• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Higher Accuracy Shape-preserving Modeling Based on the Two-level Fitting Method

    2022-01-07 08:31:42YangDangfuLiuShengjun2LiuPingboLiuXinru

    Yang DangfuLiu Shengjun,2Liu PingboLiu Xinru,

    (1.School of Mathematics and Statistics,Central South University,Changsha410083,China?2.State Key Laboratory of High Performance Complex Manufacturing,Central South University,Changsha410083,China?3.College of Computer and Information Engineering,Central South University of Forestry and Technology,Changsha410004,China)

    Abstract Compactly supported radial basis function(CSRBF)has been widely used in surface modeling methods to interpolate or approximate the given data,which avoids solving a large dense linear system with a proper supported radius.The surfaces reconstructed by the CSRBF-based method usually are not shape preserving,while the multivariate multiquadric quasi-interpolation results the lower approximation accuracy.In this paper,we introduce a two-level fitting method to conduct the shape-preserving modelling with a higher accuracy.An initial shape-preserving model is constructed by using the lower accuracy quasi-interpolation,and then a CSRBF-based networks interpolation is performed to compensate the errors between the initial fitting model and the given data,then the higher accuracy shape-preserving model can be obtained.Moreover,we discuss the choice of the smoothing factor in quasi-interpolation and the supported radius in CSRBF-based networks,and an empirical formula between them is constructed.The numerical examples demonstrate the performance of our method.

    Key words Surface modeling Two-level fitting Multivariate multiquadric quasi-interpolation CSRBF-based networks Shape-preserving model

    1 Introduction

    The interpolation of functions from the given data is an important theme in many fields of science and engineering.However,we often have some additional requirements that we wish to confine to interpolation.For example,we know the quantity from which the data is sampled,is positive,monotonic or convex.Thus,it is important to construct a function which satisfies the underlying constraints.Many works have been done on the problem of shape preserving interpolation[1,2,3,4,5].They mainly used polynomial interpolation or spline interpolation with a certain continuity to solve it.

    Among the interpolation methods,there is an important class of methods—radial basis function-based interpolation.Radial basis function(RBF)is a relatively simple multivariate function generated by a univariate function.Due to its simple form and good approximation behavior,more and more researchers construct interpolation functions with them,and have obtained better results during the last two decades[6,7,8,9,10,11,12,13].However,there has been little work done on the imposition of constraints for these interpolation methods by using radial basis functions.For RBF,in the special case of thin-plate splines for2D data,reference[14]showed how positivity can be imposed as a constraint.Reference[15]discussed several meshless methods for constrained scattered data interpolation and applied them on3D data.For the Shepard interpolation,reference[16]discussed the modified quadratic Shepard method,which interpolates scattered data of any dimensionality,can be constrained to preserve positivity.Recently,Wu[17]presented an algorithm to construct a kind of so-called shape preserving interpolating function with the use of compactly supported RBF(CSRBF)and a class of multiquadric quasi-interpolation(MQ-QI)operators.But,his method is only for curve construction.

    In this paper,inspired from Wu’s idea[17],we will propose a method for shape preserving surface reconstruction from the given surface data.We first reconstruct an initial surface from the given points with a multivariate multiquadric(MMQ)quasi-interpolation operator,and then compensate the error between the initial surface and the given points with the CSRBF networks.In addition,to balance the efficiency and the accuracy,we provide a valid interval of the number of neighbors for RBF centers,and create a relationship between it and the smoothing factor in MMQ.

    The remainder of this paper is organized as follows.In Section2,we introduce the basis of our method,CSRBF interpolation and MMQ quasi-interpolation(MMQ-QI).After that,in Section3,we construct a shape preserving interpolation function for surface reconstruction combining with a CSRBF networks interpolation operator and a MMQ-QI operator(abbr:MMQ-CSRBF),and discuss the determination of the shape parameters in detail.Then,in Section4,we give some numerical examples to compare the approximation capacity of our hybrid scheme with that of CSRBF networks interpolation method and MMQ-QI scheme.Following this,conclusions about this work and the future works are listed in the last section.

    2 Preliminaries

    2.1 Compactly supported radial basis function interpolation

    Given a set of distinctive data{xi,fi}∈Rd×R,i=0,1,···,n,the radial basis function-based interpolant is a function

    where?i(x)=?(//x?xi//)is a basis function which depends on the Euclidean distance between any point x∈Rdand a given point xi∈Rd,the coefficients,λi,are determined by the following constraints

    There are many choices for the basic function?which include the biharmonic spline?(r)=r,the triharmonic spline?(r)=r3,the thin-plate spline?(r)=r2log(r),the multiquadric?(r)=+c2,the Gaussian?(r)=exp(?c2r2),and the inverse multiquadric?(r)=(r2+c2)?1/2,wherecis the shape parameter.However,in order to ensure the uniqueness of the solution of the interpolation problem,the coefficient matrix generated by the basis function?in the linear system(2.2)should be positive definitely.In this paper,we take the compactly supported positive definite radial basis function[18]

    whereρis the support size,andr=//p?q//is the Euclidean distance between a point p and a RBF center q.

    The CSRBF methods(eg.CSRBF networks)can interpolate well on the given data set,but it is ineffective in shape preserving,as shown in Figs.1(b)and1(e).In Fig.1,the subfigure1(a)shows the original surface defined by a quadric polynomial

    and the sampling pointsP(training points,also)on the surface.Fig.1(b)gives out the reconstructed surface with CSRBF networks interpolation directly from the pointsP.And the residual surface between the original surface and the reconstructed surface is shown in Fig.1(e).The maximum and the variance of the residuals are listed in Table1.Here,we randomly selectk=20in[4,35](h=1.2 by(3.8 ),correspondingly),and apply them for all examples in section4to show the robustness of the way to set the parameters in our proposed method.

