• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    FY-3E: The First Operational Meteorological Satellite Mission in an Early Morning Orbit

    2022-01-15 07:17:48PengZHANGXiuqingHUQifengLUAijunZHUManyunLINLingSUNLinCHENandNaXU
    Advances in Atmospheric Sciences 2022年1期

    Peng ZHANG, Xiuqing HU, Qifeng LU, Aijun ZHU, Manyun LIN, Ling SUN, Lin CHEN, and Na XU

    Innovation Center for Fengyun Meteorological Satellite, National Satellite Meteorological Center,China Meteorological Administration, Beijing 100081, China

    (Received 4 August 2021; revised 26 August 2021; accepted 30 August 2021)

    ABSTRACT Fengyun-3E (FY-3E), the world’s first early-morning-orbit meteorological satellite for civil use, was launched successfully at the Jiuquan Satellite Launch Center on 5 July 2021. The FY-3E satellite will fill the vacancy of the global early-morning-orbit satellite observation, working together with the FY-3C and FY-3D satellites to achieve the data coverage of early morning, morning, and afternoon orbits. The combination of these three satellites will provide global data coverage for numerical weather prediction (NWP) at 6-hour intervals, effectively improving the accuracy and time efficiency of global NWP, which is of great significance to perfect the global earth observing system. In this article, the background and meteorological requirements for the early-morning-orbit satellite are reviewed, and the specifications of the FY-3E satellite, as well as the characteristics of the onboard instrumentation for earth observations, are also introduced. In addition, the ground segment and the retrieved geophysical products are also presented. It is believed that the NWP communities will significantly benefit from an optimal temporal distribution of observations provided by the early morning,mid-morning, and afternoon satellite missions. Further benefits are expected in numerous applications such as the monitoring of severe weather/climate events, the development of improved sampling designs of the diurnal cycle for accurate climate data records, more efficient monitoring of air quality by thermal infrared remote sensing, and the quasicontinuous monitoring of the sun for space weather and climate.

    Key words: FY-3E, operational meteorological satellite, early morning orbit

    1. Introduction

    Fengyun-3E (FY-3E), the world's first early-morning-orbit meteorological satellite for civil use, was launched successfully at the Jiuquan Satellite Launch Center on 5 July 2021. FY-3E is the fifth satellite, among the second generation of the Chinese meteorological satellites, in a near-polar, sun-synchronous orbit (hereafter referred to as the polar; Zhang et al.,2018). Its primary mission is to provide global observations for numerical weather prediction (NWP) (Zhang et al., 2015).Furthermore, it will also benefit the fields of weather, climate, and environmental science due to its multiple instruments,global coverage, and high spatial resolution.

    The polar-orbiting satellites synchronized their ascending nodes (the point where the satellite crosses the equatorial plane and goes northward) with the sun so that they can cross the equator at the same local solar time (LST) every day in a north-south-oriented ellipse (Kidder and Vonder Haar, 1995). The polar-orbiting satellites are classified by orbits that pass at different LSTs. Mid-morning satellites (AM) ascend (or descend) at around 10 LST, afternoon satellites (PM) at around 14 LST, and early-morning satellites (EM) at around 6 LST (as shown in Fig. 1). The ground track of EM satellites is near the terminator line, i.e., the dividing line which distinguishes the illuminated face of the sunlit Earth and its night side. Considering that the polar-orbiting meteorological satellites are extremely important to global NWP models, the baseline configuration of the core polar operational constellation has evolved from a two-orbit system (mid-morning and afternoon orbits) to a three-orbit system (early-morning, mid-morning, and afternoon orbits) following the World Meteorological Organization(WMO) “Vision for global observing systems in 2025” (WMO, 2009).

    Fig. 1. The schematic diagram for orbital planes of the three polar-orbiting satellites over the Northern Hemisphere. The EM orbit in red is near the limit between the illuminated side and the night side of the Earth.

    2. Meteorological requirements

    Eyre and Lorenc (1989) proposed the direct use of satellite-sounding radiances in the NWP. Four years later, Eyre et al.(1993) successfully assimilated the radiation information provided by the TIROS Operational Vertical Sounder into the NWP system through a one-dimensional variational analysis. Eyre’s work has launched a new era of using the polar-orbiting meteorological satellite data into the NWP model. Joo et al. (2013) found that satellite observations account for 64% of the short-range forecast error reduction, while the remaining 36% comes from the assimilation of ground-based observations. Moreover, the polar-orbiting satellite data contributes to around 90% of the satellite observation-involved forecast error reduction. Currently, the European Centre for Medium-Range Weather Forecasts (ECMWF) has already input hundreds of satellite observations into its NWP model (Florence et al., 2018).

