• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Adaptive cubature Kalman filter based on variational Bayesian inference under measurement uncertainty①

    2022-02-11 08:58:08HUZhentao胡振濤JIAHaoqianGONGDelong
    High Technology Letters 2022年4期

    HU Zhentao(胡振濤),JIA Haoqian,GONG Delong②

    (*School of Artificial Intelligence,Henan University,Zhengzhou 450046,P.R.China)

    (**Laboratory and Equipment Management Office,Henan University,Zhengzhou 450046,P.R.China)

    Abstract

    Key words:variational Bayesian inference,cubature Kalman filter(CKF),measurement uncertainty,Inverse-Wishart(IW)distribution

    0 Introduction

    Nonlinear dynamic system has been widely applied in many applications,such as rocket guidance,inertial navigation of aircrafts and ships,radar or sonar detection and target tracking[1].Recently,although extended Kalman filter has been applied in various fields,its inherent shortcomings also limit its development.Due to the use of linearization to approximate nonlinear function,the estimation accuracy is reduced,and the tedious Jacobian matrix needs to be calculated[2].Particle filter is a random sampling filter,which approximates the posterior mean of the state by a series of sampling points,and approximates the probability distribution function of the state by random particles.However,its estimation accuracy is excessively dependent on the number of sampling points[3].Sigmapoint Kalman filter includes filters such as unscented Kalman filter(UKF)and cubature Kalman filter(CKF).These filter algorithms are all based on certain sampling strategies to obtain the determined sampling points,and then these sampling points are used to calculate the approximate Gaussian integral.However,for high-dimensional nonlinear systems with higher vector dimensions,the covariance of UKF may be nonpositive in the filtering process,which results in unstable or even divergent filtering values[4].Compared with above algorithms,CKF has higher filtering accuracy,better numerical stability and lower computational complexity[5].

    Due to the limitations of sensor performance and the surrounding environment,the infinite accurate measurement information cannot be obtained.Considering the influence of weather,humidity and other environmental factors may lead to time-varying measurement noise[6],Ref.[7]proposed the Sage-Husa adaptive filter(SHAKF)to solve the problem that the measurement noise is time-varying and the prior information such as its statistics is unknown.The filter recursively estimates the noise statistics based on the maximum a posteriori criterion to reduce the influence of noise on the estimation results.However,the use of SHAKF cannot guarantee the convergence to the correct noise covariance matrix,which may lead to filtering divergence.Ref.[8]realized the joint estimation of measured noise distribution parameters and system state in the state space model system under the variable Bayesian(VB)framework combined with inverse gamma distribution.However,the use of inverse gamma distribution leads to large amount of calculation and poor universality.Ref.[9]proposed an adaptive linear Kalman filter based on VB,which uses the Inverse-Wishart(IW)distribution as the conjugate prior distribution of the measurement noise covariance matrix,updates the approximate posterior distribution of the system state and noise parameters through the fixed-point iterative method.In addition to the time-varying noise,the hardware failure of the sensor will also cause the random measurement losses.The sensor only receives pure noise,which does not contain any useful information of the target[10].If the sensor knows whether the measurement is lost in advance,the minimum variance estimation(MVE)of the linear Gaussian system can be provided by the intermittent Kalman filter(IKF)[11].In reality,the sensor cannot predict whether the measurement information is lost.Ref.[12]proposed BKF-I and BKF-II based on the maximum a posteriori probability estimation criterion to solve the measurement losses,but they cannot adaptively estimate the measurement loss probability.Ref.[13]proposed a new VB-based adaptive Kalman filter(AKF)to solve the problem of unknown measurement loss probability,but this algorithm has not been extended to the nonlinear field.

    In this paper,a new adaptive cubature Kalman filter based on variational Bayesian inference is proposed.Aiming at the problem of unknown measurement noise covariance matrix and measurement loss probability in measurement model,the conjugate prior distribution of unknown parameters and estimated state is established firstly,and then the posterior probability density function(PDF)of state,noise covariance matrix,decision factor and measurement loss probability are updated to Gaussian distribution,inverse Wishart distribution,Bernoulli distribution and Gamma distribution by variational Bayesian inference.Finally,the estimated variables can be obtained;at the end of the paper,the simulation results verify the effectiveness of the proposed VBACKF.

    1 Problem description

    Consider the following discrete-time non-linear stochastic system described by the state-space model.

    wherexk∈Rnandzk∈Rmare the state vector and measurement,respectively;f(·)represents the nonlinear state transition function,h(·)represents the nonlinear observation function;wk∈Rnandvk∈Rmare respectively Gaussian process and measurement noise vectors with zero mean vectors and covariance matricesQkandRk.The initial state vectorx0∈Rnis assumed to have a Gaussian distribution with mean vector0|0and covariance matrixP0|0.ξkobeys a Bernoulli distribution with only two possible values:1 and 0.Obviously,ξk=1 represents the real measurement information obtained by the sensor at timek,andξk=0 represents the measurement lost at timek.The probabilities of the Bernoulli random variablesξktaking the values of 1 and 0 are given as

    where,Pr(ξ)represents the probability ofξktaking 0 or 1,andτkrepresents the measurement loss probability at timek.Moreover,wk,vk,ξkandx0are assumed to be mutually uncorrelated for any time.