    2.2 Multivariate multiquadraic quasi-interpolation

    Quasi-interpolation is a class of approximation methods for data fitting.Compared with the RBF-based interpolation,the quasi-interpolation method constructs the approximation formula directly with some approximating errors,but it can preserve the shape of given data well,as shown in Figs.1(c)and1(f).By using the linear combination of Hardy’s MQ basis

    and low order polynomials to construct the kernel functionαi(x),Beaton and Powell[19]first proposed a univariate quasi-interpolation formula.However,the requirement of the derivative information of the approximating functionfat the endpoints prevents the practical use of this formula.Wu and Schaback[20]proposed an improved univariate quasi-interpolation formula without using the derivative values at the endpoints,and their formula is given by

    where the quasi-interpolation kernelαi(x)is as follows

    It has been proved that the MQ quasi-interpolation(2.6)preserves linear reproduction,monotonicity,convexity and variation-diminishing[20].

    Ling[21]extended(2.6)to bivariate quasi-interpolation by using the dimension-splitting multi-quadric basis function approach.For a given data setP={xi,yj,fij}(i=0,1,···,n,j=0,1,···,m),the bivariate quasi-interpolation function is given by

    whereαi(x)is given by(2.7)and the interpolation kernelβj(y)is defined by

    The quasi-interpolation scheme(2.8)only has the property of linear reproduction.Feng and Zhou[22]proposed an improved formula which satisfies the quadric polynomial reproduction property.In this paper,the main function of(2.8)is to preserve shape,and we will improve the accuracy by compensating the approximating error generated by quasi-interpolation with RBF-based interpolation,as shown in Figs.1(d)and1(g).

    Table1Analysis of residual(quadric polynomial surface,11×11sampling points)

    Figure1 Approximating the quadric polynomial surface defined by(2.4)from11×11sampling points.(a)Original surface and training points.(b)and(e)are the reconstructed CSRBF surface and its residual to(a).(c)and(f)are the MMQ-QI surface and its residual to(a).(d)and(g)are our MMQ-CSRBF surface and its corresponding residual to(a).The parameters are set as ρ=0.45 ,c=0.1 2.

    3 Shape Preserving Surface Reconstruction

    In this section,we will present a two-level fitting method to reconstruct a surface with shape preserving from scattered data.An initial surface is constructed by the MMQ quasi-interpolation formula(2.6),which makes the shape of the surface to be similar with that of the scattered data.RBF-based interpolation is then used to fitting the difference between the initial surface and the scattered data.Shape parameters in the MMQ quasi-interpolation and RBF-based interpolations will be discussed with the shape-preserving property and the approximation capacity.

    3.1 Two-level fitting

    Surface reconstruction from sampling points discussed here can be stated as follows.For a given(n+1)×(m+1)points setP={xi,yj,zij}(i=0,1,···,n,j=0,1,···,m),a surface can be reconstructed in an implicit way which is to find a functionf(x,y,z)such that its zero level-setS={(x,y,z)|f(x,y,z)=0}passes through the point setP.

    RBF-based interpolation is one of the most widely used implicit methods.We can construct a bivariate functiong(x,y)=∑λi?i(x,y),where?iis the basis function,and the coefficientsλican be determined by the constraintsg(xi,yj)=zij.The given pointsPwill exactly locate on the result surfaceS={(x,y,z)|f(x,y,z)=z?g(x,y)=0}.However,as stated in section2.1,this method does not possess the shape preserving property.

    Here,we propose a two-level fitting algorithm to solve the shape preserving problem in surface interpolation by combining the CSRBF networks interpolation and the MMQ quasi-interpolation.We first approximate the points setPwith the MMQ quasi-interpolation scheme(2.8)which provides the good shape preserving property,

    The approximating error between the surfaces generated by(3.1)and the given dataPcan be described with a bivariate correction function

    We adopt a CSRBF networks interpolation to construct the correction function(3.2)under the constraintsh(xi,yj)=zij?(LLf)(xi,yj),i=0,1,2,···,n,j=0,1,2,···,m,as

    In the above equation,the first term in the right-hand side gives a base surface for achieving shape preserving.Meanwhile,the second term is for interpolating the given dataPand improving the global approximating accuracy.

    The main steps of the shape preserving interpolation algorithm for the given data can be outlined as follows:

    Algorithm1.Shape preserving surface reconstruction from the given points.

    Input:A set of pointsP.

    Output:A surfaceSpassing throughPwith shape preserving properties.

    Step1.Construct the MMQ-QI surfaceLLf(x,y)approximating the shape of pointsP.

    Step2.Define a correction function(3.2)and compute the correction quantity of the points,hij=h(xi,yj).

    Step3.Construct the functionh(x,y)on the data{(xi,yj,hij),i=0,1,···,n,j=0,1,···,m}by using CSRBF networks.

    Step4.Obtain the required shape preserving interpolating surface function,z=LLf(x,y)+h(x,y).

    3.2 Shape parameters

    In the fitting function(3.4 ),there are two shape parameters:the parametercin the MMQ quasi-interpolation and the support sizeρin the CSRBF networks.The accuracy of our two-level fitting depends heavily on the choice of these two parameters.In this subsection,we try to explore the relationship betweencandρ,and provide their heuristic setting for surface approximation with small errors.

    As discussed by Floater and Iske[23],the supported radiusρis adjusted to the density of the given points,and it is difficult and time-consuming.To obtain a appropriateρ,we define thek-supported radius of CSRBF.

    Definition3.1(k-Supported Radius)Thek-supported radius of CSRBF in the points setPis given as

    According to the construction of MMQ basis function(2.5),the smoothing factorcplays an important role in quasi-interpolation.The smallercmakes the quasi-interpolation curves(surfaces,also)closer to the given data.And the biggercmakes the curves further away the given points.Furthermore,from numeric experiments,we found that,for the data with large gradients,the CSRBF-based methods can interpolate the given points exactly,while the errors are large at the other points.In order to obtain an accurate approximation,it is necessary to find a proper smoothing factorcin MMQ quasi-interpolation to generate the error functions with small gradients.

