• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Possible therapeutic targets and promising drugs based on unsymmetrical hetaryl-substituted porphyrins to combat SARS-CoV-2

    2022-01-19 06:39:46YuryGubrevNtlyShLebedevElenYurinSergeySyrbuAlekseyKiselevMikhilLebedev
    Journal of Pharmaceutical Analysis 2021年6期

    Yury A.Gubrev,Ntly Sh.Lebedev,Elen S.Yurin,Sergey A.Syrbu,Aleksey N.Kiselev,b,Mikhil A.Lebedev,b

    aG.A.Krestov Institute of Solution Chemistry of the Russian Academy of Sciences,153045,Ivanovo,Russia

    bIvanovo State University of Chemistry and Technology,153000,Ivanovo,Russia

    Keywords:

    Porphyrins

    SARS-CoV-2

    Molecular docking

    Photoinactivation

    Peer review under responsibility of Xi’an Jiaotong University.

    A B S T R A C T

    Coronavirus disease 2019 is a serious disease that causes acute respiratory syndrome and negatively affects the central nervous system.Severe acute respiratory syndrome coronavirus 2(SARS-CoV-2)crosses the blood-brain barrier due to the spike(S)protein on the surface of the viral particles.Thus,it is important to develop compounds that not only have an inhibitory effect but are also capable of completely deactivating the S protein function.This study describes the purposeful modification of porphyrins and proposes compounds,asymmetrically hetaryl-substituted porphyrins with benzothiazole,benzoxazole,and N-methylbenzimidazole residues,to deactivate the S protein functions.Molecular docking of SARS-CoV-2 proteins with hetaryl-substituted porphyrins showed that the viral S protein,nucleocapsid(N)protein,and non-structural protein 13(nsp13)exhibited the highest binding affinity.Hetaryl-substituted porphyrins form strong complexes(13-14 kcal/mol)with the receptor-binding domain of the S protein,while the distance from the porphyrins to the receptor-binding motif(RBM)does not exceed 20 ?;therefore,RBM can be oxidized by1O2,which is generated by porphyrin.Hetarylsubstituted porphyrins interact with the N protein in the serine/arginine-rich region,and a number of vulnerable amino acid residues are located in the photooxidation zone.This damage complicates the packaging of viral RNA into new virions.High-energy binding of hetaryl-substituted porphyrins with the N-and C-terminal domains of nsp13 was observed.This binding blocks the action of nsp13 as an enzyme of exoribonuclease and methyltransferase,thereby preventing RNA replication and processing.A procedure for the synthesis of hetaryl-substituted porphyrins was developed,new compounds were obtained,their structures were identified,and their photocatalytic properties were studied.

    1.Introduction

    The coronavirus disease 2019(COVID-19)pandemic caused by severe acute respiratory syndrome coronavirus 2(SARS-CoV-2)has clearly demonstrated the vulnerability and defenselessness of humanity to new viral threats.COVID-19 usually causes severe acute respiratory syndrome[1].In addition,new clinical reports are increasing,indicating the dramatic effects of SARS-CoV-2 on the central nervous system.For example,a previous study[2]reported that SARS-CoV-2 preferentially targets neurons in the brain.Imaging of neurons shows that exposure to SARS-CoV-2 is associated with altered tau protein distribution and hyperphosphorylation,ultimately resulting in neuronal death.

    The neurological symptoms of COVID-19 are complex and differ among individuals[3].Considering this symptomatology,two possible mutually non-exclusive forms of virus penetration were proposed:through the olfactory nerves(transneuronal)and the hematogenous pathway with penetration via the blood-brain barrier(BBB).In a cytokine storm,BBB permeability is impaired.Several attempts have been made to determine the exact cause of damage to the central nervous system,such as direct penetration of the virus into the brain by binding to the BBB cells or penetration of the virus due to increased BBB permeability during a cytokine storm.To date,the confirmed cause of central nervous system damage is the direct penetration of virus.As a result,the BBB becomes vulnerable due to the presence of spike(S)protein on the surface of the virus,which is the driving unit.A previous study[4]showed that the S protein of SARS-CoV-2 easily crosses the BBB of mice,penetrates into the parenchymal tissue of the brain,and binds to the glycocalyx of the capillaries of the brain,causing damage and apoptosis of endothelial cells and neurons[5].

    Human neurodegenerative diseases are often a gradual process that,in some cases,develop over several decades.Neurological and neurodegenerative disorders occur in approximately 35% of patients[6,7].Given the possible long-term impact of COVID-19,it is necessary to develop drugs that target the S protein not just to inhibit its binding to the angiotensin-converting enzyme 2(ACE2),but to completely disrupt its functionality.

    Recent studies showed that porphyrins and their structural analogues can be successfully used to inactivate viruses and drugresistant forms of pathogenic bacteria.Our study aimed to design new chemical compounds with the desired properties,namely,hetaryl-substituted porphyrins,using computer methods(molecular docking).In particular,the desired properties are as follows:1)high-energy binding to the SARS-CoV-2 S protein in the receptorbinding domain(RBD)site or in its immediate vicinity(inhibition of binding to ACE2),2)the ability to absorb light energy in the farwave part of the spectrum(for working in the“therapeutic window”)and generate reactive oxygen species(for irreversible damage to the protein during photoirradiation),3)high quantum yield of reactive oxygen species(for irreversible damage to the protein during photoirradiation),4)solubility in physiological media,and 5)the absence of specific interactions(π-π,H-bond between the substance and amino acids of the S protein)to avoid additional dissipation of light energy and increase of the quantum yield of singlet oxygen when porphyrin binds to the S protein of the virus.

    2.Materials and methods

    2.1.Molecular docking

    The D-I-TASSER-predicted structures of SARS-CoV-2 proteins were downloaded from the Zhang Lab website (https://zhanggroup.org//I-TASSER/)[8,9].The heterotrimeric structure of S protein was downloaded from the Protein Data Bank(ID:7bnm)[10].The structures of the porphyrins(Fig.1)were minimized using the ORCA 4.0 program[11]using the DFT b3lyp method.Molecular docking of proteins with porphyrins was performed using Auto-Dock Vina 1.1.2[12]and visualized using PyMol 2.4.1.The ligand and protein structure files were prepared using AutoDockTools 1.5.6.The size of the grid matrix for blind docking was adjusted such that the protein molecules completely overlapped.Owing to the large size of the grid matrix,the exhaustiveness parameter was increased to512[13].Molecular docking enabled the determination of the 20 most favorable structures of each porphyrin.After analyzing the results,redocking was performed using a grid matrix size of 80 ? × 80 ? × 40 ? and at the center near Arg408 of A,B,and C chains in coordinates x/y/z(217/217/265).The most optimal positions are listed in Table 1.Since the porphyrins are charged,the potential of the protein globule was calculated using the adaptive Poisson-Boltzmann Solver method to analyze the docking sites[14].

    Table 1SARS-CoV-2 proteins binding energy to hetaryl-substituted porphyrins.