    2 Methodology

    2.1 The choice of prior distributions

    One-step prediction probability density functionp(xk|z1:k-1)satisfies Gaussian distribution.

    where,N(·;μ,Σ)denotes the Gaussian PDF with mean vectorμand covariance matrixΣ;k|k-1andPk|k-1are the one-step prediction state estimation atktime and the corresponding estimation error covariance matrix,respectively.At the same time,since the measurement noise covariance matrixRkis time-varying,it is necessary to find its posterior distribution,which requires selecting the appropriate conjugate prior distribution forRk,that is because the conjugate can ensure that the posterior distribution and the prior distribution have the same function form.In Bayesian statistics,IW distribution is usually chosen as the conjugate prior distribution of covariance matrix of Gaussian distribution with known mean[14].Therefore,IW distribution is selected as the prior distribution ofRk

    where IW(Rk;k|k-1,k|k-1)denotes the IW distribution with degree of freedom parameterk|k-1and inverse scale matrixk|k-1.The probability density function of IW distribution can be expressed as

    IW(A;u,U)=

    whereAis the covariance matrix ofn-dimensional time-varying Gaussian vector,uis the degree of freedom parameter,Uis then-dimensional inverse scale matrix,tr(·)represents the trace of the matrix,and Γn(·)is ann-dimensional Gamma function.WhenA~I(xiàn)W(A;u,U)andu>n+1 are satisfied,E[A-1]=(u-n-1)U-1is established[15].

    The prior parameters of predicting measurement noise are obtained by

    Although the prior information of measurement noise is obtained,the random measurement losses will also reduce the estimation accuracy.It is necessary to estimate the probability of measurement losses,and then the measurement noise covariance matrix is modified.

    The conditional likelihood probability density function in Eq.(2)can be expressed as

    wherepvk(·)denotes the probability density function of measurement noise.Eq.(3)and Eq.(4)can be transformed into the following probability-mass function(PMF).

    Combining Eq.(9)and Eq.(10),the likelihood probability density functionp(zk|xk,τk,Rk)can be rewritten as

    So conditional likelihood probability density functionp(zk|xk,ξk,Rk)can be expressed as the following exponential multiplication form.

    Further,the probability density functionp(zk|xk,ξk,Rk)can be rewritten as

    In addition,zkdepends not only onxkandRk,but also onξkandτk,so it is necessary to calculate the joint prior probability density function.

    whereΞ?{xk,ξk,τk,Rk}represents the set of estimated variables,p(τk|z1:k-1)represents the prior probability density function of the measurement loss probability at timek.The prior distributionp(τk|z1:k-1)is selected as a Beta PDF since the Beta distribution is a conjugate prior to the Bernoulli distribution,so that the prior distribution and posterior distribution ofτkhave the same form[16]:

    here,η∈(0,1]denotes a forgetting factor used to spread the posterior PDFp(τk|z1:k-1).

    2.2 The variational approximation of posterior probability density function

    In order to estimatexktogether withξk,τkandRk,the joint posterior PDFp(xk,ξk,τk,Rk|z1:k)needs to be computed.Since the form of joint posterior probability density functionp(xk,ξk,τk,Rk|z1:k)is very complex and its analytical solution cannot be directly obtained.To make the joint posterior distribution easy to handle,the approximate free solution of joint posterior probability density function is obtained by VB method.Then,it can be obtained whereq(·)represents the variational approximate posterior probability density function ofp(·).

    According to the VB approximation idea,the optimal approximation of the posterior probability density function of the estimated variable is obtained by minimizing the Kullback-Leibler divergence(KLD)between the factored approximate posterior PDFq(xk)q(ξk)q(τk)q(Rk)and true joint posterior PDFp(xk,ξk,τk,Rk|z1:k-1)

    According to VB approach,the optimal solution of Eq.(19)satisfies the following equation.

    where E[·]represents the expectation operation,and log(·)represents the logarithmic function.θis an arbitrary element ofΞ,Ξ(-θ)is the set of all elements inΞexcept forθ.cθrepresents the constant term related toθ.

    According to Eq.(20),the expectation of logarithmic joint posterior probability density function is required to obtain the approximate posterior probability density function of the estimated variables.However,since the approximate posterior distributionq(xk),q(ξk),q(τk)andq(Rk)are coupled with each other,the analytical solution cannot be obtained directly by Eq.(20).Therefore,the fixed-point iteration method is adopted to solve this problem[9].

    According to the conditional independence of the state space model,the joint probability density functionp(Ξ,z1:k)can be expressed as

    Substituting Eq.(5),Eq.(6),Eq.(10),Eq.(13)and Eq.(15)into Eq.(21),Eq.(22)can be obtained

    According to Eq.(22),logp(Ξ,z1:k)can be expressed as

    Letθ=Rkand substitute Eq.(23)into Eq.(20),logq(i+1)(Rk)can be written as given by

    whereq(i+1)(·)represents theapproximated probability density functionofp(·)at the(i+1)th iteration.Ais given by

    Letθ=xkand substitute Eq.(23)into Eq.(20),logq(i+1)(xk)can be written as given by

    According to Eq.(29),q(i+1)(xk)can be updated as

    Exploiting Eq.(31),the modified measurement noise covariance matrixsatisfies

    where E(i)[ξk]can be obtained through Eq.(42)at theith iteration.

