劉幫迪,張雅麗,3,柯澤華,3,孫 靜,周新群,孫 潔
?農(nóng)產(chǎn)品加工工程?
LED光照對青熟香蕉貯運中后熟調(diào)控的影響
劉幫迪1,2,張雅麗1,2,3,柯澤華1,2,3,孫 靜1,2※,周新群1,2,孫 潔1,2
(1. 農(nóng)業(yè)農(nóng)村部規(guī)劃設(shè)計研究院,北京 100125;2. 農(nóng)業(yè)農(nóng)村部農(nóng)產(chǎn)品產(chǎn)后處理重點實驗室,北京 100121;3. 河北工程大學(xué)生命科學(xué)與食品工程學(xué)院,邯鄲 056038)
為了解決香蕉貯運過程中常溫運輸品質(zhì)劣變較快、貯運后乙烯催熟程度不可控制的問題。該研究以低成熟度香蕉為模擬貯運試材,研究紅、橙、黃、綠、藍(lán)、紫色LED單色光在常溫(20 ℃)模擬貯運過程中延緩保鮮和催熟調(diào)控作用,以確定香蕉在不同波段光色照射下的后熟和品質(zhì)變化。結(jié)果表明,藍(lán)、紫光可以通過抑制香蕉呼吸強(qiáng)度和乙烯釋放量,與無光照相比有效延長香蕉2 d的貯藏期、減少纖維素分解為果膠、防止硬度軟化、抑制色澤轉(zhuǎn)黃和淀粉-糖轉(zhuǎn)化,藍(lán)光的延緩后熟能力比紫光更好。紅、橙光LED照射可以促使呼吸和乙烯高峰提前2 d,促進(jìn)表皮轉(zhuǎn)色,增加蔗糖、果糖和葡萄糖累積,從而有效促進(jìn)香蕉成熟,橙光比紅光照射的催熟效果更緩慢,可以達(dá)到精準(zhǔn)催熟的效果。黃、綠光照射會擾亂香蕉的后熟進(jìn)程,縮短2 d貯運期,在表皮轉(zhuǎn)色程度較低的情況下累積更多丙二醛,并抑制呼吸、乙烯釋放、淀粉-糖轉(zhuǎn)化和纖維素降解作用,使香蕉在未完全后熟的情況下提前進(jìn)入衰老腐爛階段。總體來說,不同波段的6種LED光色處理香蕉,可以表現(xiàn)出延緩后熟、促進(jìn)后熟和擾亂后熟3種不同的效果。研究結(jié)果為LED光照技術(shù)被更多的應(yīng)用和研究在果蔬采后保鮮領(lǐng)域提供基礎(chǔ)數(shù)據(jù),也為節(jié)能保鮮和可調(diào)控催熟技術(shù)應(yīng)用于香蕉實際生產(chǎn)提供參考依據(jù)。
光照;貯藏;運輸;LED;青熟香蕉;后熟調(diào)控;保鮮;催熟
香蕉是中國產(chǎn)量排名前十的大宗水果之一,其種植產(chǎn)區(qū)分布于中國南方各省份,總種植面積超過35萬hm2,年產(chǎn)量超過1 300萬t[1]。香蕉產(chǎn)業(yè)對促進(jìn)中國農(nóng)村經(jīng)濟(jì)發(fā)展、農(nóng)業(yè)增效和農(nóng)民增收等方面具有十分重要的作用[2-3]。