    Fig.1.Structural formulas of unsymmetrical hetaryl-substituted porphyrins.5-[4'-(1′,3′-benzothiazol-2′-yl)phenyl]-10,15,20-tri-(N-methyl-3′-pyridyl)-porphyrin triiodide(X=S,SPOR);5-[4'-(1′,3′-benzoxazol-2′′-yl)phenyl]-10,15,20-tri-(N-methyl-3′-pyridyl)-porphyrin triiodide(X=O,OPOR);5-[4’-(N-methyl-1′′,3′′-benzoimidazol-2′′-yl)phenyl]-10,15,20-tri-(N-methyl-3′-pyridyl)-porphyrin triiodide(X=N-CH3,NPOR).

    2.2.Porphyrin synthesis

    2.2.1.5-(4′-bromophenyl)-10,15,20-tris-(3′-pyridyl)porphyrin

    A mixture of 10 mL(0.144 mol)of pyrrole,6.66 g(0.036 mol)of 4-bromobenzaldehyde,and 10.15 mL(0.108 mol)of 3-pyridy lcarboxaldehyde was added to 500 mL of propionic acid and 35 mL(0.27 mol)of propionic anhydride,which were boiled for 20 min while passing gas.The mixture was boiled for another 1.5 h while passing air.Propionic acid was distilled under vacuum.The residue in the flask was diluted with 300 mL of methanol and 30 mL of ammonia solution.The precipitate of the porphyrin mixture was filtered,washed with methanol,and dried at room temperature to achieve a constant weight.The dried precipitate was dissolved in 200 mL of dichloromethane and chromatographed on a column with Al2O3(activity grade III according to Brockmann),eluting with a mixture of ethanol and methylene chloride(10:1,V/V).The third fraction of 5-(4′-bromophenyl)-10,15,20-tris-(3′-pyridyl)porphyrin was collected.The solvent was evaporated,and the porphyrin was rechromatographed on a column with Al2O3(activity grade III according to Brockmann),eluting with a mixture of ethanol and methylene chloride(10:1,V/V).The product was monitored by thinlayer chromatography on Alufol, ultraviolet-visible(UV-Vis)spectrophotometry,1H NMR spectroscopy,and MALDI-TOF-MS.Yield:3.95 g(15.8%).UV-Vis(dichloromethane; λmax,log ε):416(5.91),512(4.60),547(4.58),588(4.48),and 643(4.58)nm.1H NMR(CDCl3; δ,ppm):9.50 s(3H,2′-HPy),9.10 d(3H,6′-HPy,J=5.5),9.02 d(2H,8,12-H,J=4.5),8.89 s(4H,3,7,13,17-H),8.57 d(2H,2,18-H,J=4.5),8.44 d(3H,4′-HPy,J=5.5),8.07 d(2H,2′′,6′′-HPh,J=8.0),7.91 d(4H,5′-HPy,3′′,4′′-HPh,J=8.0),and-2.78 s(2H,NH).MALDI-TOF-MS,m/z calculated for C41H26BrN7:696.60;defined:696.68 [M]+.Retention factor (Rf,silufol):0.72,dichloromethane-ethanol(10:1,V/V).

    2.2.2.Zinc 5-(4′-bromophenyl)-10,15,20-tris-(3′-pyridyl)porphyrinate

    Furthermore,3g(4.3mmol)of5-(4′-bromophenyl)-10,15,20-tris-(3′-pyridyl)porphyrin and 4.7g(0.021mol)of anhydrous zinc acetate were dissolved in a mixture of 200 mL of methanol and 100 mL of methylene chloride.The mixture was boiled in a flask with a reflux condenser for 1.5 h.Monitoring was carried out using a UV-Vis spectrometer.The mixture was cooled,and the excess solvent was distilled,chromatographed on a column with Al2O3(activity grade III according to Brockmann),and eluted with a mixture of ethanol and methylene chloride(10:1,V/V).The solvent was evaporated under vacuum,and the residue was washed with water,filtered,and dried at room temperature to achieve a constant weight.Yield:3.2 g(98%).UV-Vis(dichloromethane;λmax,logε):416(6.06),549(4.62),and590(4.71)nm.1HNMR(CDCl3;δ,ppm):9.50s(3H,2′-HPy),9.10d(3H,6′-HPy,J=5.5),9.02d(2H,8,12-H,J=4.5),8.89s(4H,3,7,13,17-H),8.57d(2H,2,18-H,J=4.5),8.44d(3H,4′-HPy,J=5.5),8.07d(2H,2′′,6′′-HPh,J=8.0),and7.92d(4H,5′-HPy,3′′,4′′-HPh,J=8.0).MALDI-TOF-MS,m/z calculated for C41H24BrN7Zn:759.97.Defined:760.03[M]+.Rf(silufol):0.67,dichloromethane-ethanol(10:1,V/V).

    2.2.3.5-[4’-(1,3-benzothiazol-2-yl)phenyl]-10,15,20-tri-(3′-pyridyl)-porphyrin

    In a 100-mL flask equipped with a magnetic stirrer and a reflux condenser,0.03 g of Pd(OAc)2(20%,mol/mol),0.026 g of Cu(OAc)2H2O(20%,mol/mol),0.176 g of triphenylphosphine(1 eq.),0.51 g of 5-(4′-bromophenyl)-10,15,20-tris-(3′-pyridyl) zinc porphinate(0.671 mmol),45 mL of toluene,and 146μL(2 equivalents,1.342 mmol)of benzothiazole were added.The reaction mixture was boiled with stirring for 48 h.Then,the mixture was cooled to room temperature,and 50 mL of methylene chloride was added.The organic solution was filtered,the precipitate was washed with 10 mL of methylene chloride,and the combined organic fractions were evaporated under vacuum.The second fraction was collected.The zinc complex was dissolved in dichloromethane,and 3 mL of concentrated HCl was added to destroy the complex.Then,it was treated with ammonia and washed with water.The solvent was dried by adding anhydrous sodium sulfate and evaporated under vacuum.Chromatography was performed on a column with Al2O3(activity grade III according to Brockmann),eluting first with dichloromenthane and then with a mixture of ethanol and methylene chloride(1:10,V/V).The second fraction was collected.Yield:0.345 g(67%),green-violet crystalline powder.UV-Vis(dichloromethane;λmax,log ε):420(5.96),516(4.66),550(4.57),590(4.60),and 646(4.59)nm.1H NMR(CDCl3; δ,ppm):9.50 s(3H,2′-HPy),9.10 d(3H,6′-HPy,J=5.5),9.02 d(2H,8,12-H,J=4.5),8.89 s(4H,3,7,13,17-H),8.57 d(2H,2,18-H,J=4.5),8.44 d(3H,4′-HPy,J=5.5),8.27 d(2H,2′′,6′′-HPh,J=6.0),7.82-7.79 m(4H,5′-HPy,3′′,4′′-HPh),7.94-8.11 m(2H,from benzothiazole J=8.2),7.46-7.54 m(2H,from benzothiazole),and-2.78 s(2H,NH).MALDI-TOF-MS,m/z calculated for C48H30N8S:750.87;defined:750.89[M]+.Rf(silufol):0.73,dichloromethane-ethanol(10:1,V/V).

