李紫薇,喬 俊,支彩艷,雷振宇,霍金仙,2,趙建國(guó),2,3
石墨烯浸種處理對(duì)蘿卜生長(zhǎng)和品質(zhì)的影響
李紫薇1,喬 俊1,3※,支彩艷1,雷振宇1,霍金仙1,2,趙建國(guó)1,2,3
(1. 山西大同大學(xué)化學(xué)與化工學(xué)院,大同 037009;2. 山西大同大學(xué)炭材料研究所,大同 037009;3. 石墨烯林業(yè)應(yīng)用國(guó)家林業(yè)和草原局重點(diǎn)實(shí)驗(yàn)室,大同 037009)
為了揭示石墨烯浸種和處理對(duì)蘿卜生長(zhǎng)的影響,該研究開(kāi)展石墨烯4個(gè)濃度處理蘿卜種子和澆灌土壤,對(duì)蘿卜發(fā)芽和田間生長(zhǎng)影響試驗(yàn),分析石墨烯浸種對(duì)蘿卜種子發(fā)芽、植株生長(zhǎng)生理及肉質(zhì)根品質(zhì)指標(biāo)影響。結(jié)果發(fā)現(xiàn),石墨烯濃度在20~100 mg/L范圍內(nèi),對(duì)蘿卜種子萌發(fā)均有促進(jìn)作用,40 mg/L的石墨烯促進(jìn)效果最顯著;石墨烯施加濃度為40 mg/L時(shí),在蘿卜葉片生長(zhǎng)旺盛期可顯著提高葉片葉綠素含量,增強(qiáng)光合作用,提高植株對(duì)氮吸收能力,并促進(jìn)植株增高;石墨烯能夠提高蘿卜肉質(zhì)根產(chǎn)量3.6%~13.8 %,顯著提高蘿卜肉質(zhì)根可溶性糖和維生素A含量。研究結(jié)果對(duì)促進(jìn)蘿卜生產(chǎn)和品質(zhì)提高具有較大參考意義。
農(nóng)作物;試驗(yàn);石墨烯;生長(zhǎng);品質(zhì);蘿卜
石墨烯(graphene)是一種新型的碳納米材料,它是由碳原子組成并以sp2雜化軌道雜化而成的六角型呈蜂巢晶格的二維納米片層材料[1]。石墨烯具有大的比表面積,是目前已知的強(qiáng)度最高、導(dǎo)電性、導(dǎo)熱性最好的物質(zhì),被認(rèn)為是一種革命性的材料,在材料學(xué)、能源、生物醫(yī)學(xué)、藥物傳遞、微納加工等領(lǐng)域具有廣闊的應(yīng)用前景[2]。
近年來(lái),隨著石墨烯應(yīng)用研究的不斷深入和拓展,研究石墨烯對(duì)植物生長(zhǎng)的影響,探討其在農(nóng)林業(yè)領(lǐng)域的應(yīng)用受到關(guān)注[3-4]。越來(lái)越多的研究表明,石墨烯對(duì)植物生長(zhǎng)的影響與石墨烯添加量有關(guān),較高的添加量會(huì)對(duì)植物形成脅迫,抑制植物的生長(zhǎng)[5-7],但適宜的濃度則會(huì)促進(jìn)植物的生長(zhǎng),尤其是促進(jìn)植物根系的生長(zhǎng),并最終提高植物的生物量。Liu等[8]發(fā)現(xiàn)5 mg/L石墨烯溶液對(duì)水稻側(cè)根的數(shù)量、根鮮質(zhì)量有明顯的促進(jìn)作用;胡曉飛等[9]研究發(fā)現(xiàn),2.0 mg/L的石墨烯處理后的樹(shù)莓組培苗,根長(zhǎng)、根面積、根尖和分叉數(shù)提高了2倍;姚建忠等[10]發(fā)現(xiàn),3.0 mg/L的石墨烯能促進(jìn)歐洲山楊組培苗主根形成,并促進(jìn)不定根數(shù)量增加;劉澤慧等[11]發(fā)現(xiàn),20~25 mg/L的石墨烯能夠促進(jìn)蠶豆的總根長(zhǎng)、根體積顯著增加,且根瘤的數(shù)量和體積也顯著增加。許多學(xué)者從石墨烯的結(jié)構(gòu)、石墨烯處理后的植物生理以及轉(zhuǎn)錄組基因差異性表達(dá)等探索了石墨烯促進(jìn)植物生長(zhǎng)的機(jī)理。He等[12]研究表明,石墨烯憑借含氧官能團(tuán)的親水性促進(jìn)了菠菜、香蔥對(duì)水分的吸收和生長(zhǎng);Chen等[13]研究發(fā)現(xiàn),適量石墨烯可提高鹽堿環(huán)境苜蓿的葉綠素含量,降低丙二醛含量,顯著促進(jìn)紫花苜蓿生長(zhǎng);適量石墨烯可提高白榆的光合作用效率并促進(jìn)根系生長(zhǎng)[14];Guo等[15]研究表明,石墨烯顯著增加了番茄根系生長(zhǎng)素的含量并誘導(dǎo)根發(fā)育相關(guān)基因表達(dá)上調(diào);Zhao等[16]發(fā)現(xiàn),適量石墨烯可促進(jìn)大豆根系生長(zhǎng),水楊酸、茉莉酸和脫落酸等激素含量提高,耐旱相關(guān)基因表達(dá)上調(diào),顯著提高了大豆的抗旱能力;Chen等[17]研究了石墨烯對(duì)48種植物根系生長(zhǎng)的影響,根系轉(zhuǎn)錄組測(cè)序研究發(fā)現(xiàn),石墨烯可誘導(dǎo)呼吸途徑有關(guān)基因表達(dá)上調(diào),增強(qiáng)根系細(xì)胞線粒體呼吸功能,從而促進(jìn)植物根系生長(zhǎng)。此外,也有研究表明適量石墨烯在促進(jìn)作物生長(zhǎng)、提高產(chǎn)量的同時(shí)還可改善作物的品質(zhì)。蔣月喜等[18]在朝天椒定植后淋施0.35%的石墨烯溶液,發(fā)現(xiàn)可顯著提高朝天椒維生素C、辣椒素的含量和產(chǎn)量;Younes等[19]發(fā)現(xiàn),青椒和茄子葉面噴施適量石墨烯可激活光合活性,顯著增加果糖、蔗糖和淀粉的含量;Park等[20]研究表明,適量石墨烯可促進(jìn)西瓜根系生長(zhǎng),葉面積和葉片數(shù)增加,并促進(jìn)果徑和含糖量增加。因此,基于國(guó)內(nèi)外關(guān)于石墨烯可顯著促進(jìn)各類(lèi)植物根系生長(zhǎng)、生物量增加乃至品質(zhì)改善的研究報(bào)道,研究石墨烯對(duì)肉質(zhì)根類(lèi)蔬菜、經(jīng)濟(jì)作物生長(zhǎng)的影響,探討其在根部利用類(lèi)作物種植中的應(yīng)用潛力和價(jià)值,尤為值得關(guān)注。
