葛 玲,王 新,張亞楠
新煙堿類殺蟲劑降解特性研究進(jìn)展①
葛 玲,王 新*,張亞楠
(沈陽工業(yè)大學(xué)環(huán)境與化學(xué)工程學(xué)院,沈陽 110870)
新煙堿類殺蟲劑是合成的具有較強(qiáng)殺蟲能力的類煙堿衍生物,其已經(jīng)發(fā)展成為世界上使用最廣泛的一類殺蟲劑。在過去的20年里,新煙堿類殺蟲劑的環(huán)境殘留由于大規(guī)模的應(yīng)用而急劇增加。因此探究有效的新煙堿類殺蟲劑的降解方法勢在必行。新煙堿類殺蟲劑的光解和水解及降解途徑已有報(bào)道。與化學(xué)方法相比,生物修復(fù)是一種經(jīng)濟(jì)、環(huán)保的處理農(nóng)藥污染環(huán)境的方法。然而,關(guān)于微生物降解新煙堿類殺蟲劑及其代謝途徑和降解機(jī)制的研究較少。因此,本文就新煙堿類殺蟲劑的化學(xué)和微生物降解及其降解機(jī)制進(jìn)行綜述,并對微生物降解新煙堿殺蟲劑未來的研究重點(diǎn)和方向提出了展望。
新煙堿類殺蟲劑;光解;水解;微生物降解;降解途徑
2020年我國農(nóng)藥利用率達(dá)40.6%,相比世界發(fā)達(dá)農(nóng)業(yè)國家,國內(nèi)糧食生產(chǎn)平均每公頃使用農(nóng)藥量仍然偏高[1]。除草劑和殺蟲劑在農(nóng)藥市場的銷售份額也在不斷提升,目前殺蟲劑市場上新煙堿類、菊酯類和有機(jī)磷類的老品種占據(jù)著銷售前三甲[2]。自20世紀(jì)90年代,新煙堿類殺蟲劑引進(jìn)以來,其已成為世界上使用最廣泛的一類殺蟲劑,已在120個(gè)國家注冊[3-4]。2019年數(shù)據(jù)表明,以吡蟲啉為有效成分的產(chǎn)品登記數(shù)量最多,合計(jì)1 393種,其次為啶蟲脒731種,噻蟲嗪518種,有效成分登記平均用量排序?yàn)猷はx脒、吡蟲啉、烯啶蟲胺[5]。新煙堿類殺蟲劑不僅銷量和使用量占比較大,其環(huán)境殘留問題也日趨嚴(yán)峻,在土壤及底泥、水體、非靶標(biāo)植物中均已發(fā)現(xiàn)其殘留[6-8]。研究表明,新煙堿類殺蟲劑在土壤中可殘留長達(dá)數(shù)月甚至數(shù)年的時(shí)間[9]。在我國小麥產(chǎn)區(qū)土壤中氯氟氰菊酯、吡蟲啉和氯氰菊酯的平均殘留量最高,分別為44.12、27.08、23.31 μg/kg。農(nóng)藥在進(jìn)入環(huán)境后還發(fā)生代謝過程。在我國水稻、玉米和小麥糧食產(chǎn)區(qū)土壤樣品中,吡蟲啉、啶蟲脒和噻蟲嗪的5種代謝物的檢出率均為100%,其在土壤樣品中的總殘留水平是3個(gè)母體總和的2.4倍(均值)[10]。新煙堿類化合物對昆蟲有明顯的毒性,對哺乳動(dòng)物、鳥類和其他高等生物的毒性較低。然而,最近的體外、體內(nèi)和生態(tài)領(lǐng)域研究表明,新煙堿類殺蟲劑可對脊椎動(dòng)物和無脊椎動(dòng)物以及哺乳動(dòng)物產(chǎn)生不利影響[11]。
新煙堿類殺蟲劑,通過與昆蟲中樞神經(jīng)系統(tǒng)乙酰膽堿酯酶受體蛋白結(jié)合而起拮抗作用[12]。新煙堿類殺蟲劑一般由5部分組成,分別為雜環(huán)基團(tuán)、橋鏈部分、功能基團(tuán)、正電中心、取代基部分[13]。根據(jù)功能基團(tuán)的不同可分為3類[14]:N-硝基胍類,如吡蟲啉、噻蟲胺、噻蟲嗪和呋蟲胺;硝基亞甲基類,如烯啶蟲胺;N-氰基脒類,如啶蟲脒和噻蟲啉。根據(jù)取代基部分的不同可分為2類:鏈狀新煙堿類殺蟲劑,即取代基部分為脂肪鏈狀結(jié)構(gòu),如呋蟲胺;環(huán)狀新煙堿類殺蟲劑,即取代基部分與正電中心形成雜環(huán),如噻蟲嗪。常見的新煙堿類殺蟲劑的具體結(jié)構(gòu)與理化性質(zhì)見表1。