    Letθ=ξkand substitute Eq.(23)into Eq.(20),logq(i+1)(ξk)can be written as

    According to Eq.(33),the posterior probability of the Bernoulli random variableξtaking the values of 1 and 0 are given by

    Letθ=τkand substitute Eq.(23)into Eq.(20),logq(i+1)(τk)can be written as

    According to Eq.(38),q(i+1)(τk)can be updated as

    The expectations E(i+1)[ξk],E(i+1)[logτk]and E(i+1)[log(1-τk)]are given by

    whereψ(·)is a Digamma function[17].

    The implementation of VBCKF algorithm is as follows.

    Algorithm 1 VBCKF Input:^xk-1|k-1,Pk-1|k-1,f(·),h(·),zk,^uk-1|k-1,U^k-1|k-1,Qk-1,^αk-1,β^k-1,n,m,ρ,η,ε,N Time update:1.^xk|k-1 and Pk|k-1 are obtained by the time update of the traditional CKF.Variational measurement update:2.Initialization:^x(0)k|k=^xk|k-1,P(0)k|k=Pk|k-1,U^k|k-1=ρ U^k-1|k-1,^uk|k-1=ρ(^uk-1|k-1-m-1)+m+1,^α(0)k=^αk-1,β^(0)k=β^k-1,E(0)[ξk]=β^k-1/(^αk-1+β^k-1),E(0)[logτk]=ψ(^α(0)k)-ψ(^α(0)k+β^(0)k),E(0)[log(1-τk)]=ψ(β^(0)k)-ψ(^α(0)k+β^(0)k)for i=0:N-1 3.Update q(i+1)(Rk)using Eq.(25),Eq.(27)and Eq.(28);4.Compute R^(i+1)k using Eq.(32);5.^xk|k and Pk|k are obtained by the measurement update of the traditional CKF;6.Compute A(i+1)k and B(i+1)k using Eq.(36)and Eq.(37);7.Compute^α(i+1)k andβ^(i+1)k using Eq.(40)and Eq.(41);8.Compute E(i+1)[log(1-τk)]and E(i+1)[logτk]using Eq.(43)and Eq.(44);9.Compute Pr(i+1)(ξk=1)and Pr(i+1)(ξk=0)using Eq.(34)and Eq.(35);10.Compute E(i+1)[ξk]using Eq.(42);11.While‖x(i+1)k|k-x(i)k|k‖/‖x(i)k|k‖≤ε,stop iteration;end for^xk|k=^x(N)k|k,Pk|k=P(N)k|k,^αk=^α(N)k,β^k=β^(N)k,^uk=^u(N)k,Uk=U(N)k Output:^xk|k,Pk|k,^αk,β^k,^uk,Uk

    3 Simulation results and analysis

    The simulation experiment scene is set as a typical two-dimensional plane target tracking.The proposed VBACKF is compared with cubature Kalman filter(CKF)[5],variational Bayesian cubature Kalman filter(VBCKF)[9],Bayesian cubature Kalman filter(BCKF1)[12],posterior distribution Bayesian cubature Kalman filter(BCKF2)[12],adaptive cubature Kalman filter(ACKF)[13]and intermittent cubature Kalman filter(ICKF)[11].In the above algorithms,ICKF is used as the standard algorithm,because it has the best filtering accuracy with the correct measurement statistics.The feasibility and effectiveness of the proposed VBACKF are verified by comparing multiple metrics.

    3.1 Simulation model and parameters

    The state equation and measurement equation in the target tracking model are given as wherexk=[xk,?xk,yk,?yk]Tis the state vector,xkand?xkrepresents the position and velocity of the target in the horizontal direction at timek,respectively;ykand?ykrepresents the position and velocity of the target in the vertical direction at timek,respectively;ωis the turn rate;Tis the sampling interval;wk-1is the zeromean Gaussian process noise vector and its covariance matrixQk=diag[qM qM],qis the scalar parameter,Mis given by

    The measurement noisy vectorvkis time-varying,and its covariance matrix changes as

    whereR'k=diag[1020.1],tsis the total steps of a certain Monte Carlo run.

    The number of Monte Carlo runsM,the number of iterationsNmand other simulation experiment parameters are given in Table 1.

    Table 1 Simulation parameters

    3.2 Performance metrics

    The root-mean square error(RMSE)and the averaged root-mean square error(ARMSE)of the position are chosen as the performance metrics to evaluate the accuracy of all algorithms,their definitions are as follows.

    In order to evaluate the estimation accuracy of measurement noise covariance matrix,the square root of normalized Frobenius norm is selected as the performance metrics.

    where‖X‖2=tr(XXT),andrepresent the estimated measurement noise covariance matrix and the real measurement noise covariance matrix at timekin thejth Monte Carlo run,respectively.

