人妻 在线| 夫妻午夜视频| 水蜜桃什么品种好| 国产不卡av网站在线观看| 夜夜爽天天搞| 午夜成年电影在线免费观看| 在线十欧美十亚洲十日本专区| av天堂在线播放| 久久久国产精品麻豆| 国产精品成人在线| 久久人妻av系列| 黑人巨大精品欧美一区二区mp4| 人妻 亚洲 视频| cao死你这个sao货| 欧美国产精品一级二级三级| 老熟妇乱子伦视频在线观看| 国产精品国产av在线观看| 啪啪无遮挡十八禁网站| 搡老乐熟女国产| 国产精品免费视频内射| 国产免费av片在线观看野外av| 99国产精品一区二区蜜桃av | 亚洲成人国产一区在线观看| 中文欧美无线码| 欧美大码av| 亚洲精品成人av观看孕妇| 久久久精品免费免费高清| 国产成人精品无人区| 老司机午夜福利在线观看视频| 国产亚洲精品一区二区www | 久久国产精品人妻蜜桃| 免费在线观看影片大全网站| 久久久国产精品麻豆| 精品国产一区二区久久| 真人做人爱边吃奶动态| 国产野战对白在线观看| 美女高潮喷水抽搐中文字幕| 日韩人妻精品一区2区三区| 一进一出抽搐动态| av一本久久久久| 黑人巨大精品欧美一区二区mp4| 欧美午夜高清在线| 男人操女人黄网站| 在线国产一区二区在线| 欧美精品高潮呻吟av久久| 丝袜美腿诱惑在线| 亚洲精品国产一区二区精华液| 女性被躁到高潮视频| 精品久久久久久,| 免费女性裸体啪啪无遮挡网站| 最新在线观看一区二区三区| 黑人操中国人逼视频| 人人妻,人人澡人人爽秒播| 国产午夜精品久久久久久| 在线观看免费午夜福利视频| 搡老熟女国产l中国老女人| 精品人妻1区二区| 俄罗斯特黄特色一大片| 亚洲国产中文字幕在线视频| 不卡一级毛片| 亚洲精品美女久久久久99蜜臀| 制服诱惑二区| 亚洲午夜理论影院| 久久精品熟女亚洲av麻豆精品| 午夜91福利影院| 成人特级黄色片久久久久久久| 深夜精品福利| 午夜老司机福利片| 好看av亚洲va欧美ⅴa在| 国产在线一区二区三区精| 中文字幕人妻丝袜一区二区| 国产成人av教育| 男男h啪啪无遮挡| 久久精品国产a三级三级三级| 黑丝袜美女国产一区| 国产亚洲欧美98| 亚洲va日本ⅴa欧美va伊人久久| 国产不卡一卡二| 欧美精品人与动牲交sv欧美| 高潮久久久久久久久久久不卡| 久久婷婷成人综合色麻豆| 男女床上黄色一级片免费看| 老司机影院毛片| 久久中文字幕人妻熟女| 在线看a的网站| 久久精品亚洲av国产电影网| aaaaa片日本免费| 免费av中文字幕在线| 午夜日韩欧美国产| 黄网站色视频无遮挡免费观看| videos熟女内射| 午夜福利一区二区在线看| 国产av精品麻豆| 欧美乱妇无乱码| 国产男女内射视频| 午夜日韩欧美国产| 精品国产亚洲在线| 国产精品香港三级国产av潘金莲| 亚洲性夜色夜夜综合| 后天国语完整版免费观看| 午夜免费鲁丝| 午夜影院日韩av| 在线看a的网站| 国产高清videossex| 国产亚洲一区二区精品| 久久中文字幕一级| 国产高清国产精品国产三级| 新久久久久国产一级毛片| 18禁美女被吸乳视频| 国产激情久久老熟女| 麻豆成人av在线观看| 人妻一区二区av| 国产国语露脸激情在线看| 搡老熟女国产l中国老女人| 精品一区二区三卡| 又大又爽又粗| 真人做人爱边吃奶动态| 两个人免费观看高清视频| 欧美亚洲 丝袜 人妻 在线| 国精品久久久久久国模美| 午夜影院日韩av| 亚洲国产欧美一区二区综合| 