• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Mechanical Study of Nano-ceramic Thermal Barrier Coatings by the Equation of Phonon Radiative Transfer

    2022-01-04 11:53:48ShiyuanZhangBeilinZhengandPengfeiHe

    Shiyuan Zhang, Beilin Zhengand Pengfei He

    (1. Department of Civil Engineering, Fujian University of Technology, Fuzhou 350108, Fujian, China;2. School of Aerospace Engineering and Applied Mechanics, Tongji University, Shanghai 200092, China)

    Abstract: Temperature filed, thermal stress, especially tensile stress and J-integral are important for thermal barrier coatings (TBCs) under thermal shock. At the micro- and nano-scale, the energy transport mechanisms are significantly different from those at the macro-scale. The temperature fields, which are obtained by combining the Equation of Phonon Radiative Transport (EPRT) (for the nano-scale ceramic TBCs)and the Fourier law (for the substrate), are used as the thermal loading in the thermal stress and J-integral of an edge in the TBCs analysis by the finite element method. The temperature field and thermal stresses as well as J-integral are compared with those which are calculated by applying the Fourier law to both the TBCs and the substrate. The influence of the physical heat properties of the TBCs on the temperature field and thermal stress and J-integral have been analyzed in this paper. It is concluded that the temperature, thermal stress, including the tensile and compressive components, and J-integral which are calculated with the EPRT, are lower than that calculated with the Fourier law in the TBCs. Moreover, thermal stress in the TBCs increase with increasing phonon speed and relaxation time, but J-integral at the crack tip is in the opposite

    Keywords: nano-ceramic TBCs; EPRT; the Fourier law; thermal stress

    0 Introduction

    Ceramic thermal barrier coatings (TBCs) have been applied to metal substrates to make them resistant to thermal shock in the aerospace and electronic devices, due to its many well-known advantageous properties, such as insulation and corrosion resistance. The accurate prediction of heat propagation in these devices may be important in ensuring their efficient work and design. Its heat transfer and thermal stress properties have been analyzed by the Fourier law, which is traditionally used to analyze the behavior of macroscopic heat transport. Recently, as nanotechnology and ultrafast processes continue to develop, TBCs with thicknesses between 10 nm and 100 nm are being used extensively in devices (Zeng and Chen[1]). The average free path of the energy carrier has been reached (microscale effect in size), resulting in the discontinuity of heat conduction because of the insufficient number of collisions of the energy-required heat conduction. In addition to microscale effect in time, the high-speed thermal shock reaches femtosecond or picosecond order[2], which is shortened into the range of the heat carrier mean free time, resulting in the premise of Fourier heat conduction theorem, in which the heat conduction velocity is infinite, thus not established. Therefore, there are obvious differences between the heat conduction theory at the microscopic scale and those at the macroscopic scale. New research indicates that the heat transfer mechanics at the micro-and nano-scales may deviate significantly from those at the macro-scale. For example, by the experiment of short-pulse laser heating on metals, Qiu and Tien[3]have verified that the actual heat flux is not as fast as the Fourier law prediction.

    Many scholars have studied and published non-Fourier heat transport models that are based on different physical theories. Maxwell[4]first reported that the heat propagation speed is limited and modified the Fourier law by adding a relaxation time. Landau[5]proved heat waves in liquid helium Ⅱ propagate with a finite speed. The CV model by modifying the Fourier law to interpret the thermal wave phenomenon was recently applied by some researchers (Cattaneo[6]and Vernotte[7]). Guyer and Krumhansl[8]brought forward the phonon scattering model by directly solving the linearized Boltzmann equation for heat transport by phonon collision and scattering. This model was improved later by Joseph and Preziosi[9], who emphasized the interrelation with a Jeffrey’s type of heat flux equation. Tzou[10]proposed the dual-phase-lag model with an emphasis on the lagging behavior at the micro-scale. Joshi and Majumdar[11-12]solved the linearized Boltzmann transport equation to derive the EPRT and analyzed heat transfer in dielectric thin films. The EPRT is valid for microscale in both time and size. Qiu et al.[13-14]proposed a two-step model with a quantum mechanical and statistical basis for a short-pulsed laser heating a metal film. Choudhuri[15]established the three-phase delay hyperbolic heat conduction equation (TPL) by joining the phase delay of heat flow, temperature gradient and thermal displacement gradient.