    3.3 Simulation results and analysis

    Two scenarios are designed to test the performance of the filter,which are scenario 1 with constant measurement loss probability(P(τk)=0.1)and scenario 2 with time-varying measurement loss probability.The measurement loss probability in scenario 2 changes as follows.

    Fig.1 and Fig.2 show the RMSEs estimated by seven filtering algorithms in two different scenarios.Fig.3 and Fig.4 show the measurement loss probability estimated by ACKF and VBACKF in two different scenarios.

    Fig.1 RMSEs of different filters(scenario 1)

    Fig.2 RMSEs of different filters(scenario 2)

    In order to more intuitively compare the estimation accuracy of all algorithms,Table 2 shows the ARMSE from 5 s to 50 s estimated by seven filtering algorithms in two scenarios.

    Table 2 ARMSE of position estimation

    Through Table 2,it can be seen that the ARMSE of VBACKF is 38.80% higher than that of VBCKF.This is because VBCKF cannot process random measurement losses,which results in low filtering accuracy.In addition,the estimation accuracy of BCKF1 and BCKF2 is 33.48% and 52.80% lower than that of VBACKF,respectively.The reason is that the two filters rely on the correct prior information.When they cannot obtain accurate measurement loss prior information,the estimation accuracy will decrease significantly.However,the VBACKF algorithm proposed in this paper can adaptively estimate the measurement loss probability,as shown in Fig.3 and Fig.4.The estimation accuracy of VBACKF is 13.10% higher than that of ACKF.As shown in Fig.5,the measurement noise used by VBACKF is closer to the real measurement noise.This is because ACKF cannot solve the problem of time-varying measurement noise.In addition,the use of measurement noise covariance with too large deviation will also lead to inaccurate corrected measurement noise covariance,which will reduce the accuracy of the algorithm to estimate the measurement loss probability,as shown in Fig.3 and Fig.4.

    Fig.3 Measurement loss probability estimation(scenario 1)

    Fig.4 Measurement loss probability estimation(scenario 2)

    Fig.5 SRNFN of measurement noise covariance matrix

    Fig.6 and Fig.7 show the real measurement losses and estimated measurement losses of 50 steps in a single Monte Carlo simulation under the scenarios with measurement loss probabilities of 0.1 and 0.2,respectively.The circle indicates the true measurement losses,and the dot indicates the estimated measurement losses.When the circle and the dot coincide,the judgment is correct.The diagram shows that the proposed VBACKF filter can accurately judge whether the measurement is lost.

    Fig.6 Measurement loss of truth and judgment(τk=0.1)

    Fig.7 Measurement loss of truth and judgment(τk=0.2)

    Fig.8 shows the influence of different sensor measurement loss probability on VBACKF position estimation.The figure shows that when the sensor measurement loss probability increases from 0.1 to 0.5,the RMSE increases slowly.The reason is that the proposed algorithm can estimate the measurement loss probability in real time,and further modifies the measurement noise covariance according to the estimation results.However,the measurement loss probability of the sensor gradually increases to 0.5,the RMSE value increases significantly,which is because the measurement loss occurs more frequently.As shown in Fig.9,when the loss probability increases from 0.5 to 0.9,the detection success rate of VBACKF decreases sharply,meanwhile resulting in a significant decrease in the estimation accuracy.

    Fig.8 RMSE of position target estimation under different loss probabilities

    Fig.9 Success rate of VBACKF detection under different loss measurement probability

    4 Conclusions

    A novel variational Bayesian inference based on adaptive cubature Kalman filter(CKF)is proposed to improve the influence of unknown measurement noise covariance and measurement loss probability on estimation accuracy.In the CKF framework,the VB method is introduced,and the IW distribution is selected as the conjugate prior distribution of the measurement noise covariance matrix.The beta distribution is selected to model the measurement loss probability density function.The fixed-point iteration method is used to iteratively solve the posterior distribution of the coupling estimated variables.The proposed VBACKF has higher estimation accuracy,adaptability and robustness than traditional filtering algorithms.It can be further extended to group target tracking and extended target tracking.