表1 新煙堿類殺蟲劑理化性質(zhì)
農(nóng)藥化學(xué)降解是指農(nóng)藥在環(huán)境中受到一些物理化學(xué)因素(如光、熱、化學(xué)物質(zhì))的影響而發(fā)生降解,主要包括光降解和水解[15-17]。
光降解過程通常包含了農(nóng)藥內(nèi)部C–C、C–H、C–O、C–N化學(xué)鍵斷裂、異構(gòu)化、分子內(nèi)重排或分子間反應(yīng)等過程,造成有機(jī)污染物分子結(jié)構(gòu)的不可逆改變,因此光降解是有機(jī)污染物在環(huán)境中比較徹底的降解途徑[18-19]。由于新煙堿類殺蟲劑的光降解只能在土壤表層發(fā)生,所以一般研究液體介質(zhì)中的光降解,因此影響光降解行為的主要因素包括初始濃度、光源、不同水體、有機(jī)溶劑、pH等[20-21]。初始濃度越高,新煙堿類殺蟲劑的光解速率越慢,半衰期越長。初始濃度為5.0、10.0和20.0 mg/L的啶蟲脒在水中的半衰期分別為60.26、69.30和92.40 min。Mahapatra等[22]發(fā)現(xiàn),紫外燈照射下吡蟲啉的光解半衰期13.6 h比自然光照下的16.1 h要快。啶蟲脒在太陽光下的光解半衰期為147.48 h,在高壓汞燈和紫外燈下的光解半衰期分別為69.30 min和48.13 min;啶蟲脒在4種不同水質(zhì)中的光解速率有明顯差異,光解速率從快到慢依次為:重蒸水>自來水>巢湖水>稻田水[23]。在紫外光的照射下,呋蟲胺在4種有機(jī)溶劑中的光解反應(yīng)快慢順序?yàn)椋阂宜嵋阴?甲醇>乙醇>丙酮,光解半衰期分別為3.39、4.83、5.05和9.23 h,在不同的 pH 條件下,當(dāng) pH 由酸性變?yōu)閴A性時(shí),呋蟲胺的光解速率逐漸加快,其在pH為5、7、8和9的條件下的光解半衰期分別為12.42、12.06、10.84和8.45 h[24]。新煙堿類殺蟲劑光化學(xué)反應(yīng)主要類型有光氧化、光水解、光敏化作用。表2列舉了幾種新煙堿類殺蟲劑的光降解途徑及產(chǎn)物。
表2 新煙堿類殺蟲劑光降解途徑
農(nóng)藥的水解反應(yīng)是農(nóng)藥分子與水分子發(fā)生相互作用的化學(xué)反應(yīng)過程,其反應(yīng)本質(zhì)是水分子的親核基團(tuán)(H2O或OH–)進(jìn)攻農(nóng)藥分子的親電基團(tuán)(C、N、S、P等),取代離去基團(tuán)(Cl–、苯酚鹽等),屬于親核取代反應(yīng)[31]。新煙堿類殺蟲劑的水解和溫度呈正相關(guān),噻蟲啉在25℃和pH 9時(shí),水解半衰期為59.8 d,當(dāng)溫度升至50℃,水解速率增加,半衰期縮減到39.8 d。一定溫度下,新煙堿類殺蟲劑的水解受pH的影響,在酸性和中性條件下難以降解,一般屬于堿性水解,隨著pH的增加,水解速率不斷加快,但是二價(jià)金屬離子(Cu2+、Ni2+、Zn2+)和礦物(高嶺石、針鐵礦、TiO2)對水解速率無影響[32]。如圖1所示,噻蟲嗪的水解過程主要包括C=N雙鍵被OH–攻擊,生成C=O鍵、C–N鍵斷裂、環(huán)羥基化以及脫氯[29,33-35];呋蟲胺的水解過程主要為OH–作為親核基團(tuán)進(jìn)攻親電基團(tuán)(C+=N),并發(fā)生取代反應(yīng)生成C=O鍵[24];噻蟲胺的水解過程主要涉及羥基自由基進(jìn)攻N=C生成C=O鍵的過程以及C–N鍵的斷裂[30];由于吡蟲啉咪唑烷上的NO2是強(qiáng)吸電子基團(tuán),它使C=N位上的C原子易受OH–進(jìn)攻發(fā)生反應(yīng)[36],吡蟲啉的水解過程主要涉及羥基自由基進(jìn)攻N+=C生成C=O鍵的過程以及C–N鍵的斷裂。馬暢[37]研究發(fā)現(xiàn),H2O分子的OH–進(jìn)攻氯噻啉分子中與咪唑啉環(huán)相連的N–N單鍵,形成N–H鍵,生成M216和HNO3小分子,H2O分子的OH–進(jìn)攻M216分子中與噻唑環(huán)上的C–Cl單鍵,形成C–O鍵,生成M198和HCl小分子。