    The current global NWP model assimilates satellite observations at 6-hour intervals, which requires an initial meteorological field every six hours. If only the AM and PM satellites are deployed in orbits, about 20% of the global area cannot be covered by satellite observations (Fig. 2). The long-term meteorological satellite observation plans of Europe, the United States of America, and China are expected to provide robust components for the AM and PM orbits, but with an anticipated gap in the EM orbit, according to the WMO (2009) and the Coordination Group for Meteorological Satellites (CGMS,2011). Table 1 shows the current on-orbit polar operational meteorological satellites, and it is evident that all the satellites are placed in the AM or PM orbit except the latest launch of the FY-3E.

    Table 1. Current on-orbit polar meteorological satellites.

    Fig. 2. Global coverage per six hours by current on-orbit polar meteorological satellites.

    The critical situation above has been highlighted on several occasions by the CGMS and the WMO Commission for Basic Systems. The EM satellites are expected to work synergistically with the AM and PM satellites to provide 100-percent global data coverage for initial meteorological fields in the NWP model every six hours, thereby increasing the forecast accuracy on both hemispheric and regional scales (WMO, 2013).

    In 2012, the China Meteorological Administration (CMA) expressed its willingness to investigate the feasibility of conducting a mission with sounding capabilities on the EM orbit to better deploy the atmospheric sounding systems on the planned three orbits (CGMS, 2012). To dedicate particular attention and support to the CMA in the process of assessing such an option, the WMO and the CGMS convened a “Tiger Team” to coordinate the technical evaluation of the global and regional impacts from placing the FY-3 satellite in the EM orbit. A seminar was convened in Beijing on 25 and 26 April 2013 to critically analyze the results from various impact studies conducted by the “Tiger Team”. An assessment of the benefits of a satellite mission in an EM orbit has since been drafted and reported (WMO, 2013).

    Recognizing the benefits of the EM-orbiting satellites, especially regarding the great significance of obtaining evenly distributed sounding data for global and regional NWP systems, the CMA has drafted the mission requirements of FY-3E in 2014, where the FY-3E is set as one satellite in the FY-3 third phase program. The FY-3 third phase program, consisting of four satellites, was approved and funded by the Chinese government in 2018. As the first satellite in the third phase of the FY-3 series, the FY-3E satellite was originally scheduled to launch in late 2020, before being postponed to 2021 or later.The mission installed 11 onboard instruments to provide global observations for NWP assimilation to improve weather forecast accuracy as well as to monitor other meteorological, oceanographic, and solar-terrestrial physics environments.

    3. Satellite platform and instrument configuration

    3.1. Orbit specifications

    The FY-3E is a sun-synchronous polar-orbiting environmental satellite. It is generally a hexahedron with dimensions of 5.7 m × 3.2 m × 11.6 m in flight mode, with a total mass of about 2675 kg. One solar panel is fixedly mounted on one side of the satellite’s main body. The attitude control of the satellite employs a three-axis stabilization with a measuring precision of 90 m, and an onboard star sensor is employed for attitude sensing. Table 2 illustrates the major orbital parameters of the satellite.

    3.2. Instrument configuration

    There are 11 instruments onboard the FY-3E satellite, as listed in Table 3. Specifically, only one instrument, the Microwave Humidity Sounder-II (MWHS-II), is identical to the one flown on the FY-3D mission. The three brand-new instruments include the dual-frequency wind radar (WindRad), the solar spectral irradiance monitor(SSIM), and the solar X-ray and extreme ultraviolet imager(X-EUVI). Seven improved instruments consist of: the medium resolution spectral imager with low-light capability (MERSI-LL), the microwave temperature sounder (MWTS-III), the hyperspectral infrared atmospheric sounder (HIRAS-II), the global navigation satellite system occultation sounder with a reflectometry technique(GNOS-II), the solar irradiance monitor (SIM-II), the space environment monitor (SEM), and the ionospheric photometer with three view angles (Tri-IPM). Table 3 shows the main characteristics of the onboard instruments. Figure 3 presents the satellite spacecraft model and associated payload configuration.

    Table 2. Orbit specifications of the FY-3E.

    Table 3. Instruments onboard the FY-3E and their primary characteristics.