香蕉屬于呼吸躍變型水果,該類果實采收后會逐步釋放乙烯,出現(xiàn)呼吸高峰,從而導(dǎo)致一系列的生理生化變化[4],使該類果實逐步轉(zhuǎn)為可食用狀態(tài)。中國香蕉主產(chǎn)區(qū)域采收季節(jié)的溫濕度較高,為了增加香蕉的耐貯性,香蕉產(chǎn)業(yè)農(nóng)戶都統(tǒng)一標(biāo)準(zhǔn)在低成熟度時進(jìn)行采收,使用冷藏貯運,并在銷售前進(jìn)行人工催熟處理達(dá)到可食用狀態(tài)[5]。但香蕉是一種典型的冷敏性果實,低成熟度香蕉在冷鏈貯運過程中比高成熟的香蕉更容易喪失正常的代謝生理功能,從而出現(xiàn)無法正常后熟或以假性成熟為代表的冷害癥狀,失去商品性[6],這是中國香蕉產(chǎn)業(yè)產(chǎn)生損失的主要原因之一[7]。目前,在產(chǎn)業(yè)應(yīng)用和研究上,香蕉延長貯藏期的主要保鮮方式是12~14℃低溫貯運或常溫貯運,催熟方式主要是使用乙烯利催熟[8]。雖然乙烯利是一種低毒性的植物生長調(diào)節(jié)劑,已在大量的呼吸躍變型果實催熟上商業(yè)應(yīng)用。但實際生產(chǎn)和研究上,國內(nèi)外的香蕉乙烯利催熟技術(shù)存在著標(biāo)準(zhǔn)缺失和粗放使用的現(xiàn)象,經(jīng)常導(dǎo)致人工催熟香蕉的成熟度不可控、商品質(zhì)量差、貨架期縮短、過熟造成腐爛等問題[9]。因此,研究新型的香蕉延緩保鮮和精準(zhǔn)催熟技術(shù)對規(guī)范香蕉產(chǎn)業(yè)、提質(zhì)減損和提升經(jīng)濟(jì)效益有重要意義。
發(fā)光二極管(Light-emitting Diode,LED)技術(shù)是一種應(yīng)用于果蔬保鮮的技術(shù),近年來大量研究在鮮切加工果蔬和采后果實品質(zhì)調(diào)控上[10]。研究指出,LED照射可以有效調(diào)控果蔬乙烯的產(chǎn)生和呼吸速率[11]。如Olarte等[12]和劉幫迪等[13]的研究發(fā)現(xiàn)LED紅光照射可以調(diào)控某些植物光合作用,因此對含葉綠素蔬菜在采后貯藏過程中產(chǎn)生明顯的呼吸抑制作用,從而使雞毛菜、西蘭花衰老速率降低。Dhakal 等[14]對番茄的研究發(fā)現(xiàn),LED白光照射同樣可以延緩番茄后熟、軟化的進(jìn)程。Kokalj等[15]使用黃色LED光照射番茄、燈籠椒和蘋果,發(fā)現(xiàn)黃光可以延緩這3種果蔬的后熟、衰老進(jìn)程,保留生物活性物質(zhì)含量。但也有研究指出,藍(lán)色、紅色和綠色LED光照射可以促進(jìn)草莓、香蕉的呼吸速率和乙烯釋放量增加,從而加速果實脫綠、軟化和腐爛[16-17]。由此可見,LED技術(shù)可以作為一種果蔬貯運過程中延緩衰老和催熟的物理保鮮技術(shù)。但目前針對不同類型的果蔬在不同LED光質(zhì)、光色、光強(qiáng)下的后熟、衰老表現(xiàn)還欠缺充分的研究。因此,本研究使用不同LED光色對低成熟度香蕉進(jìn)行照射處理,觀察香蕉的后熟、衰老現(xiàn)象,并采用自行研發(fā)設(shè)備,在模擬香蕉貯運流程中找出適合香蕉在短期、中期和長期貯運的LED照射波段,以期為香蕉貯運過程中后熟調(diào)控和精準(zhǔn)催熟技術(shù)提供理論依據(jù)。
試驗所用香蕉品種為福建生產(chǎn)的巴西蕉(. cv. Brazil),采購自北京新發(fā)地批發(fā)市場,通過(13±0.5)℃冷鏈運輸車運至北京實驗室,運輸過程中試驗用香蕉和普通商品香蕉進(jìn)行統(tǒng)一運輸,香蕉采收和運輸至實驗室時間不超過4 d。為了保證試驗材料的隨機(jī)性,采取了無挑選、無差別取樣的原則,因此香蕉蕉指的選取上僅剔除了病、壞、腐、顏色成熟度差異大的蕉指,每組樣品中均有體型較大和較小的蕉指,樣品到達(dá)北京實驗室的時候成熟度均一,試驗用香蕉采收成熟度根據(jù)國際香蕉成熟度標(biāo)準(zhǔn)比色卡進(jìn)行判斷[18],成熟度為次低成熟。
