• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    A Data Pipeline for Optical and Near-infrared Solar Eruption Tracer*

    2022-01-10 07:25:36WangXinhuaChenDongDengTaoDaiHongbingXiangYongyuan
    天文研究與技術 2022年1期

    Wang Xinhua, Chen Dong, Deng Tao, Dai Hongbing, Xiang Yongyuan

    (1. Yunnan Observatories, Chinese Academy of Sciences, Kunming 650216, China; 2. University of Chinese Academy of Sciences, Beijing 100049, China; 3. School of Information, Yunnan University, Kunming 650504, China)

    Abstract:With the advent of large astronomical equipments, the traditional development model for data reduction faces problems such as redundancy of programs and conflicting environmental dependencies; Besides as a cluster is a highly coupled computing resource, serious environmental conflicts can lead to the unavailability of the entire cluster. To address this problem, we have developed a new pipeline framework using the concept of microservices. This paper presents the ONSET (Optical and Near-infrared Solar Eruption Tracer) data pipeline developed through this framework. To achieve near real-time data processing, we optimize the core program using MPI and GPU technologies and evaluate the final performance. The results show that this development model can be built in a short time to meet the requirements of the pipeline, and we believe that this development model has implications for future multi-band and multi-terminal astronomical data processing.

    Key words: ONSET; data pipeline; container; GPU

    1 Introduction

    Large astronomical facilities lead astronomy to the era of big data. How to process these data become a major problem before the astronomical community at present. Hence, data pipeline is one of the key means for astronomers to understand the data.

    Normally, a data pipeline will be developed in either monolith or modular way. The pros and cons of these 2 approaches has been discussed for years. And modulization design for data pipeline is the main stream up to now. Besides, deploying a data pipeline is troublesome problems for most of time, as the dependency and other problems may arise with regard to OS of your platform.

    In order to tackle this situation, we try to apply a new framework based on virtualization technology for data pipeline development for ONSET at FSO (Fuxian Lake Solar Observatory). Some details of this new framework will be discussed in this paper. In section 2, we introduce the basic information of ONSET, some details of data pipeline based on new framework is presented in section 3. Then in section 4 and 5, we show result of using CUDA for near-realtime data processing. Finally, we briefly discussed some possible improvements for the data pipeline for ONSET.

    2 Overview of ONSET

    The Fuxian Lake Solar Observatory is located in Yunnan, China. FSO has two telescopes, Optical and Near-infrared Solar Eruption Tracer (ONSET)[1]and 1 m New Vacuum Solar Telescope (NVST). ONSET is jointly developed by Yunnan Observatories and Nanjing Institute of Astronomical Optics Technology, and funded by Nanjing University. Its effective diameter is 275 mm and observe the sun in three wavelength: He I 1 083 nm, Hα and white-light at 360 nm and 425 nm. Table 1 lists the channels of ONSET. The corona, chromosphere and photosphere can be observed simultaneously in a full-disk or partial-disk solar with a field of 10″. At present,

    there are two acquisition cameras,namely Andor Neo and Flash4.0 V3. Neo′s conventional observation mode is to collect 10 sets of full-plane or partial images of the sun every minute, with an image size of 852 × 852; Flash′s regular observation mode is to collect 10 sets of full-plane or partial images of the sun every 30 s, with an image size of 1 700 × 1 700.150 frames per group.Data volume is shown in Table 2.

    Table 1 Channels of ONSET

    Table 2 Sampling rate of ONSET

    Since the data of ONSET and NVST have similar data processing flow, the pipeline framework designed can be used to develop the pipeline of ONSET. This has the advantage of reducing repetitive work and accelerating pipeline deployment. Next we describe the development of the ONSET pipeline.

    3 Data pipeline for ONSET

    At present, data products of ONSET are classified into three levels:

    ? Level 0 data: raw data, unprocessed data collected by the cameras.

    ? Level 0.5 data: level 0 data calibrated by flat and dark processing, then using frame selection and reconstruction by speckle interferometry and speckle masking.

    ? Level 1 data: According to filed situation of observations, add headers to level 0.5 data and save them in FITS format. Level 1 data is science-ready data and can be used for scientific research.

    Transfer Node is responsible for saving the raw data to the storage device and sharing the mounting point to computing center via a high-performance network (10 GbE). Finally, the raw data is processed into science-ready data by computing center. Then science-ready data is archived through distribution node that show in Fig.1.