    4. Ground segment for data processing and product generation

    4.1. Ground segment

    The spacecraft communication links use S-band and X-band microwaves. Commands are given via the S-band only.Commands and telemetry links are active simultaneously. The S-band section of the communication subsystem provides primary telemetry and command service to and from ground stations of the FY-3E, while the X-band section of the communication subsystem provides the science and engineering data downlink for common spacecraft of the FY-3E.

    The FY-3E ground segment for data receiving and processing inherits the framework of previous satellites, especially the FY-3D, with enhanced information technology resources and cloud service capabilities.

    When the FY-3E is in orbit, it broadcasts the real-time, medium-resolution spectral picture transmission (MPT) data corresponding to all 11 payloads in the X-band to the world. The direct readout service of the FY-3E enables users equipped with proper data acquisition devices to receive data directly from satellite broadcasts. The international pre-processing software package will be provided to support direct broadcasting. The global delayed picture transmission (DPT) data of the 11 payloads in the X-band are transmitted to the ground stations whenever the FY-3E is passing over the acquisition range within the ground station network.

    The FY-3E global data acquisition network consists of seven ground stations, including five domestic ground stations(Beijing station, Guangzhou station, Urumqi station, Jiamusi station, and Kashi station, as shown in Fig. 4a) and two high-latitude ground stations (Kiruna station and Troll station, as shown in Fig. 4b). Under the unified scheduling of the integrated operation and control system, the FY-3E data are received and transmitted to the Data Processing Center in Beijing. Global data acquisition latency would be expected with three hours. After a six-month, on-orbit commission test, the FY-3E data will be made available on the Fengyun satellite data service website (http://data.nsmc.org.cn).

    Fig. 3. The satellite spacecraft model and associated payload configuration.

    Fig. 4. (a) Five domestic ground stations and (b) two high-latitude ground stations for receiving the FY-3E data.

    4.2. Geophysical products

    With multiple sensors onboard the FY-3E, a complete remote sensing product system has been generated, producing more than 40 kinds of products in six categories, including images, clouds and radiation, sea and land surface, atmosphere,atmospheric compositions, and space weather, which cover the main requirements of the WMO Integrated Global Observing System (Table 4). Based on the observation capability of the new early-morning orbit, new remote sensing products, such as the nighttime light imageries with near-constant contrast in low-light conditions, the sea-surface wind field, the sea-ice edge and type, the vertical ozone profile, have been developed.

    Table 4. FY-3E product list.

    FY-3E offers certain advantages for monitoring trace gases such as carbon monoxide and ozone in the infrared due to the contrasting temperature between the earth’s surface layer and the atmospheric boundary layer on this orbit. The generally smaller cloud amount and lower absolute humidity in the early morning can also provide an advantage for monitoring the air quality.

    The early-morning-orbit satellite also offers the potential to observe the sun in an almost continuous manner, providing significant advantages for monitoring the climate, solar activity, and active regions for space, generating products such as the solar constant, solar spectrum measurements, solar X-ray images, and solar extreme ultraviolet images. The algorithms of the inherited products can been found in Zhang el al.(2009, 2019), Yang et al. (2011, 2012) and Xian et al.(2021)

    5. Conclusions

    After about six months of conducting an on-orbit commission test, the FY-3E will transition to operational mode. It will work together with the FY-3C in AM orbit and the FY-3D in PM orbit to constitute the constellation of polar-orbiting satellites in three orbital planes that are distributed roughly 60 degrees apart. The justification for having at least three operational polar-orbiting satellites, rather than two, has been supported by many NWP impact studies over the last decade (Eyre and English, 2008; Bormann and Bauer, 2010; Bormann et al., 2010). The FY-3E, in concert with the FY-3C and the FY-3D, will provide full global coverage in every six-hour data assimilation window. It is expected that the number of onboard FY instruments, which provide the data assimilated into the CMA NWP model GRAPES, will be increased from the current 11 to 18. The amount of the assimilated FY data will increase by 1.5 times compared with the current status. Furthermore, a more uniform temporal spacing of the observations has a particularly significant impact on those cases with rapidly increasing forecast errors, such as rapidly evolving weather systems. Therefore, the FY-3E satellite observations with these practical advantages are extremely important for severe weather situations.

    FY-3E increased the local visiting frequency. The EM-AM-PM polar-orbiting constellation can provide up to six measurements per day, approximately every four hours at middle and low latitudes. At high latitudes, the measurements will be more frequent because successive orbits offer overlapping coverage. This polar-orbiting constellation will support a denser sampling of the diurnal cycle, which is critical for monitoring climate factors such as surface temperature, atmospheric temperature, atmospheric humidity, and precipitation.