    At present, lots of studies researched the objects in the fields of biology and semiconductor. Li[16]compared the analytical and numerical solutions of non-Fourier temperature field of laminated plate and laminated cylinder, and proved that the numerical solution obtained by backward difference separation is absolutely stable. Atfi and Talaee[17-18]studied the non-Fourier thermal response of finite hollow cylinder subjected to periodic thermal shock based on C-V model. Cao[19]researched the dynamic response of piezoelectric pole under thermal shock of heat source based on fractional order theory. Yu[20]solved the temperature field and stress of the laminated material. On this basis, he studied the stress distribution at the crack tip under thermal shock. Li[21]analyzed the fracture behavior of solid plates under thermal shock by the non-Fourier. Zhang and Li[22-23]analyzed transient thermal stress and intensity factors for a circumferential crack in a hollow cylinder by generalized fractional heat conduction. Guo[24]analyzed the fracture mechanics of plate, sandwich plate, coating, cylinder and other structures with the two-phase delayed model. Zhang and Chen[25]studied the temperature field, displacement field and stress intensity factor of cracked hollow cylinder under thermal shock by using single-phase delayed non-Fourier heat conduction mode. Mao et al.[26]studied silicon crystal with point defect scatter by molecular dynamics. Those researches are mainly aimed at only on the TBCs rather than the TBCs structure (thermal barrier coating and substrate), and kingdom is mainly in heat conduction.

    In this paper, the equations combining the EPRT (for the TBCs) and the Fourier law (for the substrate) are numerically solved by the temperature field under thermal shock. The thermal stresses in the ceramic TBCs and J-integral of crack at the ceramic TBCs surface are studied by the finite element method, and the results are compared with those obtained by the Fourier law on both the TBCs and the substrate. The influence of the physical heat properties of the TBCs (such as the relaxation time and phonon speed) on the temperature field and the thermal stress as well as J-integral at an edge crack tip is analyzed.

    1 Calculated Temperature Field and Stress and J-Integral

    1.1 Heat Transportation Theoretical Model

    Thermal shock in the direction of thex-axis has been studied (Fig. 1).

    Because the thickness size of the ceramic TBCs is comparable with the mean free path(MFP) of typical phonons, which are considered to be the major heat carriers in the dielectric material, the phonon intensity for the ceramic TBCs ((0≤x≤b)) is numerically predicted by the EPRT[11]:

    (1)

    Fig.1 Structure of the nano-scale ceramic TBCs and the substrate

    Once, the phonon intensity is numerically solved by Eqs. (1), the temperature can be calculated by the Bose-Einstein distribution function at an equilibrium state[11]:

    (2)

    Because the thickness of the substrate (b≤x≤b+h) is much larger than the MFP, the temperature field of the substrate is predicted by the Fourier law[25]:

    (3)

    whereαis the thermal diffusivity.

    1.2 Initial Conditions and Boundary Conditions

    Att=0, the ceramic TBCs and the substrate are assumed to be at a uniform temperatureT0and remain adiathermal.

    Att>0, the temperature atx=0 is instantaneously raised toT1.For EPRT, the intensity function for incoming phonon remains constant, and for Fourier’s law, the boundary condition is constant temperatureT1.An idealized thermal shock on the surface of the TBCs is assumed, i.e., the heat transfer coefficient is infinitely large. Under this condition, the thermal stress is the greatest.

    Because the substrate material is a metal or an alloy, the phonons are absolutely reflected at the bottom of the TBCs.

    One assumes that there is no heat loss, and the two materials are in perfect thermal contact at the interface of the ceramic TBCs and substrate, and at the bottom of the substrate the temperature is a constantT0.

    The above conditions of the phonon and heat transport are expressed as follows:

    (4)

    1.3 Temperature Field Numerical Calculation

    Eq. (1) are two wave equations in the integrodifferential form. Eq. (1) are numerically solved by an explicit upstream differencing method, i.e., by backward differencing when the phonon intensity wave is moving in the positivex-direction (the first equation in Eq.(1)) and by forward differencing when it is moving in the negativex-direction (the second equation in Eq. (1)). To guarantee the stability of the numerical computation, the forward difference in time is applied while ensuring that Δt≤Δx/v|μ| in Eq. (1) and Eq. (3). The range of the cosine of the angleμ(-1≤μ≤1) is divided intoKdivisions. The integral in Eq. (1) can be approximated by a Gaussian quadrature[12]as

    (5)

    whereμishows discrete directions andwiis the weighting factor. The integrodifferential equations can be converted into the differential equation of the unknownIi. In Eq. (3), a complete implicit difference method is used to calculate temperature field. Eq. (1) and Eq. (3) can be represented in the finite difference expressions as follows:

    (6)

    where the superscriptnrepresentsnth time step, subscriptiis the index of the unit direction vector, subscriptjrepresents thejth node,A=vΔt/Δx,B=Δt/τ,Dis the last node of TBCs, andLis the last node of the substrate. Material parameters[27]in the TBCs and substrate are shown in Table 1.