蘿卜(.L)為十字花科蘿卜屬的草本植物,是常見(jiàn)的食用肉質(zhì)根類(lèi)蔬菜作物,四季均適宜栽培。本研究以蘿卜為供試材料,通過(guò)種子發(fā)芽和田間栽培試驗(yàn),探討石墨烯對(duì)蘿卜生長(zhǎng)發(fā)育全過(guò)程(包括種子萌發(fā)、植株生長(zhǎng)、肉質(zhì)根產(chǎn)量及品質(zhì)等)的影響,以期為石墨烯在農(nóng)業(yè)領(lǐng)域應(yīng)用提供借鑒和參考。
供試種子為“板葉大紅袍”蘿卜種子,河北高碑店市蔬菜研究中心提供。該品種蘿卜外表皮為紅色,直根肉質(zhì),生長(zhǎng)期約90 d。該品種對(duì)土壤酸堿度適應(yīng)范圍較廣,全國(guó)各地均有種植,在氣候適宜的地區(qū)可四季栽培,是大眾日常消費(fèi)的蔬菜品種,產(chǎn)銷(xiāo)量足。
石墨烯由山西大同大學(xué)炭材料研究所提供,石墨烯片層平均直徑為40 nm,片層厚度約為3 nm,層數(shù)約為5層,為多層石墨烯。該石墨烯表面含有一定量的羧基和羥基官能團(tuán),可在水中穩(wěn)定分散形成石墨烯溶膠。
1.2.1 發(fā)芽試驗(yàn)
發(fā)芽試驗(yàn)中石墨烯濃度設(shè)置4個(gè)水平:0、20、40、100 mg/L,分別記為CK、G-20、G-40、G-100。選取大小均勻、籽粒飽滿(mǎn)的蘿卜種子300粒左右,用70%的乙醇溶液消毒2 min,消毒后用蒸餾水沖洗3~4次,再用蒸餾水浸泡2 h。選擇直徑為90 mm的玻璃培養(yǎng)皿,皿底鋪雙層濾紙,每個(gè)培養(yǎng)皿放置20粒蘿卜種子,添加對(duì)應(yīng)濃度的石墨烯溶液15 mL,置于恒溫培養(yǎng)箱中培養(yǎng)7 d,培養(yǎng)箱溫度為20~25 ℃,相對(duì)濕度為70%~80%,每個(gè)處理設(shè)置3個(gè)平行。每隔24 h統(tǒng)計(jì)一次發(fā)芽數(shù)以及胚根長(zhǎng)度,統(tǒng)計(jì)7 d。
1.2.2 田間種植試驗(yàn)
田間試驗(yàn)于2021年6—9月在山西大同大學(xué)炭材料研究所試驗(yàn)田進(jìn)行,小區(qū)面積為9 m×12 m。將蘿卜種植區(qū)域平均劃分為4個(gè)區(qū)域設(shè)置不同濃度水平試驗(yàn),播種前將種子用對(duì)應(yīng)濃度的石墨烯溶液浸泡2 h,以穴播的播種方式播種,每穴3粒。種植前起壟挖溝做畦,每個(gè)處理種植三畦(3次重復(fù)),行株距為57 cm×23 cm。將石墨烯與尿素和磷酸二氫鉀混合配制為肥料,尿素和磷酸二氫鉀濃度分別為3.0、1.0 g/L,石墨烯濃度則與發(fā)芽試驗(yàn)的石墨烯濃度相同。每一個(gè)穴用石墨烯溶液一周澆灌一次,肥料混合液一個(gè)月澆灌一次,一次均為0.5 L,石墨烯溶液共澆灌12次,肥料混合液共澆灌3次。常規(guī)種植方式施肥、翻地、播種、收獲。期間澆水、除草、防治病蟲(chóng)害等同周邊田間管理相同[21]。
1.3.1 蘿卜發(fā)芽率及胚根長(zhǎng)度
在種子發(fā)芽試驗(yàn)中,每天在相同時(shí)間內(nèi)統(tǒng)計(jì)種子的發(fā)芽率,以胚根長(zhǎng)度大于2 mm視為“發(fā)芽”,用毫米刻度尺測(cè)量種子胚根長(zhǎng)度。
1.3.2 蘿卜生物量及形態(tài)學(xué)指標(biāo)
播種45 d隨機(jī)取樣,千分刻度尺測(cè)量株高,統(tǒng)計(jì)植株的葉片數(shù),測(cè)定植株葉片最大長(zhǎng)度、鮮質(zhì)量。90 d后將蘿卜整株挖出,將根系的土壤沖洗干凈,保留完整根系,測(cè)定蘿卜單根鮮質(zhì)量及總產(chǎn)量。
1.3.3 蘿卜葉片光合特性
播種45 d后用利用光合儀(CIRAS-3; PP Systems, USA)進(jìn)行蘿卜葉片光合特性的測(cè)定。選擇晴朗無(wú)風(fēng)、陽(yáng)光充足的天氣,對(duì)植株自上而下完全展開(kāi)、綠色健康的第二片葉子進(jìn)行測(cè)定。為減小系統(tǒng)誤差,測(cè)定部位均選擇葉片的中上部,且避開(kāi)中央葉脈的位置進(jìn)行。測(cè)定前儀器預(yù)熱30 min,測(cè)定葉片的凈光合速率(P)、蒸騰速率(T)、氣孔導(dǎo)度(G)、胞間CO2濃度(C),分析植物水分利用效率(WUE=P/T)。每個(gè)處理3個(gè)重復(fù)。
1.3.4 蘿卜生化指標(biāo)及品質(zhì)指標(biāo)
分別在蘿卜生長(zhǎng)的幼苗期、葉片生長(zhǎng)旺盛期、肉質(zhì)根生長(zhǎng)旺盛期以及貯藏休眠期對(duì)各處理植株葉片的葉綠素、氮含量測(cè)定。葉綠素含量的測(cè)定采用分光光度法[22];葉片氮含量的測(cè)定采用靛酚比色法[23]。蘿卜收獲后,對(duì)肉質(zhì)根可溶性糖、維生素A的含量進(jìn)行測(cè)定,可溶性糖含量的測(cè)定采用蒽酮比色法[24],維生素A含量的測(cè)定采用高效液相色譜法[25]。