    Fig.1 Diagram of ONSET hardware structure

    In October 2020, ONSET decided to develop a new data pipeline. The requirements of this new pipeline is as follows:

    (1) Using speckle-masking method to process all the data acquired at ONSET;

    (2) At the beginning of development, ONSET will provide a Dell R730 server (56 cores + K40 GPU) for test; and finally the 8 h daily observation is required to be processed within 3-5 days after observation;

    (3) The development of data pipeline will be based on Python;

    (4) The quality of science-ready data will be assessed by the scientist from ONSET;

    3.1 Algorithm

    At present, speckle mask[2]and speckle interferometry[3]are the most widely used in high-resolution solar image reconstruction. The implementation is as follows. Speckle interferometry is used to reconstruct amplitude and the speckle masking reconstructs the phase. The high-resolution reconstructed images with this algorithm were termed Level 0.5 data at ONSET, or science-ready data. The algorithm flow chart is shown in Fig.2[4].

    Fig.2 Level 0.5 algorithm of ONSET

    3.2 Pipeline configuration file

    The pipeline configuration file provides the ability for a user-defined pipeline structure in YAML format. The YAML format is a highly readable format for expressing data serialization and is ideal for writing configuration files. The keywords of pipeline configuration file is shown in Table 3.

    Table 3 Pipeline configuration file keywords

    The data exchange of microservices in data pipeline is based on ZeroMQ′s message forwarding mechanism, so users need to determine the connection relationship between microservices and bind ports and required resources through pipeline configuration file then pipeline parser will generate executable script according to the pipeline configuration file, support scaling and automatically submit tasks.

    3.3 Containerization of microservices

    The most important concept in our new framework is microservices, which first came from the Internet and refers to applications that can handle specific requests and are relatively independent of each other. One of the benefits of microservices-based development is to decouple complex functional relationships into multiple subfunctions that are single-functional and easy to maintain, so that the number of corresponding microservices can be dynamically increased or decreased to achieve scaling when the load changes. More and more programs moved from the original host environment or virtual machine environment as a carrier to the container as a carrier[5-6]. After research we choose Singularity, a high-performance container technology developed by Lawrence Berkeley National Laboratory specifically for large-scale, cross-node HPC (High-Performance Computing) and DL (Deep Learning) workloads[7].

    Our framework is to combine the term of micro-

    services and functions of pipelines wrapped with Singularity. Each microservices is a function in the data reduction wrap in a Singularity image. Besides other known advantages, another advantage of this framework is to increase the performance of the pipeline through scaling by using message passing model. In theory, GPU have more computing power than CPU but to achieve 100% GPU performance requires proficiency in grid computing and other professional GPU programming knowledge. In order to release the power of GPU, our solution is to use message preemption mechanism, which could increase GPU resource utilization through scaling by means of peripheral acceleration and significantly reduce data processing time. The data processing speed is linearly related to the number of microservices without exceeding the graphics memory, as shown in Fig.3. It can significantly improve GPU resource utilization when GPU resource utilization is low.

    Fig.3 Utilization rate of the GPU

    The carrier of microservices is containers. The introduction of container technology in the pipeline solves the environment dependency problem that has long plagued developers and further increases the portability. The data pipeline consists of two modules:

    ? Coordinator: prepare data for other microservices

    ? Pipeline parser: parse the defined pipeline configuration file, turn it into a PBS, slurm or standalone script and submit the task

    We decouple the pipeline into microservices as follows

    ? Dark: dark fielding the raw data.

    ? Flat: flat fielding the raw data.

    ? matching: matching the data with off band.

    ? core1: level1 algorithm for 656.3 nm.

    ? core2: level1 algorithm for 360 nm and 425 nm

    The pipeline structure diagram based on the container is shown in the Fig.4.

    Fig.4 The pipeline structure diagram based on the container

    Microservices bind port through Pipeline_API, the main programs are shown in Table 4.

    Table 4 Code implementation of bind port through Pipeline_API

    4 GPU processing within mpi4py

    It will take a large number of short-exposure images with high-frequency information during every observation at ONSET. Then we adopt the speckle masking method to reconstruct the phase of the image, and speckle interferometry to reconstruct the amplitude of the image. The speckle mask method involves the calculation of a 4-dimensional double spectrum and phase recursion, which are very time-consuming. Hence we tried to use GPU and MPI technology to speed up the processing time of the program. The flow chart of core algorithm is shown in Fig.5.

