• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Uniqueness of Entire Functions Concerning Differences

    2022-01-11 09:22:06

    (Institute of Applied Mathematics,South China Agricultural University,Guangzhou 510642,China)

    Abstract:In this paper,we study the uniqueness of entire functions and prove the following theorem.Let f be a transcendental entire function of finite order.Then there exists at most one positive integer k,such that f(z)Δkcf(z)-R(z)has finitely many zeros,where R(z) is a non-vanishing rational function and c is a nonzero complex number.Our result is an improvement of the theorem given by Andasmas and Latreuch [1].

    Keywords:Nevanlinna theory;Uniqueness;Entire functions;Difference operators

    §1.Introduction and main results

    Let C denote the complex plane andfbe a meromorphic function on C.In this paper,we assume that the reader is familiar with the fundamental results and the standard notations of the Nevanlinna value distribution theory such asT(r,f),m(r,f) andN(r,f) (see [9,15,16]).In addition,S(r,f)=o(T(r,f)),asr →∞outside of a possible exceptional set of finite linear measure.A meromorphic functionais called small function with respect tof,provided thatT(r,a)=S(r,f),S(f) denotes the set of all small functions offandρ(f) denotes the order of growth off.

    For a meromorphic functionf(z),we define its difference operators by

    In 1959,W.K.Hayman [8] proved that iffis a transcendental meromorphic function(entire function),nis an integer satisfyingn≥3 (n≥2) andcis a nonzero complex number,thenfnf′=chas infinitely many solutions.In 1967,J.Clunie [6] proved that the above result is also true whenn=1 for a transcendental entire function.Later on,Hayman [10] conjectured that the theorem remains to be valid whenn=2 andn=1 for a transcendental meromorphic function.Then,the casen=2 was settled by E.Mues [12] in 1979 and casen=1 was settled by Bergweiler-Eremenko [2] and Chen-Fang [3] in 1995.

    In conclusion,we have the following result.

    Theorem 1.1.Let f be a transcendental meromorphic function.If n is an integer satisfying n≥1and c is a nonzero complex number.Then fnf′=c has infinitely many solutions.

    Up to now,this problem about the form offnf′has been resolved.Naturally,a similar question was raised:whether the form offf(k) have the same conclusion?

    In 1996,Yang and Hu proved the following theorem.

    Theorem 1.2.[14] Let f be a transcendental entire function of finite order.Then there exists at most one integer k ≥2,such that ff(k) has a nonzero and finite exceptional value.

    In recent years,the value distribution of meromorphic functions with respect to difference analogue has become a subject of some interests,Andasmas and Latreuch proved the following theorem in 2020.

    Theorem 1.3.[1] Let f(z)be a transcendental entire function of finite order,let c be a nonzero complex number and n,m(m>n)be two positive integers,such that,whereare two non-vanishing difference opeartors of f.Then,for all non-vanishing polynomial q(z),at least one ofhas infinitely many zeros.

    In this paper,we study these problems further and prove the following result.

    Theorem 1.4.Let f(z)be a transcendental entire function of finite order.Then there exists at most one positive integer k,such thathas finitely many zeros,where R(z)is a non-vanishing rational function and c is a nonzero complex number.

    By Theorem 1.4,we have the following corollary,which is an improvement of Theorem 1.3.

    Corollary 1.1.Let f(z)be a transcendental entire function of finite order,let c be a nonzero complex number and n,m(m>n)be two positive integers,such that,whereare two non-vanishing difference opeartors of f.Then,for all non-vanishing rational function R(z),at least one ofhas infinitely many zeros.

    §2.Some lemmas

    Lemma 2.1.[13] Let f be a meromorphic function,an(/=0),an?1,···,a0be constants,then

    Lemma 2.2.[4,5] Let η1,η2be two arbitrary complex numbers such that η1/=η2and let f(z)be a finite order meromorphic function of order ρ.Then for each ε>0,we have

    Lemma 2.3.[11] Suppose fj(j=1,2,···,n)are meromorphic functions and gk(k=1,2,···,n)(n≥2)are entire functions satisfying the following conditions:

    (i),

    (ii) gj ?gk are not constants for1≤j

    (iii) There exists a set E ?(1,+∞)that has linear measure or logarithmic measure.For1≤j ≤n,1≤h