    2.2.4.5-[4’-(1′′,3′′-benzothiazol-2′′-yl)phenyl]-10,15,20-tri-(N-methyl-3′-pyridyl)-porphyrin triiodide(SPOR)

    A mixture of 0.22 g(0.29 mmol)5-[4'-(1,3-benzothiazol-2-yl)phenyl]-10,15,20-tri-(3′-pyridyl)-porphyrin and 0.5 mL(0.46 mmol)of methyl iodide was refluxed in dimethylformamide(30 mL)for 1 h.The solution was cooled and diluted with benzene(1:1,V/V).The precipitate was separated by filtration,washed sequentially with benzene and acetone,and then dried.Yield:0.21 g(98%).UV-Vis(water; λmax,log ε):418(6.09),516(4.69),549(4.63),585(4.65),and 634(4.65)nm.1H NMR(DMSO d6;δ,ppm):9.52 s(3H,2′-HPy),9.11 d(3H,6′-HPy),9.02d(2H,8,12-H),8.89s(4H,3,7,13,17-H),8.57 d(2H,2,18-H),8.44 d(3H,4′-HPy),8.27 d(2H,2′′,6′′-HPh),7.82-7.79 m(4H,5′-HPy,3′′,4′′-HPh),7.94-8,11 m(2H,from benzothiazole),7.46-7.54 m(2H,from benzothiazole),4.72 s(9H,CH3-N),and-2.78bs(2H,NH).MALDI-TOF-MS,m/z calculated for C51H39I3N8S:1176.69;defined:1176.73[M]+.

    2.2.5.5-[4’-(1′′,3′′-benzoxazol-2′′-yl)phenyl]-10,15,20-tri-(3′-pyridyl)-porphyrin

    Compound 5-[4’-(1′′,3′′-benzothiazol-2′′-yl)phenyl]-10,15,20-tri-(3′-pyridyl)-porphyrin was prepared analogously;instead of benzothiazole,0.159 g(2 equivalents,1.342 mmol)of benzoxazole was used.Yield:0.395 g(79%)and green-violet crystalline powder.UV-Vis(dichloromethane; λmax,logε):420(5.97),516(4.67),551(4.57),590(4.62),and 646(4.62)nm.1H NMR(δ,ppm):9.50 s(3H,2′-HPy),9.10 d(3H,6′-HPy,J=5.5),9.02 d(2H,8,12-H,J=4.5),8.89 s(4H,3,7,13,17-H),8.57 d(2H,2,18-H,J=4.5),8.44 d(3H,4′-HPy,J=5.5),8.26 d(2H,2′′,6′′-HPh,J=6.0),7.82-7.80 m(4H,5′-HPy,3′′,4′′-HPh),7.58-8,02 m(2H,from benzoxazole J=8.3),7.34-7.43 m(2H,from benzoxazole),and-2.79 s(2H,NH)(CDCl3).MALDI-TOF-MS,m/z calculated for C48H30N8O:734.80;defined:734.83[M]+.Rf(silufol):0.73,dichloromethane-ethanol(10:1,V/V).

    2.2.6.5-[4’-(1′′,3′′-benzoxazol-2′′-yl)phenyl]-10,15,20-tri-(N-methyl-3′-pyridyl)-porphyrin triiodide(OPOR)

    Compound 5-[4’-(1′′,3′′-benzothiazol-2′′-yl)phenyl]-10,15,20-tri-(N-methyl-3′-pyridyl)-porphyrin triiodide(Fig.1)was obtained in the same way;instead of benzothiazole,0.159 g(2 equivalents,1.342 mmol)of 5-[4’-(1′′,3′′-benzoxazol-2′′-yl)phenyl]-10,15,20-tri-(N-methyl-3′-pyridyl)-porphyrin triiodide was used.Yield:0.23 mg(98%)and brown crystalline powder.UV-Vis(water;λmax,logε):418(6.05),516(4.67),550(4.64),585(4.64),and 634(4.66)nm.1H NMR(DMSOd6;δ,ppm):9.51s(3H,2′-HPy),9.10d(3H,6′-HPy),9.02d(2H,8,12-H),8.90s(4H,3,7,13,17-H),8.57d(2H,2,18-H),8.44d(3H,4′-HPy,J=5.5),8.26 d(2H,2′′,6′′-HPh),7.82-7.80 m(4H,5′-HPy,3′′,4′′-HPh),7.58-8.02 m(2H,from benzoxazole),7.34-7.43 m(2H,from benzoxazole),4.71s(9H,CH3-N),and-2.79s(2H,NH).MALDI-TOF-MS,m/z calculated for C51H39I3N8O:1160.62;defined:1160.67[M]+.

    2.2.7.5-[4’-(N-methyl-1′′,3′′-benzoimidazol-2′′-yl)phenyl]-10,15,20-tri-(3′-pyridyl)-porphyrin

    Compound 5-[4’-(1′′,3′′-benzothiazol-2′′-yl)phenyl]-10,15,20-tri-(N-methyl-3′-pyridyl)-porphyrin was prepared analogously;instead of benzothiazole,0.178 g(2 equivalents,1.342 mmol)of N-methylimidazole was obtained.Yield:0.228 g(45%)and greenviolet crystalline powder.UV-Vis(dichloromethane; λmax,log ε):420(5.97),516(4.67),550(4.62),590(4.59),646(4.62)nm.1H NMR(CDCl3; δ,ppm):9.50 s(3H,2′-HPy),9.10 d(3H,6′-HPy,J=5.5),9.02 d(2H,8,12-H,J=4.5),8.89 s(4H,3,7,13,17-H),8.57 d(2H,2,18-H,J=4.5),8.44 d(3H,4′-HPy,J=5.5),8.26 d(2H,2′′,6′′-HPh,J=6.0),7.82-7.80 m(4H,5′-HPy,3′′,4′′-HPh),7.59 d(2H,from imidazole J=8.4),7.42-7.47 m(2H,from imidazole),3.88 s(1H N-Me),and-2.78 s(2H,NH).MALDI-TOF-MS,m/z calculated for C49H33N9:747.29;defined:747.36 [M]+.Rf(silufol):0.70,dichloromethane-ethanol(10:1,V/V).