生物修復(fù)技術(shù)是去除環(huán)境污染物的有效且經(jīng)濟(jì)實(shí)用的方案。土壤中含有大量的藻類、細(xì)菌、真菌、無脊椎動(dòng)物和原生動(dòng)物。土壤微生物種群在植物生長調(diào)控、植物病蟲害防治、土壤結(jié)構(gòu)維持、養(yǎng)分循環(huán)利用和污染物轉(zhuǎn)化等方面發(fā)揮著重要作用[38-39]。利用覆蓋地球一半生物量的微生物是最好的生物修復(fù)工具,因?yàn)槠淇梢栽诤芏痰臅r(shí)間內(nèi)大規(guī)模地生長和繁殖,且選擇性強(qiáng),可以采用原位修復(fù),不易產(chǎn)生抗性,具有良好的成本效益[40-43]。
降解新煙堿類殺蟲劑的微生物包括芽孢桿菌、假單胞菌、根瘤菌、貪噬菌、放線菌和白腐真菌,已被分離和鑒定[44],如表3所示。這些微生物可以在實(shí)驗(yàn)室和野外條件下降解新煙堿類殺蟲劑。
吡蟲啉降解微生物已報(bào)道的代謝途徑如圖2所示。羥基化和硝基還原是吡蟲啉的兩種主要的微生物降解途徑[60-62]。羥基化途徑:吡蟲啉(IMI)生成5-Hydroxy IMI,其在脫水酶作用下脫水生成Olefin IMI,Olefin IMI含有不飽和雙鍵,更容易發(fā)生降解,最終分解成CO2;硝基還原途徑:吡蟲啉(IMI)生成亞硝基(nitroso)、胍基(guanidine)和羰基(urea)IMI。兩種途徑都會(huì)產(chǎn)生6-氯煙酸和6-羥基煙酸,6-氯煙酸為易分解有機(jī)物,氧化后產(chǎn)生H2O和CO2。啶蟲脒的微生物代謝途徑如圖3所示。一般情況下,啶蟲脒的C≡N被氧化斷裂生成N-酰胺衍生物,其經(jīng)過不對稱裂解,產(chǎn)生兩種中間產(chǎn)物,中間產(chǎn)物之一快速生成6-氯煙酸[50, 63],最終礦化為H2O和CO2。Yang等[64]發(fā)現(xiàn),啶蟲脒存在不產(chǎn)生中間產(chǎn)物的兩種降解途徑,即直接脫氯、脫甲基得到最終產(chǎn)物;微生物系統(tǒng)不能將此最終產(chǎn)物轉(zhuǎn)化為其他產(chǎn)物,但在動(dòng)植物系統(tǒng)中發(fā)現(xiàn)其可繼續(xù)降解[65]。如圖4所示,微生物可以通過多種途徑降解噻蟲嗪,硝基還原代謝途徑與吡蟲啉類似,生成亞硝基(nitroso)、胍基(guanidine)和羰基(urea)[66];類似于啶蟲脒的生物降解途徑,即噻蟲嗪通過去甲基化途徑轉(zhuǎn)化為去甲基–噻蟲嗪;惡二嗪環(huán)的裂解[67-68]途徑。如圖5所示,噻蟲胺微生物降解途徑主要有3種:一種是C–N鍵斷裂,生成兩種產(chǎn)物;一種是先脫氮再脫氯,部分硝基胍中N–N鍵的斷裂和噻唑基中C–Cl鍵的斷裂[54];另一種是硝基亞氨基部分轉(zhuǎn)化為尿素化合物[69-70]。
表3 分離微生物降解新煙堿類殺蟲劑的研究
續(xù)表3
圖2 吡蟲啉的微生物降解途徑
圖3 啶蟲脒的微生物降解途徑
圖4 噻蟲嗪的微生物降解途徑
圖5 噻蟲胺的微生物降解途徑