    1.4 Thermal Stress and Fracture Calculation by Finite Element

    In this work, the thermal stress and J-integral at the crack tip in the TBCs are analyzed using the finite element method after numerical calculation of the temperature field. The numerical calculations make use of the element software MSC.MARC, which can be applied in the thermal stress and J-integral[28]. The stress and temperature analyses are uncoupled. The TBCs and the substrate are modeled by a four-node plane strain and quadratic elements in the stress analysis, because the model is a good elastic body without plastic deformation. In fracture mechanics analysis, it is assumed that the fracture is an edge crack that opens to the surface and its length is 2×10-8m. Quarter point 8-node isoparametric degenerate singular elements are employed in modeling the region near the crack tip, as shown in Fig.2.

    Table 1 Parameters and material properties relevant to heat transport

    Fig.2 Crack at the ceramic TBCs

    The assumed boundary conditions put constraints on the displacement field in they-axis. The displacements only take place along thex-axis, but at the bottom of substrate, thex-displacement is assumed to be zero. The initial temperature should beT0at all nodes. The thermal loads are derived from temperature fields. The parameters and the material properties used in the heat transport, thermal stress, and J-integral numerical calculations are listed in Tables 1 and 2[29-32]. The parameters and properties remain constant unless otherwise specified in the numerical calculations and subsequent analysis.

    2 Results and Discussion

    2.1 Temperature Distribution and Comparison

    Figs. 3 and 4 show temperature field from EPRT and the Fourier law, respectively. It is clear that the temperature jumps on the TBCs surface are calculated by the EPRT, which are not shown by the Fourier law. In the TBCs and substrate, the amplitude of temperature attenuation obtained from the EPRT is lower than the attenuation from the Fourier law. Because the heat transfer velocity is finite according to the EPRT, where the heat transport velocity is represented by income and out-coming of phonon, it is infinite for the Fourier law.

    Table 2 Material properties relevant to the analysis

    Fig. 3 Temperature field obtained from EPRT

    Fig. 4 Temperature field obtained from Fourier heat conduction model

    2.2 Results of Thermal Stress and J-integral

    The comparison between the thermal stress in they-direction obtained from the EPRT and that obtained from the Fourier law is presented in Fig.5. Both of the thermal stress profiles along thex-direction are similar, i.e., the thermal stresses gradually change from tensile stress to compressive stress along thex-direction in the TBCs and are only compressive stresses along thex-direction within the substrate. But the thermal stress, special tensile stress in the TBCs calculated with the EPRT, is lower than that calculated from the Fourier law, because temperature contrast from the surface of the TBCs to the bottom of the substrate, which is obtained from the EPRT, is lower than that obtained from the Fourier law. At the interface, a thermal stress discontinuity occurs for the difference in the characters between the two materials.

    Fig. 5 Comparison of the thermal stress in the y-axis obtained from the EPRT with that obtained from the Fourier law along the x-axis

    For reasons given above, the amplitude of temperature attenuation from the EPRT is lower than the attenuation from the Fourier law, and the J-integral from the EPRT is lower than the results from the Fourier law in the TBCs and changes slowlier with time, and J-integral from the Fourier law decreases with time in Fig.6, because temperature difference between the top of TCBs and bottom of substrate from EPRT changes slowlier with time than that from the Fourier law.

    Fig. 6 Comparison of the J-integral obtained from the EPRT with that obtained from the Fourier

    3 Influence of the TBCs Heat Physical Properties on Temperature, Thermal Stress and J-Integral

    3.1 Influence of Phonon Speed

    The temperature field, thermal stress profiles and J-Integral at the crack tip predicted by the EPRT with different phonon speeds (v1=8×102m/s,v2=1.3804×103m/s,v3=5×103m/s) are shown in Figs. 3, 7, 8, 9 and 10.

    Fig.7 Change of temperature fields with the phonon speed v1

    Fig. 8 Change of temperature fields with the phonon speed v3

    At the surface of the TBCs, the amplitude of temperature attenuation decreases with increasing phonon speed. However, in the TBCs, the amplitude of temperature attenuation increases with increasing phonon speed, because the intensity function of incoming phonon remains constant at the surface of the TBCs for the EPRT, and the intensity of out-coming phonon increases with increasing phonon speed, so the temperature jump increases, whereas in the TBCs, the phonon transport increases with increasing phonon speed, so the heat transport increases.