    Fig.5 Flow chart of core algorithm based on MPI and GPU

    Within the ONSET program, the whole flow includes these steps: image preprocessing, initial image alignment, seeing estimation, speckle interferometry transfer function calculation, image block processing, image stitching, and one of the most time-consuming process in the entire program is the image block processing. After analysis, we decide to use the CUDA architecture from Nvidia GPU to execute block processing in parallel. While improving GPU utilization, we also found that CPU utilization is at a low level. In order to improve CPU utilization, the MPI programming model is adopted. Fig.6 provides common methods of MPI.

    In MPI programing model, one important thing to do is to scatter tasks to each node. In our case, that means to scatter the tasks of image sub-block processing all over the nodes. The master node will divide the aligned observation images into sub-block groups; then it will assign the sub-block calculation tasks to the slave nodes. The master and slave nodes are responsible for calculating the sub-block processing, and the results of the master and slave node calculation will return to master node. But there is a limitation in MPI which impedes parallelization of data chunks with more than 231=2147483648 elements because the MPI standard uses Cintfor element count, which has a maximum value of 231for positive value[8]. When object is bigger than that, the function will report an error. To avoid this, we divide the whole data into two part for separate processing. To make a reasonable task allocation, it will first need to calculate the length of the task by the master node, and divide the length of the task by the number of cores involved in the calculation. If it can be divided, we use the scatter function and send it to each slave node evenly. If it can′t be divided, this article uses the method of adding an empty array to make it can be divided, and then use the scatter function to evenly send it to each slave node. The subsequent calculations will start, and each node returns the corresponding result part to the master node, and pseudo code is shown in algorithm 1.

    Algorithm 1 Strategy for scatter1: procedure DIVIDE_TASKS(tasks_list, cores)12: end if2: task1_list ← None13: end if3: task2_list ← None14: thread_tasks=scatter(task1)4: cores ← cores15: result_mid1=startReconstructed(thread_tasks)5: if comm_rank == 0 then16: result_final=gather(result)6: task1_list ← tasks[:int(0.5*len(tasks_list))]17: thread_tasks=scatter(task2)7: task2_list ← tasks[int(0.5*len(tasks_list)):]18: result_mid2=StartReconstructed(thread_tasks)8: if len(task1_list)//cores !=0 then19: result_mid3=gather(result)9: Padding(task1_list,0,cores)20: APPEND(result_final,result_mid3)10: else if len(task2_list)//cores !=0 then21: return result_final11: Padding(task2_list,0,cores)22: end procedure

    5 Result

    In order to test our data pipeline, we used GPU + CPU and CPU to process the WH data for test. The whole environment is list here:

    Hardware: Intel(R)Xeon(R)Gold 5115 CPU @ 2.40 GHz x2, 128 GB RAM, GeForce RTX 2080Ti 11 GB x4;

    Software: Ubuntu 16.04.6 LTS, CUDA 10.1, GPU driver 430.40, Singularity 3.5.0, OpenMPI 1.10.7, Python 3.6.10.

    Ten sets of 50 frames (1 700 × 1 700 pixel) of WH-band data on October 10, 2020 were selected, and each frame was chunked in an overlapping fashion with 2 704 blocks (96 × 96 pixel) in each set. The execution time is averaged for ten sets of data. Experiments have shown that CPU + GPU can improve program execution speed compared to CPU mode,and the results are shown in Table 5.The introduction of MPI and

    GPU not only brings about performance improvement, but also consumes some time due to data preparation and MPI initialization. The statistical results are shown in Table 6. The result is that a small amount of data transfer between the CPU and the GPU does not incur significant performance costs, but using MPI to collect data and initialize parameters imposes a significant performance overhead.

    Table 5 Optimization results in two methods

    To test the efficiency of the program optimization, we tested the effect of the number of processes on execution efficiency in GPU + CPU mode and CPU mode, and the results showed that the program running efficiency was less sensitive to the number of processes than in CPU mode when using GPU + CPU mode. Fig.7 shows the result. In order to show the reconstruction results, we selected Hα and white band data respectively. The result is shown in Fig.8.

    Fig.7 Acceleration ratio (a) and execution time (b) in CPU and CPU + GPU mode with different number of processes

    Fig.8 Original images (left) vs Reconstructed images (right)

    6 Conclusion & discussion

    In this article, we develop the prototype data pipeline using a container-based pipeline framework for ONSET and optimized the original CPU program using the GPU, resulting in a significant speedup of the original program. We are planning to deploy the data pipeline in near future. ONSET′s GPU server contains a tesla K40m GPU and Xeon (R) CPU E5-2680 v4 @2.4 GHz (56 cores). It takes 53 s to reconstruct a set of Hα-band images and 250 s to reconstruct a set of WH-band images in this environment, so a day′s worth of data (8 h) takes about 14 h (Hα) and 66 h (WH) to process respectively. And the timing requirement for data reduction at ONSET is reached.