農(nóng)藥在農(nóng)業(yè)生產(chǎn)中使用廣泛,以提高糧食產(chǎn)量,滿足日益增長的人口需求。隨著生產(chǎn)力的提高,化學(xué)農(nóng)藥的使用導(dǎo)致了一些環(huán)境問題,如土壤肥力和生物多樣性降低,土壤酸化程度增加,生物的抗藥性增強(qiáng)等。這些化學(xué)品污染空氣、地面和水體[71],若在環(huán)境中停留時(shí)間較長,也會(huì)進(jìn)入食物鏈并影響整個(gè)生態(tài)系統(tǒng)。微生物修復(fù)是一種有效的凈化污染的技術(shù)。通過加強(qiáng)自然生物降解過程,可使微生物迅速適應(yīng)變化和有毒的環(huán)境,實(shí)現(xiàn)對污染物的降解,但是目前對于微生物的作用機(jī)制研究還不夠深入,全面了解微生物群落及其對自然環(huán)境和污染物的響應(yīng),對于發(fā)展生態(tài)穩(wěn)定、新穎和潛在的生物修復(fù)方法非常重要。因此,針對未來研究的重點(diǎn)提出以下建議:①探究降解產(chǎn)物的毒性,并研究降解產(chǎn)物的毒理機(jī)制;②考慮極端微生物在生物修復(fù)中的驚人作用,需要進(jìn)行更深入的研究,以便識別新的物種,并研究其在極端環(huán)境中作用的機(jī)制;③生物體的生物降解潛力是由單個(gè)細(xì)胞內(nèi)的遺傳成分決定的[72],為了了解其在污染環(huán)境中的降解機(jī)制,對其功能基因和酶的研究十分重要,因?yàn)檫@些基因可以與其他生物體結(jié)合。具有更強(qiáng)降解污染物能力的轉(zhuǎn)基因微生物在這一領(lǐng)域具有重要的研究前景。
[1] 2021年農(nóng)藥行業(yè)市場發(fā)展趨勢[J]. 農(nóng)村新技術(shù), 2021(3): 46–47.
[2] 蘆志成, 李慧超, 關(guān)愛瑩, 等. 2015—2019年除草劑和殺蟲(螨)劑創(chuàng)制品種概述[J]. 農(nóng)藥, 2020, 59(2): 79–90.
[3] Bartlett A J, Hedges A M, Intini K D, et al. Acute and chronic toxicity of neonicotinoid and butenolide insecticides to the freshwater amphipod,[J]. Ecotoxicology and Environmental Safety, 2019, 175: 215–223.
[4] Li Z G, Yu T T, Chen Y P, et al. Brain transcriptome of honey bees () exhibiting impaired olfactory learning induced by a sublethal dose of imidacloprid[J]. Pesticide Biochemistry and Physiology, 2019, 156: 36–43.
[5] 毛連綱, 徐冬梅, 袁善奎, 等. 基于推薦用量分析我國新煙堿類殺蟲劑的登記現(xiàn)狀[J]. 植物保護(hù), 2020, 46(5): 200–210.
[6] Anderson J C, Dubetz C, Palace V P. Neonicotinoids in the Canadian aquatic environment: A literature review on current use products with a focus on fate, exposure, and biological effects[J]. Science of the Total Environment, 2015, 505: 409–422.
[7] Botías C, David A, Horwood J, et al. Neonicotinoid residues in wildflowers, a potential route of chronic exposure for bees[J]. Environmental Science & Technology, 2015, 49(21): 12731–12740.