    Obviously,the density of the given points is an important factor to determine the parameterc.Here,it can be given as

    From(3.5 )and(3.6 ),the problem of determiningcandρis converted into finding two parameterskandh.With a number of numeric experiments,we observed that there existed a function relationship betweenkandhfor achieving a fitting accuracy.The experiments are taken in the following way.

    Numeric experiment1

    Step1.Sample a surfacef(x,y).The sampling point set is ?={xi,yj,zij=f(xi,yj),i=0,1,···,an,j=0,1,···,bm},whereaandbare integers.In our experiments,bothaandbare set as5.This set is divided into two subsetsPandQ,whereP={xai,ybj,zai,bj,i=0,1,···,n,j=0,1,···,m}is the training point set for surface fitting,andQ=??Pis for error measuring.

    Step2.Fit the data setPwith differentkandh.For each pair of(k,h),a surfaceS(x,y)can be reconstructed from the setP.It is known that too bigkandhwill affect the fitting efficiency and accuracy.Here,we setkas the integer numbers in the interval(0,120],andhas the values of 101uniform samples in the interval[0,10].So,for each data setP,120×101surfaces are generated.

    Step3.Compute the approximation errors with the data setQ.The approximation error is defined as

    whereDis the domain of the surfacef(x,y).For each fitting surfaceSk,h(x,y)with the specifiedkandh,the approximation errorek,his computed by the setQ.We denote the minimum of the approximation errors with all pairs(k,h)asemin.

    Step4.Construct the valid intervals ofh.We use a ratee/eminto measure the fitting accuracy of a surface with the specifiedkandh.Then,all validhs can be found for eachkwhen the ratee/eminof a fitting surface is less than the given error thresholdηe.Thesehs form a set in which the minimal one and the maximal one are the bounds of a interval[hLB,hUB].Fig.2shows the intervals ofhunder different precision thresholdsηe=20,15,and5,where the surface is the quadratic polynomial surface in Fig.1(a).As the precision of the approximation increases,the interval ofhgets shorter for a fixedk.The same phenomenon happens in other surface approximation cases.

    Whenηeis traversed from1to100,we do the above steps for surfaces with different sizes of the fitting setP,such as Quadric polynomial surface(11×11),Quadrical polynomial surface(21×21),Cubic polynomial surface(11×11),Sine polynomial surface(11×11),Arc surface(11×11),Peaks(part)(11×11),Peaks(part)(21×21),where all surfaces are defined in the next section,except for the quadric polynomial surface which is defined in subsection2.1,and combine all valid intervals ofhtogether,see Fig.3(a).

    In CSRBF methods,too smallkwill lead the domain of the surface to be uncovered by influences of the RBF centers,while too bigkwill increase the complexity and the instability.In our paper,k∈[4,35]can work well for all sampling points.Fig.3(b)extracted from Fig.3(a)shows the intervals ofhwithk∈[4,35].It is observed that there is a narrow band where the upper bounds and lower bounds are mixed.The mixed band illustrates a relationship ofk-hunder a acceptable precision.Fig.3(c)shows a quadratic polynomial curve which is used to fit the relationship ofk-hin the band,

    Figure2 Relationship between the interval of the right h and k under a given precision threshold ηe for quadratic polynomial surface(2.4)

    Figure3 Construction of the functional relationship between h and k by all the experiments in Table2with ηe traversing from1to100.(a)The upper bounds and lower bounds of h for all experiments with all ηe.(b)The part of(a)where k∈[4,35].(c)The fitting curve between h and k in the narrow band formed by the mixed upper bounds and lower bounds of h.

    With(3.8),the correspondinghis obtained for eachk∈[4,35].In Table2,for seven data sets,we list the maximal errorse1,the minimal errorse2,and the values of their corresponding(h1,k1)and(h2,k2).Errorse3are also listed in Table2,which is the minimal approximation errors for allk∈(0,120]and allh∈[0,10].Actually,his set as one of the101uniform samples in the interval[0,10].From Table2,it is exciting that(3.8)can provide a good choice ofhwith respect to anyk∈[4,35]for fitting a surface with a small approximation error.And in interval[4,35],the biggerk,the smaller approximation error.

    Table2Analysis of approximation accuracy

    4 Numerical Examples

    In this section,several results are provided to illustrate the effectiveness of the proposed algorithm for shape preserving surface approximation,where the residuals are the errors in the whole domain of a surface,not only on the training points.Especially,the residuals on the training points are almost zero,because the method interpolates those points.If without considering the round-off error,they are exactly equal to zero.Given the approximated functionf(x,y),the residual function could be defined as follows

    whereS(x,y)denotes the approximation surface,and(x,y)∈Df,the domain of the functionf(x,y).

    In all Examples(Example4.1 -4.5 )in this section,the training points are taken from the samples of the surface,and the testing set are5times more dense than the training set in each direction.Due to the density of the training points,the parametersρa(bǔ)ndcare not the same for different samples.In the fitting procedure,the parameterkcan be selected randomly in the interval[4,35].Here,kis set as20for all examples and works well.The parameterhis computed with(3.8),soh=1.2.The fixedkandhare beneficial to study the robustness of the parameters setting in the proposed method.

    In each example,the results of the CSRBF networks interpolation(2.1),the MMQ quasi-interpolation(2.8 )and our proposed method(3.4 )are compared with each other.Figs.4-10show seven examples.Each result includes the original surface,the training points for surface fitting,three reconstructed surfaces with three different methods and their corresponding residuals to the original surface.Their approximation errors are listed in Table3.From the Figs.4-10and Table3,it is easy to find that our MMQ-CSRBF method can reconstruct shape-preserving surfaces with high accuracy.