    For the whole image reconstruction at ONSET, the multiple layers of judgement and loops required by the image phase reconstruction is the most time-consuming. Obviously this logical operation is more efficiently executed by the CPU than the GPU, we are working on how to speed up this process with CPU now. In general, further improvements to the algorithm are necessary to enable near-realtime processing.

    From our practice, it is found that this development model allows flexible modifications to the microservices, which enables to add more required functionality to the pipeline in time without having to modify the entire program. We believe that this container-based development model will save a lot of time both in the development and deployment of the astronomical data pipelines, while astronomical facilities are now moving towards multi-terminal and multi-wavelength.

    深夜精品福利| 男女免费视频国产| 欧美激情 高清一区二区三区| 中文字幕制服av| 欧美在线一区亚洲| 性色av一级| 国产亚洲午夜精品一区二区久久| 精品国产露脸久久av麻豆| 91精品国产国语对白视频| 国产黄频视频在线观看| 国产一卡二卡三卡精品 | 99热国产这里只有精品6| 日韩,欧美,国产一区二区三区| 欧美成人精品欧美一级黄| 久久影院123| 一级毛片黄色毛片免费观看视频| 80岁老熟妇乱子伦牲交| 狂野欧美激情性bbbbbb| 老司机影院成人| 精品卡一卡二卡四卡免费| 精品第一国产精品| 99热网站在线观看| 国产精品一国产av| 亚洲熟女精品中文字幕| 两性夫妻黄色片| 国产一区二区三区av在线| 美女大奶头黄色视频| 欧美日韩一区二区视频在线观看视频在线| 精品福利永久在线观看| 丝袜脚勾引网站| 制服人妻中文乱码| 欧美日韩视频高清一区二区三区二| 国产精品免费大片| 大片电影免费在线观看免费| 日韩伦理黄色片| 国产av一区二区精品久久| 热re99久久精品国产66热6| 高清欧美精品videossex| 嫩草影院入口| av国产精品久久久久影院| 欧美久久黑人一区二区| 制服人妻中文乱码| 丰满迷人的少妇在线观看| 久久影院123| 午夜免费鲁丝| 亚洲情色 制服丝袜| 国产日韩一区二区三区精品不卡| 黑人欧美特级aaaaaa片| 欧美中文综合在线视频| 中国三级夫妇交换| 视频区图区小说| 精品久久久久久电影网| 日韩一卡2卡3卡4卡2021年| a级毛片在线看网站| a级毛片在线看网站| 婷婷色综合大香蕉| 精品久久久精品久久久| 国产97色在线日韩免费| 国产极品天堂在线| 中文天堂在线官网| 在线天堂中文资源库| 一区二区日韩欧美中文字幕| 久久精品国产a三级三级三级| 最近手机中文字幕大全| 久久久久人妻精品一区果冻| 一边亲一边摸免费视频| e午夜精品久久久久久久| 看非洲黑人一级黄片| 