    Lemma 2.4.[7] Let f(z)be a transcendental meromorphic function of finite order ρ,and let ε>0be a given constant.Then,there exists a set E0?(0,+∞)that has finite logarithmic measure,such that for all z satisfying |z|/∈E0∪[0,1],and for all k,j(0≤j

    Lemma 2.5.[9] Let f be a meromorphic function and let k ∈Z+.Then

    wherepossibly outside a set E1?[0,+∞)of a finite linear measure.If f is a meromorphic function of finite order,then

    Lemma 2.6.[4] Let f be a non-constant,finite order meromorphic solution of

    where P(z,f),Q(z,f)are difference polynomials in f with meromorphic coefficients aj(j=1,2,...,s),and let δ<1.If the degree of Q(z,f)as a polynomial in f(z)and its shifts is at most n,then

    Lemma 2.7.Let α(z),β(z)be two polynomial functions and R1(z),R2(z),T1(z),T2(z)be non-vanishing rational functions.Let f(z)be a finite order transcendental entire solution of the system

    where c is a nonzero complex number,are two non-vanishing difference operators of f and n,m(n

    Furthermore,for all rational functions di(i=1,2),which are not all vanishing,we have

    Proof.Firstly,we prove thatdegα=ρ(f)>0.It is clear thatdegα≤ρ(f).Assume thatdegα<ρ(f).Then by (2.1),we have

    By (2.2),we know that each zero offis the zero ofR1+T1eα.Hence,

    By the First Fundamental Theorem,the inequality (2.4) and Lemma 2.1,Lemma 2.2,for eachε1>0,we have

    which leads to a contradiction thatρ(f)≤max{ρ(f)?1+ε1,degα}.Similarly,we can deduce thatdegβ=ρ(f).Sincefis transcendental,we knowρ(f)>0.Therefore,

    Next,we will provedeg(α+β)=ρ(f).By (2.5),we getdeg(α+β)≤ρ(f).Assume thatdeg(α+β)<ρ(f),which leads toeα+β ∈S(f).Combining (2.1) and (2.2),we have

    Now we prove that.Assume the contrary,we get

    which meansis an entire function.By Lemma 2.2,we have

    By Lemma 2.6 to (2.7),we get

    Therefore,we have

    which is a contradiction.Applying Lemma 2.6 to (2.6),we get

    Combining the above discussion,we have

    which is a contradiction.Hence,we havedeg(α+β)=ρ(f).

    Then we prove thatdeg(α?β)=ρ(f).By (2.5),we getdeg(α?β)≤ρ(f).Assume thatdeg(α?β)<ρ(f).Combining (2.1) and (2.2),we have

    It is obvious thatR1T2?R2T1eα?β/≡0.Otherwise,assume that

    which leads to

    By (2.10) and (2.11),we have

    which is a contradiction,with (2.1) and (2.2) is a equation system.By (2.9),we know that each zero offis the zero ofR1T2?R2T1eα?β.Hence,

    By the First Fundamental Theorem,the inequality (2.12) and Lemma 2.1,Lemma 2.2,for eachε2>0,we have

    which leads to a contradiction thatρ(f)≤max{ρ(f)?1+ε2,deg(α?β)}.Hencedeg(α?β)=ρ(f).

    Finally,in order to prove that,whered1andd2are not all vanishing rational functions.Assume that.By (2.1) and (2.2),we have

    Sincedegα=degβ=deg(α?β)=ρ(f)>0 and by Lemma 2.3,we obtaind1≡d2≡0,which is a contradiction.Thus,the Lemma is proved.

    §3.Proof of Theorem 1.4

    Proof.We will prove this theorem by contradiction.

    Firstly,assume the contrary to our assertion that there exist two positive integersn,m,such that bothhave finitely many zeros,whereR1(z),R2(z) are two non-vanishing rational functions.Without loss of generality,we assume thatn

    By differentiating (3.1) and eliminatingeα,

    where.By Lemma 2.7,

    Now,we prove thatA1/≡0.Assume thatA1≡0,then

    The above result means that there exists a constantC1such thatT1eα=C1,which leads to the contradictionρ(f)=degα=0.By the same method,we can prove thatB1/≡0.As same as the above,we get

    where.It is clear from (3.3) and (3.4) that each multiple zero offis the zero ofBi(i=1,2).Hence,

    wheredenotes the counting function of zeros offwith multiplicity no less than 2.Letz0be the simple zero off.Substitutingz0into (3.3) and (3.4),we have