    Fig. 9 Thermal stress profiles predicted by the EPRT for different phonon speeds

    Fig.10 J-integral predicted by the EPRT for different phonon speeds

    At the surface of the TBCs, the magnitude of the thermal stress decreases as the phonon speed increases. But in the TBCs, the thermal stress rises with the rise of phonon speed. The J-integral at the crack tip decreases with increasing phonon speed.

    3.2 Influence of Relaxation Time

    The temperature field, thermal stress profile and J-Integral at the crack tip predicted by the EPRT with different relaxation times (τ1=3×10-12s,τ2=6×10-12s,τ3=1.2×10-11s) are shown in Figs.3, 11, 12, 13 and 14.

    At the surface of the TBCs, the amplitude of temperature attenuation descends with the increase of relaxation time. But the amplitude of temperature attenuation increases with increasing relaxation time in the TBCs.

    On the surface of the TBCs, the thermal stress decreases with the increase of relaxation time. Nevertheless, in the TBCs, the thermal stress and compressive stress increase for the same reason as stated above. The J-integral at the crack tip decreases with increasing relaxation time.

    Fig. 11 Change of temperature fields with relaxation time τ1

    Fig.12 Chang of temperature fields with relaxation time τ3

    Fig.13 Thermal stress profiles predicted by the EPRT for different relaxation times

    Fig.14 J-integral predicted by the EPRT for different relaxation times

    4 Conclusions

    This study numerically analyzed temperature field, thermal stress and J-integral obtained from the EPRT and from the Fourier law. The following conclusions can be drawn:

    1)For nano-ceramic TBCs under thermal shock, the temperature field, thermal stress and J-integral derived from the EPRT are lower than those derived from the Fourier law.

    2)The temperature attenuation and thermal stress decrease on the surface of the TBCs with increasing phonon speed and relaxation time, but the amplitude of temperature attenuation and thermal stress in the TBCs increase with increasing phonon speed and relaxation time.

    3)J-integral at the crack tip decreases with increasing phonon speed and relaxation time.