少妇猛男粗大的猛烈进出视频| 村上凉子中文字幕在线| 国产精品一区二区精品视频观看| 精品乱码久久久久久99久播| 日本撒尿小便嘘嘘汇集6| 欧美人与性动交α欧美软件| 国产高清激情床上av| 在线观看免费日韩欧美大片| 亚洲av片天天在线观看| 另类亚洲欧美激情| 别揉我奶头~嗯~啊~动态视频| 亚洲午夜理论影院| 亚洲成人国产一区在线观看| 国产区一区二久久| 亚洲色图av天堂| 人人妻人人爽人人添夜夜欢视频| 91麻豆av在线| 久久久久久人人人人人| 免费人成视频x8x8入口观看| 人人妻人人添人人爽欧美一区卜| 搡老岳熟女国产| 视频在线观看一区二区三区| 色播在线永久视频| 1024香蕉在线观看| 日本wwww免费看| a级毛片黄视频| 久久中文看片网| 精品国产一区二区久久| 水蜜桃什么品种好| 国产精品.久久久| 欧美丝袜亚洲另类 | 亚洲一区二区三区不卡视频| 他把我摸到了高潮在线观看| 国产成人免费观看mmmm| 国产亚洲av高清不卡| 亚洲国产精品sss在线观看 | 久久久久久久午夜电影 | 天天躁日日躁夜夜躁夜夜| 国产高清激情床上av| 99精品久久久久人妻精品| 不卡av一区二区三区| 国产精品免费一区二区三区在线 | 999精品在线视频| 久久人妻福利社区极品人妻图片| 国产成人av激情在线播放| 男女午夜视频在线观看| av超薄肉色丝袜交足视频| 免费在线观看日本一区| 国产在线观看jvid| 久久性视频一级片| 又黄又爽又免费观看的视频| 免费高清在线观看日韩| 亚洲欧美日韩高清在线视频| avwww免费| 亚洲一卡2卡3卡4卡5卡精品中文| 欧美性长视频在线观看| 国产亚洲欧美在线一区二区| 中文字幕最新亚洲高清| 久久国产精品男人的天堂亚洲| 制服诱惑二区| 在线观看66精品国产| 成人亚洲精品一区在线观看| 久久影院123| 精品亚洲成a人片在线观看| 日韩大码丰满熟妇| 国产精品乱码一区二三区的特点 | 80岁老熟妇乱子伦牲交| 女人被狂操c到高潮| 精品一区二区三区视频在线观看免费 | 久热这里只有精品99| 视频区图区小说| 9热在线视频观看99| 大香蕉久久网| 国产精品永久免费网站| 午夜福利视频在线观看免费| 国产精品美女特级片免费视频播放器 | 波多野结衣av一区二区av| 久久精品成人免费网站| 欧美乱码精品一区二区三区| 岛国毛片在线播放| 国产日韩一区二区三区精品不卡| 精品一品国产午夜福利视频| 亚洲成国产人片在线观看| 不卡一级毛片| 又大又爽又粗| 9热在线视频观看99| videosex国产| 淫妇啪啪啪对白视频| 村上凉子中文字幕在线| 99热国产这里只有精品6| 女性被躁到高潮视频| 国产一区二区激情短视频| 国产精品免费大片| 国产在线观看jvid| 久久香蕉激情| 韩国av一区二区三区四区| 色在线成人网| 精品人妻熟女毛片av久久网站| 亚洲精品国产精品久久久不卡| 又大又爽又粗| 正在播放国产对白刺激| 国产精品亚洲一级av第二区| 国产精品久久久av美女十八| 成人特级黄色片久久久久久久| 深夜精品福利| 黄频高清免费视频| 性少妇av在线| netflix在线观看网站| tube8黄色片| 亚洲精品中文字幕一二三四区| 国产精品 欧美亚洲| 黄网站色视频无遮挡免费观看| 欧美日本中文国产一区发布| 国产成人av教育| 欧美国产精品va在线观看不卡| 在线观看免费视频网站a站| 18禁裸乳无遮挡免费网站照片 | 