所得數(shù)據(jù)使用WPS Office以及IBM SPSS Statistics軟件進(jìn)行各項(xiàng)數(shù)據(jù)分析(單因素顯著差異性分析為≤0.05)。
種子萌發(fā)是植物生長(zhǎng)開(kāi)端,會(huì)受到內(nèi)部自身因素及外部因素影響[26]。由圖1可知,經(jīng)石墨烯溶液處理(20~100 mg/L)后蘿卜種子的發(fā)芽率均高于對(duì)照,表明適宜石墨烯濃度可促進(jìn)蘿卜種子萌發(fā)。在整個(gè)發(fā)芽過(guò)程中,G-40處理蘿卜種子的發(fā)芽率最高,其次是G-100和G-20。培養(yǎng)至7 d時(shí),G-20、G-40、G-100處理蘿卜種子發(fā)芽率比對(duì)照(CK)分別提高6.7%,26.7%和24.0%。
注:CK、G-20,G-40,G-100分別代表石墨烯濃度0、20、40、100 mg·L-1。下同。
種子胚根長(zhǎng)度變化也是衡量種子發(fā)芽情況重要指標(biāo)。從圖2看出,不同濃度石墨烯處理蘿卜種子的胚根長(zhǎng)度均高于對(duì)照,G-40與G-100處理對(duì)蘿卜種子胚根生長(zhǎng)促進(jìn)效果尤為顯著。試驗(yàn)第3 天時(shí),G-40與G-100處理蘿卜胚根長(zhǎng)度比對(duì)照分別提高49.1%、50.9%;7 d時(shí)G-40與G-100蘿卜胚根長(zhǎng)度比對(duì)照分別提高43.8%和37.5%,G-40與G-100間無(wú)顯著性差異(>0.05)。整體上,石墨烯溶液處理對(duì)蘿卜種子胚根生長(zhǎng)影響與對(duì)發(fā)芽率影響趨勢(shì)基本一致,結(jié)合發(fā)芽率,G-40處理(即石墨烯濃度為40 mg/L)對(duì)蘿卜種子萌發(fā)促進(jìn)效果最好。
吳金海等[27]研究發(fā)現(xiàn)5~100 mg/L氧化石墨烯處理可顯著促進(jìn)甘藍(lán)型油菜種子的萌發(fā),Khodakovsk等[28]和Zhang等[4]研究發(fā)現(xiàn),石墨烯對(duì)西紅柿種子發(fā)芽產(chǎn)生促進(jìn)作用,可加速種子發(fā)芽過(guò)程,縮短發(fā)芽時(shí)間。本研究表明適量石墨烯對(duì)蘿卜種子萌發(fā)具有促進(jìn)作用,與上述研究結(jié)論一致。
注:不同字母代表不同處理之間差異顯著(P<0.05)。下同。
2.2.1 石墨烯對(duì)蘿卜植株生長(zhǎng)的影響
播種45 d時(shí)蘿卜處葉片生長(zhǎng)旺盛期,對(duì)不同處理蘿卜生長(zhǎng)統(tǒng)計(jì)結(jié)果列表1。株高方面,G-40>G-100>CK> G-20,其中G-40與CK間有顯著性差異,其余無(wú)顯著性差異。觀察各處理的植株葉片數(shù)、最大葉片鮮質(zhì)量和長(zhǎng)度數(shù)據(jù),發(fā)現(xiàn)各處理數(shù)據(jù)在統(tǒng)計(jì)學(xué)上無(wú)顯著性差異。上述結(jié)果表明石墨烯濃度為40 mg/L時(shí)對(duì)蘿卜植株生長(zhǎng)有促進(jìn)作用,表現(xiàn)在播種45 d時(shí)株高比對(duì)照提高24.5%,但對(duì)植株葉片生長(zhǎng)促進(jìn)作用不顯著。
表1 不同濃度的石墨烯溶液對(duì)蘿卜植株株高、葉片數(shù)、最大葉片鮮質(zhì)量、葉片長(zhǎng)度的影響
2.2.2 石墨烯對(duì)蘿卜葉片光合作用的影響
光合作用是作物生長(zhǎng)的重要代謝過(guò)程[29],光合作用強(qiáng)弱決定植株的生物量[30-31]。為分析石墨烯影響蘿卜生長(zhǎng)的生理原因,對(duì)播種45d后各處理葉片光合作用強(qiáng)度測(cè)定如表2所示。G-40光合作用各指標(biāo)數(shù)值均最高,G-40處理蘿卜P、T、G及C顯著高于CK,分別提高275.6%,251.1%,214.5%和42.6%;G-100處理T、G顯著高于CK,而P和C與CK無(wú)顯著性差異。
水分利用效率(WUE)系指植物消耗單位水量生產(chǎn)出的同化量,是反映植物生長(zhǎng)中能量轉(zhuǎn)化效率的重要指標(biāo)。分析各處理葉片的WUE值可知,G-20和G-40處理的葉片WUE高于CK,而G-100處理的WUE顯著低于CK(表2),這表明適量石墨烯可提高蘿卜葉片水分利用效率,促進(jìn)植株能量轉(zhuǎn)化和生長(zhǎng),而石墨烯施加濃度過(guò)高會(huì)對(duì)植物生長(zhǎng)帶來(lái)不利影響。
表2 不同濃度石墨烯溶液對(duì)蘿卜植株光合作用的影響
注:P是凈光合速率;T是蒸騰速率;C是氣孔導(dǎo)度;C是胞間CO濃度;WUE是水分利用效率。
Note:Pis net photosynthetic rate;Tis transpiration rate;Cis stomata conductance;Cis internal cellular CO2concentration; WUE is water use efficiency.