    内射极品少妇av片p| 三级经典国产精品| 99热这里只有精品一区| 日本爱情动作片www.在线观看| 精品人妻视频免费看| 精品少妇黑人巨大在线播放| 如何舔出高潮| 日韩欧美精品免费久久| 日本免费a在线| 日韩三级伦理在线观看| 国产免费一级a男人的天堂| kizo精华| 99久久精品国产国产毛片| 激情 狠狠 欧美| 寂寞人妻少妇视频99o| 精品久久久久久久久久久久久| 国产一区亚洲一区在线观看| 亚洲乱码一区二区免费版| 欧美最新免费一区二区三区| 免费看不卡的av| 亚洲美女搞黄在线观看| 国模一区二区三区四区视频| 男女边吃奶边做爰视频| av国产免费在线观看| 亚洲激情五月婷婷啪啪| 亚洲色图av天堂| 99热这里只有是精品50| 久久99热6这里只有精品| 久久久久网色| 欧美xxxx黑人xx丫x性爽| 成人特级av手机在线观看| 国产精品福利在线免费观看| 色网站视频免费| 在线播放无遮挡| 日韩欧美国产在线观看| 美女高潮的动态| 丰满少妇做爰视频| 日韩强制内射视频| 国产精品人妻久久久影院| 日韩不卡一区二区三区视频在线| 肉色欧美久久久久久久蜜桃 | 国产淫片久久久久久久久| 亚洲av一区综合| 亚洲av成人av| 免费播放大片免费观看视频在线观看| 国产成人精品久久久久久| 少妇熟女aⅴ在线视频| 久久久a久久爽久久v久久| videossex国产| 激情 狠狠 欧美| 国产精品国产三级国产av玫瑰| 久久热精品热| 一个人看的www免费观看视频| 一级毛片aaaaaa免费看小| 一级av片app| 男人和女人高潮做爰伦理| 两个人视频免费观看高清| 久久精品国产自在天天线| 三级经典国产精品| 成人美女网站在线观看视频| 成人鲁丝片一二三区免费| 亚洲av一区综合| 色哟哟·www| 亚洲综合色惰| 2022亚洲国产成人精品| 欧美激情久久久久久爽电影| 国产精品精品国产色婷婷| 91午夜精品亚洲一区二区三区| 啦啦啦韩国在线观看视频| 少妇人妻精品综合一区二区| 欧美xxxx黑人xx丫x性爽| 观看美女的网站| 777米奇影视久久| 免费高清在线观看视频在线观看| 免费观看在线日韩| 免费看光身美女| 欧美高清成人免费视频www| 免费黄网站久久成人精品| 久久人人爽人人片av| 亚洲aⅴ乱码一区二区在线播放| 美女xxoo啪啪120秒动态图| 亚洲欧美日韩东京热| 色尼玛亚洲综合影院| 国产伦精品一区二区三区视频9| 纵有疾风起免费观看全集完整版 | 大陆偷拍与自拍| 免费大片黄手机在线观看| 国产在线男女| 成人综合一区亚洲| 高清毛片免费看| 国产精品久久久久久久久免| 欧美3d第一页| 51国产日韩欧美| 久久精品夜色国产| 一本一本综合久久| 男人和女人高潮做爰伦理| 91精品伊人久久大香线蕉| 欧美日韩视频高清一区二区三区二| 成人特级av手机在线观看| 亚洲综合色惰| 色综合亚洲欧美另类图片| 亚洲国产精品sss在线观看| 亚洲国产高清在线一区二区三| 人妻制服诱惑在线中文字幕| 国产激情偷乱视频一区二区| 午夜精品一区二区三区免费看| 日本一本二区三区精品| 丝瓜视频免费看黄片| 亚洲人与动物交配视频| 亚洲va在线va天堂va国产| 激情 狠狠 欧美| 国产亚洲午夜精品一区二区久久 | 日本午夜av视频| 91aial.com中文字幕在线观看| 在线观看av片永久免费下载| 夜夜看夜夜爽夜夜摸| 日本熟妇午夜| 亚洲国产精品国产精品| 亚洲人与动物交配视频| 国产精品嫩草影院av在线观看| 亚洲av一区综合| 少妇被粗大猛烈的视频| 国产精品国产三级专区第一集| 成年女人看的毛片在线观看| 亚洲av二区三区四区| 日韩国内少妇激情av| 亚洲在线观看片| 久久精品国产鲁丝片午夜精品| 少妇人妻精品综合一区二区| 毛片女人毛片| 淫秽高清视频在线观看| 日本猛色少妇xxxxx猛交久久| 在线观看一区二区三区| 午夜福利网站1000一区二区三区| 少妇的逼水好多| 亚洲人成网站在线观看播放| 极品少妇高潮喷水抽搐| 中文字幕亚洲精品专区| 在线免费观看不下载黄p国产| 午夜爱爱视频在线播放| 18禁裸乳无遮挡免费网站照片| 日本av手机在线免费观看| 床上黄色一级片| av免费在线看不卡| 七月丁香在线播放| av免费观看日本| 国产三级在线视频| 日韩不卡一区二区三区视频在线| 精品人妻视频免费看| 2021天堂中文幕一二区在线观| 日日啪夜夜撸| 亚洲精品aⅴ在线观看| 91av网一区二区| 国产精品日韩av在线免费观看| 