    It is of particular significance at the international level to deploy the FY-3E in the EM orbit. In becoming the primary satellite provider for early morning orbits, China will share a global responsibility with Europe in the mid-morning-orbit observation and with the United States of America in the afternoon-orbit observation. In the follow-up program of the Fengyun 3, there will be another EM orbit satellite that will serve as the successor of FY-3E. According to the roadmap of Fengyun 5 program, an EM orbit satellite also has been planned to keep the continuity of operational measurements. The successful launch of the FY-3E enables the community to meet the baseline configuration agreed upon by the CGMS members in support of the WMO “Vision for global observing systems in 2025”.

    Acknowledgements. This work was funded by the FY3-03 project and the National Key Technology Research and Development Program of China (Grant Nos. 2018YFB0504900 and 2018YFB0504905).

    免费电影在线观看免费观看| 长腿黑丝高跟| 少妇丰满av| 精品一区二区三区人妻视频| 最新在线观看一区二区三区| 亚洲国产精品成人综合色| 国产不卡一卡二| 日韩欧美三级三区| а√天堂www在线а√下载| 禁无遮挡网站| 亚洲av不卡在线观看| 十八禁国产超污无遮挡网站| 真人做人爱边吃奶动态| 欧美区成人在线视频| 人人妻,人人澡人人爽秒播| 草草在线视频免费看| 国产国拍精品亚洲av在线观看| 亚洲性夜色夜夜综合| 欧美激情在线99| 嫁个100分男人电影在线观看| 两人在一起打扑克的视频| 亚洲欧美精品综合久久99| 老司机福利观看| 一本精品99久久精品77| 国产伦一二天堂av在线观看| 在线观看av片永久免费下载| av中文乱码字幕在线| 国产精品久久久久久精品电影| 国产主播在线观看一区二区| 俄罗斯特黄特色一大片| 18禁黄网站禁片午夜丰满| 欧美高清性xxxxhd video| 精品人妻一区二区三区麻豆 | 一本久久中文字幕| 国产乱人视频| 国产视频一区二区在线看| 日本熟妇午夜| 韩国av一区二区三区四区| av专区在线播放| 免费av不卡在线播放| 国产精品久久久久久亚洲av鲁大| 麻豆国产97在线/欧美| 日本 欧美在线| 日韩 亚洲 欧美在线| 国产色爽女视频免费观看| 看免费成人av毛片| 深夜a级毛片| 精品久久久久久,| 99在线人妻在线中文字幕| 我要搜黄色片| 少妇的逼好多水| 性插视频无遮挡在线免费观看| 麻豆精品久久久久久蜜桃| 精品一区二区三区av网在线观看| 黄色日韩在线| 老熟妇仑乱视频hdxx| 国产免费av片在线观看野外av| 琪琪午夜伦伦电影理论片6080| 