    2.2.8.5-[4’-(N-methyl-1′,3′-benzoimidazol-2′′-yl)phenyl]-

    10,15,20-tri-(N-methyl-3′-pyridyl)-porphyrin triiodide(NPOR)

    Compound 5-[4’-(1′,3′-benzothiazol-2′-yl)phenyl]-10,15,20-tri(N-methyl-3′-pyridyl)-porphyrin triiodide(Fig.1)was prepared in the same way;instead of 5-[4’-(1′,3′-benzothiazol-2′-yl)phenyl]-10,15,20-tri-(3′-pyridyl)-porphyrin, 5-[4’-(N-methyl-1′,3′-benzoimidazol-2′-yl)phenyl-10,15,20-tri-(3′-pyridyl)-porphyrin was used.Yield:0.19 g(99%)and brown crystalline powder.UV-Vis(water;λmax,logε):418(6.07);516(4.69),550(4.65),585(4.63),634(4.64)nm.1H NMR(DMSO d6;δ,ppm):9.50 s(3H,2′-HPy),9.10 d(3H,6′-HPy),9.02 d(2H,8,12-H),8.89 s(4H,3,7,13,17-H),8.57 d(2H,2,18-H),8.44 d(3H,4′-HPy),8.26 d(2H,2′,6′-HPh,J=6.0),7.83-7.80 m(4H,5′-HPy,3′,4′-HPh),7.59 d(2H,from imidazole),7.42-7.47 m(2H,from imidazole),4.72 s(9H,CH3-N),3.89 s(1H N-Me),and-2.78 s(2H,NH).MALDI-TOF-MS,m/z calculated for C52H42I3N9:1173.66;defined:1173.74[M]+.

    3.Results and discussion

    Research on the SARS-CoV-2 has been ongoing since 2019. Thegenome structure, epidemiological and clinical characteristics, andpathogenetic mechanisms of SARS-CoV-2 are known. Information onthe structure of the virus and the role of the structural units of SARSCoV-2 in the life cycle of the virus is constantly increasing. SARS-CoV-2 belongs to β-coronavirus genera and contains a positive-sensesingle-stranded RNA that is enclosed in a nucleocapsid (N) protein.This protein is covered by an envelope containing a S protein and amembrane protein. In addition to the listed structural proteins, SARSCoV-2 contains non-structural and accessory proteins. Structuralproteins ensure virus safety. They are responsible for binding to hostcell receptors and membrane fusion. Non-structural proteins (NSPs)are mainly involved in various stages of the viral life cycle.

    Screening of porphyrin,chlorine,phthalocyanine,and porphyrazine compounds,based on our own and literature data on the empirical“structure-property”relationship[15-20],allowed us to propose structures of porphyrins(Fig.1)that are believed to have the above specified properties.

    To test our hypothesis using bioinformatics methods,hetarylsubstituted porphyrins were docked with all SARS-CoV-2 proteins.The results are shown in Table 1.Based on the data obtained,hetaryl-substituted porphyrins exhibited the highest affinity for the S protein,followed by the N protein and the nsp13.The rest of the SARS-CoV-2 proteins were also able to bind to hetarylsubstituted porphyrins,but with much less energy gain(Table 1).

    Let us consider the results obtained for the docking of hetarylsubstituted porphyrins with S protein,N protein,and nsp13.The S protein protruding on the surface of the viral particle consists of three identical S protein chains.Each chain consists of two subunits,S1 and S2.The S1 subunit is responsible for binding to receptors[21].The S2 subunit is responsible for the fusion of the virus and host cell membranes.The S1 subunit includes an RBD site that binds complementarily to the ACE2 receptor of the host cell.This interaction causes a strong conformational change in the S2 subunit.Then,with the help of the host enzymes(furin and transmembrane serine protease),the S protein is cleaved into the S1 and S2 subunits[22,23].Ultimately,it leads to the fusion of the viral envelope and the host cell membrane,followed by the release of the N into the cytoplasm[24,25].Thus,the S protein is an obvious target.Targeting the S protein,especially in the RBD region,can inhibit viral entry into the cells.As an example,Fig.2 shows the result of hetaryl-substituted porphyrin docking containing a benzoxazole residue with the S protein.The binding of all studied arylporphyrins occurs at the same sites of the S protein,namely,on the RBD surface of each chain.More precisely,the porphyrin compound is located between the RBD regions of two adjacent chains,simultaneously interacting with both RBD amino acid sequences(Table 2).

    Fig.2.Molecular docking of OPOR with S protein.Green,magenta,and blue indicate the three chains of S protein;gray,orange and yellow indicate receptor-binding domain.

    As noted above,the first step of the entry of the virus into the host cell is RBD binding to the ACE2 receptor.In RBD,two parts are distinguished:the RBD nucleus and the receptor-binding motif(RBM).It is a claw-like RBM that interacts with host ACE2.According to the literature[26],the overall amino acid sequence similarities between the S proteins of SARS-CoV-2 and those of SARS-CoV(isolated from humans,civets,or bats)range 76%-78% for the total protein,73%-76% for RBD,and 50%-53% for RBM.Based on this information,it can be concluded that the RBM is a less conserved part of the S protein.Mutations in the RBM region provide the virus with the ability to evolve and adapt to a larger number of cell receptors in different hosts.Owing to their clawlike shape,two critical amino acids(Gln493 and Asn501)are distinguished in the RBM.These acids,which bind to the amino acid residues of ACE2(Lys31 and Lys353),provide recognition and allow the binding of RBM to ACE2[26,27].In addition to the indicated amino acid residues of RBM,Leu455,Phe486,and Ser494 bind to ACE2.We determined the distance between the amino acid residues of RBM and the center of the hetaryl-substituted porphyrins(Table 3).

    We believe that this is a very important characteristic,since the removal of the photosensitizer from the indicated amino acid residues determines the possibility of complete blocking of the binding of the virus to ACE2.The reactive oxygen species generated by photoirradiation of porphyrin are very reactive.They have a very short lifetime and a short diffusion path.For singlet oxygen,the estimated lifetime in water is 4μs[28],and the maximum possible path of1O2in the absence of quenchers is no more than 100-150 nm[29-31].This distance is much greater than the distance of the RBM amino acid residues from the hetaryl-substituted porphyrins(Table 3).Therefore,upon photoirradiation of the complex,the probability of oxidation by the generated porphyrins1O2is very high.

    The geometry of the complex and the nature of the interaction of S protein with the heteroatom had no influence on the composition of the peripheral porphyrin substituent(Table 2).The nature of the interaction of hetarylporphyrins with S protein is universal and specific.For all studied porphyrins,π-π bound to the Tyr369 of each S protein.The arrangement of the aromatic systems within the complexes was not strictly parallel(Fig.3).The average interplanar distance was approximately 4 ?,which is typical for the π-π complexes of porphyrins.

    Fig.3.π-π-interaction of OPOR with Tyr369 of S protein.

    Table 2Molecular docking results of hetaryl-substituted porphyrins with SARS-CoV-2 proteins.

    Table 3Distance between amino acid residues of receptor-binding motif(RBM)and the center of hetaryl-substituted porphyrins.

    This interaction makes a significant contribution to the stabilization and strengthening of the complex of hetarylporphyrins with the S protein.On the contrary,it is undesirable because it possibly facilitates the scattering of light energy and quenching of the excited triplet state of porphyrin,reducing its photoactivity.The S protein affinity for hetarylporphyrins increased in the following order:SPOR≤OPOR<NPOR.The position of OPOR in this row is unexpected; it is the only hetaryl-substituted porphyrin that forms a H-bond between the oxygen atom of the peripheral porphyrin substituent and Gln409 of each S protein chain.The length of the formed H-bond is approximately 3.3 ?.This value is too high for the H-bond;therefore,it can be considered to be weak.This does not significantly affect the energy of the complex as a whole.In addition to the S protein the studied hetaryl-substituted porphyrins demonstrated high affinity for binding to the N protein and helicase(Table 1).