氣孔作為CO2和水汽進(jìn)出的共同通道,調(diào)節(jié)著植物固碳和水分散失的平衡關(guān)系,但由于光合產(chǎn)物和水分的運(yùn)輸系統(tǒng)和方向不同,往往造成氣孔對(duì)CO2和水汽擴(kuò)散不同步,進(jìn)而影響植物的水分利用效率[32]。本研究中G-40處理各項(xiàng)光合作用指標(biāo)最高但WUE值低于G-20,這是由于G-40處理下胞間CO2濃度(C)值較G-20增加19.3%,C值升高將減弱蒸騰速率,同時(shí)伴隨著WUE值升高[33-34],然而其氣孔導(dǎo)度(C)較G-20增加202.8%,氣孔是蒸騰過(guò)程中水蒸氣由內(nèi)到外的主要出口,影響著蒸騰作用,C值增加引起蒸騰速率的提升[35],綜合C和C的影響最終導(dǎo)致G-40處理葉片的蒸騰速率(T)增加,降低了水分利用效率。
葉片葉綠素的含量與光合作用強(qiáng)度密切相關(guān)[36]。幼苗期(30 d)、葉片生長(zhǎng)旺盛期(45 d)、肉質(zhì)根生長(zhǎng)旺盛期(65 d)以及貯藏休眠期(90 d)蘿卜葉片葉綠素含量測(cè)定結(jié)果見(jiàn)圖3。蘿卜生長(zhǎng)周期內(nèi)各處理葉綠素含量都呈現(xiàn)先升高后降低趨勢(shì)。葉片生長(zhǎng)旺盛期(45 d)時(shí),各處理葉綠素含量差異顯著,其他時(shí)期差異補(bǔ)顯著。播種45 d時(shí),G-40處理的葉綠素含量最高,這與前文G-40處理的株高、光合作用指標(biāo)在所有處理中數(shù)值最高的結(jié)果相一致。光合作用及葉綠素含量的數(shù)據(jù)進(jìn)一步表明,適量的石墨烯能夠提高蘿卜葉片葉綠素含量,促進(jìn)蘿卜光合作用能力提高,進(jìn)而促進(jìn)蘿卜生長(zhǎng)。石墨烯促進(jìn)植物葉片葉綠素含量提高,并促進(jìn)植物生長(zhǎng),這與其他學(xué)者的研究結(jié)果一致[37-38]。
圖3 不同濃度的石墨烯溶液對(duì)蘿卜葉片葉綠素含量的影響
2.2.3 石墨烯對(duì)蘿卜養(yǎng)分吸收及生理生化指標(biāo)的影響
氮是植物細(xì)胞組成和功能代謝必不可少的元素[39],也是植物生長(zhǎng)發(fā)育過(guò)程中需求最大的必須營(yíng)養(yǎng)元素之一[40-41]。為評(píng)估石墨烯對(duì)蘿卜生長(zhǎng)的影響,蘿卜生長(zhǎng)期中對(duì)各處理蘿卜葉片中氮(N)的含量測(cè)定見(jiàn)圖4,發(fā)現(xiàn)各處理蘿卜葉片中N的含量隨著蘿卜生長(zhǎng)呈先增高后降低趨勢(shì)。結(jié)果表明,G-40處理在蘿卜葉片生長(zhǎng)旺盛期(45 d)和肉質(zhì)根生長(zhǎng)旺盛期(65 d)均能促進(jìn)植株對(duì)N的吸收,增加了植株體內(nèi)N的含量,因而對(duì)蘿卜生長(zhǎng)產(chǎn)生促進(jìn)作用,該結(jié)果也與前文株高、光合作用等研究結(jié)果相互印證。
圖4 不同濃度的石墨烯溶液對(duì)蘿卜葉片營(yíng)養(yǎng)元素N含量的影響
有研究表明,石墨烯等碳納米材料能夠提高土壤對(duì)氮、磷、鉀等元素的持留作用,并促進(jìn)植物對(duì)養(yǎng)分元素的吸收。隋祺祺等[42]土柱淋溶試驗(yàn)發(fā)現(xiàn),石墨烯能夠顯著減緩降水、灌溉等對(duì)土壤中氮磷鉀的淋溶作用,減少養(yǎng)分元素的流失。高榮光等[43]研究表明,盆栽桃植株施用納米碳后,桃植株葉、枝、根中,元素氮、鉀、鎂、鈣、錳、銅、鋅的含量均高于對(duì)照,并推測(cè)納米碳的表面效應(yīng)和小尺寸效應(yīng),能增強(qiáng)土壤對(duì)肥料的吸附,減少肥料流失、淋失。王小燕等[44]研究表明,納米碳通過(guò)改變植株根系周?chē)乃h(huán)境,提高根系活力,并提高土壤脲酶活性,且土壤脲酶活性增加是促進(jìn)植物對(duì)氮素吸收的主要原因。
2.3.1 石墨烯對(duì)蘿卜產(chǎn)量的影響
從表3可知,石墨烯各處理的蘿卜單根重量、單根長(zhǎng)度雖略高對(duì)照,但無(wú)顯著性差異。G-20、G-40和G-100的蘿卜產(chǎn)量分別為比對(duì)照提高3.6%、13.8%和8.5%,表明適量石墨烯能夠提高蘿卜產(chǎn)量。結(jié)合前文發(fā)現(xiàn)石墨烯濃度對(duì)蘿卜前期生長(zhǎng)指標(biāo)的影響與蘿卜最終產(chǎn)量結(jié)果相一致。
國(guó)內(nèi)外學(xué)者在石墨烯等碳納米材料對(duì)作物產(chǎn)量影響方面有類(lèi)似報(bào)道。趙娜等[45]研究表明施入納米碳溶膠的玉米產(chǎn)量均高于不施溶膠處理。Chakravarty等[46]研究表明200 mg/L石墨烯能明顯促進(jìn)香菜和大蒜根、莖、葉、花和果實(shí)的生長(zhǎng),并最終促進(jìn)產(chǎn)量提高。
表3 不同濃度石墨烯溶液對(duì)蘿卜肉質(zhì)根長(zhǎng)度、質(zhì)量以及產(chǎn)量的影響
2.3.2 石墨烯對(duì)蘿卜品質(zhì)的影響
蔬菜或作物品質(zhì)也是農(nóng)業(yè)領(lǐng)域關(guān)注的重點(diǎn)。蘿卜肉質(zhì)根可溶性糖含量和維生素是衡量其品質(zhì)的重要指標(biāo)[47],可溶性糖含量和維生素含量越多,蘿卜的口感、營(yíng)養(yǎng)價(jià)值更高,品質(zhì)更好。由表4可知,石墨烯處理的蘿卜的肉質(zhì)根的可溶性糖和維生素A含量均有提高,G-20處理可溶性糖、維生素A含量與對(duì)照無(wú)顯著性差異,G-40和G-100蘿卜肉質(zhì)根可溶性糖含量均值分別比對(duì)照提高54.0%和40.4%,蘿卜肉質(zhì)根維生素A含量比對(duì)照分別提高64.8%和39.5%。
表4 不同濃度石墨烯溶液對(duì)蘿卜可溶性糖含量和維生素A含量的影響
本研究設(shè)置4個(gè)石墨烯濃度水平(0、20、40和100 mg/L),探討石墨烯濃度對(duì)蘿卜浸種萌發(fā)和田間生長(zhǎng)的影響,得出如下結(jié)論:
1)石墨烯濃度在20~100 mg/L范圍浸種能有效促進(jìn)蘿卜種子萌發(fā),表現(xiàn)為發(fā)芽率和胚根長(zhǎng)度顯著增加,石墨烯濃度為40 mg/L時(shí)促進(jìn)效果尤為顯著。
2)石墨烯施加濃度為40 mg/L時(shí),在蘿卜葉片生長(zhǎng)旺盛期可顯著提高葉片葉綠素含量,增強(qiáng)光合作用,提高植株對(duì)氮的吸收能力,并促進(jìn)植株增高。石墨烯濃度過(guò)高(100 mg/L)時(shí),會(huì)降低葉片的水分利用效率,不利于植株生長(zhǎng)。