三级毛片av免费| 久久精品国产亚洲av天美| 国产精品不卡视频一区二区| 日本-黄色视频高清免费观看| av网站免费在线观看视频 | 网址你懂的国产日韩在线| 天堂av国产一区二区熟女人妻| 午夜精品一区二区三区免费看| 国产 一区 欧美 日韩| 免费看av在线观看网站| 麻豆乱淫一区二区| 日韩亚洲欧美综合| 亚洲精品成人av观看孕妇| 99久国产av精品国产电影| 99久国产av精品国产电影| videossex国产| 卡戴珊不雅视频在线播放| 国产av国产精品国产| 欧美日韩视频高清一区二区三区二| 丰满乱子伦码专区| 亚洲国产欧美人成| 青春草亚洲视频在线观看| 少妇的逼好多水| 91久久精品国产一区二区三区| 久久久久久国产a免费观看| 国产精品一区二区三区四区久久| 久久久成人免费电影| 免费av毛片视频| 亚洲av.av天堂| 在线免费观看的www视频| 久久久久久久久久黄片| 一本—道久久a久久精品蜜桃钙片 精品乱码久久久久久99久播 | 国产久久久一区二区三区| 中文字幕亚洲精品专区| 久久草成人影院| 国产一级毛片在线| 久久久久久久大尺度免费视频| 成人二区视频| 色视频www国产| 国产视频内射| 久久久久网色| 亚洲欧美一区二区三区国产| 三级毛片av免费| 人妻少妇偷人精品九色| 亚洲人与动物交配视频| 国产乱来视频区| 国产乱来视频区| 久久精品国产亚洲网站| 亚洲精品第二区| 女人被狂操c到高潮| 免费在线观看成人毛片| 精品人妻熟女av久视频| 51国产日韩欧美| 麻豆乱淫一区二区| 久久精品夜色国产| 秋霞在线观看毛片| 天堂俺去俺来也www色官网 | 特大巨黑吊av在线直播| 99热这里只有精品一区| 国产v大片淫在线免费观看| 99热这里只有精品一区| 高清毛片免费看| 99久久人妻综合| 十八禁国产超污无遮挡网站| 观看免费一级毛片| 久久久久免费精品人妻一区二区| 麻豆成人av视频| 国产毛片a区久久久久| 欧美日韩一区二区视频在线观看视频在线 | 久久久久久久久久久免费av| 美女脱内裤让男人舔精品视频| 大话2 男鬼变身卡| 日韩av不卡免费在线播放| 国产精品国产三级专区第一集| 免费观看a级毛片全部| 亚洲av男天堂| 国产精品日韩av在线免费观看| 日本av手机在线免费观看| 午夜福利在线观看吧| 在线 av 中文字幕| 免费看av在线观看网站| 丝瓜视频免费看黄片| 成人一区二区视频在线观看| 国产精品99久久久久久久久| 免费无遮挡裸体视频| 成人亚洲欧美一区二区av| 永久免费av网站大全| 精品人妻偷拍中文字幕| 免费看a级黄色片| 久久99蜜桃精品久久| 九九久久精品国产亚洲av麻豆| 精品久久国产蜜桃| 国产精品女同一区二区软件| 亚洲va在线va天堂va国产| 免费在线观看成人毛片| 久久久久久久大尺度免费视频| 乱系列少妇在线播放| 水蜜桃什么品种好| 晚上一个人看的免费电影| 狠狠精品人妻久久久久久综合| 国产亚洲av片在线观看秒播厂 | 熟妇人妻久久中文字幕3abv| 三级男女做爰猛烈吃奶摸视频| 2021天堂中文幕一二区在线观| www.色视频.com| 国产av不卡久久| 一个人免费在线观看电影| 亚洲综合精品二区| 亚洲精品成人av观看孕妇| 中文字幕制服av| 欧美极品一区二区三区四区| 亚洲成人一二三区av| 亚洲在线自拍视频| 精品久久久噜噜| 国产成人一区二区在线| av在线蜜桃| 日韩伦理黄色片| 高清日韩中文字幕在线| 麻豆国产97在线/欧美| 卡戴珊不雅视频在线播放| 97热精品久久久久久| 亚洲综合精品二区| 午夜激情福利司机影院| 超碰97精品在线观看| 午夜精品国产一区二区电影 | 国产精品一及| 久久综合国产亚洲精品| 亚洲精品456在线播放app| .国产精品久久| 精品一区二区免费观看| 男人爽女人下面视频在线观看| 国产精品久久久久久精品电影小说 | 日本猛色少妇xxxxx猛交久久| 久久久精品94久久精品| 亚洲高清免费不卡视频| 免费黄色在线免费观看| 嘟嘟电影网在线观看| 高清在线视频一区二区三区| 精品一区二区三卡| 亚洲,欧美,日韩| 一个人看的www免费观看视频| 亚洲真实伦在线观看| 九九久久精品国产亚洲av麻豆| 激情 狠狠 欧美| 毛片一级片免费看久久久久| 狂野欧美白嫩少妇大欣赏| 欧美3d第一页| 国产大屁股一区二区在线视频| 国产午夜精品一二区理论片| 你懂的网址亚洲精品在线观看| 久久99蜜桃精品久久| 亚州av有码| 国产黄色小视频在线观看| 