在线av久久热| 下体分泌物呈黄色| 1024香蕉在线观看| 69精品国产乱码久久久| 久久 成人 亚洲| 久久久国产欧美日韩av| 69av精品久久久久久| 亚洲欧洲精品一区二区精品久久久| 激情视频va一区二区三区| 女性生殖器流出的白浆| 国产单亲对白刺激| www日本在线高清视频| 国产av一区二区精品久久| 成年人黄色毛片网站| 美女福利国产在线| 免费黄频网站在线观看国产| 欧美精品人与动牲交sv欧美| 丰满迷人的少妇在线观看| 每晚都被弄得嗷嗷叫到高潮| 成在线人永久免费视频| 久久久国产一区二区| 日本黄色视频三级网站网址 | 亚洲精品av麻豆狂野| 精品电影一区二区在线| 国产成人精品在线电影| 18禁裸乳无遮挡动漫免费视频| 手机成人av网站| 一本一本久久a久久精品综合妖精| 欧美日韩一级在线毛片| 亚洲欧美一区二区三区久久| 国产又爽黄色视频| 丝袜人妻中文字幕| 成人精品一区二区免费| 在线视频色国产色| 啪啪无遮挡十八禁网站| 我的亚洲天堂| 午夜免费成人在线视频| 国产精品久久久久久人妻精品电影| xxx96com| 女人高潮潮喷娇喘18禁视频| 日本a在线网址| 色尼玛亚洲综合影院| 一进一出抽搐gif免费好疼 | 最近最新免费中文字幕在线| 夜夜躁狠狠躁天天躁| 亚洲少妇的诱惑av| 人成视频在线观看免费观看| 国产高清国产精品国产三级| 欧美+亚洲+日韩+国产| 亚洲一码二码三码区别大吗| 国产人伦9x9x在线观看| 三上悠亚av全集在线观看| 午夜亚洲福利在线播放| 在线播放国产精品三级| 亚洲国产欧美日韩在线播放| 日韩欧美一区视频在线观看| a级毛片在线看网站| 在线播放国产精品三级| 国产精品乱码一区二三区的特点 | 9热在线视频观看99| 日韩欧美三级三区| 无人区码免费观看不卡| 老司机深夜福利视频在线观看| 黄片小视频在线播放| 国产成人一区二区三区免费视频网站| 不卡av一区二区三区| 精品乱码久久久久久99久播| 操出白浆在线播放| 两性午夜刺激爽爽歪歪视频在线观看 | 精品欧美一区二区三区在线| 丰满饥渴人妻一区二区三| 免费高清在线观看日韩| 欧洲精品卡2卡3卡4卡5卡区| 黄色 视频免费看| 男女之事视频高清在线观看| 国产精品一区二区免费欧美| 极品少妇高潮喷水抽搐| 亚洲精华国产精华精| 亚洲成人手机| 热99久久久久精品小说推荐| 99精品久久久久人妻精品| 欧美乱色亚洲激情| 十八禁网站免费在线| 狂野欧美激情性xxxx| 久久香蕉精品热| 亚洲av电影在线进入| 国内久久婷婷六月综合欲色啪| 日韩免费av在线播放| 亚洲国产精品一区二区三区在线| 国产精品一区二区免费欧美| 亚洲少妇的诱惑av| 一边摸一边抽搐一进一小说 | 国产欧美日韩精品亚洲av| 操美女的视频在线观看| 国产精品免费视频内射| 久久久久久久久久久久大奶| av天堂久久9| 天天躁夜夜躁狠狠躁躁| 最近最新免费中文字幕在线| 亚洲精品av麻豆狂野| 欧美在线黄色| 欧美乱妇无乱码| 岛国在线观看网站| 欧美激情极品国产一区二区三区| 欧美黄色淫秽网站| 国产精品99久久99久久久不卡| 大香蕉久久网| 亚洲avbb在线观看| 国产高清视频在线播放一区| 51午夜福利影视在线观看| 最近最新中文字幕大全电影3 | 不卡av一区二区三区| 91精品三级在线观看| 中文字幕色久视频| 欧美成人午夜精品| 欧美日韩亚洲综合一区二区三区_| 伦理电影免费视频| 