    The N protein is an important structural protein in coronaviruses.After infection,the N protein enters the host cell along with the viral RNA to facilitate its replication in order to ensure the packaging of the viral RNA into new virions[32].The N-protein of SARS-CoV-2 consists of three functional parts:RNA-binding N-tail domain(NTD)(N-arm 1-44 and NTD 44-180);C-tail domain(247-367,C-tail 364-419),which provides oligomerization of the N protein;and a poorly structured central region enriched in Ser and Arg(SR region)(180-247)[32,33].In the aggregation of the N protein,the C-tail domain and a poorly structured central region enriched in Ser and Arg(SR region)are involved.

    Judging by the docking results,hetaryl-substituted porphyrins bind to the SR region(Fig.4)due to the universal interactions and the formation of a H-bond.In the case of SPOR and NPOR,the nitrogen atom of the peripheral porphyrin substituent is involved in the formation of the H-bond with the protein.In the case of OPOR,the H-bond with the protein forms an oxygen atom of the peripheral porphyrin substituent(Table 1).The SR region is important for condensing the N protein with RNA through liquid-phase separation[34].In the immediate amino acid environment of hetarylporphyrins,the complex with the N protein contains amino acid residues that are easily photooxidized.These include Tyr333,Trp301,Arg259,and Arg277.The rate constant of their reaction with1O2is higher than those of other amino acids and is(1-7)×107M-1s-1[35,36].We expect that photodamage to this area will have significant inhibitory and virucidal effects.

    Fig.4.Molecular docking of OPOR with N protein.

    The SARS-CoV replication/transcription complex consists of at least 16 NSPs.This complex includes replication enzymes and proteins that carry out post-transcriptional RNA modification(processing).The nsp13 of the coronavirus is unique because it performs the functions of both exoribonuclease(ExoN)and(guanine-N7)-methyltransferase (N7-MTase).The N-terminal domain of nsp13(ExoN)plays a role inproofreading during genome replication:ExoN is thought to mediate proofreading during genome replication.The activity of nsp13 as an exoribonuclease is regulated to avoid the nonspecific degradation of RNA.This process is also regulated by another NSP,nsp10[37,38].The C-terminal domain of nsp13 acts as a N7-MTase for RNA capping;it plays a major role in blocking the 5′-end of viral genomic RNA and avoids innate host immunity[39,40].

    Let us consider the results obtained for complex 1 of SPOR with the N-tail domain of nsp13(ExoN)(Fig.5).Of all the hetarylsubstituted porphyrins studied,the H-bonds between the NH groups of the reaction center of the porphyrin and TRP131 form porphyrins, which contain benzothiazole and N-methylbenzimidazole residues.Moreover,the lengths of the H-bonds(Table 1)indicate the low energy of the complexes formed.This fact probably does not significantly affect the decrease in the photocatalytic activity of the considered porphyrins.Analysis of the amino acid environment closest to the porphyrins in a complex with the ExoN domain revealed that only one amino acid residue(Met57)was highly susceptible to photooxidation by singlet oxygen[35].

    Fig.5.Molecular docking of SPOR with nsp13(exoribonuclease).

    During molecular docking,two type of complexes with different binding energies were found(Table 2).The complexes of hetarylsubstituted porphyrins with the C-tail domain of nsp13 are formed due to universal interactions;in the case of porphyrins containing benzothiazole and benzoxazole residues,these complexes are additionally stabilized by the H-bond between the NH groups of the porphyrin macroring and Val287.However,as in the case of complex 1,the energy is very low(Table 1).The nearest amino acid environment of hetaryl-substituted porphyrins in complex 2 in the C-terminal domain of nsp13 is more sensitive to photooxidation.The vulnerable amino acids are Tyr260,Lys288,Arg289,Trp292,and His427[35].

    These results demonstrate that hetaryl-substituted porphyrins are able to efficiently bind to parts of the nsp13 that performs an enzymatic function,especially in the C-tail domain.The latter is responsible for the mechanism of RNA capping,which plays a vital role in the escape of viral RNA from immune cells.Therefore,the breaking of binding to porphyrin and even its photoinduced oxidation of nsp13 lead to the degradation of viral RNA.Ultimately,this makes the replication cycle impossible.

    We developed a procedure for the synthesis of hetarylsubstituted porphyrins and examined their photochemical properties.The general scheme for the synthesis of water-soluble hetaryl-substituted porphyrins is shown in Fig.6.

    Fig.6.Scheme of synthesis of hetaryl-substituted porphyrins.

    The obtained asymmetrically substituted porphyrins have a sufficiently high quantum yield of singlet oxygen:OPOR,0.61;NPOR,0.83;and SPOR,0.86.Based on the obtained quantum yield values,the most promising compounds are NPOR and SPOR,but their ability to oxidize RBM requires experimental verification.We plan to conduct in vitro studies to investigate the different processes involved in the interaction between SARS-CoV-2 proteins and NPOR and SPOR compounds,and to evaluate the possibility of RBM binding to ACE2 in the presence of porphyrins in the dark and under photoirradiation.This will allow the assessment of the inhibitory and photovirucidal activity of NPOR and SPOR.

    4.Conclusion

    Purposeful synthesis was carried out,and compounds SPOR,OPOR,and NPOR were obtained for the first time.

    The photochemical properties of unsymmetrically substituted hetarylporphyrins were studied.They efficiently absorb light energy in the phototherapeutic window[41]and are capable of generating singlet oxygen with a quantum yield of 0.61-0.86.The molecular docking of SARS-CoV-2 proteins with hetarylsubstituted porphyrins made it possible to reveal three promising targets for inhibition and complete deactivation.These include the S protein,N protein,and nsp13.We believe this is a good strategy for targeting a potential drug to multiple targets,especially given the frequent mutations of the virus and the three-tiered defense(at different stages of the virus life cycle).The results obtained require in vitro experimental verification of the selected targets.In case of a positive result,it is necessary to further evaluate the inhibitory and virucidal capacities of hetaryl-substituted porphyrins.

    Declaration of competing interest

    The authors declare that there are no conflicts of interest.

    Acknowledgments

    The reported study was funded by RFBR(Project No.:20-04-60067).