最近的中文字幕免费完整| 亚洲天堂国产精品一区在线| 精品少妇黑人巨大在线播放| 亚洲av日韩在线播放| 久久精品夜夜夜夜夜久久蜜豆| 一边亲一边摸免费视频| 最后的刺客免费高清国语| 晚上一个人看的免费电影| 国产综合懂色| 欧美人与善性xxx| 寂寞人妻少妇视频99o| 深夜a级毛片| 一级片'在线观看视频| av国产久精品久网站免费入址| 欧美xxxx性猛交bbbb| 成人美女网站在线观看视频| 精品少妇黑人巨大在线播放| 99视频精品全部免费 在线| 男女下面进入的视频免费午夜| 成人漫画全彩无遮挡| 乱系列少妇在线播放| 狠狠精品人妻久久久久久综合| 大又大粗又爽又黄少妇毛片口| 大香蕉久久网| 国产av在哪里看| 国产黄a三级三级三级人| 午夜免费激情av| 久久精品国产亚洲av天美| 黄色配什么色好看| 日产精品乱码卡一卡2卡三| 久久久精品94久久精品| 亚洲精品国产av成人精品| 亚洲天堂国产精品一区在线| 不卡视频在线观看欧美| 男女边摸边吃奶| 精品午夜福利在线看| 视频中文字幕在线观看| 午夜福利视频1000在线观看| 亚洲精品国产av蜜桃| 精品久久久久久久人妻蜜臀av| 欧美日韩综合久久久久久| 街头女战士在线观看网站| 国产成人精品婷婷| 欧美成人一区二区免费高清观看| 麻豆av噜噜一区二区三区| 国产成人a区在线观看| 老司机影院毛片| 永久免费av网站大全| 美女国产视频在线观看| 中国国产av一级| 高清欧美精品videossex| 国产精品蜜桃在线观看| kizo精华| 亚洲一区高清亚洲精品| 午夜视频国产福利| 国产极品天堂在线| 亚洲综合色惰| 少妇裸体淫交视频免费看高清| 五月天丁香电影| 十八禁国产超污无遮挡网站| 欧美最新免费一区二区三区| 男人舔女人下体高潮全视频| 青青草视频在线视频观看| 成人av在线播放网站| 国产色爽女视频免费观看| 欧美不卡视频在线免费观看| 黄片无遮挡物在线观看| 欧美性感艳星| 人妻系列 视频| 赤兔流量卡办理| 只有这里有精品99| 视频中文字幕在线观看| 干丝袜人妻中文字幕| 秋霞伦理黄片| 三级国产精品欧美在线观看| 色综合亚洲欧美另类图片| 午夜福利视频精品| 特大巨黑吊av在线直播| 免费大片黄手机在线观看| 天天躁夜夜躁狠狠久久av| 国产成人freesex在线| 99热6这里只有精品| av免费观看日本| 亚洲欧美清纯卡通| 日韩在线高清观看一区二区三区| 欧美xxxx黑人xx丫x性爽| 午夜精品国产一区二区电影 | 色播亚洲综合网| 午夜精品国产一区二区电影 | 久久久久性生活片| 久久久久国产网址| 最新中文字幕久久久久| 嫩草影院入口| 一级爰片在线观看| 91久久精品电影网| av在线天堂中文字幕| 亚洲av电影不卡..在线观看| h日本视频在线播放| 最新中文字幕久久久久| 亚洲av免费高清在线观看| 男女那种视频在线观看| 日韩精品青青久久久久久| 91久久精品国产一区二区成人| 久久久久久久亚洲中文字幕| 国产精品综合久久久久久久免费| 欧美一区二区亚洲| 日日啪夜夜爽| av网站免费在线观看视频 | 国产精品一区www在线观看| 日日摸夜夜添夜夜添av毛片| 久久久久久伊人网av| 久久久久久久大尺度免费视频| 成人毛片a级毛片在线播放| 男插女下体视频免费在线播放| 伦理电影大哥的女人| 天美传媒精品一区二区| a级一级毛片免费在线观看| 日韩三级伦理在线观看| 精品99又大又爽又粗少妇毛片| 九九在线视频观看精品| 噜噜噜噜噜久久久久久91| 亚洲国产成人一精品久久久| 午夜福利在线观看免费完整高清在| 日韩av免费高清视频| 成人二区视频| 一级毛片黄色毛片免费观看视频| 青春草亚洲视频在线观看| 亚洲久久久久久中文字幕| 欧美xxⅹ黑人| 少妇裸体淫交视频免费看高清| 国产在线一区二区三区精| 久久久亚洲精品成人影院| 一二三四中文在线观看免费高清| 国产精品无大码| 成人鲁丝片一二三区免费| 一级爰片在线观看| 国产欧美日韩精品一区二区| 国产黄片美女视频| 久久99蜜桃精品久久| 床上黄色一级片| 午夜福利视频1000在线观看| 特大巨黑吊av在线直播| 色综合色国产| 久久国产乱子免费精品| 天堂√8在线中文| 一个人观看的视频www高清免费观看| 如何舔出高潮| 99久久九九国产精品国产免费| 国产 一区精品| 国产一区二区亚洲精品在线观看| 毛片一级片免费看久久久久| 亚洲精品一区蜜桃| 两个人的视频大全免费| 亚洲怡红院男人天堂| 亚洲精品国产av成人精品| 