欧美av亚洲av综合av国产av| 亚洲人成电影观看| 亚洲一区二区三区不卡视频| 中文字幕人妻丝袜一区二区| 色婷婷av一区二区三区视频| 在线观看66精品国产| 大陆偷拍与自拍| 黄色怎么调成土黄色| 国产野战对白在线观看| 最新的欧美精品一区二区| 啦啦啦视频在线资源免费观看| 精品久久久久久,| 亚洲熟女精品中文字幕| 国产亚洲精品一区二区www | 欧美中文综合在线视频| 丝袜在线中文字幕| 高清黄色对白视频在线免费看| 精品少妇久久久久久888优播| 日本欧美视频一区| 极品人妻少妇av视频| 麻豆乱淫一区二区| 中文字幕人妻丝袜制服| 国产激情欧美一区二区| 黄片小视频在线播放| 欧美另类亚洲清纯唯美| 黑人巨大精品欧美一区二区蜜桃| 亚洲精华国产精华精| 美女福利国产在线| 一进一出好大好爽视频| 老司机午夜十八禁免费视频| 亚洲欧美激情在线| 18禁美女被吸乳视频| 国产99久久九九免费精品| 久久精品熟女亚洲av麻豆精品| 亚洲一卡2卡3卡4卡5卡精品中文| 手机成人av网站| 亚洲人成77777在线视频| 正在播放国产对白刺激| 午夜福利视频在线观看免费| tocl精华| 岛国在线观看网站| 国产精品九九99| 色尼玛亚洲综合影院| 久久精品国产a三级三级三级| 国产成人影院久久av| 老司机深夜福利视频在线观看| 日韩三级视频一区二区三区| 国内久久婷婷六月综合欲色啪| av中文乱码字幕在线| 后天国语完整版免费观看| 欧美日韩精品网址| 叶爱在线成人免费视频播放| 夜夜躁狠狠躁天天躁| 精品人妻在线不人妻| 久久久精品国产亚洲av高清涩受| 又紧又爽又黄一区二区| 免费观看人在逋| 亚洲色图综合在线观看| 80岁老熟妇乱子伦牲交| 女人精品久久久久毛片| 精品国产超薄肉色丝袜足j| 中文字幕另类日韩欧美亚洲嫩草| 午夜免费鲁丝| 久热这里只有精品99| 成人国语在线视频| 国产成人欧美| 又大又爽又粗| 在线十欧美十亚洲十日本专区| 女人久久www免费人成看片| xxx96com| 在线观看免费视频网站a站| x7x7x7水蜜桃| 热re99久久精品国产66热6| 久久精品国产亚洲av高清一级| 免费一级毛片在线播放高清视频 | 亚洲在线自拍视频| 日韩欧美三级三区| 成人黄色视频免费在线看| 好看av亚洲va欧美ⅴa在| 人人妻人人爽人人添夜夜欢视频| 精品午夜福利视频在线观看一区| ponron亚洲| 99riav亚洲国产免费| 日本a在线网址| 黄片播放在线免费| 国产又爽黄色视频| 中文字幕人妻丝袜制服| av国产精品久久久久影院| 美女高潮喷水抽搐中文字幕| 午夜成年电影在线免费观看| 在线视频色国产色| 别揉我奶头~嗯~啊~动态视频| 午夜两性在线视频| 免费人成视频x8x8入口观看| 欧美乱码精品一区二区三区| 亚洲精品粉嫩美女一区| 最新美女视频免费是黄的| 久久狼人影院| 在线av久久热| 国产精品影院久久| 欧美日韩一级在线毛片| 少妇 在线观看| 亚洲av熟女| 久久精品国产综合久久久| 国产一区二区激情短视频| 久久国产精品人妻蜜桃| 99re在线观看精品视频| 欧美一级毛片孕妇| 欧美+亚洲+日韩+国产| 波多野结衣一区麻豆| 日本黄色视频三级网站网址 | 下体分泌物呈黄色| 免费女性裸体啪啪无遮挡网站| 精品久久久精品久久久| 女性生殖器流出的白浆| 脱女人内裤的视频| 男女床上黄色一级片免费看| 久久ye,这里只有精品| 欧美黑人精品巨大| 亚洲国产精品sss在线观看 | 国产av精品麻豆| 免费观看精品视频网站| 精品人妻在线不人妻| 欧美日韩亚洲国产一区二区在线观看 | a级毛片黄视频| 大陆偷拍与自拍| 91在线观看av| 午夜福利免费观看在线| 少妇猛男粗大的猛烈进出视频| 一二三四社区在线视频社区8| 国产精品一区二区在线不卡| 国产又色又爽无遮挡免费看| 久久精品国产99精品国产亚洲性色 | 在线视频色国产色| 日韩一卡2卡3卡4卡2021年| www.