3)施加石墨烯濃度在20~100 mg/L范圍可提高蘿卜肉質(zhì)根產(chǎn)量3.6%~13.8%,當(dāng)濃度為40 mg/L時(shí),能顯著提高肉質(zhì)根可溶性糖和維生素A含量,改善蘿卜口感,提升營(yíng)養(yǎng)價(jià)值和品質(zhì)。
綜上,適宜濃度的石墨烯可以促進(jìn)蘿卜植株生長(zhǎng),提高產(chǎn)量和品質(zhì),將石墨烯用于農(nóng)業(yè)生產(chǎn)可以提高經(jīng)濟(jì)效益,具有應(yīng)用潛力。隨著石墨烯材料制備生產(chǎn)技術(shù)和工藝的不斷進(jìn)步,石墨烯的價(jià)格必然會(huì)隨之降低,這將為石墨烯在農(nóng)業(yè)領(lǐng)域的規(guī)?;瘧?yīng)用創(chuàng)造可能。此外,在將石墨烯用于農(nóng)業(yè)生產(chǎn)之前,還需要對(duì)其生態(tài)環(huán)保性和食品安全等進(jìn)行充分研究和評(píng)估。
[1] 劉霞. 石墨烯及其復(fù)合材料的制備與性能研究[D]. 北京:東華大學(xué),2016.
Liu Xia. Preparation and properties of graphene based ceramics[D]. Beijing: Donghua University, 2016. (in Chinese with English abstract)
[2] 田甜,呂敏,田旸,等. 石墨烯的生物安全性研究進(jìn)展[J]. 科學(xué)通報(bào),2014,59(20):1927-1936.
Tian Tian, Lv Min, Tian Yang, et al. Progress in biological safety of graphene[J]. Science Bulletin, 2014, 59(20): 1927-1936. (in Chinese with English abstract)
[3] Anjum N A, Singh N, Singh M K, et al. Single-bilayer graphene oxide sheet impacts and underlying potential mechanism assessment in germinating faba bean (L.)[J]. Science of the Total Environment, 2014, 472: 834-841.
[4] Zhang M, Gao B, Chen J, et al. Effect of graphene on seed germination and seedling growth[J]. Journal of Nanoparticle Research, 2015, 17(2): 1-8.
[5] Begum P, Fugetsu B. Induction of cell death by graphene in Arabidopsis thaliana () T87 cell suspensions[J]. Journal of Hazardous Materials, 2013, 260: 1032-1041.
[6] 劉頓,呂月玲,駱漢. 氧化石墨烯對(duì)紫穗槐種子萌發(fā)及幼苗生長(zhǎng)的影響[J]. 種子,2022,41(1):14-18,37.
Liu Dun, Lv Yueling, Luo Han. Effects of oxidized graphene on seed germination and seedling growth of[J]. Seed, 2022, 41(1): 14-18, 37. (in Chinese with English abstract)
[7] Weng Y N, You Y, Lu Q, et al. Graphene oxide exposure suppresses nitrate uptake by roots of wheat seedlings[J]. Environmental Pollution, 2020, 262: 114224.
[8] Liu S J, Wei H M, Li Z Y, et al. Effects of graphene on germination and seedling morphology in rice[J]. Journal of Nanoscience and Nanotechnology, 2015, 15(4): 2695-2701.
[9] 胡曉飛,趙建國(guó),高利巖,等. 石墨烯對(duì)樹(shù)莓組培苗生長(zhǎng)發(fā)育影響[J]. 新型炭材料,2019,34(5):447-454.
Hu Xiaofei, Zhao Jianguo, Gao Liyan, et al. Effect of graphene on growth and development of raspberry tissue culture seedlings[J]. New Carbon Materials, 2019, 34(5): 447-454. (in Chinese with English abstract)
[10] 姚建忠,張占才,薛斌龍,等. 石墨烯對(duì)歐洲山楊組培苗不定根表觀形態(tài)影響作用的研究[J]. 山西大同大學(xué)學(xué)報(bào)(自然科學(xué)版),2018,34(5):1-4.
Yao Jianzhong, Zhang Zhancai, Xue Binlong, et al. Effect of graphene on adventitious roots' of tissue culture seedlings of[J]. Journal of Shanxi Datong University(Natural Science Edition), 2018, 34(5): 1-4. (in Chinese with English abstract)
[11] 劉澤慧,陳志文,趙建國(guó),等. 石墨烯對(duì)蠶豆生長(zhǎng)發(fā)育的效應(yīng)研究[J]. 首都師范大學(xué)學(xué)報(bào)(自然科學(xué)版),2020,41(5):33-39.
Liu Zehui, Chen Zhiwen, Zhao Jianguo, et al. Effect of graphene on the growth and development ofL.[J]. Journal of Capital Normal University (Natural Science Edition), 2020, 41(5): 33-39. (in Chinese with English abstract)
[12] He Y J, Hu R R, Zhong Y J, et al. Graphene oxide as a water transporter promoting germination of plants in soil[J], Nano Research, 2018, 11(4): 1928-1937.