    Combining (3.5) with (3.6),we obtain

    Then,by Lemma 2.7,.By (3.7),we know the function

    has no simple pole.By the above discussion,we have

    On the other hand,by Lemma 2.2,for eachε3>0,we have

    Hence,T(r,h)=N(r,h)+m(r,h)=S(r,f).Moreover,by (3.8),we have

    Differentiating (3.9),we get

    Substituting (3.9) and (3.10) into (3.3),we have

    Combining the above equation to (3.11),we get

    In the following,we will prove that

    By Lemma 2.7,we get,and it is clear thatThen we assume to the contrary that.By the definition ofA1and simple integration,we get

    whereC2is a nonzero constant.Thus,ρ(f)=degα≤ρ(h)≤ρ?1,which is a contradiction.

    whereC3is a nonzero constant,which leads to the contradictionρ(f)=deg(α?β)=0.

    By (3.12),we have

    Substituting (3.13) into (3.9),we get

    Differentiating (3.13),we have

    Substituting (3.13) and (3.16) into (3.4),we get

    Differentiating (3.17),we get

    Letz0be the simple zero off.Substitutingz0into (3.17) and (3.18),z0is the zero ofHence,the function

    has no simple pole.Using the same method as previous,we getT(r,H)=S(r,f).Then,

    Substituting (3.19) into (3.17),we get

    Then,we provev2/≡0.Assume the contrary and by (3.14),we get that

    By simple integration the above equation,we get

    whereC4is a nonzero constant,which leads to the contradictionρ(f)=deg(α+β)≤ρ(h).Sov2/≡0.Differentiating (3.20),we obtain

    Letz0be the simple zero off.Substitutingz0into (3.20) and (3.22),we get thatz0is the zero ofHence,the function

    has no simple pole.Using the same method as previous,we getT(r,U)=S(r,f).Then,

    Substituting (3.23) into (3.22),we get

    Multiplying (3.20) byand combining it with (3.24),we get

    By (3.25) andh,H,U∈S(f),we deduce that

    EliminatingUfrom (3.26) and (3.27),we obtain

    Two cases will be discussed in the following.

    Case 1..Dividing both sides of the equation (3.28) byv3(4v1v3?v22),we have

    On the other hand,according to the definition ofv2andv3,we have

    Combining (3.29) and (3.30),

    According to the definition ofAi(i=1,2)and by simple integration,we deduce thatdeg(α+β)<ρ(f),which is a contradiction.

    Case 2..By (3.26),we get,so the equation (3.23) can be rewritten as

    Combining (3.31) and (3.19),we get

    On the other hand,according to the definition ofv1,v3,we have

    Combining (3.32) and (3.33),we obtain

    Substitutinginto (3.34),we have

    According to the definition ofv2,v3,we have

    By simple calculation,we get

    whereci(i=1,2,···,18) is a constant.By Lemma 2.4,for each 0<ε4<1 andk=1,2,we have

    for allzsatisfying|z|/∈E0∪[0,1],whereE0?(0,+∞) is a set of finite logarithmic measure.

    Dividing both sides of the equation (3.37) byNoting thatand,whereS(z) is a arbitrary nonzero rational function,we obtain

    By the definition ofA1,A2,we have

    Notingα=aρzρ+aρ?1zρ?1+···+a0andβ=bρzρ+bρ?1zρ?1+···+b0,whereai(aρ/=0),bi(bρ/=0) (i=0,1,···,ρ) are complex numbers,we get

    Two cases will be considered in the following.

    Firstly,we consider the caseCombining (3.1) and (3.15),we get

    Combining (3.2) and (3.13),we get

    whereCombining(3.40)with (3.41),we get

    Hence,

    By (3.15),we know thatφ1f+ψ1f′is an entire function.Therefore,

    whereE1={θ:|f(reiθ)|≤1}andE2={θ:|f(reiθ)|>1}.By Lemma 2.5,we have

    By (3.42) and Lemma 2.5,

    For the case,by the same argument as the above,

    Combining (3.1) with (3.2),we get that

    By(3.43)and(3.44),we getai(z)∈S(f)(i=1,2,3).Sincedeg(α?β)=degα=degβ=ρ(f)>0,we getT1≡T2≡0 by Lemma 2.3,which is a contradiction.