黄色视频,在线免费观看| 美女被艹到高潮喷水动态| 观看美女的网站| 五月玫瑰六月丁香| 久久婷婷人人爽人人干人人爱| 91麻豆精品激情在线观看国产| 久久久久久久久大av| www日本黄色视频网| 国产成人福利小说| 给我免费播放毛片高清在线观看| 国产久久久一区二区三区| 欧美日本视频| 97碰自拍视频| 国产欧美日韩精品亚洲av| 国模一区二区三区四区视频| 国内久久婷婷六月综合欲色啪| 亚洲,欧美,日韩| 精品人妻偷拍中文字幕| 国产黄a三级三级三级人| 亚洲aⅴ乱码一区二区在线播放| 很黄的视频免费| 成人一区二区视频在线观看| 国产高潮美女av| av在线观看视频网站免费| 国产欧美日韩精品亚洲av| 国产免费一级a男人的天堂| 亚洲一级一片aⅴ在线观看| 成人无遮挡网站| 尤物成人国产欧美一区二区三区| 日韩中文字幕欧美一区二区| 男人舔奶头视频| 国产一区二区激情短视频| 亚洲成人久久爱视频| 国产激情偷乱视频一区二区| 亚洲美女黄片视频| 我要搜黄色片| 乱码一卡2卡4卡精品| 日韩中文字幕欧美一区二区| a级毛片a级免费在线| 韩国av在线不卡| 国产精品亚洲美女久久久| 精品人妻视频免费看| 免费观看人在逋| 男人狂女人下面高潮的视频| 国产精品1区2区在线观看.| 丰满的人妻完整版| 麻豆成人午夜福利视频| 亚洲性久久影院| 午夜福利18| 狠狠狠狠99中文字幕| 欧美极品一区二区三区四区| h日本视频在线播放| 国产伦精品一区二区三区视频9| 亚洲五月天丁香| 最近最新中文字幕大全电影3| 亚洲电影在线观看av| 亚洲av美国av| 欧美色欧美亚洲另类二区| 老司机深夜福利视频在线观看| 美女免费视频网站| 亚洲va在线va天堂va国产| 又黄又爽又刺激的免费视频.| 国产极品精品免费视频能看的| 免费高清视频大片| 色视频www国产| 不卡视频在线观看欧美| 深夜精品福利| 午夜激情福利司机影院| 国产精品国产高清国产av| avwww免费| 午夜免费激情av| 联通29元200g的流量卡| 午夜免费成人在线视频| 在线观看午夜福利视频| 人人妻人人看人人澡| 精品一区二区三区人妻视频| 美女免费视频网站| 亚洲综合色惰| 色综合站精品国产| 国内毛片毛片毛片毛片毛片| 久久国内精品自在自线图片| 在线观看午夜福利视频| 国产视频内射| 99久久成人亚洲精品观看| 亚洲最大成人中文| h日本视频在线播放| av中文乱码字幕在线| 天堂√8在线中文| 久久天躁狠狠躁夜夜2o2o| 日本撒尿小便嘘嘘汇集6| 久久久精品大字幕| 在线观看66精品国产| 午夜福利在线在线| 夜夜爽天天搞| 免费一级毛片在线播放高清视频| 成人特级黄色片久久久久久久| 99久久精品热视频| 亚洲国产色片| 国内精品一区二区在线观看| 国产成人福利小说| 久久九九热精品免费| 精品午夜福利视频在线观看一区| 久久精品国产亚洲网站| 国产老妇女一区| 成人毛片a级毛片在线播放| av国产免费在线观看| 欧美日韩中文字幕国产精品一区二区三区| 午夜福利在线观看吧| 性欧美人与动物交配| 国产av麻豆久久久久久久| 在线观看免费视频日本深夜| 久久精品综合一区二区三区| 亚洲男人的天堂狠狠| 99视频精品全部免费 在线| 亚洲国产欧洲综合997久久,| 精品日产1卡2卡| 又紧又爽又黄一区二区| a级毛片a级免费在线| 如何舔出高潮| 国产精品综合久久久久久久免费| 欧美激情在线99| 99热这里只有是精品50| 久久国产乱子免费精品| 欧美色视频一区免费| 色5月婷婷丁香| 久久精品夜夜夜夜夜久久蜜豆| 最后的刺客免费高清国语| 内地一区二区视频在线| 免费看光身美女| 夜夜看夜夜爽夜夜摸| 亚洲欧美精品综合久久99| 婷婷丁香在线五月| 久久久久精品国产欧美久久久| 国产成人一区二区在线| 亚洲中文字幕一区二区三区有码在线看| avwww免费| 一个人免费在线观看电影| 亚洲人成伊人成综合网2020| 免费一级毛片在线播放高清视频| 不卡一级毛片| 搡老妇女老女人老熟妇| 