[8] Xue Y G, Limay-Rios V, Smith J, et al. Quantifying neonicotinoid insecticide residues escaping during maize planting with vacuum planters[J]. Environmental Science & Technology, 2015, 49(21): 13003–13011.
[9] Bonmatin J M, Giorio C, Girolami V, et al. Environmental fate and exposure; neonicotinoids and fipronil[J]. Environmental Science and Pollution Research International, 2015, 22(1): 35–67.
[10] 姜朵朵. 典型農(nóng)藥在我國三種糧食產(chǎn)地殘留特征及膳食風(fēng)險(xiǎn)評估[D]. 北京: 中國農(nóng)業(yè)科學(xué)院, 2021.
[11] Chrétien F, Giroux I, Thériault G, et al. Surface runoff and subsurface tile drain losses of neonicotinoids and companion herbicides at edge-of-field[J]. Environmental Pollution, 2017, 224: 255–264.
[12] le Questel J Y, Graton J, Cerón-Carrasco J P, et al. New insights on the molecular features and electrophysiological properties of dinotefuran, imidacloprid and acetamiprid neonicotinoid insecticides[J]. Bioorganic & Medicinal Chemistry, 2011, 19(24): 7623–7634.
[13] 魏立娜, 葉非. 新煙堿類殺蟲劑的作用機(jī)制、應(yīng)用及結(jié)構(gòu)改造的研究進(jìn)展[J]. 農(nóng)藥科學(xué)與管理, 2013, 34(5): 27–34.
[14] Morrissey C A, Mineau P, Devries J H, et al. Neonicotinoid contamination of global surface waters and associated risk to aquatic invertebrates: A review[J]. Environment International, 2015, 74: 291–303.
[15] 陳夢現(xiàn), 歐曉明, 劉紅玉, 等. 新農(nóng)藥吩胺霉素的光化學(xué)降解[J]. 農(nóng)藥, 2016, 55(9): 654–657.
[16] Ngim K K, Crosby D G. Abiotic processes influencing fipronil and desthiofipronil dissipation in California, USA, rice fields[J]. Environmental Toxicology and Chemistry, 2001, 20(5): 972–977.
[17] 戴魏, 劉雙清, 李曉剛, 等. 新農(nóng)藥聯(lián)苯肼酯的光化學(xué)降解[J]. 環(huán)境化學(xué), 2014, 33(2): 334–340.
[18] 丁紹武, 張鵬. 新煙堿類殺蟲劑吡蟲啉的殘留危害及降解特性分析[J]. 現(xiàn)代農(nóng)業(yè)科技, 2019(19): 121–123.
[19] 李敏, 趙會(huì)君, 屈歡, 等. 新煙堿類殺蟲劑潛在環(huán)境風(fēng)險(xiǎn)及光降解行為研究進(jìn)展[J]. 農(nóng)藥, 2019, 58(3): 170–173.
[20] Hilton M J, Jarvis T D, Ricketts D C. The degradation rate of thiamethoxam in European field studies[J]. Pest Management Science, 2016, 72(2): 388–397.
[21] 李田田, 鄭珊珊, 王晶, 等. 新煙堿類農(nóng)藥的污染現(xiàn)狀及轉(zhuǎn)化行為研究進(jìn)展[J]. 生態(tài)毒理學(xué)報(bào), 2018, 13(4): 9–21.
[22] Mahapatra B, Adak T, Patil N K B, et al. Effect of abiotic factors on degradation of imidacloprid[J]. Bulletin of Environmental Contamination and Toxicology, 2017, 99(4): 475–480.
[23] 翟偉. 啶蟲脒的光化學(xué)降解研究[D].安徽農(nóng)業(yè)大學(xué), 2008.
[24] 張磊磊. 呋蟲胺的水解和光化學(xué)降解研究[D]. 新鄉(xiāng): 河南師范大學(xué), 2014.
[25] Wamhoff H, Schneider V. Photodegradation of imidacloprid[J]. Journal of Agricultural and Food Chemistry, 1999, 47(4): 1730–1734.
[26] Moza P N, Hustert K, Feicht E, et al. Photolysis of imidacloprid in aqueous solution[J]. Chemosphere, 1998, 36(3): 497–502.
[27] Malato S, Caceres J, Agüera A, et al. Degradation of imidacloprid in water by photo-Fenton and TiO2photocatalysis at a solar pilot plant: A comparative study[J]. Environmental Science & Technology, 2001, 35(21): 4359–4366.