    人妻 亚洲 视频| 深夜a级毛片| 亚洲精品色激情综合| 色视频在线一区二区三区| 黄色视频在线播放观看不卡| 日韩电影二区| 午夜日本视频在线| 男女边吃奶边做爰视频| 久久久久人妻精品一区果冻| 麻豆国产97在线/欧美| 少妇裸体淫交视频免费看高清| 51国产日韩欧美| 久久国内精品自在自线图片| 91在线精品国自产拍蜜月| 激情 狠狠 欧美| 国产成人免费无遮挡视频| 国内精品宾馆在线| 免费在线观看成人毛片| 成年av动漫网址| 国产乱人偷精品视频| 成人综合一区亚洲| 人妻 亚洲 视频| 国产在线视频一区二区| 最近中文字幕2019免费版| 中文天堂在线官网| av播播在线观看一区| 视频区图区小说| 高清av免费在线| av在线播放精品| 卡戴珊不雅视频在线播放| 国产精品久久久久成人av| 99热全是精品| 国产在线一区二区三区精| 亚洲丝袜综合中文字幕| 欧美激情国产日韩精品一区| 久久国产精品大桥未久av | 伊人久久精品亚洲午夜| 一级毛片黄色毛片免费观看视频| 亚洲精品乱码久久久久久按摩| 精品国产乱码久久久久久小说| 国产欧美另类精品又又久久亚洲欧美| 日日撸夜夜添| 欧美少妇被猛烈插入视频| 国产成人免费无遮挡视频| 亚洲国产色片| 晚上一个人看的免费电影| 国产成人a区在线观看| 国产精品不卡视频一区二区| av专区在线播放| 伦理电影大哥的女人| 国产女主播在线喷水免费视频网站| 汤姆久久久久久久影院中文字幕| 亚洲欧洲国产日韩| 九色成人免费人妻av| 久久99热这里只频精品6学生| 国语对白做爰xxxⅹ性视频网站| 国产黄色视频一区二区在线观看| 欧美 日韩 精品 国产| 夜夜爽夜夜爽视频| 日韩国内少妇激情av| 熟女电影av网| 欧美亚洲 丝袜 人妻 在线| 国产成人91sexporn| 成人影院久久| 午夜福利影视在线免费观看| 欧美丝袜亚洲另类| 久久久久久久国产电影| 欧美97在线视频| 看免费成人av毛片| 国产高潮美女av| 欧美日韩精品成人综合77777| 777米奇影视久久| 精品少妇久久久久久888优播| 国内精品宾馆在线| 如何舔出高潮| 午夜视频国产福利| www.av在线官网国产| 九九在线视频观看精品| 国产黄色免费在线视频| 九九久久精品国产亚洲av麻豆| 丰满乱子伦码专区| 少妇猛男粗大的猛烈进出视频| 在线免费十八禁| 中文字幕免费在线视频6| 国产淫语在线视频| 久久久久国产网址| 91久久精品电影网| 国产精品秋霞免费鲁丝片| 国产精品爽爽va在线观看网站| 亚洲婷婷狠狠爱综合网| 国产视频内射| 国产淫语在线视频| 国产白丝娇喘喷水9色精品| 男女啪啪激烈高潮av片| 99久久精品热视频| 亚洲国产精品一区三区| 在现免费观看毛片| 亚洲精品456在线播放app| 国产淫语在线视频| 亚洲成色77777| 街头女战士在线观看网站| 99热网站在线观看| 偷拍熟女少妇极品色| 日本爱情动作片www.在线观看| 男人和女人高潮做爰伦理| 久热久热在线精品观看| 精品久久久噜噜| 插逼视频在线观看| 久久久精品94久久精品| 亚洲人成网站在线播| 成人亚洲欧美一区二区av| 最近最新中文字幕免费大全7| 久久久色成人| 午夜视频国产福利| 国产极品天堂在线| 黑人高潮一二区| 免费大片18禁| 高清欧美精品videossex| 久热久热在线精品观看| 国产淫语在线视频| 夫妻性生交免费视频一级片| 国产午夜精品久久久久久一区二区三区| 综合色丁香网| 国产91av在线免费观看| 亚洲精品aⅴ在线观看| 一本—道久久a久久精品蜜桃钙片| 五月天丁香电影| 亚洲丝袜综合中文字幕| 在线观看免费日韩欧美大片 | 国产欧美另类精品又又久久亚洲欧美| 日韩 亚洲 欧美在线| 国产伦在线观看视频一区| 最新中文字幕久久久久| 亚洲国产色片| 国产精品一区二区三区四区免费观看| 18禁裸乳无遮挡动漫免费视频| 人妻少妇偷人精品九色| 国产探花极品一区二区| 精品一区二区免费观看| 久久久久性生活片| 久久久久久久久久人人人人人人| 夫妻午夜视频| 丝瓜视频免费看黄片| 成年美女黄网站色视频大全免费 | 大码成人一级视频| 一级av片app| 亚洲成人av在线免费| 国产男人的电影天堂91| 亚洲国产成人一精品久久久| 久久久久国产网址| 亚洲一区二区三区欧美精品| 精品久久久久久久久亚洲| 国产亚洲欧美精品永久| 大片免费播放器 马上看| 亚洲精品成人av观看孕妇| 夜夜爽夜夜爽视频| 