    亚洲av美国av| 女人久久www免费人成看片| 久久 成人 亚洲| 国产激情久久老熟女| 国产成人免费观看mmmm| 免费不卡黄色视频| 桃花免费在线播放| 国产精品免费大片| 久久久久精品国产欧美久久久| 18禁黄网站禁片午夜丰满| 亚洲精品在线观看二区| 丁香六月天网| 宅男免费午夜| 国产精品久久久人人做人人爽| 国产一卡二卡三卡精品| 美女高潮喷水抽搐中文字幕| 国产一区二区三区在线臀色熟女 | 99热国产这里只有精品6| 两性夫妻黄色片| 亚洲黑人精品在线| 99香蕉大伊视频| 国产欧美日韩综合在线一区二区| 欧美人与性动交α欧美精品济南到| 精品午夜福利视频在线观看一区 | 国产精品亚洲一级av第二区| 国产欧美日韩一区二区三区在线| 久久亚洲精品不卡| 日韩三级视频一区二区三区| 国产伦人伦偷精品视频| 成人手机av| 国产国语露脸激情在线看| 亚洲成a人片在线一区二区| 日韩中文字幕视频在线看片| 高清av免费在线| 淫妇啪啪啪对白视频| 搡老熟女国产l中国老女人| 久热爱精品视频在线9| 亚洲 国产 在线| 99re在线观看精品视频| 精品一区二区三卡| 欧美激情 高清一区二区三区| 国产精品影院久久| 两性午夜刺激爽爽歪歪视频在线观看 | 久久精品亚洲精品国产色婷小说| 欧美乱码精品一区二区三区| 亚洲 欧美一区二区三区| 精品卡一卡二卡四卡免费| a级毛片黄视频| 12—13女人毛片做爰片一| 精品国产超薄肉色丝袜足j| 国产无遮挡羞羞视频在线观看| 中文字幕制服av| 欧美在线黄色| 免费在线观看完整版高清| 日韩欧美免费精品| 视频在线观看一区二区三区| 男人操女人黄网站| 一本色道久久久久久精品综合| 黄色丝袜av网址大全| 日日摸夜夜添夜夜添小说| 美女国产高潮福利片在线看| 超碰97精品在线观看| 涩涩av久久男人的天堂| 午夜福利欧美成人| 美女高潮喷水抽搐中文字幕| 亚洲av日韩精品久久久久久密| 国产成人精品久久二区二区91| 大香蕉久久成人网| 精品久久久久久电影网| 中文字幕最新亚洲高清| 免费一级毛片在线播放高清视频 | 久久久久久人人人人人| 日韩欧美国产一区二区入口| 亚洲精品在线观看二区| 国产av一区二区精品久久| 亚洲熟妇熟女久久| 性色av乱码一区二区三区2| 亚洲色图 男人天堂 中文字幕| 亚洲成国产人片在线观看| 午夜久久久在线观看| 久久国产精品人妻蜜桃| 亚洲成人手机| 国产精品国产高清国产av | 欧美+亚洲+日韩+国产| 国产在线观看jvid| 久久久久精品人妻al黑| 久久99一区二区三区| 视频在线观看一区二区三区| 国产欧美日韩一区二区精品| 免费人妻精品一区二区三区视频| 女人精品久久久久毛片| 久久久久精品国产欧美久久久| 91精品国产国语对白视频| 国产精品久久久久成人av| 欧美精品亚洲一区二区| 蜜桃国产av成人99| 久久精品aⅴ一区二区三区四区| 国产午夜精品久久久久久| 啪啪无遮挡十八禁网站| 人人妻人人澡人人看| 2018国产大陆天天弄谢| 亚洲精品久久午夜乱码| 女性被躁到高潮视频| 亚洲色图av天堂| 热re99久久国产66热| 亚洲色图av天堂| 久久久久久久大尺度免费视频| 99久久人妻综合| 国产免费av片在线观看野外av| 国产欧美亚洲国产| 男女之事视频高清在线观看| 黄片大片在线免费观看| 亚洲国产av新网站| www.精华液| 亚洲少妇的诱惑av| 一区二区日韩欧美中文字幕| 亚洲第一青青草原| 中文字幕另类日韩欧美亚洲嫩草| 日韩人妻精品一区2区三区| 一区二区av电影网| 多毛熟女@视频| 真人做人爱边吃奶动态| 黄色视频在线播放观看不卡| 亚洲伊人色综图| 18禁国产床啪视频网站| 天天添夜夜摸| a级毛片在线看网站| 在线观看免费午夜福利视频| 久久久久国产一级毛片高清牌| 国产片内射在线| 国产在视频线精品| 国产日韩欧美视频二区| 国产成人欧美| 精品一区二区三卡| 大香蕉久久网| 夜夜爽天天搞| 国产麻豆69| 国产片内射在线| 欧美人与性动交α欧美软件| 日韩中文字幕欧美一区二区| 波多野结衣av一区二区av| 国产在线视频一区二区| 亚洲性夜色夜夜综合| aaaaa片日本免费| 成人影院久久| 在线十欧美十亚洲十日本专区| 建设人人有责人人尽责人人享有的| 国产精品影院久久| 1024香蕉在线观看| 丝袜美腿诱惑在线| 久久久久国内视频| 色婷婷av一区二区三区视频| 国产成人啪精品午夜网站| 精品久久久精品久久久| 建设人人有责人人尽责人人享有的| 91成人精品电影| 精品少妇黑人巨大在线播放| 亚洲av日韩在线播放| 少妇的丰满在线观看| 午夜日韩欧美国产| 久久久久久免费高清国产稀缺| 考比视频在线观看| 国产精品av久久久久免费| 嫁个100分男人电影在线观看| 自拍欧美九色日韩亚洲蝌蚪91| 久久午夜综合久久蜜桃| 国产亚洲精品一区二区www | 亚洲自偷自拍图片 自拍| 中文字幕制服av| 久久久精品免费免费高清| 交换朋友夫妻互换小说| 国产成人欧美在线观看 | 国产精品久久久久成人av| 亚洲成人免费电影在线观看| 久久毛片免费看一区二区三区| 免费高清在线观看日韩| 亚洲一区二区三区欧美精品| 三级毛片av免费| 91大片在线观看| 欧美精品啪啪一区二区三区| 国产野战对白在线观看| 亚洲精品粉嫩美女一区| 久久性视频一级片| 国产人伦9x9x在线观看| 在线十欧美十亚洲十日本专区| 男人舔女人的私密视频| 国产不卡av网站在线观看| 欧美日本中文国产一区发布| 夜夜爽天天搞| aaaaa片日本免费| 91精品国产国语对白视频| 黄色 视频免费看| 国产欧美日韩一区二区三| 成在线人永久免费视频| 久久性视频一级片| 高清av免费在线| 两个人看的免费小视频| 国产老妇伦熟女老妇高清| 亚洲精品在线观看二区| 日韩欧美三级三区| 欧美精品一区二区大全| 老司机午夜十八禁免费视频| 丰满迷人的少妇在线观看| 我要看黄色一级片免费的| 成人av一区二区三区在线看| 精品亚洲乱码少妇综合久久| 亚洲精品美女久久久久99蜜臀| 最近最新免费中文字幕在线| 