亚洲激情五月婷婷啪啪| 国产高清不卡午夜福利| 国产野战对白在线观看| 狠狠精品人妻久久久久久综合| 亚洲欧美清纯卡通| 日日爽夜夜爽网站| 久久人人爽av亚洲精品天堂| 男人操女人黄网站| 美女大奶头黄色视频| 国产伦人伦偷精品视频| 大香蕉久久网| 精品一品国产午夜福利视频| 乱人伦中国视频| 激情视频va一区二区三区| 欧美乱码精品一区二区三区| 日韩成人av中文字幕在线观看| 成人国产av品久久久| 日韩熟女老妇一区二区性免费视频| 亚洲少妇的诱惑av| a级毛片黄视频| 毛片一级片免费看久久久久| 亚洲av电影在线观看一区二区三区| 777米奇影视久久| 最新在线观看一区二区三区 | 熟妇人妻不卡中文字幕| 国产精品国产三级国产专区5o| av不卡在线播放| 亚洲国产欧美网| 亚洲精品国产色婷婷电影| 国产一区亚洲一区在线观看| 色吧在线观看| 成人国产麻豆网| 香蕉国产在线看| 波野结衣二区三区在线| 另类亚洲欧美激情| 日韩制服丝袜自拍偷拍| 黑人猛操日本美女一级片| 中文欧美无线码| 天天添夜夜摸| 欧美在线黄色| 亚洲精品久久午夜乱码| 中国三级夫妇交换| 如日韩欧美国产精品一区二区三区| 亚洲第一区二区三区不卡| 久久av网站| 自线自在国产av| 亚洲熟女毛片儿| 黑人巨大精品欧美一区二区蜜桃| 黑人巨大精品欧美一区二区蜜桃| 亚洲欧美色中文字幕在线| 新久久久久国产一级毛片| 建设人人有责人人尽责人人享有的| 一级黄片播放器| 国产亚洲一区二区精品| 免费在线观看视频国产中文字幕亚洲 | 超色免费av| 亚洲精品久久久久久婷婷小说| 最新的欧美精品一区二区| 黄片无遮挡物在线观看| 欧美人与性动交α欧美精品济南到| 亚洲天堂av无毛| 欧美精品一区二区免费开放| 亚洲精品aⅴ在线观看| 亚洲av中文av极速乱| 免费人妻精品一区二区三区视频| 一区二区三区精品91| 日本av免费视频播放| 久久这里只有精品19| 成人三级做爰电影| svipshipincom国产片| 精品一区二区三区av网在线观看 | 亚洲欧美成人精品一区二区| 18禁国产床啪视频网站| 少妇精品久久久久久久| 青春草视频在线免费观看| 热99国产精品久久久久久7| 女人爽到高潮嗷嗷叫在线视频| 在线免费观看不下载黄p国产| 精品亚洲乱码少妇综合久久| 青春草视频在线免费观看| 国产一区二区激情短视频 | 国产成人啪精品午夜网站| 精品午夜福利在线看| 色综合欧美亚洲国产小说| 欧美日韩亚洲国产一区二区在线观看 | 这个男人来自地球电影免费观看 | 中文乱码字字幕精品一区二区三区| 欧美乱码精品一区二区三区| 2021少妇久久久久久久久久久| 亚洲国产精品成人久久小说| 成年人午夜在线观看视频| 一级毛片我不卡| 欧美 亚洲 国产 日韩一| 热99国产精品久久久久久7| 欧美精品亚洲一区二区| 免费在线观看视频国产中文字幕亚洲 | 中文乱码字字幕精品一区二区三区| 女性被躁到高潮视频| 2021少妇久久久久久久久久久| 中文乱码字字幕精品一区二区三区| 国产精品一区二区精品视频观看| 免费黄色在线免费观看| 韩国高清视频一区二区三区| 久久久精品区二区三区| 亚洲国产精品成人久久小说| 一级黄片播放器| 老汉色∧v一级毛片| 晚上一个人看的免费电影| 十八禁高潮呻吟视频| 波多野结衣av一区二区av| 亚洲精品久久成人aⅴ小说| 国产成人午夜福利电影在线观看| 精品少妇黑人巨大在线播放| 99国产精品免费福利视频| 黄色一级大片看看| 亚洲成人av在线免费| 精品免费久久久久久久清纯 | 最近手机中文字幕大全| 热99国产精品久久久久久7| 久久久久国产精品人妻一区二区| 亚洲成人一二三区av| 亚洲图色成人| 嫩草影视91久久| 巨乳人妻的诱惑在线观看| 另类亚洲欧美激情| 九草在线视频观看| 国产有黄有色有爽视频| 麻豆av在线久日| 又大又黄又爽视频免费| 精品一区二区三区四区五区乱码 | 伊人久久国产一区二区| 女的被弄到高潮叫床怎么办| 国产精品久久久久久久久免| 