国产有黄有色有爽视频| 最黄视频免费看| 18禁在线播放成人免费| 国产精品一区www在线观看| 日日啪夜夜爽| 看十八女毛片水多多多| 深夜a级毛片| 国产精品一区二区在线不卡| 亚洲国产精品成人久久小说| 尤物成人国产欧美一区二区三区| 黄色一级大片看看| 欧美精品一区二区免费开放| 夫妻午夜视频| 我要看黄色一级片免费的| 久久精品久久久久久久性| 亚洲av成人精品一区久久| 国产毛片在线视频| 黄色日韩在线| 哪个播放器可以免费观看大片| 国国产精品蜜臀av免费| 春色校园在线视频观看| 亚洲精品一区蜜桃| 久久久久久久久久久免费av| 少妇被粗大猛烈的视频| 视频中文字幕在线观看| 麻豆乱淫一区二区| 秋霞伦理黄片| 午夜福利网站1000一区二区三区| 丰满人妻一区二区三区视频av| 国产精品久久久久久av不卡| 久热久热在线精品观看| 在线精品无人区一区二区三 | 最近的中文字幕免费完整| 联通29元200g的流量卡| av.在线天堂| av免费在线看不卡| 国模一区二区三区四区视频| 纯流量卡能插随身wifi吗| 熟女av电影| freevideosex欧美| 黑人猛操日本美女一级片| 丝袜脚勾引网站| 男女无遮挡免费网站观看| 国产免费福利视频在线观看| 一本—道久久a久久精品蜜桃钙片| 国产免费一区二区三区四区乱码| 成年av动漫网址| 一个人看的www免费观看视频| 3wmmmm亚洲av在线观看| 一区二区三区四区激情视频| 亚洲精品中文字幕在线视频 | 免费少妇av软件| 永久网站在线| 777米奇影视久久| 女性被躁到高潮视频| 在线观看一区二区三区激情| 永久网站在线| 中文精品一卡2卡3卡4更新| 亚洲国产最新在线播放| 精品亚洲乱码少妇综合久久| 三级经典国产精品| 国产精品秋霞免费鲁丝片| 六月丁香七月| 国产无遮挡羞羞视频在线观看| 亚洲精品一二三| 成人毛片a级毛片在线播放| 成人国产麻豆网| 王馨瑶露胸无遮挡在线观看| 精品人妻一区二区三区麻豆| 国产精品久久久久久久电影| 大码成人一级视频| 热99国产精品久久久久久7| 中文字幕久久专区| 成人毛片a级毛片在线播放| 黑人猛操日本美女一级片| 韩国av在线不卡| 在线精品无人区一区二区三 | 成人二区视频| 欧美激情极品国产一区二区三区 | 中文字幕精品免费在线观看视频 | 国产高清不卡午夜福利| 色婷婷av一区二区三区视频| 免费观看的影片在线观看| 美女中出高潮动态图| 亚洲精品自拍成人| 美女xxoo啪啪120秒动态图| 一级黄片播放器| 伦精品一区二区三区| 日韩中字成人| 美女内射精品一级片tv| 又黄又爽又刺激的免费视频.| 黄色欧美视频在线观看| 欧美日韩综合久久久久久| 日本vs欧美在线观看视频 | 久久久久国产精品人妻一区二区| 日韩在线高清观看一区二区三区| av在线观看视频网站免费| 少妇裸体淫交视频免费看高清| 特大巨黑吊av在线直播| 色综合色国产| 国产精品国产三级国产av玫瑰| 男人和女人高潮做爰伦理| 成人午夜精彩视频在线观看| 中文欧美无线码| 91在线精品国自产拍蜜月| 99久久人妻综合| 国产成人精品久久久久久| 男女边吃奶边做爰视频| 欧美3d第一页| 精品酒店卫生间| 国产男人的电影天堂91| 国产精品嫩草影院av在线观看| 联通29元200g的流量卡| 亚洲精品久久久久久婷婷小说| 综合色丁香网| 久久精品国产鲁丝片午夜精品| 免费观看在线日韩| 激情五月婷婷亚洲| 国产一级毛片在线| 波野结衣二区三区在线| 各种免费的搞黄视频| 51国产日韩欧美| 国产在线视频一区二区| 美女国产视频在线观看| 麻豆成人午夜福利视频| 久久av网站| 搡女人真爽免费视频火全软件| 2021少妇久久久久久久久久久| 成年女人在线观看亚洲视频| av网站免费在线观看视频| 久久人人爽av亚洲精品天堂 | 草草在线视频免费看| 亚洲综合精品二区| a级一级毛片免费在线观看| 自拍偷自拍亚洲精品老妇| 亚洲aⅴ乱码一区二区在线播放| 高清在线视频一区二区三区| 国产精品一区二区性色av| 日韩强制内射视频| 日本黄色片子视频| 一级av片app| 亚洲,欧美,日韩| 99热国产这里只有精品6| 最近手机中文字幕大全| 国产精品国产av在线观看| 国产一区二区在线观看日韩| 毛片女人毛片| 青春草视频在线免费观看| 亚洲精品久久久久久婷婷小说| av国产精品久久久久影院| 国产久久久一区二区三区| 成年美女黄网站色视频大全免费 | 