99精品在免费线老司机午夜| 热99在线观看视频| 乱系列少妇在线播放| 国产探花极品一区二区| 亚洲国产欧美人成| 天堂影院成人在线观看| 国产一区二区三区av在线 | av国产免费在线观看| 99久久精品国产国产毛片| 国产色婷婷99| 亚洲中文字幕日韩| 午夜a级毛片| 变态另类丝袜制服| 一本一本综合久久| 国产在线精品亚洲第一网站| 熟妇人妻久久中文字幕3abv| 22中文网久久字幕| 又粗又爽又猛毛片免费看| 色5月婷婷丁香| 久久久久久久久中文| 给我免费播放毛片高清在线观看| 日本撒尿小便嘘嘘汇集6| 搡老熟女国产l中国老女人| 无遮挡黄片免费观看| 亚洲自偷自拍三级| 91久久精品国产一区二区成人| 亚洲成人久久爱视频| 亚洲在线自拍视频| 麻豆成人av在线观看| 日日啪夜夜撸| 国产私拍福利视频在线观看| 免费人成视频x8x8入口观看| 在线看三级毛片| 免费一级毛片在线播放高清视频| 999久久久精品免费观看国产| 亚洲国产精品sss在线观看| 国产欧美日韩精品亚洲av| 禁无遮挡网站| 中文在线观看免费www的网站| 亚洲最大成人中文| av中文乱码字幕在线| 国产成人福利小说| 最近中文字幕高清免费大全6 | 蜜桃亚洲精品一区二区三区| 亚洲中文日韩欧美视频| 人妻夜夜爽99麻豆av| 99热只有精品国产| 亚洲欧美清纯卡通| 一本精品99久久精品77| 国产一区二区三区视频了| 久久这里只有精品中国| 天天躁日日操中文字幕| 欧美极品一区二区三区四区| 亚洲国产日韩欧美精品在线观看| 亚洲 国产 在线| 午夜亚洲福利在线播放| 午夜视频国产福利| 亚洲av免费在线观看| 久久久国产成人精品二区| 成年女人看的毛片在线观看| 日本 欧美在线| 91在线观看av| 国产黄a三级三级三级人| 亚洲精品乱码久久久v下载方式| 91午夜精品亚洲一区二区三区 | 日本免费一区二区三区高清不卡| 99久久精品国产国产毛片| 欧美精品啪啪一区二区三区| 欧美性感艳星| 午夜免费男女啪啪视频观看 | 嫁个100分男人电影在线观看| 久久精品国产亚洲av涩爱 | 久久这里只有精品中国| 一级av片app| ponron亚洲| 久久天躁狠狠躁夜夜2o2o| 中文资源天堂在线| 哪里可以看免费的av片| 久久久久久久亚洲中文字幕| 久久久久久久久大av| 色视频www国产| 永久网站在线| 精品久久久久久久末码| 亚洲欧美日韩东京热| 亚洲内射少妇av| 午夜久久久久精精品| 国产一区二区三区av在线 | 一边摸一边抽搐一进一小说| 欧美日韩瑟瑟在线播放| 亚洲av一区综合| 日日摸夜夜添夜夜添小说| 一进一出好大好爽视频| 可以在线观看的亚洲视频| 亚洲精品乱码久久久v下载方式| a级一级毛片免费在线观看| av福利片在线观看| 日韩精品有码人妻一区| videossex国产| 亚洲av成人精品一区久久| 人人妻,人人澡人人爽秒播| 亚洲av免费高清在线观看| 亚洲色图av天堂| 乱人视频在线观看| 真人做人爱边吃奶动态| 女生性感内裤真人,穿戴方法视频| 直男gayav资源| 国产真实伦视频高清在线观看 | 夜夜看夜夜爽夜夜摸| 69av精品久久久久久| 搡老熟女国产l中国老女人| 床上黄色一级片| 久久久国产成人精品二区| 91狼人影院| 亚洲男人的天堂狠狠| 亚洲午夜理论影院| 久久久久久九九精品二区国产| 十八禁网站免费在线| 亚洲人与动物交配视频| 亚洲无线观看免费| 久久婷婷人人爽人人干人人爱| 嫁个100分男人电影在线观看| 国产高清三级在线| 91久久精品电影网| 日本 欧美在线| 亚洲无线观看免费| 深爱激情五月婷婷| 亚洲午夜理论影院| 欧美一区二区国产精品久久精品| 联通29元200g的流量卡| АⅤ资源中文在线天堂| 精品一区二区三区av网在线观看| 亚洲自偷自拍三级| 黄色欧美视频在线观看| 久久这里只有精品中国| 蜜桃久久精品国产亚洲av| 女同久久另类99精品国产91| 国产一区二区在线av高清观看| 别揉我奶头 嗯啊视频| 亚洲精品成人久久久久久| 