    Therefore,there exists at most one positive integer k,such thatf(z)Δkcf(z)?R(z) has finitely many zeros.

    日韩三级伦理在线观看| 国产黄片视频在线免费观看| 99热6这里只有精品| 亚洲国产精品国产精品| 久久久久久久久久人人人人人人| 视频区图区小说| 18禁在线播放成人免费| 亚洲欧美一区二区三区国产| 国产午夜精品一二区理论片| 最新的欧美精品一区二区| 高清av免费在线| 国语对白做爰xxxⅹ性视频网站| 美女视频免费永久观看网站| 欧美激情极品国产一区二区三区 | 亚洲av二区三区四区| 如日韩欧美国产精品一区二区三区 | 国产av码专区亚洲av| 日韩伦理黄色片| 天堂8中文在线网| 国产老妇伦熟女老妇高清| av在线app专区| 国产黄片美女视频| 国产精品国产三级国产av玫瑰| 久久韩国三级中文字幕| 熟妇人妻不卡中文字幕| 久久国产精品大桥未久av | 又爽又黄a免费视频| 免费看光身美女| 一区二区三区精品91| 精品一区在线观看国产| 丰满饥渴人妻一区二区三| 午夜视频国产福利| 在线观看免费日韩欧美大片 | 免费黄色在线免费观看| 91精品一卡2卡3卡4卡| 亚洲欧美精品自产自拍| 免费不卡的大黄色大毛片视频在线观看| 热re99久久国产66热| 国产精品久久久久久久久免| 性高湖久久久久久久久免费观看| 国产成人91sexporn| 91久久精品国产一区二区成人| 亚洲成人一二三区av| 中文资源天堂在线| 日本午夜av视频| 观看美女的网站| 热re99久久精品国产66热6| 久久精品熟女亚洲av麻豆精品| 国产一区二区三区综合在线观看 | 麻豆精品久久久久久蜜桃| 在线观看免费视频网站a站| 亚洲精品aⅴ在线观看| 国产男人的电影天堂91| 午夜激情福利司机影院| 内射极品少妇av片p| 国产亚洲5aaaaa淫片| 亚洲精品国产成人久久av| 欧美精品亚洲一区二区| 日日摸夜夜添夜夜添av毛片| 久久精品久久久久久噜噜老黄| av在线播放精品| 丝袜在线中文字幕| .国产精品久久| 搡女人真爽免费视频火全软件| 免费观看无遮挡的男女| 精品亚洲成a人片在线观看| 最近中文字幕2019免费版| 国产精品秋霞免费鲁丝片| 91精品伊人久久大香线蕉| 自线自在国产av| av天堂中文字幕网| 日韩大片免费观看网站| 国产精品99久久99久久久不卡 | 天天躁夜夜躁狠狠久久av| 欧美国产精品一级二级三级 | 99热国产这里只有精品6| 国产av国产精品国产| 久久久久久久大尺度免费视频| 亚洲欧美日韩东京热| 欧美日韩精品成人综合77777| 嫩草影院新地址| 特大巨黑吊av在线直播| 亚洲av二区三区四区| www.色视频.com| 午夜福利影视在线免费观看| 一级爰片在线观看| 日日啪夜夜撸| 国产av国产精品国产| 亚洲美女搞黄在线观看| 天堂中文最新版在线下载| 欧美精品国产亚洲| 51国产日韩欧美| 久久毛片免费看一区二区三区| 日韩av在线免费看完整版不卡| 噜噜噜噜噜久久久久久91| 一级黄片播放器| 国产在线男女| 久久精品国产自在天天线| 美女福利国产在线| 黄色欧美视频在线观看| 蜜臀久久99精品久久宅男| 偷拍熟女少妇极品色| 啦啦啦啦在线视频资源| 国产高清不卡午夜福利| 日韩大片免费观看网站| 一级黄片播放器| 99国产精品免费福利视频| 亚洲精品日韩av片在线观看| 日韩欧美精品免费久久| 一级毛片aaaaaa免费看小| 国产永久视频网站| 久久久久久久久大av| 少妇裸体淫交视频免费看高清| 