欧美变态另类bdsm刘玥| 国产成人精品福利久久| 99re6热这里在线精品视频| 捣出白浆h1v1| 国产一区二区三区综合在线观看| 国产在线视频一区二区| 国产一区二区激情短视频 | 狠狠精品人妻久久久久久综合| 免费日韩欧美在线观看| 日韩欧美精品免费久久| 亚洲欧美一区二区三区久久| 91精品国产国语对白视频| 亚洲婷婷狠狠爱综合网| 国产精品久久久久久精品电影小说| 亚洲精品成人av观看孕妇| 欧美av亚洲av综合av国产av | 亚洲美女黄色视频免费看| 国产精品秋霞免费鲁丝片| 欧美少妇被猛烈插入视频| 99久久综合免费| 97人妻天天添夜夜摸| 悠悠久久av| 久久精品熟女亚洲av麻豆精品| 99国产精品免费福利视频| 亚洲av日韩在线播放| 日本色播在线视频| 国产男人的电影天堂91| 一二三四中文在线观看免费高清| 水蜜桃什么品种好| 日韩制服丝袜自拍偷拍| 熟女av电影| 国产成人精品久久久久久| 69精品国产乱码久久久| 国产亚洲午夜精品一区二区久久| 热re99久久国产66热| 青春草国产在线视频| 午夜影院在线不卡| 日韩,欧美,国产一区二区三区| 大话2 男鬼变身卡| 亚洲一卡2卡3卡4卡5卡精品中文| 国产成人啪精品午夜网站| 高清不卡的av网站| 国产精品嫩草影院av在线观看| 欧美亚洲日本最大视频资源| 国产成人系列免费观看| 国产欧美亚洲国产| 母亲3免费完整高清在线观看| 男女下面插进去视频免费观看| 欧美最新免费一区二区三区| 久久99一区二区三区| 十分钟在线观看高清视频www| 亚洲色图综合在线观看| 日本欧美国产在线视频| 国产xxxxx性猛交| 亚洲成av片中文字幕在线观看| 成人手机av| 多毛熟女@视频| 色吧在线观看| 高清欧美精品videossex| 日韩电影二区| 青草久久国产| 亚洲欧洲日产国产| 99久久99久久久精品蜜桃| 下体分泌物呈黄色| 中文字幕亚洲精品专区| 波多野结衣av一区二区av| 亚洲在久久综合| 1024视频免费在线观看| xxx大片免费视频| 最近中文字幕高清免费大全6| 男人爽女人下面视频在线观看| 亚洲成人一二三区av| 欧美97在线视频| av有码第一页| 一区二区三区精品91| 亚洲国产中文字幕在线视频| 久久精品久久精品一区二区三区| 青春草国产在线视频| 成年动漫av网址| 亚洲一码二码三码区别大吗| 国产精品无大码| 欧美另类一区| 丝袜脚勾引网站| 久久人人97超碰香蕉20202| 亚洲国产日韩一区二区| 永久免费av网站大全| 亚洲美女视频黄频| av国产精品久久久久影院| 激情视频va一区二区三区| 精品人妻在线不人妻| 香蕉丝袜av| 免费人妻精品一区二区三区视频| 久久久久国产一级毛片高清牌| 一区二区三区四区激情视频| 日韩一区二区三区影片| 美女中出高潮动态图| 国产成人精品久久久久久| 99热网站在线观看| 天美传媒精品一区二区| 777久久人妻少妇嫩草av网站| 人人妻,人人澡人人爽秒播 | 亚洲情色 制服丝袜| 男人爽女人下面视频在线观看| 波多野结衣av一区二区av| 亚洲成色77777| 欧美国产精品一级二级三级| 国产精品一区二区精品视频观看| 欧美黑人精品巨大| 久久久久久久久久久久大奶| 又大又黄又爽视频免费| 不卡av一区二区三区| 人妻 亚洲 视频| 国产精品国产三级专区第一集| 在线观看免费高清a一片| 日韩一区二区视频免费看| 亚洲天堂av无毛| 久久久久久久精品精品| 久久久久久免费高清国产稀缺| 宅男免费午夜| 中文欧美无线码| 伦理电影免费视频| 亚洲欧美激情在线| 午夜福利在线免费观看网站| 涩涩av久久男人的天堂| 黄色一级大片看看| 国产熟女午夜一区二区三区| 久久青草综合色| 国产欧美日韩一区二区三区在线| 亚洲国产日韩一区二区| av又黄又爽大尺度在线免费看| 日韩一区二区三区影片| 色网站视频免费| e午夜精品久久久久久久| av国产久精品久网站免费入址| 国产深夜福利视频在线观看| 国产精品.