主要試劑:乙酰溴(分析純,上海賢鼎生物科技有限公司);-巰基乙醇(分析純,美國Sigma公司);硫酸、乙酸、正己烷、三氯乙酸、四硼酸鈉、鹽酸羥胺(分析純,北京化工廠);無水甲醇、聚乙烯吡咯烷酮K30、焦亞硫酸鈉、溴化乙酰(分析純,國藥集團(tuán)化學(xué)試劑有限公司)。
主要儀器:AX224ZH電子天平,奧豪斯儀器(常州)有限公司;UV-1800PC型紫外可見分光光度計,上海美譜達(dá)儀器有限公司;TGL-16gR高速冷凍離心機(jī),上海安亭科學(xué)儀器廠;CHROMA METER CR-400色差計,日本柯尼卡美能達(dá)傳感公司;GY-3型水果硬度計,浙江托普儀器有限公司;GC7890F氣相色譜儀,上海天美科學(xué)儀器有限公司。
圖1是自行研發(fā)LED光照保鮮箱蓋在3種視角下的視圖,箱蓋主要包括3個部分,分別是LED光照保鮮燈帶組、觸控面板和抽風(fēng)、送風(fēng)系統(tǒng),具體零部件如圖1所示。箱蓋的LED光照系統(tǒng)由4個LED燈組組成,單個燈帶組的LED燈條排布如圖2所示。選擇可見光波段的紅、橙、黃、綠、藍(lán)、紫6種光色組成一組燈帶組,每種光色的具體波段如圖2所示。箱蓋中的抽風(fēng)、送風(fēng)系統(tǒng)是為了進(jìn)行散熱、除濕所設(shè)置,該系統(tǒng)可以解決燈帶散熱、密閉濕度升高的問題。箱蓋設(shè)計的觸控面板,可以在表面進(jìn)行光色、光強(qiáng)、開關(guān)頻率等簡易設(shè)定操作,并且該箱蓋僅需鏈接普通蓄電池即可正常啟動使用。箱蓋設(shè)計的卡扣可以適配市面上使用最多的長寬高為48.0 cm×34.5 cm×60.0 cm的果蔬運輸箱體。
1.3.1 LED保鮮箱蓋的設(shè)定和香蕉模擬貯運的處理方法
將統(tǒng)一采購的香蕉運往實驗室后,對發(fā)生病害、冷害、腐爛的香蕉蕉指剔除,并使用國際香蕉成熟度標(biāo)準(zhǔn)比色卡進(jìn)行成熟度判斷[18],僅保留次低成熟的蕉指作為試驗樣品。使用蒸餾水對成熟度均一的蕉指進(jìn)行逐個沖淋清洗,去掉蕉指表面的寄生蟲、枯枝樹葉等雜物,處理好的香蕉蕉指在常溫下晾干待用。由于真實貯運過程中外界溫度、相對濕度條件和物理損傷的不確定性較大,為了增加試驗可重復(fù)性,香蕉的常溫貯運過程采取模擬試驗進(jìn)行。試驗于北京的實驗基地進(jìn)行,為模擬恒定的常溫環(huán)境,在(20.0±0.7)℃、80%±5%相對濕度的恒溫恒濕的車間中,使用DC-600-6/SC-0606型電動震動系統(tǒng)進(jìn)行模擬貯運試驗,模擬運輸車輛設(shè)定的環(huán)境振動參數(shù)參考王子蕊[19]的研究,環(huán)境振動參數(shù)包括臺體頻率范圍為2~5 000 HZ,最大加速度為980 m/s2,最大速度為2.0 m/s,最大連續(xù)位移為50 mm。