好男人视频免费观看在线| 欧美+日韩+精品| 高清视频免费观看一区二区| 性高湖久久久久久久久免费观看| 日日啪夜夜撸| av又黄又爽大尺度在线免费看| 高清不卡的av网站| 青春草国产在线视频| 久久国产精品男人的天堂亚洲 | 免费看不卡的av| 在线播放无遮挡| 免费黄色在线免费观看| 欧美精品高潮呻吟av久久| 久久精品国产a三级三级三级| 日韩在线高清观看一区二区三区| 免费av不卡在线播放| 欧美最新免费一区二区三区| 日日摸夜夜添夜夜添av毛片| 成年美女黄网站色视频大全免费 | 国产亚洲av片在线观看秒播厂| 夜夜爽夜夜爽视频| h日本视频在线播放| 免费人妻精品一区二区三区视频| √禁漫天堂资源中文www| 亚洲,一卡二卡三卡| 99热这里只有是精品在线观看| 精品一品国产午夜福利视频| 女人久久www免费人成看片| 在线观看av片永久免费下载| 精品久久久久久电影网| 我要看日韩黄色一级片| 99久久综合免费| 欧美丝袜亚洲另类| 午夜免费男女啪啪视频观看| 久久99一区二区三区| 99热网站在线观看| 嫩草影院新地址| 久久99热6这里只有精品| 午夜免费观看性视频| 精品国产露脸久久av麻豆| 精华霜和精华液先用哪个| 亚洲av电影在线观看一区二区三区| 久久久久网色| 精品亚洲成国产av| 久久久久久久久久久免费av| 一区在线观看完整版| 毛片一级片免费看久久久久| 99热这里只有精品一区| 偷拍熟女少妇极品色| 国产精品一二三区在线看| 伊人久久精品亚洲午夜| 国产一区亚洲一区在线观看| 国产精品伦人一区二区| 久久99一区二区三区| 大片电影免费在线观看免费| 国产爽快片一区二区三区| 国产精品一区二区性色av| 久久影院123| 久久久久久久国产电影| 亚洲激情五月婷婷啪啪| 能在线免费看毛片的网站| av专区在线播放| 五月伊人婷婷丁香| 狂野欧美激情性bbbbbb| 99精国产麻豆久久婷婷| 国产综合精华液| 久久久久久久久久久丰满| 国产成人精品无人区| 噜噜噜噜噜久久久久久91| 熟女人妻精品中文字幕| 国产在线一区二区三区精| 大香蕉久久网| 成人毛片a级毛片在线播放| 中国三级夫妇交换| 一级毛片我不卡| 久久精品国产亚洲av天美| 一个人看视频在线观看www免费| 国产亚洲5aaaaa淫片| 国产日韩一区二区三区精品不卡 | 天天躁夜夜躁狠狠久久av| 国产亚洲91精品色在线| 人妻人人澡人人爽人人| 老熟女久久久| 黄色日韩在线| 精品一区二区免费观看| 久久久国产一区二区| 综合色丁香网| 最近2019中文字幕mv第一页| 精品视频人人做人人爽| 国产免费福利视频在线观看| 我的女老师完整版在线观看| 卡戴珊不雅视频在线播放| 如何舔出高潮| 高清视频免费观看一区二区| 欧美日韩视频精品一区| 在线观看国产h片| 久久99热6这里只有精品| 中国美白少妇内射xxxbb| 亚洲真实伦在线观看| 亚洲av电影在线观看一区二区三区| 97精品久久久久久久久久精品| 欧美变态另类bdsm刘玥| 最近最新中文字幕免费大全7| 建设人人有责人人尽责人人享有的| 成人亚洲欧美一区二区av| 丰满乱子伦码专区| 久久女婷五月综合色啪小说| 成人漫画全彩无遮挡| videos熟女内射| 久久99精品国语久久久| 亚洲欧美中文字幕日韩二区| 亚洲经典国产精华液单| 亚洲精品久久午夜乱码| 国产精品人妻久久久久久| 美女国产视频在线观看| 国产精品久久久久久精品古装| 亚洲第一区二区三区不卡| 久久久久久久精品精品| 午夜免费男女啪啪视频观看| 国产亚洲欧美精品永久| 97在线人人人人妻| av福利片在线| 国产无遮挡羞羞视频在线观看| 永久网站在线| 