久久国产精品大桥未久av | 在线观看国产h片| 国产深夜福利视频在线观看| 亚洲欧美一区二区三区黑人 | 国产精品秋霞免费鲁丝片| 成年人午夜在线观看视频| 免费看不卡的av| 日本午夜av视频| 丰满少妇做爰视频| 伊人久久国产一区二区| 免费观看av网站的网址| 欧美少妇被猛烈插入视频| 欧美丝袜亚洲另类| 国产伦理片在线播放av一区| 亚洲熟女精品中文字幕| 美女福利国产在线 | 免费观看av网站的网址| 日韩强制内射视频| 中文字幕制服av| 免费观看在线日韩| 亚洲国产精品一区三区| 国产乱人偷精品视频| 亚洲精品久久久久久婷婷小说| 亚洲欧美日韩卡通动漫| av在线老鸭窝| 亚洲欧美精品专区久久| 精品久久久久久久末码| 日韩一区二区视频免费看| av免费观看日本| 女性被躁到高潮视频| 不卡视频在线观看欧美| 日韩中文字幕视频在线看片 | 亚洲精品久久久久久婷婷小说| 卡戴珊不雅视频在线播放| 日韩电影二区| 少妇被粗大猛烈的视频| 中文乱码字字幕精品一区二区三区| 色5月婷婷丁香| 国产精品av视频在线免费观看| 国语对白做爰xxxⅹ性视频网站| 蜜桃在线观看..| 亚洲伊人久久精品综合| 一级黄片播放器| 精品国产一区二区三区久久久樱花 | 国产极品天堂在线| 日韩免费高清中文字幕av| 国产淫语在线视频| 在线观看一区二区三区| 国产亚洲午夜精品一区二区久久| 蜜桃亚洲精品一区二区三区| 日本黄大片高清| 亚洲,一卡二卡三卡| 国产欧美日韩精品一区二区| 99热国产这里只有精品6| 下体分泌物呈黄色| 亚洲经典国产精华液单| 多毛熟女@视频| 在线亚洲精品国产二区图片欧美 | 国产精品蜜桃在线观看| 1000部很黄的大片| 在线观看免费高清a一片| 80岁老熟妇乱子伦牲交| 色婷婷av一区二区三区视频| 国产视频内射| 人体艺术视频欧美日本| 久久综合国产亚洲精品| 国产色爽女视频免费观看| av播播在线观看一区| 大香蕉97超碰在线| 亚洲欧美日韩东京热| 中文精品一卡2卡3卡4更新| 一个人看的www免费观看视频| xxx大片免费视频| 国产精品蜜桃在线观看| 日韩人妻高清精品专区| 亚洲国产最新在线播放| 国产精品人妻久久久久久| 亚洲av男天堂| 婷婷色av中文字幕| 高清黄色对白视频在线免费看 | 一本一本综合久久| 欧美激情极品国产一区二区三区 | 热re99久久精品国产66热6| 在线看a的网站| 91精品伊人久久大香线蕉| 日韩成人伦理影院| 亚洲精品乱久久久久久| 纯流量卡能插随身wifi吗| 亚洲精品自拍成人| 2021少妇久久久久久久久久久| 国产欧美亚洲国产| 精品一区在线观看国产| 国产色爽女视频免费观看| 3wmmmm亚洲av在线观看| 国产 精品1| 99精国产麻豆久久婷婷| 久久久久久久精品精品| 午夜视频国产福利| 各种免费的搞黄视频| 欧美极品一区二区三区四区| 亚洲精品视频女| 亚洲精品国产av成人精品| 亚洲最大成人中文| 国产精品爽爽va在线观看网站| tube8黄色片| 欧美日韩精品成人综合77777| 国产中年淑女户外野战色| 国产精品久久久久久久电影| 一二三四中文在线观看免费高清| 国产精品国产av在线观看| 777米奇影视久久| 亚洲美女搞黄在线观看| 国产精品福利在线免费观看| 国产精品久久久久久精品电影小说 | 日本wwww免费看| 欧美3d第一页| 亚洲精品自拍成人| 成年人午夜在线观看视频| 色网站视频免费| 99九九线精品视频在线观看视频| 精品一区二区三卡| 国产一区二区在线观看日韩| 久久99热6这里只有精品| 亚洲av日韩在线播放| 欧美日韩国产mv在线观看视频 | 国产欧美另类精品又又久久亚洲欧美| 亚洲av不卡在线观看| av在线观看视频网站免费| av女优亚洲男人天堂| 精品国产一区二区三区久久久樱花 | 午夜老司机福利剧场| 久久鲁丝午夜福利片| 国国产精品蜜臀av免费| 免费少妇av软件| av免费在线看不卡| 高清毛片免费看| 日韩中字成人| 男人狂女人下面高潮的视频| 亚洲精品自拍成人| 国产精品熟女久久久久浪| 全区人妻精品视频| 国产成人a∨麻豆精品| 99re6热这里在线精品视频| 激情五月婷婷亚洲| 联通29元200g的流量卡| 最近最新中文字幕免费大全7| 亚洲人成网站在线播| 亚洲美女黄色视频免费看| 黄色视频在线播放观看不卡| 男女免费视频国产| 亚洲国产欧美人成| 国产成人精品一,二区| 国产成人免费观看mmmm| 欧美极品一区二区三区四区| 