    Table3Approximation error statistics

    Example4.1(Quadric Polynomial Surface)The point setPis obtained by sampling the quadric polynomial surface(2.4)with21×21training points.According to Figs.4(d)and4(g),it is obviously that MMQ-CSRBF approximates the quadric polynomial surface well.Like MMQ-CSRBF,MMQ-QI reconstructs the surface with shape preserving(Fig.4(c)),but its approximation error(e=2.434 e-2)is bigger than MMQ-CSRBF(e=1.608 e-4).Figs.4(b)and4(e)show the CSRBF networks leads to a non-shape preserving and overfitting surface.Moreover,the variance in Table3indicates the stability of the proposed MMQ-CSRBF method.

    Compared with the surface approximated by using11×11sampling points in subsection2.1,MMQ-CSRBF stands out in the three methods with the samekandhfor different density sampling points.On the other hand,the approximation accuracy of MMQ-CSRBF with11×11sampling points(3.552 e-4 in Table1)is still several orders of magnitude better than the other two methods with21×21sampling points(CSRBF:1.080 e-0and MMQ-QI:2.434 e-2in Table3).

    Example4.2(Cubic Polynomial Surface)The training point setPis formed by sampling11×11 points on a cubic polynomial surface

    From the setP,three surfaces reconstructed by three methods are shown in Fig.5.Figs.5(b)and5(e)demonstrate that the CSRBF interpolation surfaces are the worst for their largest approximation errors and big deformations near the boundaries.Fig.5(c)indicates the MMQ-QI only approximates the surface with shape preserving,and the residual errors are larger than the MMQ-CSRBF(Fig.5(f)).As expected,Figs.5(d)and5(g)show that the MMQ-CSRBF approximates the cubic polynomial surface very well,and the residuals listed in Table3show that the MMQ-CSRBF is the highest accurate and most stable method to approximate the cubic polynomial surface.

    Example4.3(Sine Polynomial Surface)The sine polynomial surface

    is sampled into11×11points as the training points for surface fitting.From the points,three reconstructed surfaces are displayed in Fig.6.Fig.6(c)indicates that there are many sampling points are away the MMQ-QI approximation surface,and Fig.6(f)shows the residual errors are big.Although Figs.6(b)and 6(e)demonstrate that the CSRBF performs better than the MMQ-QI,the residual errors of the CSRBF networks surface are still large.Figs.6(d)and6(g)show our MMQ-CSRBF method can approximate the sine polynomial surface very well.The residuals in Table3could verify this.

    Figure4 Surfaces reconstructed from21×21points sampled on the quadric polynomial surfaces(2.4).(a)The original surface and training points.(b)-(d)and(e)-(g)are the surfaces and their residuals to(a)using three methods,CSRBF,MMQ-QI,and MMQ-CSRBF,respectively.The parameters are set as ρ=0.22 (k=20)and c=0.06 (h=1.2).

    Example4.4(Arc Surface)Given a points setPwith11×11training points sampled on the arc surface

    three surfaces are reconstructed by three methods for comparison,as shown in Fig.7.From the fitting results in Fig.7and the approximation errors in Table3,these three approximation surfaces are not fitted well.That maybe because the samples on the Arc surface are very non-uniformly distributed,especially near the boundaries.

    Figure5 Comparisons of reconstructed surfaces by three different methods.(a)The cubic polynomial surface and 11×11training points.(b)and(e)are the result surface by CSRBF and its residual to(a).(c)and(f)are for MMQ-QI.(d)and(g)are for MMQ-CSRBF.All results are generated by the same parameter setting as ρ=0.45 (k=20)and c=0.12 (h=1.2 ).

    Example4.5(Peaks Surface)Given the peaks surface

    in order to show the performance of the proposed method approximating the surface with different density,we sample two training points sets on the part of the surface(4.5),wherex,y∈[0,1]×[1,2].LetP11denote the set with11×11sampling points,andP21the set with21×21sampling points,the approximation surfaces can be generated by the three methods from the two training point sets.From Table3,Fig.8and Fig.9,it obviously shows that any one of the surfaces reconstructed by the MMQ-CSRBF is significantly better than the surfaces generated by the other two methods.

    Figure6 Comparisons among the reconstructed surfaces by three methods from a point set with11×11points sampled on a sine polynomial surface(4.3).(a)the original surface and training points.(b),(c),and(d)are the surfaces generated by CSRBF,MMQ-QI,and MMQ-CSRBF,respectively,with same parameter setting ρ=0.45 (k=20)and c=0.12 (h=1.2 ).(e),(f),and(g)are their corresponding residuals to(a).

    Moreover,if we expand the fitting domain up to36times,e.g.x,y∈[?3,3]×[?3,3],and the number of the sampling points goes up to31×31,Fig.10shows that the MMQ-CSRBF can still reconstruct the best approximation surface among the three methods.Their approximation errors can be checked in Table 3.

    Figure7 Approximations of the arc surface(4.4)with three methods from11×11training points.(a)is the original surface and training points.(b)-(d)are the approximating surfaces with methods CSRBF,MMQ-QI,and MMQ-CSRBF.(e)-(g)are the residuals of(b)-(d)to(a),respectively.All results are generated by using the same parameter setting ρ=0.45 (k=20)and c=0.12 (h=1.2 ).

    Figure8 Comparison of the three approximate surfaces by different methods(CSRBF,MMQ-QI,and MMQ-CSRBF).(a)The original surface which is one part of the peaks surface(4.5),with11×11training points on it.The second row includes the surfaces by the three methods,(b)CSRBF,(c)MMQ-QI,and(d)MMQ-CSRBF.The third row shows their corresponding residuals to the original surface(a).All methods adopt the same parameter setting,ρ=0.50 (k=20),c=0.12 (h=1.2 ).