自偷自拍.com| 欧美色视频一区免费| 久久久精品区二区三区| 超色免费av| 一区二区三区激情视频| 一边摸一边抽搐一进一小说 | cao死你这个sao货| 久久久久国产精品人妻aⅴ院 | 高清欧美精品videossex| 丝袜美腿诱惑在线| 黑人操中国人逼视频| videosex国产| 男男h啪啪无遮挡| 国产免费现黄频在线看| 亚洲中文日韩欧美视频| 欧美日韩中文字幕国产精品一区二区三区 | 亚洲午夜理论影院| 日韩视频一区二区在线观看| 咕卡用的链子| 国产av精品麻豆| 日韩免费高清中文字幕av| 少妇裸体淫交视频免费看高清 | 亚洲av熟女| 岛国在线观看网站| 国产成人精品久久二区二区91| 色婷婷久久久亚洲欧美| 性色av乱码一区二区三区2| 91在线观看av| 午夜亚洲福利在线播放| 欧美 亚洲 国产 日韩一| 叶爱在线成人免费视频播放| 香蕉久久夜色| 大陆偷拍与自拍| 国产成+人综合+亚洲专区| 免费观看人在逋| 又黄又爽又免费观看的视频| 交换朋友夫妻互换小说| 亚洲欧美精品综合一区二区三区| 亚洲国产欧美一区二区综合| 国产精品1区2区在线观看. | 亚洲精品国产一区二区精华液| 国产一区在线观看成人免费| 熟女少妇亚洲综合色aaa.| 精品人妻在线不人妻| 久久影院123| 啦啦啦 在线观看视频| 一区二区三区国产精品乱码| 午夜福利在线免费观看网站| netflix在线观看网站| 99精国产麻豆久久婷婷| 亚洲专区字幕在线| 狠狠狠狠99中文字幕| 欧美精品啪啪一区二区三区| 电影成人av| 亚洲精品在线美女| 热99re8久久精品国产| 在线观看一区二区三区激情| 多毛熟女@视频| 午夜免费观看网址| 怎么达到女性高潮| 久久精品国产清高在天天线| 人人妻人人添人人爽欧美一区卜| 亚洲av日韩精品久久久久久密| 欧美乱色亚洲激情| 久久99一区二区三区| 老司机在亚洲福利影院| 国产精品久久视频播放| 国产精品亚洲一级av第二区| 中文欧美无线码| 伊人久久大香线蕉亚洲五| 夜夜夜夜夜久久久久| 国产一区有黄有色的免费视频| 国产激情久久老熟女| 国产不卡av网站在线观看| 欧美精品av麻豆av| 宅男免费午夜| av国产精品久久久久影院| 女人久久www免费人成看片| 亚洲午夜理论影院| 国产伦人伦偷精品视频| 国产精品一区二区精品视频观看| 亚洲人成电影观看| 欧美 日韩 精品 国产| 精品无人区乱码1区二区| 女人高潮潮喷娇喘18禁视频| 国产区一区二久久| avwww免费| 久久影院123| 国产91精品成人一区二区三区| 欧美精品av麻豆av| 午夜福利,免费看| 欧美精品av麻豆av| 热99久久久久精品小说推荐| 国产高清videossex| 在线永久观看黄色视频| 成人影院久久| 精品国产美女av久久久久小说| 成人18禁在线播放| 一区福利在线观看| 免费久久久久久久精品成人欧美视频| 久久国产精品男人的天堂亚洲| 91麻豆av在线|