[28] 葛峰, 單正軍, 戴亦軍, 等. 烯式吡蟲啉(olefin IMI)光解及其光解產(chǎn)物研究[J]. 生態(tài)與農(nóng)村環(huán)境學(xué)報(bào), 2009, 25(2): 103–106.
[29] 鄭立慶. 噻蟲嗪的水解與光解作用及對土壤呼吸作用影響研究[D]. 哈爾濱: 哈爾濱工業(yè)大學(xué), 2006.
[30] 劉保東. 噻蟲胺的水解和光化學(xué)降解研究[D]. 新鄉(xiāng): 河南師范大學(xué), 2013.
[31] 王敏欣, 朱書全. 水環(huán)境中農(nóng)藥的水解研究分析[J]. 黑龍江科技學(xué)院學(xué)報(bào), 2004, 14(2): 74–77.
[32] Todey S A, Fallon A M, Arnold W A. Neonicotinoid insecticide hydrolysis and photolysis: Rates and residual toxicity[J]. Environmental Toxicology and Chemistry, 2018, 37(11): 2797–2809.
[33] Nelson P N. A DFT mechanistic study of two possible hydrolytic evolution pathways of thiamethoxam; implications in food and environmental safety[J]. Computational and Theoretical Chemistry, 2021, 1202: 113333.
[34] 劉娟, 張乃明. 噻蟲嗪在農(nóng)田土壤中環(huán)境行為的研究進(jìn)展[J]. 土壤, 2020, 52(5): 883–890.
[35] Karmakar R, Singh S B, Kulshrestha G. Kinetics and mechanism of the hydrolysis of thiamethoxam[J]. Journal of Environmental Science and Health Part B, Pesticides, Food Contaminants, and Agricultural Wastes, 2009, 44(5): 435–441.
[36] 鄭巍, 宣日成, 劉維屏. 新農(nóng)藥吡蟲啉水解動(dòng)力學(xué)和機(jī)理研究[J]. 環(huán)境科學(xué)學(xué)報(bào), 1999, 19(1): 101–104.
[37] 馬暢. 土壤和水環(huán)境中氯噻啉的降解行為和降解產(chǎn)物研究[D]. 北京: 中國農(nóng)業(yè)科學(xué)院, 2019.
[38] Ajar N Y, Rajesh K, Sunil K, et al. Beneficial microbiomes: Biodiversity and potential biotechnological applications for sustainable agriculture and human health[J]. Journal of Applied Biology & Biotechnology, 2017, 5(6): 50607.
[39] Aniefiok I E, Udo I J. Role of plants and microbes in bioremediation of petroleum hydrocarbons contaminated soils[J]. International Journal of Environmental Bioremediation & Biodegradation, 2019, 7(1): 1–19.
[40] Bonmatin J M, Noome D A, Moreno H, et al. A survey and risk assessment of neonicotinoids in water, soil and sediments of Belize[J]. Environmental Pollution, 2019, 249: 949–958.
[41] Bhatt P, Bhatt K, Huang Y H, et al. Esterase is a powerful tool for the biodegradation of pyrethroid insecticides[J]. Chemosphere, 2020, 244: 125507.
[42] Lin Z Q, Zhang W P, Pang S M, et al. Current approaches to and future perspectives on methomyl degradation in contaminated soil/water environments[J]. Molecules (Basel, Switzerland), 2020, 25(3): 738.
[43] Zhang W P, Linz Q, Pang S M, et al. Insights into the biodegradation of lindane (γ-hexachlorocyclohexane) using a microbial system[J]. Frontiers in Microbiology, 2020,11: 00522.
[44] Pang S M, Lin Z Q, Zhang Y M, et al. Insights into the toxicity and degradation mechanisms of imidacloprid via physicochemical and microbial approaches[J]. Toxics, 2020, 8(3): 65.
[45] Guo L L, Dai Z L, Guo J J, et al. Oligotrophic bacteriumCGMCC 16346 degrades the neonicotinoid imidacloprid in surface water[J]. AMB Express, 2020, 10(1): 7.
[46] Wu P, Zhang X W, Niu T, et al. The imidacloprid remediation, soil fertility enhancement and microbial community change in soil byusing effluent as carbon source[J]. Environmental Pollution, 2020, 267: 114254.