在振動系統(tǒng)臺架上放置6個LED光照試驗組別和1個對照CK組,每個處理組別堆疊三層框體,每層貨物框體的尺寸為48.0 cm×34.5 cm×60.0 cm,框體內(nèi)單層平鋪放置約8.0 kg清洗后的香蕉蕉指,同批次試驗中每個處理組共處理約20.0 kg的樣品。試驗樣品鋪放完成后,為每個貨物框體表面蓋上自行研發(fā)設(shè)計的LED箱蓋,等待開啟試驗。整個試驗分三批次模擬貯運進(jìn)行,單個LED光照試驗組別三批次模擬貯運香蕉樣品的處理量共約60.0 kg。
7個試驗組別分別為(CK)對照組,蓋上箱蓋后不進(jìn)行開燈組別;(L6)紅光組,蓋上箱蓋后設(shè)定參數(shù)為>640~700 nm的紅光長期照射;(L5)橙光組,蓋上箱蓋后設(shè)定參數(shù)為>605~640 nm的橙光長期照射;(L4)黃光組,蓋上箱蓋后設(shè)定參數(shù)為>565~605 nm的黃光長期照射;(L3)綠光組,蓋上箱蓋后設(shè)定參數(shù)為>505~565 nm的綠光長期照射;(L2)藍(lán)光組,蓋上箱蓋后設(shè)定參數(shù)為>440~550 nm的藍(lán)光長期照射和(L1)紫光組,蓋上箱蓋后設(shè)定參數(shù)為>400~440 nm的紫光長期照射。模擬常溫貯運試驗持續(xù)8 d,在開啟模擬貯運試驗后,每24 h進(jìn)行觀察,每48 h進(jìn)行取樣,單個處理組單批次取樣量約為2.0 kg,三批次共約6.0 kg。將取樣蕉指切分后,留存于-20 ℃冰箱中等待后續(xù)理化檢測。
1.3.2 淀粉含量和可溶性糖含量的測定
香蕉淀粉含量采用酸水解法測定[20],以質(zhì)量分?jǐn)?shù)(%)表示。香蕉可溶性糖含量采用HPLC-ELSD法測定[21],分別測定香蕉中主要含有的蔗糖、葡萄糖和果糖,以mg/g為單位。
1.3.3 色澤和硬度的測定
香蕉色澤的測定分別取果指上、中、下3點,采用色差計測定,每個取樣點測定20個蕉果,記錄、和值,取平均值。硬度采用水果硬度計對香蕉切段后的果肉進(jìn)行測定,單位以N表示。
1.3.4 呼吸強(qiáng)度和乙烯釋放量的測定
香蕉的呼吸強(qiáng)度和乙烯釋放量的測定參考Liu等[22]采用氣相色譜法進(jìn)行,呼吸強(qiáng)度單位以mL/(kg·h)表示,乙烯釋放量的單位以L/(kg·h)表示。
1.3.5 香蕉丙二醛含量的測定
丙二醛(Malondialdehde,MDA)含量的測定基于硫代巴比妥酸(Thiobarbituric acid,TBA)法進(jìn)行[23],MDA含量單位計為mol/g。
所有試驗重復(fù)3次,使用Excel 2010進(jìn)行繪圖,結(jié)合SPSS 18.0軟件進(jìn)行顯著性分析,不同字母表示在0.05水平有顯著差異。