[13] Chen Z, Wang Q Z. Graphene ameliorates saline-alkaline stress-induced damage and improves growth and tolerance in alfalfa (L.)[J]. Plant Physiology and Biochemistry, 2021, 163: 128-138.
[14] 張曉,曹慧芬,趙建國(guó),等. 石墨烯對(duì)白榆扦插苗生長(zhǎng)和生理生化特征的影響[J]. 山西農(nóng)業(yè)大學(xué)學(xué)報(bào)(自然科學(xué)版),2020,40(4):97-103.
Zhang Xiao, Cao Huifen, Zhao Jianguo, et al. Effects of graphene on the physiological, biochemical characteristics and growth of elm (L.) cutting seedlings[J]. Journal of Shanxi Agricultural University (Natural Science Edition), 2020, 40(4): 97-103. (in Chinese with English abstract)
[15] Guo X H, Zhao J G, Wang R W, et al. Effects of graphene oxide on tomato growth in different stages[J]. Plant Physiology and Biochemistry, 2021, 162: 447-455.
[16] Zhao L, Wang W, Fu X H, et al. Graphene oxide, a novel nanomaterial as soil water retention agent, dramatically enhances drought stress tolerance in soybean plants[J]. Frontiers in Plant Science, 2022, 13: 810905.
[17] Chen Z W, Zhao J G, Qiao J, et al. Graphene-mediated antioxidant enzyme activity and respiration in plant roots[J]. ACS Agricultural Science & Technology, 2022, 2(3): 646–660.
[18] 蔣月喜,蔣哲,王曉國(guó),等. 碳化石墨烯對(duì)朝天椒產(chǎn)量及其根區(qū)土壤養(yǎng)分和微生物群落結(jié)構(gòu)的影響[J]. 南方農(nóng)業(yè)學(xué)報(bào),2022,53(5):1337-1347.
Jiang Yuexi, Jiang Zhe, Wang Xiaoguo, et al. Effects of carbonized graphene on yield, soil nutrient of rhizosphere and microbial community structure ofL[J]. Journal of Southern Agriculture, 2022, 53(5): 1337-1347. (in Chinese with English abstract)
[19] Younes N A, Dawood M F A, Wardany A A. Biosafety assessment of graphene nanosheets on leaf ultrastructure, physiological and yield traits ofL. andL.[J]. Chemosphere, 2019, 228: 318-327.
[20] Park S, Choi K S, Kim S, et al. Graphene oxide-assisted promotion of plant growth and stability[J]. Nanomaterials, 2020, 10(4): 758.
[21] 彭玉凈,高進(jìn)華,卞會(huì)濤,等. 黃腐酸鉀對(duì)春蘿卜生長(zhǎng)及產(chǎn)量的影響研究[J]. 腐植酸,2016(1):12-15.
Peng Yujing, Gao Jinhua, Bian Huitao, et al. Effect of potassium fulvic acid potassium on growth and yield of spring radish[J]. Humic Acid, 2016(1): 12-15. (in Chinese with English abstract)
[22] 高俊鳳. 植物生理學(xué)實(shí)驗(yàn)指導(dǎo)[M]. 北京:高等教育出版社,2006.
[23] 林桂范. 植物全氮快速測(cè)定靛酚比色法[J]. 北方園藝,1988(2):5-7.
Lin Guifan. Indiphenol colorimetry for rapid determination of total nitrogen in plants[J]. Northern Horticulture, 1988(2): 5-7. (in Chinese with English abstract)
[24] 張述偉,宗營(yíng)杰,方春燕,等. 蒽酮比色法快速測(cè)定大麥葉片中可溶性糖含量的優(yōu)化[J]. 食品研究與開(kāi)發(fā),2020,41(7):196-200.
Zhang Shuwei, Zong Yingjie, Fang Chunyan, et al. Optimization of anthrone colorimetric method for rapid determination of soluble sugar content in barley leaves[J]. Food Research and Development, 2020, 41(7): 196-200. (in Chinese with English abstract)
[25] 周遠(yuǎn)華,陳靜,張立雯,等. HPLC法測(cè)定維生素AD微丸中維生素A棕櫚酸酯的有關(guān)物質(zhì)[J]. 中國(guó)藥品標(biāo)準(zhǔn),2022,23(1):40-45.
Zhou Yuanhua, Chen Jing, Zhang Liwen, et al. Determination of related substance of vitamin A palmitate in vitamin AD pellets by HPLC[J]. Drug Standards of China, 2022, 23(1): 40-45. (in Chinese with English abstract)
[26] 段代祥,劉俊華. 重金屬鉛脅迫對(duì)綠豆種子萌發(fā)及幼苗生長(zhǎng)的抑制效應(yīng)[J]. 種子,2021,40(1):84-87,98.
Duan Daixiang, Liu Junhua. Inhibitory effects of plumbum(Pb) stress on seed germination and seedling growth of mung bean[J]. Seed, 2021, 40(1): 84-87, 98. (in Chinese with English abstract)
[27] 吳金海,焦靖芝,謝伶俐,等. 氧化石墨烯處理對(duì)甘藍(lán)型油菜生長(zhǎng)發(fā)育的影響[J]. 基因組學(xué)與應(yīng)用生物學(xué),2015,34(12):2738-2742.
Wu Jinhai, Jiao Jingzhi, Xie Lingli, et al. Effects of graphene oxide on growth and development ofL.[J]. Genomics and Applied Biology, 2015, 34(12): 2738-2742. (in Chinese with English abstract)
[28] Khodakovskaya M, Vaňková R, Malbeck J, et al. Enhancement of flowering and branching phenotype in chrysanthemum by expression ofunder the control of a 0.821 kb fragment of the LEACO1 gene promoter. [J]. Plant Cell Reports, 2009, 28(9): 1351-1362.
[29] 趙黎明,鄭殿峰,馮乃杰,等. 耕作與植物生長(zhǎng)調(diào)節(jié)劑對(duì)優(yōu)質(zhì)粳稻產(chǎn)量及光合特性的影響[J]. 農(nóng)業(yè)工程學(xué)報(bào),2022,38(15):93-103.