亚洲av中文字字幕乱码综合| 亚洲av二区三区四区| 91午夜精品亚洲一区二区三区| 人人妻人人澡人人爽人人夜夜 | 国产免费视频播放在线视频 | 亚洲精品乱码久久久v下载方式| 人体艺术视频欧美日本| 日韩av不卡免费在线播放| 精品久久国产蜜桃| 在线观看免费高清a一片| 日本三级黄在线观看| 九草在线视频观看| 亚洲怡红院男人天堂| 最近2019中文字幕mv第一页| 高清在线视频一区二区三区| 色网站视频免费| 亚洲精品日韩av片在线观看| 青春草亚洲视频在线观看| av女优亚洲男人天堂| 国产成人午夜福利电影在线观看| 两个人的视频大全免费| 日本av手机在线免费观看| 免费看日本二区| 国产精品99久久久久久久久| 最新中文字幕久久久久| 免费观看无遮挡的男女| av黄色大香蕉| 日本熟妇午夜| 一边亲一边摸免费视频| 一区二区三区乱码不卡18| 欧美成人午夜免费资源| 国产毛片a区久久久久| 少妇人妻一区二区三区视频| 国产亚洲最大av| 午夜精品在线福利| 十八禁国产超污无遮挡网站| 三级经典国产精品| 国产精品人妻久久久影院| 97精品久久久久久久久久精品| 国产伦一二天堂av在线观看| 97人妻精品一区二区三区麻豆| 亚洲aⅴ乱码一区二区在线播放| 尤物成人国产欧美一区二区三区| 色综合色国产| 亚洲av.av天堂| 一区二区三区免费毛片| 亚洲国产精品国产精品| 久久久久久久久久久免费av| 在线免费观看的www视频| 高清欧美精品videossex| 亚洲av电影不卡..在线观看| av福利片在线观看| 久久久久久久久久黄片| 国产中年淑女户外野战色| 亚洲性久久影院| 精品久久国产蜜桃| 如何舔出高潮| 欧美三级亚洲精品| 国产精品av视频在线免费观看| 久久国内精品自在自线图片| 久久久久久久久中文| ponron亚洲| 国产精品久久视频播放| 国产探花在线观看一区二区| 神马国产精品三级电影在线观看| 国产av不卡久久| 婷婷色av中文字幕| 91久久精品电影网| 观看美女的网站| 成年女人在线观看亚洲视频 | 日韩国内少妇激情av| 国产不卡一卡二| 国产视频内射| 国产一区二区三区综合在线观看 | 联通29元200g的流量卡| 国内少妇人妻偷人精品xxx网站| 超碰av人人做人人爽久久| 老司机影院成人| 亚洲精品一区蜜桃| 欧美三级亚洲精品| 久久这里只有精品中国| 亚洲精品久久午夜乱码| 99热这里只有精品一区| 97超碰精品成人国产| 欧美精品一区二区大全| 18禁在线播放成人免费| 久99久视频精品免费| 真实男女啪啪啪动态图| 午夜福利网站1000一区二区三区| 日韩不卡一区二区三区视频在线| 嫩草影院新地址| 男人和女人高潮做爰伦理| 亚洲美女搞黄在线观看| 欧美日韩综合久久久久久| 亚洲怡红院男人天堂| 久久97久久精品| 91精品国产九色| 亚洲人成网站在线观看播放| 黄片无遮挡物在线观看| 国产高清国产精品国产三级 | 99久久中文字幕三级久久日本| 亚洲精品国产av成人精品| 欧美变态另类bdsm刘玥| av在线观看视频网站免费| 一个人观看的视频www高清免费观看| 别揉我奶头 嗯啊视频| 久久久久国产网址| 中国国产av一级| 成人二区视频| 国产午夜福利久久久久久| 国产一区二区亚洲精品在线观看| 午夜精品在线福利| 久久精品熟女亚洲av麻豆精品 | 熟女电影av网| 一边亲一边摸免费视频| 一级黄片播放器| 精品不卡国产一区二区三区| av一本久久久久| 中文字幕久久专区| 五月伊人婷婷丁香| 成人性生交大片免费视频hd| 国产精品不卡视频一区二区| 亚洲av成人av| 国产精品综合久久久久久久免费| 久久韩国三级中文字幕| 午夜久久久久精精品| 高清日韩中文字幕在线| 久久久久精品性色| 日韩,欧美,国产一区二区三区| 99久久中文字幕三级久久日本| 又爽又黄无遮挡网站| 免费高清在线观看视频在线观看| 欧美xxxx黑人xx丫x性爽| 日日摸夜夜添夜夜添av毛片| 我的女老师完整版在线观看| 国产单亲对白刺激| 精品熟女少妇av免费看| 国产黄色小视频在线观看| 免费av观看视频| 久久这里只有精品中国| 51国产日韩欧美| 国产精品1区2区在线观看.| 有码 亚洲区| 久久久久久久久久久丰满| 看非洲黑人一级黄片| 禁无遮挡网站| 看黄色毛片网站| 国产亚洲91精品色在线| 国产精品麻豆人妻色哟哟久久 | 国产亚洲91精品色在线| 色视频www国产| 国产白丝娇喘喷水9色精品| 99九九线精品视频在线观看视频|