在香蕉的實際貯運銷售中,果皮色澤是實際應(yīng)用中判斷成熟度的最直觀指標(biāo)[24]。圖3是青熟香蕉在藍(lán)、紫、紅、橙、黃、綠光色照射和黑暗對照條件下的模擬貯運狀態(tài)。黑暗條件下,香蕉的常溫貯運期為6 d,在第2天出現(xiàn)果皮由綠轉(zhuǎn)黃的轉(zhuǎn)色現(xiàn)象,第4天時幾乎轉(zhuǎn)為明黃色,同時出現(xiàn)典型的呼吸高峰和乙烯釋放高峰(圖4 a和b),4 d之后香蕉表皮出現(xiàn)成熟特征的散點型炭疽病黑點[25],6 d后香蕉的腐爛情況加劇,多數(shù)香蕉超出可食用狀態(tài)。在此條件下,香蕉屬于典型的自然成熟狀態(tài),隨著后熟果皮由青綠轉(zhuǎn)至金黃,此時開始可以食用,隨著果實的進(jìn)一步成熟,果實開始衰老,果皮褐變,長出黑點,并逐漸擴(kuò)散。此外,丙二醛含量也是判斷呼吸躍變型果實后熟衰老狀態(tài)的常用指標(biāo),果實青熟狀態(tài)時丙二醛含量維持在較低水平,隨著成熟丙二醛逐漸累積,在衰老過程中繼續(xù)上升趨于平緩[26],圖4中黑暗CK組香蕉丙二醛的變化趨勢和其他果實一致。
經(jīng)過藍(lán)光和紫光LED照射的香蕉,其常溫貯藏周期被延長至8 d以上,并且最終香蕉的成熟狀態(tài)較CK組更低。如圖4a和b所示,藍(lán)光照射的香蕉呼吸強(qiáng)度和乙烯釋放量呈現(xiàn)逐漸上升趨勢,模擬貯運8 d后的值均上升比其他組別低。紫光照射的香蕉呼吸強(qiáng)度和乙烯釋放高峰均出現(xiàn)在第6天,藍(lán)、紫光呼吸強(qiáng)度峰值分別是CK的44.38%和53.20%。與CK相比,藍(lán)、紫光照射組別香蕉較其他組別同一時間香蕉色澤的色差Δ差異更?。▓D5)。藍(lán)、紫光處理后呼吸作用和乙烯釋放高峰出現(xiàn)時間延后,說明藍(lán)、紫光都具有延緩香蕉后熟的能力,許多呼吸躍變型果實也都被證實在不同LED光色照射下可以調(diào)控其呼吸和乙烯水平,從而抑制其后熟[27]。此外,藍(lán)、紫光照射香蕉較低的丙二醛含量也證實了該處理抑制后熟、延緩衰老和保證品質(zhì)的能力。
經(jīng)過紅、橙光照射下的青熟香蕉常溫貯運期外觀和CK組相同,在6 d后喪失可食用和銷售性。但通過圖3外觀變化和圖5的色差可以看出,紅、橙光照射6 d的香蕉比黑暗條件6 d的香蕉黃色著色更深,飽和度更高,色差值Δ差異更大,紅、橙光照射8 d后的香蕉Δ達(dá)到94.70和83.25,明顯高于其他組別。紅光和橙光照射下香蕉的呼吸強(qiáng)度和乙烯釋放高峰比其他LED照射組和CK組提前2 d出現(xiàn),并且紅光照射的呼吸強(qiáng)度和乙烯釋放量峰值比CK高出24.20%和23.97%,這說明紅光照射下的香蕉催熟作用比橙光更加明顯;橙光照射的香蕉呼吸強(qiáng)度和乙烯釋放量高峰雖然也提前在第2天出現(xiàn),但峰值顯著低于紅光組(<0.05)。從圖6 MDA含量可以看出,紅、橙光香蕉在第6天時的丙二醛含量顯著高于CK組(<0.05),這也證實紅、橙光能夠?qū)ο憬哆M(jìn)行催熟。部分LED光照保鮮的研究中也指出LED照射可以通過刺激乙烯釋放加快呼吸躍變型果實的后熟衰老進(jìn)程[28-29],提前使果實進(jìn)入可食用狀態(tài)。但本研究中也發(fā)現(xiàn),經(jīng)過LED紅、橙光照射成熟的香蕉并沒有出現(xiàn)CK組的散點狀斑點,這種香蕉炭疽病現(xiàn)象是消費者判別香蕉成熟的一個重要指示,這說明LED光照在提升香蕉乙烯釋放和呼吸時可能抑制香蕉的炭疽病發(fā)生。