Zhao Liming, Zheng Dianfeng, Feng Naijie, et al. Effects of tillage and plant growth regulators on the yield and photosynthetic characteristics of high-quality japonica rice[J]. Transactions of the Chinese Society of Agricultural Engineering, 2022, 38(15): 93-103. (in Chinese with English abstract)
[30] Cakmak I, Marschner H. Magnesium deficiency and high light intensity enhance activities of superoxide dismutase, ascorbate peroxidase, and glutathione reductase in bean leaves[J]. Plant Physiology, 1992, 98(4): 1222-1227.
[31] 邢阿寶,崔海峰,俞曉平,等. 光質(zhì)及光周期對(duì)植物生長(zhǎng)發(fā)育的影響[J]. 北方園藝,2018(3):163-172.
Xing Abao, Cui Haifeng, Yu Xiaoping, et al. Effects of different lights qualities and photoperiods on plant growth and development[J]. Northern Horticulture, 2018(3): 163-172. (in Chinese with English abstract)
[32] 王建林,于貴瑞,房全孝,等. 不同植物葉片水分利用效率對(duì)光和CO2的響應(yīng)與模擬[J].生態(tài)學(xué)報(bào),2008,28(2):525-533.
Wang Jianlin, Yu Guirui, Fang Quanxiao, et al. Responses of water use efficiency of nine plant species to light and CO2and it's modeling[J]. Acta Ecologica Sinica, 2008, 28(2): 525-533. (in Chinese with English abstract)
[33] Cohen I, Lichston J E, Macêdo C E C, et al. Leaf coordination between petiole vascular development and water demand in response to elevated CO2in tomato plants[J]. Plant Direct, 2022, 6(1): e371.
[34] Wu Y N, Zhong H X, Li J B, et al. Water use efficiency and photosynthesis ofleaves under drought stress through CO2concentration increase[J]. Journal of Plant Interactions, 2022, 17(1): 60-74.
[35] Xiong Z, Dun Z, Wang Y C, et al. Effect of stomatal morphology on leaf photosynthetic induction under fluctuating light in rice[J]. Frontiers in Plant Science, 2021, 12: 754790.
[36] 印玉明,王永清,馬春晨,等. 利用日光誘導(dǎo)葉綠素?zé)晒獗O(jiān)測(cè)水稻葉片葉綠素含量[J]. 農(nóng)業(yè)工程學(xué)報(bào),2021,37(12):169-180.
Yin Yuming, Wang Yongqing, Ma Chunchen, et al. Monitoring of chlorophyll content in rice canopy and single leaf using sun-induced chlorophyll fluorescence[J]. Transactions of the Chinese Society of Agricultural Engineering, 2021, 37(12): 169-180. (in Chinese with English abstract)
[37] 曹慧芬,張曉,趙建國(guó),等. 氧化石墨烯對(duì)銀白楊扦插苗生長(zhǎng)的影響[J]. 首都師范大學(xué)學(xué)報(bào)(自然科學(xué)版),2021,42(3):31-36.
Cao Huifen, Zhang Xiao, Zhao Jianguo, et al. Effects of graphene oxide on the growth ofL. cutting plantlets[J]. Journal of Capital Normal University (Natural Science Edition), 2021, 42(3): 31-36. (in Chinese with English abstract)
[38] 郭緒虎,趙建國(guó),劉建霞,等. 不同濃度石墨烯對(duì)藜麥幼苗形態(tài)和生理特性的影響[J]. 山西農(nóng)業(yè)科學(xué),2021,49(9):1040-1044.
Guo Xuhu, Zhao Jianguo, Liu Jianxia, et al. Effects of graphene with different concentrations on morphological and physiological characteristics of quinoa seedlings[J]. Journal of Shanxi Agricultural Sciences, 2021, 49(9): 1040-1044. (in Chinese with English abstract)
[39] 楊屹宇,崔爽,張蕓香,等. 油松人工林新生枝葉碳氮磷含量及化學(xué)計(jì)量比對(duì)氮添加的響應(yīng)[J]. 廣西林業(yè)科學(xué),2022,51(1):10-16.
Yang Yiyu, Cui Shuang, Zhang Yunxiang, et al. Responses of C, N and P contents and their stoichiometric ratios of new branches and leaves of Pinus tabulaeformis plantations to N addition[J]. Guangxi Forestry Science, 2022, 51(1): 10-16. (in Chinese with English abstract)
[40] 康靜,韓國(guó)棟,任海燕,等. 不同降水條件下荒漠草原植物的養(yǎng)分含量及回收對(duì)增溫和氮素添加的響應(yīng)[J]. 西北植物學(xué)報(bào),2019,39(9):1651-1660.
Kang Jing, Han Guodong, Ren Haiyan, et al. Responses of plant nutrient contents and resorption to warming and nitrogen addition under different precipitation conditions in a desert grassland[J]. Acta Botanica Boreali-Occidentalia Sinica, 2019, 39(9): 1651-1660. (in Chinese with English abstract)
[41] 袁凱凱,盧苗,李慧敏,等. 基于U弦長(zhǎng)曲率的番茄氮肥調(diào)控目標(biāo)區(qū)間獲取方法[J]. 農(nóng)業(yè)工程學(xué)報(bào),2022,38(11):188-196.
Yuan Kaikai, Lu Miao, Li Huimin, et al. Data acquisition of regulating target range for tomato nitrogen fertilizer using U-chord curvature[J]. Transactions of the Chinese Society of Agricultural Engineering, 2022, 38(11): 188-196. (in Chinese with English abstract)
[42] 隋祺祺,焦晨旭,喬俊,等. 石墨烯溶膠配施化肥對(duì)土壤中養(yǎng)分流失的影響[J]. 水土保持學(xué)報(bào),2019,33(1):39-44.
Sui Qiqi, Jiao Chenxu, Qiao Jun, et al. Effect of combined application of graphene solution and fertilizer on soil nutrient loss, 2019, 33(1): 39-44. (in Chinese with English abstract)
[43] 高榮廣,趙鑫,高曉蘭,等. 納米碳對(duì)桃園土壤肥力及植株養(yǎng)分吸收的影響[J]. 落葉果樹(shù),2018,50(3):11-14.
Gao Rongguang, Zhao Xin, Gao Xiaolan, et al. Effects of nano carbon on soil fertility and plant nutrient uptake in peach orchard[J]. Deciduous Fruits, 2018, 50(3): 11-14. (in Chinese with English abstract)
[44] 王小燕,王燚,田小海,等. 納米碳增效尿素對(duì)水稻田面水氮素流失及氮肥利用率的影響[J]. 農(nóng)業(yè)工程學(xué)報(bào), 2011,27(1):106-111.