    Figure9 Comparison of the three approximate surfaces by different methods(CSRBF,MMQ-QI,and MMQ-CSRBF).(a)The original surface which is one part of the peaks surface(4.5),with21×21training points on it.The second row gives the surfaces by the three methods,(b)CSRBF,(c)MMQ-QI,and(d)MMQ-CSRBF.The third row shows their corresponding residuals to the original surface(a).All methods use the same parameter setting,ρ=0.22 (k=20),c=0.06 (h=1.2 ).

    Figure10 Comparison of the three approximate surfaces by different methods(CSRBF,MMQ-QI,and MMQ-CSRBF).(a)The original peaks surface(4.5)with31×31training points on it.The surfaces shown in the second row are generated by the methods,(b)CSRBF,(c)MMQ-QI,and(d)MMQ-CSRBF,respedtinely.The third row shows their corresponding residuals to the original surface(a).The three surfaces are generated by using the same parameter setting,ρ=0.89 (k=20),c=0.24 (h=1.2 ).

    5 Conclusions

    The RBF-based interpolation methods are an important class of surface approximation methods[7,8,9,10,11,12,13].However,they suffer from the efficiency and the non shape-preserving property which limit them to be used widely for the large scale data.Although using CSRBFs[6]can improve the fitting efficiency,the surface reconstructed by them is still not shape-preserving.The MMQ quasi-interpolation method[19,20,21]is a shape-preserving surface fitting method,while the parametercis hardly chosen to balance the smoothness and the accuracy.In this paper,a two-level fit method is proposed to fitting a shape-preserving surface with a high accuracy from the given data,by combining the MMQ quasi-interpolation method and the CSRBF-based method.An initial surface is first constructed by the MMQ quasi-interpolation method,which is shape-preserving,and then a CSRBF networks fitting process is performed to improve the fitting accuracy.In addition,a function betweenhandkfor determining the values of parameterscandρis created to generate a fitting surface with a small approximation error by a number of numerical experiments,wherek∈[4,35],with balancing the efficiency and the accuracy.It simplifies the setting of parameterscandρ,and benefits the users without experiences in shape designing.