精品国产国语对白av| 少妇的逼水好多| av免费在线看不卡| 中文字幕制服av| 91午夜精品亚洲一区二区三区| 好男人视频免费观看在线| 91精品一卡2卡3卡4卡| 丰满人妻一区二区三区视频av| 妹子高潮喷水视频| freevideosex欧美| 乱系列少妇在线播放| 成人亚洲欧美一区二区av| 18禁在线播放成人免费| 国产伦精品一区二区三区四那| 国产一区二区在线观看av| av在线观看视频网站免费| 免费观看的影片在线观看| 欧美人与善性xxx| 少妇的逼好多水| 内地一区二区视频在线| 免费观看a级毛片全部| 欧美日韩av久久| 人人妻人人澡人人爽人人夜夜| 国产亚洲欧美精品永久| 丝袜喷水一区| 亚洲伊人久久精品综合| 久久久久久久大尺度免费视频| 在线观看av片永久免费下载| 久久 成人 亚洲| 91精品一卡2卡3卡4卡| 五月玫瑰六月丁香| 亚洲精品国产av蜜桃| 天天操日日干夜夜撸| 亚洲成人手机| www.av在线官网国产| 激情五月婷婷亚洲| 午夜免费观看性视频| 我的女老师完整版在线观看| 精品亚洲乱码少妇综合久久| 99热国产这里只有精品6| 国产精品国产三级国产专区5o| 亚洲av日韩在线播放| 精品卡一卡二卡四卡免费| 人人妻人人爽人人添夜夜欢视频 | 久久精品国产鲁丝片午夜精品| 汤姆久久久久久久影院中文字幕| 人妻少妇偷人精品九色| av.在线天堂| 毛片一级片免费看久久久久| 国产成人午夜福利电影在线观看| 免费人妻精品一区二区三区视频| 国产日韩一区二区三区精品不卡 | 亚洲内射少妇av| av一本久久久久| 中国美白少妇内射xxxbb| 汤姆久久久久久久影院中文字幕| 观看美女的网站| 久久 成人 亚洲| 在现免费观看毛片| 中文在线观看免费www的网站| 两个人免费观看高清视频 | 99热网站在线观看| 婷婷色综合www| 极品少妇高潮喷水抽搐| 大陆偷拍与自拍| 自拍欧美九色日韩亚洲蝌蚪91 | 国产av码专区亚洲av| 色婷婷av一区二区三区视频| 久久国产亚洲av麻豆专区| 久久久久国产精品人妻一区二区| 国产日韩欧美在线精品| 欧美+日韩+精品| 欧美日韩精品成人综合77777| 毛片一级片免费看久久久久| 亚洲国产欧美日韩在线播放 | 伦理电影免费视频| 中文乱码字字幕精品一区二区三区| 成年av动漫网址| 久久鲁丝午夜福利片| 亚洲精品日韩在线中文字幕| 我的女老师完整版在线观看| 久久午夜福利片| 晚上一个人看的免费电影| 国产探花极品一区二区| 一区二区三区精品91| 有码 亚洲区| 老司机亚洲免费影院| 狂野欧美激情性bbbbbb| 美女中出高潮动态图| 三级国产精品欧美在线观看| 亚州av有码| 日韩免费高清中文字幕av| 亚洲图色成人| av福利片在线观看| 亚洲国产av新网站| 能在线免费看毛片的网站| 97在线人人人人妻| 日本-黄色视频高清免费观看| 国产男人的电影天堂91| 日韩亚洲欧美综合| 91成人精品电影| 高清午夜精品一区二区三区| 亚洲伊人久久精品综合| 黄色毛片三级朝国网站 | 精品国产一区二区三区久久久樱花| 91久久精品电影网| 18禁裸乳无遮挡动漫免费视频| 久久午夜福利片| 国产老妇伦熟女老妇高清| 久久国产精品男人的天堂亚洲 | 中文字幕av电影在线播放| 国产亚洲精品久久久com| 极品教师在线视频| 在线精品无人区一区二区三| 五月伊人婷婷丁香| 六月丁香七月| 观看免费一级毛片| 高清午夜精品一区二区三区| 国产成人91sexporn| 黄色毛片三级朝国网站 | 最近中文字幕2019免费版| 2022亚洲国产成人精品| av免费观看日本| 久久久久久伊人网av| 