成年免费大片在线观看| 国产三级在线视频| 亚洲成a人片在线一区二区| 国产爱豆传媒在线观看| 亚洲国产色片| 悠悠久久av| 禁无遮挡网站| 国产一区二区三区视频了| 午夜免费激情av| 又紧又爽又黄一区二区| 国产成人影院久久av| 亚洲专区国产一区二区| 99国产精品一区二区蜜桃av| 看十八女毛片水多多多| 亚洲精品影视一区二区三区av| 亚洲va日本ⅴa欧美va伊人久久| 最近视频中文字幕2019在线8| 精品久久久久久久人妻蜜臀av| 变态另类丝袜制服| 国内精品一区二区在线观看| 女人十人毛片免费观看3o分钟| 亚洲性久久影院| 极品教师在线免费播放| 内射极品少妇av片p| 国产精品女同一区二区软件 | 国产欧美日韩精品亚洲av| 国产在线精品亚洲第一网站| 欧美精品国产亚洲| 黄色欧美视频在线观看| 国产精品国产三级国产av玫瑰| 国产视频内射| 国产极品精品免费视频能看的| 日韩中文字幕欧美一区二区| 国产精品一及| 亚洲人成网站在线播| 人人妻人人澡欧美一区二区| 毛片女人毛片| 成人高潮视频无遮挡免费网站| 欧美日韩中文字幕国产精品一区二区三区| 国产精品久久久久久久久免| 国产三级中文精品| 69av精品久久久久久| 久久久久久久久中文| 亚洲自偷自拍三级| 高清在线国产一区| 18禁黄网站禁片免费观看直播| 久久久国产成人免费| 日本成人三级电影网站| 制服丝袜大香蕉在线| 淫妇啪啪啪对白视频| 婷婷精品国产亚洲av在线| 免费搜索国产男女视频| 午夜日韩欧美国产| 十八禁网站免费在线| 久9热在线精品视频| 99久久九九国产精品国产免费| 国产国拍精品亚洲av在线观看| 精品99又大又爽又粗少妇毛片 | 日韩欧美三级三区| 国产精品伦人一区二区| 全区人妻精品视频| 听说在线观看完整版免费高清| 在线播放国产精品三级| 亚洲精品一区av在线观看| 嫩草影院入口| 免费av观看视频| www.色视频.com| 男人狂女人下面高潮的视频| 午夜福利欧美成人| 日本在线视频免费播放| 丰满人妻一区二区三区视频av| 久久人妻av系列| 免费电影在线观看免费观看| 啦啦啦韩国在线观看视频| 床上黄色一级片| 赤兔流量卡办理| 黄色视频,在线免费观看| 欧美人与善性xxx| 一夜夜www| 亚洲最大成人中文| 亚洲精品影视一区二区三区av| 日本成人三级电影网站| 一本一本综合久久| 国产三级中文精品| 91精品国产九色| avwww免费| 久久久久精品国产欧美久久久| 久久精品国产清高在天天线| 啦啦啦韩国在线观看视频| 亚洲av日韩精品久久久久久密| 精品久久久久久久久久久久久| 国产真实伦视频高清在线观看 | 亚洲人成网站在线播放欧美日韩| av在线天堂中文字幕| 啦啦啦韩国在线观看视频| 国产私拍福利视频在线观看| 麻豆av噜噜一区二区三区| .国产精品久久| 俄罗斯特黄特色一大片| 国内精品久久久久精免费| 午夜福利欧美成人| 亚洲人成伊人成综合网2020| 黄色配什么色好看| 少妇被粗大猛烈的视频| 内地一区二区视频在线| 国产高清激情床上av| 高清在线国产一区| 少妇的逼好多水| 久久久久久久久中文| 日韩欧美三级三区| 在线看三级毛片| 黄色配什么色好看| 桃色一区二区三区在线观看| 欧美三级亚洲精品| 男女视频在线观看网站免费| 欧美日本视频| 女人十人毛片免费观看3o分钟| 在线a可以看的网站| 国模一区二区三区四区视频| 亚洲图色成人| 日韩欧美一区二区三区在线观看| 乱码一卡2卡4卡精品| 国产精品,欧美在线| 日日夜夜操网爽| 综合色av麻豆| 久久久久国产精品人妻aⅴ院| 国产精品久久视频播放| 一区二区三区高清视频在线| 欧美3d第一页| 黄色女人牲交| 亚洲精品乱码久久久v下载方式| 少妇人妻一区二区三区视频| 午夜福利在线观看吧| 啪啪无遮挡十八禁网站| 99精品在免费线老司机午夜| 久久久久久伊人网av| 特大巨黑吊av在线直播| 婷婷精品国产亚洲av在线| 好男人在线观看高清免费视频| 国产黄片美女视频| 