久久久| 亚洲欧洲国产日韩| 国产日韩一区二区三区精品不卡| 水蜜桃什么品种好| 美女中出高潮动态图| 男女之事视频高清在线观看 | 欧美激情 高清一区二区三区| 国产成人精品无人区| 国产成人啪精品午夜网站| 狂野欧美激情性bbbbbb| 国产不卡av网站在线观看| 婷婷色综合大香蕉| 丰满少妇做爰视频| 久久狼人影院| 免费高清在线观看视频在线观看| 七月丁香在线播放| 久久久久人妻精品一区果冻| 久热爱精品视频在线9| 国产日韩欧美在线精品| 色网站视频免费| 操美女的视频在线观看| 热99国产精品久久久久久7| h视频一区二区三区| 国产一区二区三区av在线| 午夜日韩欧美国产| 三上悠亚av全集在线观看| 大话2 男鬼变身卡| 国产1区2区3区精品| 狠狠精品人妻久久久久久综合| 高清黄色对白视频在线免费看| 黑人欧美特级aaaaaa片| 国产日韩欧美亚洲二区| 成人亚洲欧美一区二区av| 自拍欧美九色日韩亚洲蝌蚪91| 999精品在线视频| 免费高清在线观看日韩| 男女边吃奶边做爰视频| 欧美亚洲日本最大视频资源| 久久国产精品大桥未久av| 成人影院久久| 中文字幕亚洲精品专区| 男女床上黄色一级片免费看| 国产熟女午夜一区二区三区| 9191精品国产免费久久| 乱人伦中国视频| 久久99一区二区三区| 亚洲国产精品一区三区| 自线自在国产av| 久久精品国产亚洲av高清一级| 国产成人啪精品午夜网站| 久久人人爽人人片av| 在线天堂中文资源库| 国产成人免费观看mmmm| 日本欧美国产在线视频| 日本欧美视频一区| 电影成人av| 成人影院久久| 啦啦啦啦在线视频资源| 亚洲精品一二三| 国产一区二区三区av在线| xxxhd国产人妻xxx| 伊人久久大香线蕉亚洲五| 女性生殖器流出的白浆| 免费不卡黄色视频| 欧美日韩国产mv在线观看视频| 国产深夜福利视频在线观看| 国产av精品麻豆| 大码成人一级视频| av女优亚洲男人天堂| 亚洲视频免费观看视频| 午夜日本视频在线| 久久综合国产亚洲精品| 成年av动漫网址| 国产福利在线免费观看视频| 啦啦啦在线免费观看视频4| 精品一品国产午夜福利视频| 少妇人妻 视频| 国产一级毛片在线| 国产有黄有色有爽视频| 伦理电影免费视频| 欧美日韩亚洲高清精品| 亚洲七黄色美女视频| 欧美久久黑人一区二区| 自线自在国产av| av网站免费在线观看视频| 久久精品久久精品一区二区三区| 波多野结衣av一区二区av| 日本av免费视频播放| 国产免费一区二区三区四区乱码| 欧美黄色片欧美黄色片| 国产一区亚洲一区在线观看| www.自偷自拍.com| 成人毛片60女人毛片免费| 亚洲婷婷狠狠爱综合网| 另类亚洲欧美激情| 爱豆传媒免费全集在线观看| 精品少妇一区二区三区视频日本电影 | 亚洲人成网站在线观看播放| 中文字幕色久视频| 老熟女久久久| 欧美亚洲 丝袜 人妻 在线| 欧美国产精品va在线观看不卡| 男女无遮挡免费网站观看| 精品午夜福利在线看| 免费黄网站久久成人精品| av免费观看日本| 老司机深夜福利视频在线观看 | 老司机靠b影院| 青草久久国产| 侵犯人妻中文字幕一二三四区| 黄频高清免费视频| 大片免费播放器 马上看| 国产探花极品一区二区| 黑人猛操日本美女一级片| 久久综合国产亚洲精品| 久久久久人妻精品一区果冻| 精品一区二区三卡| 国产97色在线日韩免费| 亚洲美女搞黄在线观看| 男人操女人黄网站| 亚洲欧美精品综合一区二区三区| 国产福利在线免费观看视频| 一区二区三区乱码不卡18| 亚洲av电影在线进入| 亚洲 欧美一区二区三区| 女的被弄到高潮叫床怎么办| 美女扒开内裤让男人捅视频| 国产精品蜜桃在线观看| 亚洲精品aⅴ在线观看| 2021少妇久久久久久久久久久| 在线天堂最新版资源| av卡一久久| 国产在线免费精品| 久久ye,这里只有精品| 午夜免费观看性视频| 大片电影免费在线观看免费| 日本欧美视频一区| 一本色道久久久久久精品综合| 婷婷色av中文字幕| 久久精品国产亚洲av高清一级| 亚洲精品久久午夜乱码| 