[47] Mohammed Y M M, Badawy M E I. Biodegradation of imidacloprid in liquid media by an isolated wastewater fungusYESM3[J]. Journal of Environmental Science and Health, Part B, 2017, 52(10): 752–761.
[48] Gupta M, Mathur S, Sharma T K, et al. A study on metabolic prowess ofsp. RPT 52 to degrade imidacloprid, endosulfan and coragen[J]. Journal of Hazardous Materials, 2016, 301: 250–258.
[49] Guo L, Fang W W, Guo L L, et al. Biodegradation of the neonicotinoid insecticide acetamiprid by actinomycetesCGMCC 13662 and characterization of the novel nitrile hydratase involved[J]. Journal of Agricultural and Food Chemistry, 2019, 67(21): 5922–5931.
[50] Sun S L, Fan Z X, Zhao Y X, et al. A novel nutrient deprivation-induced neonicotinoid insecticide acetamiprid degradation byCGMCC 6315[J]. Journal of Agricultural and Food Chemistry, 2019, 67(1): 63–71.
[51] Sun S L, Yang W L, Guo J J, et al. Biodegradation of the neonicotinoid insecticide acetamiprid in surface water by the bacteriumCGMCC 4969 and its enzymatic mechanism[J]. RSC Advances, 2017, 7(41): 25387–25397.
[52] Shi Z K, Dong W L, Xin F X, et al. Characteristics and metabolic pathway of acetamiprid biodegradation bysp. strain CS-3 isolated from soil[J]. Biodegradation, 2018, 29(6): 593–603.
[53] Zhao Y X, Jiang H Y, Cheng X, et al. Neonicotinoid thiacloprid transformation by the N2-fixing bacteriumCGMCC 1.16731 and toxicity of the amide metabolite[J]. International Biodeterioration & Biodegradation, 2019, 145: 104806.
[54] Rana S, Jindal V, Mandal K, et al. Thiamethoxam degradation byandstrains isolated from agricultural soils[J]. Environmental Monitoring and Assessment, 2015, 187(5): 300.
[55] Parte S G, Kharat A S. Aerobic degradation of clothianidin to 2-chloro-methyl thiazole and methyl 3-(thiazole-yl) methyl guanidine produced bysmk[J]. Journal of Environmental and Public Health, 2019, 2019: 4807913.
[56] Mori T, Wang J Q, Tanaka Y, et al. Bioremediation of the neonicotinoid insecticide clothianidin by the white-rot fungus[J]. Journal of Hazardous Materials, 2017, 321: 586–590.
[57] Wang J Q, Tanaka Y, Ohno H, et al. Biotransformation and detoxification of the neonicotinoid insecticides nitenpyram and dinotefuran byYK-624[J]. Environmental Pollution, 2019, 252: 856–862.
[58] Zhou L Y, Zhang L J, Sun S L, et al. Degradation of the neonicotinoid insecticide acetamiprid via the N-carbamoylimine derivate (IM-1-2) mediated by the nitrile hydratase of the nitrogen-fixing bacteriumCGMCC 7333[J]. Journal of Agricultural and Food Chemistry, 2014, 62(41): 9957–9964.
[59] Ge F, Zhou L Y, Wang Y, et al. Hydrolysis of the neonicotinoid insecticide thiacloprid by the N2-fixing bacteriumCGMCC 7333[J]. International Biodeterioration & Biodegradation, 2014, 93: 10–17.
[60] Fusetto R, Denecke S, Perry T, et al. Partitioning the roles of CYP6G1 and gut microbes in the metabolism of the insecticide imidacloprid in[J]. Scientific Reports, 2017, 7: 11339.
[61] Lu T Q, Mao S Y, Sun S L, et al. Regulation of hydroxylation and nitroreduction pathways during metabolism of the neonicotinoid insecticide imidacloprid by[J]. Journal of Agricultural and Food Chemistry, 2016, 64(24): 4866–4875.
[62] Sabourmoghaddam N, Zakaria M P, Omar D. Evidence for the microbial degradation of imidacloprid in soils of Cameron Highlands[J]. Journal of the Saudi Society of Agricultural Sciences, 2015, 14(2): 182–188.