日本撒尿小便嘘嘘汇集6| 精品一区二区三区av网在线观看 | 精品一区二区三区视频在线观看免费 | 少妇精品久久久久久久| 国产欧美亚洲国产| 日本av免费视频播放| 成人18禁高潮啪啪吃奶动态图| 国产成人av激情在线播放| 欧美日韩精品网址| 久久婷婷成人综合色麻豆| 国产精品九九99| 91国产中文字幕| 精品少妇久久久久久888优播| 黄色视频在线播放观看不卡| 精品国产一区二区三区四区第35| www.999成人在线观看| 欧美日韩视频精品一区| 老司机午夜福利在线观看视频 | 欧美性长视频在线观看| 亚洲精品成人av观看孕妇| 天天躁狠狠躁夜夜躁狠狠躁| 深夜精品福利| 亚洲一区二区三区欧美精品| 在线av久久热| 午夜激情av网站| 精品一区二区三卡| 久久精品国产亚洲av高清一级| 两人在一起打扑克的视频| 亚洲午夜理论影院| 精品亚洲乱码少妇综合久久| 黑丝袜美女国产一区| 最新在线观看一区二区三区| 丰满少妇做爰视频| 涩涩av久久男人的天堂| 90打野战视频偷拍视频| 欧美成狂野欧美在线观看| 看免费av毛片| 久久久久久久大尺度免费视频| 日韩三级视频一区二区三区| 国产精品美女特级片免费视频播放器 | 成年动漫av网址| 国产亚洲精品久久久久5区| 国产一区二区在线观看av| 国产在线精品亚洲第一网站| 午夜两性在线视频| 考比视频在线观看| 1024视频免费在线观看| svipshipincom国产片| 五月天丁香电影| 国产精品麻豆人妻色哟哟久久| 久久国产精品大桥未久av| 成人国产av品久久久| 午夜福利乱码中文字幕| 精品福利永久在线观看| 欧美中文综合在线视频| 午夜激情av网站| av线在线观看网站| 狠狠狠狠99中文字幕| 午夜激情久久久久久久| 欧美乱码精品一区二区三区| 国产成人系列免费观看| 国产黄色免费在线视频| 精品国内亚洲2022精品成人 | 99久久99久久久精品蜜桃| 涩涩av久久男人的天堂| 亚洲欧美一区二区三区黑人| 亚洲avbb在线观看| 手机成人av网站| 亚洲av美国av| bbb黄色大片| a级毛片黄视频| 久久毛片免费看一区二区三区| 欧美精品一区二区免费开放| 中文字幕av电影在线播放| 国产深夜福利视频在线观看| 欧美日韩中文字幕国产精品一区二区三区 | 成人特级黄色片久久久久久久 | 啪啪无遮挡十八禁网站| 一级片'在线观看视频| 亚洲五月色婷婷综合| 18禁国产床啪视频网站| 大香蕉久久成人网| 窝窝影院91人妻| 男人舔女人的私密视频| 露出奶头的视频| 国产成人欧美在线观看 | 高潮久久久久久久久久久不卡| 妹子高潮喷水视频| 久久中文看片网| 亚洲色图 男人天堂 中文字幕| 久久人妻av系列| 亚洲精品国产区一区二| 亚洲中文av在线| 极品人妻少妇av视频| 一区二区三区乱码不卡18| 国产野战对白在线观看| 国产福利在线免费观看视频| 国产麻豆69| 又黄又粗又硬又大视频| 国产高清激情床上av| 香蕉国产在线看| 国产1区2区3区精品| 国产精品99久久99久久久不卡| 免费黄频网站在线观看国产| 黄色视频,在线免费观看| 香蕉国产在线看| 亚洲第一欧美日韩一区二区三区 | 成年人午夜在线观看视频| 国产成人欧美| 精品国产乱码久久久久久男人| 国产麻豆69| 99国产精品一区二区三区| 久久久精品免费免费高清| 狠狠狠狠99中文字幕| 国产精品 欧美亚洲| 国产一区二区三区视频了| 国产免费现黄频在线看| 亚洲成国产人片在线观看| 变态另类成人亚洲欧美熟女 | 大香蕉久久网| 99久久精品国产亚洲精品| 一区二区三区乱码不卡18| 亚洲国产看品久久| 国产精品 国内视频| 热re99久久国产66热| 国产高清激情床上av| 99香蕉大伊视频| 成年女人毛片免费观看观看9 | 午夜精品久久久久久毛片777| 啦啦啦在线免费观看视频4| 亚洲少妇的诱惑av| 国产精品自产拍在线观看55亚洲 | 成人三级做爰电影| 亚洲专区国产一区二区| 国产精品99久久99久久久不卡| 十八禁网站网址无遮挡| 精品午夜福利视频在线观看一区 | 久久中文看片网| 亚洲九九香蕉| 可以免费在线观看a视频的电影网站| 亚洲三区欧美一区| 美女高潮到喷水免费观看| 自拍欧美九色日韩亚洲蝌蚪91| 国产视频一区二区在线看| 国产午夜精品久久久久久| 菩萨蛮人人尽说江南好唐韦庄| 下体分泌物呈黄色| 欧美激情 高清一区二区三区| 三级毛片av免费| 欧美日韩精品网址| 亚洲成av片中文字幕在线观看| 三级毛片av免费| 国产精品久久久久久精品电影小说| 18禁国产床啪视频网站| 丝袜人妻中文字幕| 99久久99久久久精品蜜桃| 久久狼人影院| 色精品久久人妻99蜜桃| 91老司机精品| 国产亚洲精品第一综合不卡| 亚洲精品自拍成人| 啦啦啦视频在线资源免费观看| 国产真人三级小视频在线观看| 制服诱惑二区| 高清欧美精品videossex| 亚洲,欧美精品.| 久久久精品国产亚洲av高清涩受| 久久精品亚洲熟妇少妇任你| 欧美黄色片欧美黄色片| e午夜精品久久久久久久| 一区二区三区激情视频| 90打野战视频偷拍视频| 久久久国产一区二区| 999精品在线视频| 中文字幕另类日韩欧美亚洲嫩草| 丰满人妻熟妇乱又伦精品不卡| 999久久久国产精品视频| 久久中文字幕一级| 国产人伦9x9x在线观看| 黑人巨大精品欧美一区二区蜜桃| 亚洲av日韩在线播放| 久久热在线av| 精品人妻1区二区| 亚洲精品自拍成人| 亚洲av成人一区二区三| 国产高清激情床上av| 成人手机av| 亚洲自偷自拍图片 自拍| 亚洲av美国av| 久久这里只有精品19| 曰老女人黄片| 国产欧美亚洲国产| 亚洲第一欧美日韩一区二区三区 | 热99久久久久精品小说推荐| 精品国产乱码久久久久久小说| 女性被躁到高潮视频| 久久天堂一区二区三区四区| 18禁黄网站禁片午夜丰满| 9热在线视频观看99| 亚洲精品美女久久av网站| 国产成人免费观看mmmm| 亚洲成人免费电影在线观看| 国产有黄有色有爽视频| 黑人欧美特级aaaaaa片| 在线观看一区二区三区激情| 黄片大片在线免费观看| 