久久婷婷青草| 人人妻人人澡人人看| 日韩一区二区三区影片| 中文字幕人妻丝袜制服| 精品少妇久久久久久888优播| 搡老岳熟女国产| 波多野结衣一区麻豆| 欧美日韩av久久| 亚洲成人av在线免费| 精品一区二区三区av网在线观看 | 亚洲欧美一区二区三区国产| 久久免费观看电影| 午夜福利影视在线免费观看| 久久精品国产亚洲av高清一级| 午夜激情av网站| 国产成人精品无人区| 老司机影院成人| 精品国产乱码久久久久久男人| 在现免费观看毛片| 一级片免费观看大全| 亚洲三区欧美一区| 这个男人来自地球电影免费观看 | 亚洲色图 男人天堂 中文字幕| 国产成人欧美| 久久久久精品久久久久真实原创| 久久人人97超碰香蕉20202| 午夜老司机福利片| 天天躁夜夜躁狠狠躁躁| 国产成人91sexporn| 国产成人系列免费观看| 少妇的丰满在线观看| 久热这里只有精品99| 久久久久久久久免费视频了| 大香蕉久久网| 中文字幕av电影在线播放| 亚洲精品美女久久av网站| 热re99久久国产66热| 欧美xxⅹ黑人| 97精品久久久久久久久久精品| 中文字幕人妻丝袜制服| 在现免费观看毛片| 色精品久久人妻99蜜桃| 亚洲色图综合在线观看| 午夜福利在线免费观看网站| 亚洲四区av| 中文字幕人妻丝袜制服| 午夜福利视频精品| 岛国毛片在线播放| 欧美乱码精品一区二区三区| 国产福利在线免费观看视频| 丝袜脚勾引网站| 中文欧美无线码| 精品国产超薄肉色丝袜足j| 国产女主播在线喷水免费视频网站| 女人爽到高潮嗷嗷叫在线视频| 国产福利在线免费观看视频| 丰满迷人的少妇在线观看| 免费黄网站久久成人精品| 午夜av观看不卡| 日韩中文字幕欧美一区二区 | 久久久久久久国产电影| 国产日韩欧美视频二区| 高清黄色对白视频在线免费看| 色播在线永久视频| 捣出白浆h1v1| 国产一区二区 视频在线| 热99久久久久精品小说推荐| av又黄又爽大尺度在线免费看| 十八禁高潮呻吟视频| 99精品久久久久人妻精品| 国产日韩欧美视频二区| 一级,二级,三级黄色视频| 国产片特级美女逼逼视频| 男女之事视频高清在线观看 | 国产精品久久久久久人妻精品电影 | 亚洲伊人久久精品综合| 中文字幕亚洲精品专区| 亚洲天堂av无毛| 国产无遮挡羞羞视频在线观看| 亚洲七黄色美女视频| 免费在线观看视频国产中文字幕亚洲 | 亚洲美女视频黄频| 午夜精品国产一区二区电影| 午夜日本视频在线| 最近2019中文字幕mv第一页| 母亲3免费完整高清在线观看| 久久久久网色| 丝袜美腿诱惑在线| 人妻人人澡人人爽人人| 午夜福利免费观看在线| av国产精品久久久久影院| 国产探花极品一区二区| 色视频在线一区二区三区| 男女床上黄色一级片免费看| 久久人人爽av亚洲精品天堂| 午夜福利,免费看| 久久综合国产亚洲精品| 高清视频免费观看一区二区| 搡老乐熟女国产| 亚洲第一青青草原| 久久久久人妻精品一区果冻| 欧美老熟妇乱子伦牲交| av一本久久久久| 精品少妇黑人巨大在线播放| 日日爽夜夜爽网站| 美女高潮到喷水免费观看| 在线观看免费高清a一片| 亚洲av日韩精品久久久久久密 | 久久这里只有精品19| 精品人妻一区二区三区麻豆| 各种免费的搞黄视频| 久久精品熟女亚洲av麻豆精品| 熟女少妇亚洲综合色aaa.| 国产又爽黄色视频| 又粗又硬又长又爽又黄的视频| 免费日韩欧美在线观看| 日日啪夜夜爽| 麻豆av在线久日| 日韩制服丝袜自拍偷拍| 国产男女内射视频| 国产欧美亚洲国产| www日本在线高清视频| 人成视频在线观看免费观看| 亚洲国产欧美日韩在线播放| 亚洲精品乱久久久久久| 亚洲欧美成人精品一区二区| av卡一久久| 中文天堂在线官网| 亚洲av综合色区一区| 一本—道久久a久久精品蜜桃钙片| 精品人妻在线不人妻| 天堂8中文在线网| 男女下面插进去视频免费观看| 国产精品一二三区在线看| 亚洲美女视频黄频| 久久精品熟女亚洲av麻豆精品| 一级毛片电影观看| 国产午夜精品一二区理论片|