[63] Phugare S S, Jadhav J P. Biodegradation of acetamiprid by isolated bacterial Strainsp. BCH2and toxicological analysis of its metabolites in silkworm ()[J]. CLEAN - Soil, Air, Water, 2015, 43(2): 296–304.
[64] Yang H X, Wang X, Zheng J, et al. Biodegradation of acetamiprid bysp. D-2 and the degradation pathway[J]. International Biodeterioration & Biodegradation, 2013, 85: 95–102.
[65] Brunet J L, Badiou A, Belzunces L P.metabolic fate of[14C]-acetamiprid in six biological compartments of the honeybee,L[J]. Pest Management Science, 2005, 61(8): 742–748.
[66] Zhou G C, Wang Y, Zhai S, et al. Biodegradation of the neonicotinoid insecticide thiamethoxam by the nitrogen- fixing and plant-growth-promoting rhizobacteriumstrain TMX-23[J]. Applied Microbiology and Biotechnology, 2013, 97(9): 4065–4074.
[67] Zhou G C, Wang Y, Ma Y, et al. The metabolism of neonicotinoid insecticide thiamethoxam by soil enrichment cultures, and the bacterial diversity and plant growth- promoting properties of the cultured isolates[J]. Journal of Environmental Science and Health Part B, Pesticides, Food Contaminants, and Agricultural Wastes, 2014, 49(6): 381–390.
[68] Zhang P, Ren C, Sun H W, et al. Sorption, desorption and degradation of neonicotinoids in four agricultural soils and their effects on soil microorganisms[J]. Science of the Total Environment, 2018, 615: 59–69.
[69] Wang X, Xue L G, Chang S J, et al. Bioremediation and metabolism of clothianidin by mixed bacterial consortia enriched from contaminated soils in Chinese greenhouse[J]. Process Biochemistry, 2019, 78: 114–122.
[70] 王霞. 噻蟲胺降解菌株的分離、鑒定及其在土壤污染修復(fù)中的應(yīng)用基礎(chǔ)[D]. 蘭州: 蘭州交通大學(xué), 2019.
[71] Verma P, Verma P, Sagar R. Variations in N mineralization and herbaceous species diversity due to sites, seasons, and N treatments in a seasonally dry tropical environment of India[J]. Forest Ecology and Management, 2013, 297: 15–26.
[72] Feng Y M, Zhang W P, Pang S M, et al. Kinetics and new mechanism of azoxystrobin biodegradation by anstrain SH14[J]. Microorganisms, 2020, 8(5): 625.
Research Progress on Degradation Characteristics of Neonicotinoid Insecticides
GE Ling, WANG Xin*, ZHANG Ya’nan
( School of Environmental and Chemical Engineering, Shenyang University of Technology, Shenyang 110870, China)
Neonicotinoids are derivatives of synthetic nicotinoids with better insecticidal capabilities. Neonicotinoid pesticides have become the most widely used pesticides in the world. In the past two decades, the environmental residues of neonicotinoids have enormously increased due to large-scale applications. Thus, the systematic remediation of neonicotinoids is essential and in demand. Photolysis and hydrolysis of neonicotinoid insecticides and its degradation pathway have been reported. Compared with chemical methods, bioremediation is a cost-effective and eco-friendly approach for the treatment of pesticide-polluted environments. However, few reviews have focused on the neonicotinoid-degrading microorganisms along with metabolic pathways and degradation mechanisms. Therefore, this review aims to summarize the chemical methods, microbial degradation and metabolic pathways of neonicotinoids. In the end, the future research focus and direction of microbial degradation of neonicotinoid insecticides are prospected.
Neonicotinoid insecticides; Photolysis; Hydrolysis; Microbial degradation; Metabolic pathways
X53
A
10.13758/j.cnki.tr.2022.06.001
葛玲, 王新, 張亞楠. 新煙堿類殺蟲劑降解特性研究進(jìn)展. 土壤, 2022, 54(6): 1093–1100.
國家自然科學(xué)基金面上項(xiàng)目(21976124)和遼寧省教育廳科學(xué)研究項(xiàng)目(LJGD2020005)資助。
通訊作者(wangxin110870@sut.edu.cn)
葛玲(1997—),女,山東臨沂人,碩士研究生,主要研究方向?yàn)榄h(huán)境生物修復(fù)技術(shù)及污染土壤修復(fù)。E-mail:1061639008@qq.com