Wang Xiaoyan, Wang Yi, Tian Xiaohai, et al. Effects of NMUrea on nitrogen runoff losses of surface water and nitrogen fertilizer efficiency in paddy field[J]. Transactions of the Chinese Society of Agricultural Engineering, 2011, 27(1): 106-111. (in Chinese with English abstract)
[45] 趙娜,姚玉鵬,劉曉東,等. 不同用量納米碳溶膠對(duì)玉米生長(zhǎng)及產(chǎn)量的影響[J]. 北方農(nóng)業(yè)學(xué)報(bào),2017,45(6):62-66.
Zhao Na, Yao Yupeng, Liu Xiaodong, et al. Effects of different dosages of nano-carbon sol on growth and yield of maize[J]. Journal of Northern Agriculture, 2017, 45(6): 62-66. (in Chinese with English abstract)
[46] Chakravarty D, Erande M B, Late D J. Graphene quantum dots as enhanced plant growth regulators: effects on coriander and garlic plants[J]. Journal of the Science of Food and Agriculture, 2015, 95(13): 2772-2778.
[47] 肖時(shí)運(yùn),劉強(qiáng),榮湘民,等. 不同施氮水平對(duì)萵苣產(chǎn)量、品質(zhì)及氮肥利用率的影響[J]. 植物營(yíng)養(yǎng)與肥料學(xué)報(bào),2006(6):913-917.
Xiao Shiyun, Liu Qiang, Rong Xiangmin, et al. Effects of N applying rates on yield, quality ofand the N use efficiency[J]. Journal of Plant Nutrition and Fertilizers, 2006(6): 913-917. (in Chinese with English abstract)
Effects of graphene soaking and treatment on radish growth and quality
Li Ziwei1, Qiao Jun1,3※, Zhi Caiyan1, Lei Zhenyu1, Huo Jinxian1,2, Zhao Jianguo1,2,3
(1.,037009,; 2.,037009,; 3.,037009,)
Graphene is a new type of carbon nanomaterial with a broad application prospect in modern agriculture in recent years. Most studies have reported that the effect of graphene on the plant growth is closely related to the amount of added graphene. An appropriate concentration can promote the growth of plants, especially the growth of plant roots, and ultimately increase the biomass of plants. However, the high amount of graphene can inhibit the growth of plants. Therefore, it is very necessary to clarify the influence of graphene on the growth and quality of various crops with the great economic value of roots, in order to explore the application potential and value. Taking the radish (a popular fleshy root vegetable crop) as the research object, this study aims to reveal the influence of graphene soaking and treatment on the growth and quality of some root-utilizing crops. A scientific basis was also provided for the graphene application in the high-efficiency and high-quality cultivation of radish. Four concentrations of graphene (0, 20, 40, and 100 mg/L) were used to treat the radish seeds and irrigate soil. An analysis was then made on the effects on the radish seed germination and field planting. In the seed germination experiment, the germination rate of radish seeds was counted to measure the bacon length, in order to characterize the effect of graphene on the radish seed germination. In the field planting experiment, the effect of graphene on the radish growth was evaluated to measure the plant height, leaf number, leaf fresh weight, and leaf length. Some photosynthetic parameters were measured to calculate the leaf Water Use Efficiency (WUE), leaf nitrogen content, fleshy root yield and weight, soluble sugar and vitamin A content, further to comprehensively evaluate the effect of graphene on the radish yield and quality. The results showed that the concentration of graphene in the range of 20-100 mg/L was greatly promoted the germination of radish seeds, where the 40 mg/L graphene presented the most significant effect. Furthermore, the growth of radish plants was significantly improved, when the concentrations of graphene were 20 and 40 mg/L in the field experiment. There was an increase in the chlorophyll content, enhanced photosynthesis, and the leaf WUE. Among them, the WUE referred to the light and function that produced by the unit transpiration water consumption of leaves. The higher WUE value indicated the stronger drought resistance of plants. Specifically, there was the higher WUE of radish leaves that treated with 20 and 40 mg/L graphene, whereas the lower with the 100 mg/L graphene, compared with the control. All graphene treatments were promoted the absorption of N by plants in the main growth and development stage of radish. A leading role of N component was found in the plant life activities, crop yield, and quality, particularly in many important organic compounds, such as the enzymes and protein, nucleic acids, vitamins, alkaloids, and plant hormones. Therefore, the graphene was applied to increase the yield of radish fleshy roots by 3.6%-13.8%. There was also an increase in the contents of soluble sugar and vitamin A. The soluble sugar was the direct product of plant photosynthesis for the normal physiological activities and functions of cells in the plant carbon metabolism. The main process was dominated by the plant growth and development, yield and quality. Vitamin A was also closely related to the plant growth and cell division. Consequently, the graphene with the appropriate concentration can be expected to promote the radish seed germination and plant growth. As such, the absorption of nutrients can also be improved in the radish plant for the high yield and quality. Anyway, the graphene has great an application potential in the high-efficiency and high-quality cultivation of radish in agricultural production.
crops; experiment; graphene; growth; quality; radish
10.11975/j.issn.1002-6819.2022.19.010
S529
A
1002-6819(2022)-19-0087-07
李紫薇,喬俊,支彩艷,等. 石墨烯浸種處理對(duì)蘿卜生長(zhǎng)和品質(zhì)的影響[J]. 農(nóng)業(yè)工程學(xué)報(bào),2022,38(19):87-93.doi:10.11975/j.issn.1002-6819.2022.19.010 http://www.tcsae.org
Li Ziwei, Qiao Jun, Zhi Caiyan, et al. Effects of graphene soaking and treatment on radish growth and quality[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2022, 38(19): 87-93. (in Chinese with English abstract) doi:10.11975/j.issn.1002-6819.2022.19.010 http://www.tcsae.org
2022-08-03
2022-09-21
國(guó)家自然科學(xué)基金項(xiàng)目(52071192);中央預(yù)算內(nèi)投資項(xiàng)目(晉發(fā)改審批發(fā)〔2021〕118號(hào));大同市重點(diǎn)研發(fā)項(xiàng)目(2019023)
李紫薇,研究方向?yàn)樘技{米材料對(duì)植物生長(zhǎng)的影響。Email:1750252141@qq.com
喬俊,博士,副教授,研究方向?yàn)榄h(huán)境化學(xué)、碳納米材料對(duì)環(huán)境影響。Email:qiaojun_nk@163.com