    国精品久久久久久国模美| 99re在线观看精品视频| 国产成人精品在线电影| 男人操女人黄网站| 亚洲精品国产色婷婷电影| 757午夜福利合集在线观看| 日本五十路高清| 日韩三级视频一区二区三区| 欧美人与性动交α欧美精品济南到| 欧美日韩亚洲国产一区二区在线观看 | 日韩有码中文字幕| 丁香六月欧美| 美女视频免费永久观看网站| 亚洲精品国产精品久久久不卡| 青草久久国产| 国产人伦9x9x在线观看| 又紧又爽又黄一区二区| 国产一卡二卡三卡精品| 91国产中文字幕| 久久久久网色| 国产精品麻豆人妻色哟哟久久| 国产精品自产拍在线观看55亚洲 | 啦啦啦在线免费观看视频4| 动漫黄色视频在线观看| 亚洲,欧美精品.| 久久天躁狠狠躁夜夜2o2o| 老司机福利观看| 久久精品亚洲精品国产色婷小说| 色在线成人网| 欧美日韩亚洲综合一区二区三区_| 18禁黄网站禁片午夜丰满| xxxhd国产人妻xxx| 日韩制服丝袜自拍偷拍| 精品国产乱码久久久久久男人| 国产成人一区二区三区免费视频网站| 香蕉久久夜色| 午夜福利欧美成人| 久久久久久久久久久久大奶| svipshipincom国产片| 五月天丁香电影| 丁香欧美五月| 51午夜福利影视在线观看| 国产97色在线日韩免费| 丰满少妇做爰视频| 99re在线观看精品视频| 日韩大码丰满熟妇| 亚洲精品久久午夜乱码| 久久久久久久国产电影| 欧美日韩亚洲综合一区二区三区_| 日本vs欧美在线观看视频| 大片免费播放器 马上看| 91字幕亚洲| 国产三级黄色录像| 成人国语在线视频| 老司机亚洲免费影院| 欧美精品高潮呻吟av久久| 精品国产乱码久久久久久男人| 国产区一区二久久| 黄色视频在线播放观看不卡| 99re6热这里在线精品视频| 久久九九热精品免费| 久久热在线av| 久久久久久久大尺度免费视频| 亚洲精品美女久久久久99蜜臀| 青草久久国产| 日日摸夜夜添夜夜添小说| 国产高清视频在线播放一区| 人人妻人人澡人人爽人人夜夜| 一区二区av电影网| 久久精品亚洲熟妇少妇任你| 他把我摸到了高潮在线观看 | 老熟妇仑乱视频hdxx| 国产午夜精品久久久久久| av福利片在线| 大片免费播放器 马上看| 日本五十路高清| 少妇裸体淫交视频免费看高清 | 免费观看av网站的网址| 在线播放国产精品三级| 免费在线观看影片大全网站| 欧美日韩中文字幕国产精品一区二区三区 | 亚洲 欧美一区二区三区| 亚洲国产欧美日韩在线播放| 免费高清在线观看日韩| 欧美中文综合在线视频| 国产精品久久久久久精品古装| 天堂动漫精品| 操美女的视频在线观看| 激情在线观看视频在线高清 | 亚洲一区二区三区欧美精品| 色视频在线一区二区三区| 每晚都被弄得嗷嗷叫到高潮| 国产成人精品在线电影| av网站在线播放免费| 午夜激情av网站| 日韩欧美一区二区三区在线观看 | 久久这里只有精品19| 亚洲av片天天在线观看| 午夜福利欧美成人| 十八禁人妻一区二区| 亚洲情色 制服丝袜| 黄色 视频免费看| 日韩熟女老妇一区二区性免费视频| 亚洲国产av新网站| 9热在线视频观看99| 精品人妻在线不人妻| 欧美亚洲 丝袜 人妻 在线| 国产在线精品亚洲第一网站| 国产高清视频在线播放一区| 丝袜美腿诱惑在线| 亚洲欧洲精品一区二区精品久久久| 日韩中文字幕欧美一区二区| 成人亚洲精品一区在线观看| 高清av免费在线| 亚洲欧美日韩另类电影网站| 亚洲中文av在线| 夜夜夜夜夜久久久久| 热99国产精品久久久久久7| 精品一品国产午夜福利视频| 亚洲天堂av无毛| 99国产精品99久久久久| avwww免费| 久久精品成人免费网站| 男男h啪啪无遮挡| 午夜福利视频在线观看免费| 高清毛片免费观看视频网站 | 国产欧美日韩综合在线一区二区| av不卡在线播放| 一区二区日韩欧美中文字幕| 国产欧美日韩综合在线一区二区| 曰老女人黄片| 欧美激情极品国产一区二区三区| 精品欧美一区二区三区在线| 午夜两性在线视频| 五月开心婷婷网| 国产精品亚洲av一区麻豆| 手机成人av网站| 国产伦理片在线播放av一区| 国产一区二区在线观看av| www日本在线高清视频| 午夜福利一区二区在线看| 久久午夜亚洲精品久久| 色播在线永久视频| 国产一卡二卡三卡精品| 国产97色在线日韩免费| 精品一区二区三区视频在线观看免费 | 一本久久精品| 18禁国产床啪视频网站| 女人精品久久久久毛片| 99香蕉大伊视频| 欧美乱码精品一区二区三区| 午夜福利,免费看| 免费在线观看黄色视频的| 在线观看舔阴道视频| 99re在线观看精品视频| av福利片在线| 热99国产精品久久久久久7| kizo精华| 国产成人免费观看mmmm| 久久久久久免费高清国产稀缺| 大香蕉久久网| 黑人猛操日本美女一级片| 不卡一级毛片| 中文字幕另类日韩欧美亚洲嫩草| 国产在线精品亚洲第一网站| 97在线人人人人妻| 香蕉国产在线看| 99九九在线精品视频| 午夜福利乱码中文字幕| 精品一区二区三区四区五区乱码| 欧美成人午夜精品| 精品免费久久久久久久清纯 | 亚洲精品国产区一区二| 黑丝袜美女国产一区| 美女扒开内裤让男人捅视频| 999久久久国产精品视频| 男女之事视频高清在线观看| 久久青草综合色| 国产在线观看jvid| 中文字幕人妻熟女乱码| 手机成人av网站| 亚洲熟妇熟女久久| 国产精品 欧美亚洲| 欧美日韩亚洲高清精品| 老鸭窝网址在线观看| 亚洲 欧美一区二区三区| 国产在线观看jvid| 无人区码免费观看不卡 | 成人黄色视频免费在线看| 丰满少妇做爰视频| 免费在线观看完整版高清| 免费不卡黄色视频| 侵犯人妻中文字幕一二三四区| 成年人免费黄色播放视频| 少妇的丰满在线观看| 亚洲中文字幕日韩| cao死你这个sao货| 99久久99久久久精品蜜桃| 午夜福利一区二区在线看| 日本一区二区免费在线视频| 麻豆成人av在线观看| 性高湖久久久久久久久免费观看| 成人影院久久| 国产真人三级小视频在线观看| 如日韩欧美国产精品一区二区三区| 国产在视频线精品| 成年人免费黄色播放视频| 777米奇影视久久| 美女视频免费永久观看网站| 亚洲一区二区三区欧美精品| 国产在视频线精品| 欧美黑人欧美精品刺激| 久久久国产一区二区| 飞空精品影院首页| 国产伦人伦偷精品视频| 国产成人免费无遮挡视频| 久久精品熟女亚洲av麻豆精品| 成人黄色视频免费在线看| 757午夜福利合集在线观看| 国产一区二区三区综合在线观看| 在线播放国产精品三级| 日本欧美视频一区| 亚洲一卡2卡3卡4卡5卡精品中文| 黄色视频在线播放观看不卡| 性色av乱码一区二区三区2| 黄色a级毛片大全视频| 少妇精品久久久久久久| bbb黄色大片| 亚洲色图av天堂| 五月开心婷婷网| www.