亚洲高清免费不卡视频| 国产成人aa在线观看| 在线观看人妻少妇| 岛国毛片在线播放| 免费观看在线日韩| 国产国拍精品亚洲av在线观看| 久久久久精品性色| 午夜视频国产福利| 男人舔奶头视频| 丰满迷人的少妇在线观看| 免费看日本二区| 少妇高潮的动态图| av免费在线看不卡| av黄色大香蕉| 久久久久视频综合| 男人添女人高潮全过程视频| 免费久久久久久久精品成人欧美视频 | 亚洲欧美成人综合另类久久久| 狠狠精品人妻久久久久久综合| 69精品国产乱码久久久| 内射极品少妇av片p| 综合色丁香网| www.av在线官网国产| 国产成人免费无遮挡视频| 女人久久www免费人成看片| 午夜福利视频精品| 国产熟女欧美一区二区| 亚洲四区av| 寂寞人妻少妇视频99o| 王馨瑶露胸无遮挡在线观看| 精品熟女少妇av免费看| 能在线免费看毛片的网站| 全区人妻精品视频| av女优亚洲男人天堂| 伊人亚洲综合成人网| 亚洲欧美清纯卡通| 十八禁网站网址无遮挡 | 交换朋友夫妻互换小说| 噜噜噜噜噜久久久久久91| 国产精品久久久久久久久免| 久久久国产精品麻豆| 五月玫瑰六月丁香| 99热这里只有精品一区| 中文资源天堂在线| 自拍偷自拍亚洲精品老妇| 免费久久久久久久精品成人欧美视频 | 亚洲欧洲精品一区二区精品久久久 | 熟妇人妻不卡中文字幕| 交换朋友夫妻互换小说| 在线观看免费高清a一片| 国产伦精品一区二区三区四那| 菩萨蛮人人尽说江南好唐韦庄| 久久精品久久久久久久性| 交换朋友夫妻互换小说| 六月丁香七月| 伦精品一区二区三区| 2018国产大陆天天弄谢| 免费黄网站久久成人精品| 自拍偷自拍亚洲精品老妇| 亚洲国产色片| .国产精品久久| 日本av手机在线免费观看| 成年女人在线观看亚洲视频| 少妇人妻久久综合中文| 乱码一卡2卡4卡精品| 18禁裸乳无遮挡动漫免费视频| 一级爰片在线观看| 国产亚洲最大av| 人人妻人人爽人人添夜夜欢视频 | 久久毛片免费看一区二区三区| 成人影院久久| 国产在线免费精品| 一本大道久久a久久精品| 国产女主播在线喷水免费视频网站| 最近2019中文字幕mv第一页| 国产 一区精品| 高清毛片免费看| 国产一区二区在线观看av| 三上悠亚av全集在线观看 | 亚洲国产精品成人久久小说| 久久婷婷青草| 国产免费一级a男人的天堂| 精品午夜福利在线看| 久久久久网色| 一级毛片aaaaaa免费看小| 纵有疾风起免费观看全集完整版| 久久久久人妻精品一区果冻| 91久久精品电影网| 一级二级三级毛片免费看| 免费人成在线观看视频色| 国产精品秋霞免费鲁丝片| 国产精品久久久久久久久免| 日韩欧美 国产精品| 国产免费一区二区三区四区乱码| 在线看a的网站| 狂野欧美激情性bbbbbb| 哪个播放器可以免费观看大片| 亚洲av在线观看美女高潮| 十分钟在线观看高清视频www | 看非洲黑人一级黄片| av黄色大香蕉| 免费av中文字幕在线| 人人妻人人爽人人添夜夜欢视频 | 国产又色又爽无遮挡免| av国产精品久久久久影院| 欧美区成人在线视频| 男人爽女人下面视频在线观看| 婷婷色麻豆天堂久久| 如何舔出高潮| 久久久久视频综合| 日韩成人伦理影院| 国产亚洲欧美精品永久| 免费黄频网站在线观看国产| 一个人免费看片子| 制服丝袜香蕉在线| 久久青草综合色| 亚洲欧美成人精品一区二区| 欧美精品一区二区免费开放| 男男h啪啪无遮挡| 久久亚洲国产成人精品v| 国产国拍精品亚洲av在线观看| 丁香六月天网| 日韩不卡一区二区三区视频在线| 亚洲精品成人av观看孕妇| 午夜福利网站1000一区二区三区| 亚洲精品国产av成人精品| 