超碰成人久久| 亚洲精品国产精品久久久不卡| 亚洲欧洲日产国产| 成人国产一区最新在线观看| 十八禁人妻一区二区| 无限看片的www在线观看| 免费在线观看完整版高清| 精品欧美一区二区三区在线| 悠悠久久av| cao死你这个sao货| 热re99久久国产66热| 99re6热这里在线精品视频| 国产成人免费观看mmmm| 国产一区二区三区视频了| a级毛片在线看网站| 欧美日韩国产mv在线观看视频| a级片在线免费高清观看视频| av片东京热男人的天堂| 亚洲欧美激情在线| 90打野战视频偷拍视频| 人人妻人人添人人爽欧美一区卜| 在线观看免费视频网站a站| 国产麻豆69| 妹子高潮喷水视频| 1024视频免费在线观看| 欧美 亚洲 国产 日韩一| videosex国产| 午夜免费鲁丝| 在线观看人妻少妇| 亚洲国产av新网站| 在线亚洲精品国产二区图片欧美| 欧美亚洲 丝袜 人妻 在线| 欧美精品啪啪一区二区三区| 露出奶头的视频| 人人妻人人添人人爽欧美一区卜| 好男人电影高清在线观看| 黄色视频不卡| 国产日韩一区二区三区精品不卡| 国产精品香港三级国产av潘金莲| av又黄又爽大尺度在线免费看| 91字幕亚洲| 欧美日韩视频精品一区| 亚洲午夜精品一区,二区,三区| 一个人免费在线观看的高清视频| 黄片播放在线免费| 精品一品国产午夜福利视频| 亚洲国产av新网站| 侵犯人妻中文字幕一二三四区| 满18在线观看网站| 99九九在线精品视频| 亚洲精品美女久久av网站| 伦理电影免费视频| 国产又色又爽无遮挡免费看| 亚洲国产av新网站| 美女视频免费永久观看网站| 一级,二级,三级黄色视频| 两性午夜刺激爽爽歪歪视频在线观看 | 在线观看免费视频网站a站| 国产成人啪精品午夜网站| 极品少妇高潮喷水抽搐| 国产av又大| 少妇 在线观看| cao死你这个sao货| 两性午夜刺激爽爽歪歪视频在线观看 | 欧美日韩中文字幕国产精品一区二区三区 | 母亲3免费完整高清在线观看| 久久精品国产综合久久久| 亚洲精品美女久久av网站| 高清在线国产一区| 啦啦啦免费观看视频1| 桃花免费在线播放| 日韩制服丝袜自拍偷拍| 别揉我奶头~嗯~啊~动态视频| 动漫黄色视频在线观看| 久久久久国内视频| 变态另类成人亚洲欧美熟女 | 少妇的丰满在线观看| 精品亚洲乱码少妇综合久久| 久久香蕉激情| 每晚都被弄得嗷嗷叫到高潮| 成年人黄色毛片网站| 妹子高潮喷水视频| 亚洲五月婷婷丁香| 欧美日韩av久久| 满18在线观看网站| 国产精品久久久久成人av| 精品久久久久久久毛片微露脸| 99国产精品99久久久久| 亚洲精品粉嫩美女一区| 国产99久久九九免费精品| 黄片小视频在线播放| 黑人猛操日本美女一级片| 男女无遮挡免费网站观看| 精品午夜福利视频在线观看一区 | 亚洲国产精品一区二区三区在线| 又黄又粗又硬又大视频| 亚洲九九香蕉| 精品久久久精品久久久| 日韩视频一区二区在线观看| 午夜日韩欧美国产| 亚洲性夜色夜夜综合| 人人妻人人添人人爽欧美一区卜| 亚洲精品一二三| 成人18禁高潮啪啪吃奶动态图| a级片在线免费高清观看视频| av天堂久久9| 亚洲,欧美精品.| 久久国产精品人妻蜜桃| 亚洲成av片中文字幕在线观看| 人人妻人人添人人爽欧美一区卜| 天天躁狠狠躁夜夜躁狠狠躁| 亚洲综合色网址| h视频一区二区三区| 婷婷丁香在线五月| 国产不卡一卡二| 午夜久久久在线观看| 他把我摸到了高潮在线观看 | 欧美变态另类bdsm刘玥| 国产高清videossex| a级片在线免费高清观看视频| 国产人伦9x9x在线观看| 五月天丁香电影| 在线永久观看黄色视频| 91国产中文字幕| 亚洲av片天天在线观看| 一本一本久久a久久精品综合妖精| 欧美乱妇无乱码| 两性午夜刺激爽爽歪歪视频在线观看 | 久久久国产欧美日韩av| 黄片大片在线免费观看| 欧美 亚洲 国产 日韩一| 亚洲精品国产色婷婷电影| 热re99久久精品国产66热6| 最近最新中文字幕大全免费视频| 成人永久免费在线观看视频 | 国产成人av教育| 一边摸一边做爽爽视频免费| 天天添夜夜摸| 看免费av毛片| 在线永久观看黄色视频| 久久久久久亚洲精品国产蜜桃av| 9热在线视频观看99| 狠狠狠狠99中文字幕| 亚洲自偷自拍图片 自拍| 国产有黄有色有爽视频| 精品久久久精品久久久| 日韩视频一区二区在线观看| 亚洲精品av麻豆狂野| 亚洲熟妇熟女久久| 精品少妇久久久久久888优播| www.999成人在线观看| av一本久久久久| 日韩欧美一区二区三区在线观看 | 叶爱在线成人免费视频播放| 精品国内亚洲2022精品成人 | 丝瓜视频免费看黄片| 亚洲色图 男人天堂 中文字幕| 亚洲欧美日韩另类电影网站| 久久天躁狠狠躁夜夜2o2o| 女性被躁到高潮视频| 精品免费久久久久久久清纯 | 在线观看66精品国产| 亚洲av国产av综合av卡| 亚洲自偷自拍图片 自拍| 久久精品人人爽人人爽视色| 多毛熟女@视频| 国产在线观看jvid| 一区在线观看完整版| 老司机在亚洲福利影院| 90打野战视频偷拍视频| 人人澡人人妻人| 亚洲,欧美精品.| 桃花免费在线播放| 黑人巨大精品欧美一区二区mp4| 丝袜美腿诱惑在线| 亚洲欧美日韩高清在线视频 | 免费人妻精品一区二区三区视频| 日日爽夜夜爽网站| 久热这里只有精品99| 亚洲人成伊人成综合网2020| 女同久久另类99精品国产91| 人人妻人人澡人人爽人人夜夜| svipshipincom国产片| 精品亚洲乱码少妇综合久久| 免费人妻精品一区二区三区视频| 亚洲午夜精品一区,二区,三区| 啦啦啦 在线观看视频| 亚洲国产中文字幕在线视频| 久久久久久久国产电影| 1024视频免费在线观看| 一区二区三区乱码不卡18| 国产欧美日韩一区二区三| 十分钟在线观看高清视频www| 女同久久另类99精品国产91| 国产有黄有色有爽视频| av国产精品久久久久影院| 国产又色又爽无遮挡免费看| 日本一区二区免费在线视频| 亚洲欧美精品综合一区二区三区| 亚洲中文av在线| 正在播放国产对白刺激|