熟女人妻精品国产| 十八禁高潮呻吟视频| 99riav亚洲国产免费| 欧美日韩国产mv在线观看视频| 国产不卡av网站在线观看| 亚洲国产av新网站| 午夜视频精品福利| 久久天躁狠狠躁夜夜2o2o| 在线观看舔阴道视频| 一本一本久久a久久精品综合妖精| 日韩大片免费观看网站| 久久久久久久大尺度免费视频| 电影成人av| 91九色精品人成在线观看| 亚洲第一青青草原| 亚洲第一欧美日韩一区二区三区 | 欧美亚洲 丝袜 人妻 在线| 一本大道久久a久久精品| 一二三四社区在线视频社区8| 大码成人一级视频| 国产野战对白在线观看| 午夜老司机福利片| 国产成人欧美| 91国产中文字幕| 美女国产高潮福利片在线看| 免费观看人在逋| 精品一区二区三区av网在线观看 | 日本vs欧美在线观看视频| 超碰97精品在线观看| 最近最新中文字幕大全免费视频| 欧美日韩国产mv在线观看视频| 日本精品一区二区三区蜜桃| 国产人伦9x9x在线观看| 国产日韩欧美在线精品| 成人国语在线视频| 亚洲少妇的诱惑av| 美女主播在线视频| 美女视频免费永久观看网站| 国产色视频综合| 久久久久网色| 国产免费福利视频在线观看| 午夜福利影视在线免费观看| 黑丝袜美女国产一区| 一级毛片女人18水好多| 国产精品二区激情视频| 91大片在线观看| 亚洲欧美色中文字幕在线| 一进一出抽搐动态| 亚洲中文字幕日韩| 99riav亚洲国产免费| 欧美激情久久久久久爽电影 | 亚洲精品一卡2卡三卡4卡5卡| 人人妻人人澡人人爽人人夜夜| 亚洲avbb在线观看| 老司机靠b影院| 亚洲国产精品一区二区三区在线| 两个人看的免费小视频| 欧美 日韩 精品 国产| 国产精品久久久久久人妻精品电影 | 宅男免费午夜| 在线播放国产精品三级| 80岁老熟妇乱子伦牲交| 午夜成年电影在线免费观看| 日韩精品免费视频一区二区三区| 女人精品久久久久毛片| 极品少妇高潮喷水抽搐| 亚洲伊人久久精品综合| 精品亚洲乱码少妇综合久久| 国产一区二区在线观看av| 成人av一区二区三区在线看| 高清毛片免费观看视频网站 | 久久ye,这里只有精品| 丁香欧美五月| 久久久久国产一级毛片高清牌| 精品人妻1区二区| 国产熟女午夜一区二区三区| 欧美日韩黄片免| 中国美女看黄片| 美女国产高潮福利片在线看| cao死你这个sao货| 丝袜喷水一区| 日韩大片免费观看网站| 日本五十路高清| 操出白浆在线播放| 国产无遮挡羞羞视频在线观看| 老鸭窝网址在线观看| 国产精品熟女久久久久浪| 黑丝袜美女国产一区| 久久国产亚洲av麻豆专区| 他把我摸到了高潮在线观看 | 日韩三级视频一区二区三区| 丰满迷人的少妇在线观看| 久久精品国产亚洲av香蕉五月 | 国产精品国产高清国产av | 成年女人毛片免费观看观看9 | 国产精品久久久人人做人人爽| 亚洲国产欧美在线一区| 精品国产一区二区三区四区第35| 亚洲第一欧美日韩一区二区三区 | bbb黄色大片| 蜜桃国产av成人99| 99精品久久久久人妻精品| 亚洲中文字幕日韩| 两性夫妻黄色片| 亚洲三区欧美一区| 成年人黄色毛片网站| 国产视频一区二区在线看| 久久亚洲真实| 国产精品1区2区在线观看. | 三级毛片av免费| 成人av一区二区三区在线看| 国产极品粉嫩免费观看在线| 丝瓜视频免费看黄片| 精品熟女少妇八av免费久了| 成人国产一区最新在线观看| 极品人妻少妇av视频| 丝瓜视频免费看黄片| 女警被强在线播放| 精品亚洲乱码少妇综合久久| 久久久久久亚洲精品国产蜜桃av| 午夜福利视频在线观看免费| 亚洲国产欧美在线一区| 精品视频人人做人人爽| 人妻久久中文字幕网| 少妇精品久久久久久久| 国产亚洲欧美精品永久| av视频免费观看在线观看| 美女扒开内裤让男人捅视频| 国产精品久久久人人做人人爽| 午夜成年电影在线免费观看| 91麻豆精品激情在线观看国产 | 欧美日韩亚洲国产一区二区在线观看 | 中文字幕制服av| 欧美日韩一级在线毛片| 91字幕亚洲| 午夜老司机福利片| 国产亚洲精品第一综合不卡| 中文字幕色久视频| 亚洲国产看品久久| 国产深夜福利视频在线观看| 色婷婷av一区二区三区视频| 国产在线观看jvid| 2018国产大陆天天弄谢| 国产精品久久久人人做人人爽| 男女高潮啪啪啪动态图| 亚洲av美国av| 啦啦啦中文免费视频观看日本| 亚洲精品美女久久久久99蜜臀| 久久99热这里只频精品6学生| 日本精品一区二区三区蜜桃| 久久 成人 亚洲| videosex国产| 久久精品亚洲精品国产色婷小说| 亚洲一码二码三码区别大吗| 欧美精品亚洲一区二区| 又大又爽又粗| 超碰97精品在线观看| 欧美日韩视频精品一区| 亚洲 国产 在线| 亚洲国产av新网站| 国产在线观看jvid| 色尼玛亚洲综合影院| 80岁老熟妇乱子伦牲交| 婷婷丁香在线五月| 亚洲精品在线观看二区| 亚洲人成77777在线视频| 99在线人妻在线中文字幕 | 亚洲精品中文字幕一二三四区 | 人人妻人人爽人人添夜夜欢视频| 午夜精品久久久久久毛片777| 久久精品国产综合久久久| 国产精品免费一区二区三区在线 | 视频在线观看一区二区三区| 精品国产国语对白av| 欧美午夜高清在线| 夜夜夜夜夜久久久久| 亚洲精品在线美女| 国产成人精品无人区| 精品少妇久久久久久888优播| www.