成人亚洲精品一区在线观看| 国产av国产精品国产| 18+在线观看网站| 亚洲自偷自拍三级| 乱码一卡2卡4卡精品| 少妇被粗大猛烈的视频| 一级黄片播放器| 亚洲精品aⅴ在线观看| 在现免费观看毛片| 日本免费在线观看一区| 嫩草影院入口| 九草在线视频观看| 国产精品三级大全| 日韩一区二区视频免费看| av天堂久久9| 国产精品一区二区在线观看99| 久久久久精品性色| 看非洲黑人一级黄片| 精品亚洲成国产av| 成人漫画全彩无遮挡| 久久久久久久久久人人人人人人| 丝袜脚勾引网站| 日本av免费视频播放| 久久久国产欧美日韩av| 成人18禁高潮啪啪吃奶动态图 | 国产精品不卡视频一区二区| 国产成人免费无遮挡视频| 国产精品一区二区性色av| 国产69精品久久久久777片| 日日撸夜夜添| 91精品一卡2卡3卡4卡| 亚洲婷婷狠狠爱综合网| 日韩av在线免费看完整版不卡| a 毛片基地| 亚洲精品乱码久久久久久按摩| 婷婷色综合www| 秋霞在线观看毛片| 亚洲av日韩在线播放| 国产亚洲精品久久久com| 国产在线视频一区二区| 国产精品秋霞免费鲁丝片| 一个人免费看片子| 啦啦啦在线观看免费高清www| 性色avwww在线观看| 十八禁网站网址无遮挡 | 精品一区二区三卡| 亚洲精品色激情综合| 亚洲欧美日韩另类电影网站| 伦理电影大哥的女人| 男男h啪啪无遮挡| 91精品一卡2卡3卡4卡| 国产精品女同一区二区软件| 午夜福利,免费看| 亚洲精品久久午夜乱码| 久久久久国产网址| 日韩欧美精品免费久久| 国产成人精品无人区| 少妇人妻精品综合一区二区| 在线观看免费日韩欧美大片 | 十八禁高潮呻吟视频 | 亚洲精品一区蜜桃| 亚洲伊人久久精品综合| 国产高清三级在线| 美女大奶头黄色视频| 国产日韩一区二区三区精品不卡 | 国产精品一区二区在线不卡| 久久鲁丝午夜福利片| 在线观看免费高清a一片| 精品熟女少妇av免费看| 成年人午夜在线观看视频| av网站免费在线观看视频| 三级国产精品片| 国产一区二区在线观看日韩| 国产深夜福利视频在线观看| 亚洲av男天堂| 一级爰片在线观看| 伦理电影免费视频| 伊人久久精品亚洲午夜| 国产免费一区二区三区四区乱码| 免费观看av网站的网址| 人妻少妇偷人精品九色| 亚洲熟女精品中文字幕| 国产日韩欧美亚洲二区| 日韩三级伦理在线观看| 一级爰片在线观看| 国产精品欧美亚洲77777| 亚洲国产精品999| 毛片一级片免费看久久久久| 国产免费福利视频在线观看| 国产日韩欧美视频二区| 欧美日韩在线观看h| 国产深夜福利视频在线观看| 十分钟在线观看高清视频www | 国产精品国产三级专区第一集| 男人狂女人下面高潮的视频| 桃花免费在线播放| 亚洲精品中文字幕在线视频 | 天堂8中文在线网| 五月开心婷婷网| 一区二区三区免费毛片| 制服丝袜香蕉在线| 免费黄色在线免费观看| 少妇被粗大猛烈的视频| 少妇精品久久久久久久| 国产精品三级大全| 黄色配什么色好看| 国模一区二区三区四区视频| 纵有疾风起免费观看全集完整版| 国产精品国产三级国产专区5o| 免费观看a级毛片全部| 观看免费一级毛片| 国产视频首页在线观看| 日韩,欧美,国产一区二区三区| 午夜福利影视在线免费观看| 国产女主播在线喷水免费视频网站| 麻豆精品久久久久久蜜桃| 亚洲美女视频黄频| 国产色婷婷99| 日韩成人av中文字幕在线观看| 精品国产露脸久久av麻豆| 久久久久网色| 日本色播在线视频| 国产爽快片一区二区三区| 日日撸夜夜添| 久久久精品免费免费高清| 国产精品女同一区二区软件| 女人久久www免费人成看片| 国产精品久久久久成人av|