观看美女的网站| 亚洲精华国产精华液的使用体验 | 国产av一区在线观看免费| 五月伊人婷婷丁香| 国产69精品久久久久777片| 欧美bdsm另类| 国产成人a区在线观看| 亚洲av日韩精品久久久久久密| 欧美高清成人免费视频www| 十八禁网站免费在线| 亚洲在线自拍视频| 久久婷婷人人爽人人干人人爱| 欧美3d第一页| 男女啪啪激烈高潮av片| 高清毛片免费观看视频网站| h日本视频在线播放| 欧美日韩中文字幕国产精品一区二区三区| 别揉我奶头 嗯啊视频| 国产成年人精品一区二区| 18+在线观看网站| 欧美zozozo另类| 欧美三级亚洲精品| 国产日本99.免费观看| 久久精品夜夜夜夜夜久久蜜豆| 亚洲在线观看片| 黄色视频,在线免费观看| 亚洲经典国产精华液单| 99在线视频只有这里精品首页| 亚洲精品在线观看二区| 欧美国产日韩亚洲一区| 色哟哟·www| 久久久久久久久久成人| 一本久久中文字幕| 国产av在哪里看| 别揉我奶头 嗯啊视频| 床上黄色一级片| 日韩国内少妇激情av| 桃红色精品国产亚洲av| 亚洲精品在线观看二区| 久久精品国产鲁丝片午夜精品 | 国产探花极品一区二区| 午夜福利视频1000在线观看| 国产三级在线视频| 成人亚洲精品av一区二区| 国产私拍福利视频在线观看| 免费av观看视频| 日日干狠狠操夜夜爽| 久久久久国产精品人妻aⅴ院| 岛国在线免费视频观看| 欧美精品啪啪一区二区三区| 亚洲无线在线观看| 赤兔流量卡办理| 国产精品爽爽va在线观看网站| 麻豆一二三区av精品| 久久久久久大精品| 麻豆一二三区av精品| 综合色av麻豆| 亚洲国产日韩欧美精品在线观看| 欧美一区二区亚洲| 在线观看66精品国产| 热99re8久久精品国产| 国产主播在线观看一区二区| 看片在线看免费视频| 久久亚洲真实| 97碰自拍视频| 国内久久婷婷六月综合欲色啪| 欧美性猛交黑人性爽| 波野结衣二区三区在线| 精品无人区乱码1区二区| 日韩欧美一区二区三区在线观看| 日韩欧美在线乱码| 最后的刺客免费高清国语| 婷婷精品国产亚洲av在线| 国产av一区在线观看免费| 狂野欧美激情性xxxx在线观看| 婷婷精品国产亚洲av| 国产成人aa在线观看| 搡女人真爽免费视频火全软件 | 亚洲欧美日韩东京热| 麻豆国产av国片精品| 欧美日韩精品成人综合77777| 大又大粗又爽又黄少妇毛片口| 搡老妇女老女人老熟妇| 免费在线观看影片大全网站| 欧美另类亚洲清纯唯美| 久久精品综合一区二区三区| 免费av不卡在线播放| x7x7x7水蜜桃| 国产精品,欧美在线| 欧美+日韩+精品| 国产亚洲精品久久久com| 亚洲精品日韩av片在线观看| 精品国内亚洲2022精品成人| 99久久无色码亚洲精品果冻| 欧美又色又爽又黄视频| 国产又黄又爽又无遮挡在线| 国产伦人伦偷精品视频| 国内精品美女久久久久久| 特大巨黑吊av在线直播| 久久久久久国产a免费观看| 免费av不卡在线播放| 国产视频内射| 国产精品人妻久久久影院| 成人高潮视频无遮挡免费网站| 国产精品一区www在线观看 | a级一级毛片免费在线观看| 最近最新免费中文字幕在线| 亚洲精品一区av在线观看| 久久久久久久亚洲中文字幕| 两个人视频免费观看高清| 日韩人妻高清精品专区| 国产在视频线在精品| 欧美一区二区亚洲| 国内精品美女久久久久久| 最新在线观看一区二区三区| 久久精品夜夜夜夜夜久久蜜豆| 又黄又爽又刺激的免费视频.| 亚洲熟妇熟女久久| 欧美日本视频| 亚洲av熟女| 久久香蕉精品热| 别揉我奶头~嗯~啊~动态视频| 午夜免费成人在线视频| 女的被弄到高潮叫床怎么办 | 级片在线观看| 麻豆国产97在线/欧美| 欧美日本视频| 春色校园在线视频观看| 97人妻精品一区二区三区麻豆| 国产av麻豆久久久久久久| 一边摸一边抽搐一进一小说| 国产av在哪里看| 啦啦啦观看免费观看视频高清| 亚洲黑人精品在线| 日本五十路高清| 国产色婷婷99| 天天躁日日操中文字幕|