亚洲欧美精品专区久久| 秋霞在线观看毛片| 久久久久久九九精品二区国产| av不卡在线播放| 熟女电影av网| av国产久精品久网站免费入址| 岛国毛片在线播放| 91在线精品国自产拍蜜月| 欧美人与善性xxx| 丰满迷人的少妇在线观看| 97超碰精品成人国产| 丰满乱子伦码专区| 亚洲av中文字字幕乱码综合| 在线观看三级黄色| 成人美女网站在线观看视频| 中国三级夫妇交换| 精品亚洲成国产av| 国产精品一及| av在线app专区| 少妇人妻久久综合中文| 欧美成人午夜免费资源| 99热国产这里只有精品6| 如何舔出高潮| 精品人妻视频免费看| 99热这里只有是精品在线观看| 日韩av在线免费看完整版不卡| 国产美女午夜福利| 在线观看av片永久免费下载| 精品一区二区三区视频在线| 国产熟女欧美一区二区| 国语对白做爰xxxⅹ性视频网站| 成人亚洲欧美一区二区av| av国产久精品久网站免费入址| 国产精品一区二区在线观看99| 少妇猛男粗大的猛烈进出视频| 国产精品一区二区三区四区免费观看| 亚洲色图综合在线观看| 伊人久久精品亚洲午夜| 校园人妻丝袜中文字幕| 伦精品一区二区三区| 国产综合精华液| 欧美激情国产日韩精品一区| 日韩成人av中文字幕在线观看| 高清视频免费观看一区二区| 国产精品女同一区二区软件| 亚洲精华国产精华液的使用体验| 男女国产视频网站| 国产精品人妻久久久久久| 国产精品爽爽va在线观看网站| 国产在线男女| 狂野欧美激情性xxxx在线观看| 国产精品人妻久久久久久| 亚洲精品国产成人久久av| 18+在线观看网站| 深爱激情五月婷婷| 国产精品99久久久久久久久| 视频中文字幕在线观看| 免费看光身美女| 久久国产亚洲av麻豆专区| 五月开心婷婷网| 大片免费播放器 马上看| 久久国产精品大桥未久av | 人妻少妇偷人精品九色| 久久久亚洲精品成人影院| 国产中年淑女户外野战色| 亚洲真实伦在线观看| 欧美3d第一页| 婷婷色综合大香蕉| 亚洲美女搞黄在线观看| 亚洲综合色惰| 日日啪夜夜爽| 日韩三级伦理在线观看| 亚洲三级黄色毛片| 夫妻午夜视频| 欧美老熟妇乱子伦牲交| 超碰av人人做人人爽久久| 免费看光身美女| 毛片一级片免费看久久久久| 国产av码专区亚洲av| 国语对白做爰xxxⅹ性视频网站| 99视频精品全部免费 在线| 日本一二三区视频观看| 亚洲精品aⅴ在线观看| 欧美精品亚洲一区二区| 这个男人来自地球电影免费观看 | 亚洲欧美精品自产自拍| 久久久久网色| 久久久亚洲精品成人影院| a级毛色黄片| 久久精品国产自在天天线| 久久精品国产鲁丝片午夜精品| 18禁裸乳无遮挡动漫免费视频| 国产免费又黄又爽又色| 免费av中文字幕在线| 亚洲国产精品999| 久久99热这里只频精品6学生| 麻豆成人av视频| 国产成人免费无遮挡视频| 久久国产精品大桥未久av | 天堂俺去俺来也www色官网| 成人黄色视频免费在线看| 熟妇人妻不卡中文字幕| 日日撸夜夜添| 青春草视频在线免费观看| av一本久久久久| 99国产精品免费福利视频| 91精品伊人久久大香线蕉| 免费观看av网站的网址| 舔av片在线| 久久精品国产亚洲av涩爱| 天天躁日日操中文字幕| 国产有黄有色有爽视频| 在线免费十八禁| 欧美亚洲 丝袜 人妻 在线| 国产v大片淫在线免费观看| 日本wwww免费看| 成人美女网站在线观看视频| a级毛片免费高清观看在线播放| 欧美+日韩+精品| 91精品伊人久久大香线蕉| 欧美日韩一区二区视频在线观看视频在线| 男人爽女人下面视频在线观看| 汤姆久久久久久久影院中文字幕| 纯流量卡能插随身wifi吗| 九九久久精品国产亚洲av麻豆| 亚洲第一av免费看| 成人特级av手机在线观看| 不卡视频在线观看欧美| 欧美xxxx黑人xx丫x性爽| 身体一侧抽搐| 久久久久性生活片| 精品国产乱码久久久久久小说| 国产大屁股一区二区在线视频| 一级片'在线观看视频| 91狼人影院| 好男人视频免费观看在线| 两个人的视频大全免费| 妹子高潮喷水视频| 美女国产视频在线观看| 国产伦精品一区二区三区四那| 观看美女的网站| 老司机影院毛片| 精品人妻熟女av久视频| 国产 一区精品| 日日啪夜夜爽| 日本猛色少妇xxxxx猛交久久| 人人妻人人看人人澡| 最近中文字幕高清免费大全6| 国产有黄有色有爽视频| 午夜激情福利司机影院| 久久久久精品久久久久真实原创| 日本欧美视频一区| 欧美性感艳星|