自偷自拍.com| 久久精品成人免费网站| av电影中文网址| 人人妻人人爽人人添夜夜欢视频| 欧美日韩亚洲国产一区二区在线观看 | 久久久久国产一级毛片高清牌| 在线亚洲精品国产二区图片欧美| 国产成人精品久久二区二区91| 黄色毛片三级朝国网站| av视频免费观看在线观看| 最新在线观看一区二区三区| 日韩免费av在线播放| 日本wwww免费看| 午夜福利视频在线观看免费| 成年女人毛片免费观看观看9 | 捣出白浆h1v1| 精品卡一卡二卡四卡免费| 俄罗斯特黄特色一大片| 成年版毛片免费区| 欧美成狂野欧美在线观看| 三上悠亚av全集在线观看| 日本撒尿小便嘘嘘汇集6| 国产野战对白在线观看| √禁漫天堂资源中文www| 欧美午夜高清在线| 国产成人免费无遮挡视频| 国产av精品麻豆| 99热国产这里只有精品6| 嫩草影视91久久| 国产成人免费观看mmmm| 亚洲精品久久成人aⅴ小说| 黄色丝袜av网址大全| 久久av网站| 亚洲 欧美一区二区三区| 日韩视频一区二区在线观看| 色老头精品视频在线观看| 又大又爽又粗| 天天躁夜夜躁狠狠躁躁| 亚洲国产欧美在线一区| 亚洲第一青青草原| 色综合婷婷激情| 免费女性裸体啪啪无遮挡网站| 亚洲午夜精品一区,二区,三区| 汤姆久久久久久久影院中文字幕| 丝袜在线中文字幕| 女人精品久久久久毛片| 午夜福利一区二区在线看| 黄色怎么调成土黄色| 午夜福利在线免费观看网站| 亚洲一区中文字幕在线| 大香蕉久久成人网| 亚洲精品在线观看二区| 国产亚洲午夜精品一区二区久久| 精品人妻熟女毛片av久久网站| 99久久99久久久精品蜜桃| 久久99一区二区三区| 亚洲成人免费电影在线观看| 操出白浆在线播放| 欧美在线黄色| 91老司机精品| 久久国产精品大桥未久av| 国产老妇伦熟女老妇高清| 又大又爽又粗| 日韩欧美国产一区二区入口| 成人三级做爰电影| 91精品三级在线观看| 欧美乱码精品一区二区三区| 久久精品91无色码中文字幕| 天天躁夜夜躁狠狠躁躁| 欧美日韩亚洲国产一区二区在线观看 | 18禁国产床啪视频网站| 窝窝影院91人妻| 免费观看人在逋| 亚洲欧美日韩另类电影网站| bbb黄色大片| 日韩视频在线欧美| 久久久精品94久久精品| 亚洲精品久久成人aⅴ小说| 一级毛片电影观看| 国产主播在线观看一区二区| 在线播放国产精品三级| 三上悠亚av全集在线观看| 日韩三级视频一区二区三区| 国产高清国产精品国产三级| 国产高清激情床上av| 欧美大码av| 在线天堂中文资源库| 最近最新中文字幕大全免费视频| 在线 av 中文字幕| av有码第一页| 黄色怎么调成土黄色| 国产不卡av网站在线观看| 亚洲欧美日韩高清在线视频 | 可以免费在线观看a视频的电影网站| 天天躁狠狠躁夜夜躁狠狠躁| 性少妇av在线| 日本五十路高清| 精品午夜福利视频在线观看一区 | 亚洲五月婷婷丁香| 中文字幕制服av| 日韩大片免费观看网站| 一区福利在线观看| 国产在线精品亚洲第一网站| 国产在线免费精品| 女人爽到高潮嗷嗷叫在线视频| 51午夜福利影视在线观看| 国产精品99久久99久久久不卡| 母亲3免费完整高清在线观看| 亚洲欧美日韩另类电影网站| 成人手机av| 午夜视频精品福利| 亚洲国产av影院在线观看| 一个人免费看片子| 亚洲国产中文字幕在线视频| 他把我摸到了高潮在线观看 | 19禁男女啪啪无遮挡网站| 国产av国产精品国产| 国产免费现黄频在线看| 无限看片的www在线观看| 一夜夜www| 亚洲专区国产一区二区| 日韩大码丰满熟妇| 亚洲精品国产区一区二| 国产精品美女特级片免费视频播放器 | www.精华液| 国产欧美日韩一区二区三| 91老司机精品| 岛国毛片在线播放| 91精品国产国语对白视频| 午夜福利在线免费观看网站| 精品国产国语对白av| 色94色欧美一区二区| 天天躁日日躁夜夜躁夜夜| 日韩欧美免费精品| av不卡在线播放| 老鸭窝网址在线观看| 日韩一区二区三区影片| a在线观看视频网站| 天堂俺去俺来也www色官网| 麻豆国产av国片精品| 成人国产一区最新在线观看| 两人在一起打扑克的视频| 亚洲第一av免费看| 国产精品欧美亚洲77777| a级片在线免费高清观看视频| 青青草视频在线视频观看| 美女高潮到喷水免费观看| 91九色精品人成在线观看| 最近最新中文字幕大全免费视频| 亚洲精品一卡2卡三卡4卡5卡| 欧美日韩成人在线一区二区| 免费在线观看影片大全网站| 国产麻豆69| 日本欧美视频一区| 伦理电影免费视频| 香蕉丝袜av| 精品国产超薄肉色丝袜足j| 亚洲精品乱久久久久久| 亚洲熟妇熟女久久| 国产精品1区2区在线观看. | 黄色丝袜av网址大全| 国产精品自产拍在线观看55亚洲 | 亚洲熟妇熟女久久| 午夜激情av网站| 免费不卡黄色视频| 99re6热这里在线精品视频| a级毛片黄视频| 亚洲国产av新网站| 亚洲av美国av| 国产精品国产高清国产av | 精品久久久精品久久久| 后天国语完整版免费观看| 国产精品香港三级国产av潘金莲| 大片免费播放器 马上看| 久久久久国内视频| 男人舔女人的私密视频| 夜夜夜夜夜久久久久| 国产又色又爽无遮挡免费看| 91av网站免费观看| 一本色道久久久久久精品综合| 国产又爽黄色视频| 亚洲综合色网址| 国产免费av片在线观看野外av| 欧美大码av| 女人久久www免费人成看片| 99久久99久久久精品蜜桃| 狠狠狠狠99中文字幕| 国产日韩欧美视频二区| 久久久久国产一级毛片高清牌| 国产精品.久久久| 天堂俺去俺来也www色官网| 大片电影免费在线观看免费| 91成年电影在线观看| 热re99久久精品国产66热6| 免费久久久久久久精品成人欧美视频| 精品久久久久久久毛片微露脸| 热re99久久精品国产66热6| 美女扒开内裤让男人捅视频| 99精国产麻豆久久婷婷| 美女视频免费永久观看网站| 成人18禁在线播放| 国内毛片毛片毛片毛片毛片| 中文字幕制服av| 国产日韩一区二区三区精品不卡| 久久久久久久精品吃奶| 日本五十路高清|