黃光和綠光照射的香蕉貯運期小于4 d,在第4天時大部分樣品的外觀轉(zhuǎn)變?yōu)椴豢墒秤脿顟B(tài)。并且這兩種光色下照射的香蕉出現(xiàn)明顯大面積銹斑病理現(xiàn)象;此外,從圖3和圖5可以看出黃、綠光組香蕉果皮的色差值Δ均低于CK組和紅、橙光組,黃、綠光照射4 d后的Δ僅為40.35和46.23,并且果皮部分轉(zhuǎn)黃、部分尚未退綠。從圖4a呼吸強(qiáng)度和圖4b乙烯釋放量可以看出黃、綠光組香蕉的呼吸在4 d內(nèi)持續(xù)上升并一直保持較低的狀態(tài),第4天時的最終值顯著低于CK組的峰值(<0.05)。結(jié)合色澤、呼吸和乙烯的結(jié)果,發(fā)現(xiàn)黃、綠光照射的香蕉可能出現(xiàn)假熟現(xiàn)象[30],這種現(xiàn)象一方面可能是大量研究證實的LED光照可以對植物的葉綠素起到保護(hù)作用[31],從而使香蕉果皮部分保持綠色。另一方面這兩個處理組別香蕉并未在生理上達(dá)到成熟,反而誘導(dǎo)發(fā)病進(jìn)入衰老進(jìn)程,在其他果實上也出現(xiàn)了不適宜波段和光色的LED光照處理促使果實加速腐爛的研究結(jié)果,雷靜等[32]在櫻桃番茄的研究中也發(fā)現(xiàn)藍(lán)光處理櫻桃番茄不能促使完全成熟和轉(zhuǎn)色,且藍(lán)光照射后的果實出現(xiàn)凹陷病理狀態(tài),加快腐爛進(jìn)程。
圖6 不同LED光色照射對香蕉丙二醛含量的影響
香蕉果實在后熟的過程中,雖然色澤轉(zhuǎn)變可以被檢測作為直接判定指標(biāo),但由于香蕉“青皮熟”現(xiàn)象的限制,在實際應(yīng)用中更多的從淀粉-糖含量的食用特性上對其后熟狀態(tài)進(jìn)行判定。其中變化最大的是淀粉的含量,Ritesh等[33]對Bhimkol野生香蕉的研究中指出,未成熟的野生香蕉果實淀粉含量達(dá)到約200 mg/g,成熟軟化時,淀粉含量持續(xù)下降最終甚至降低到10 mg/g,與此同時,以蔗糖、果糖、葡萄糖為主的可溶性糖含量迅速增加至150~200 mg/g,達(dá)到最佳食用品質(zhì)和耐貯藏狀態(tài),當(dāng)可溶性糖含量繼續(xù)上升時出現(xiàn)退糖軟腐的衰老現(xiàn)象[34]。圖 7b、c、d是青熟香蕉在不同LED光照下蔗糖、葡萄糖和果糖含量的變化情況。CK組青熟香蕉在自然狀態(tài)下蔗糖和葡萄糖都呈現(xiàn)先逐漸上升至頂峰后下降的趨勢,其峰值出現(xiàn)時間與呼吸作用和乙烯釋放量高峰一致,蔗糖上升更為明顯,峰值是初始時香蕉的6.17倍。CK組香蕉果糖含量在自然成熟中呈現(xiàn)持續(xù)上升的狀態(tài),與初始相比,第6天的香蕉果糖上升超過6倍。從圖7 a可以看出青熟香蕉的淀粉含量變化與糖含量呈相反趨勢,6 d成熟過程中CK組香蕉淀粉含量下降了37.68%。
在藍(lán)、紫光照射下的香蕉3種糖變化趨勢明顯低于CK組,且呈現(xiàn)持續(xù)緩速上升的趨勢,沒有明顯的高峰,證明香蕉沒有進(jìn)入典型的呼吸躍變狀態(tài)[34]。藍(lán)光照射組對香蕉最終3種可溶性糖含量上升的抑制效果比紫光組更為顯著(<0.05),三種可溶性糖最終總量是紫光組的80.32%、CK組的51.71%。此外,藍(lán)光照射的香蕉淀粉含量下降趨勢也比紫光照射更緩慢。證明藍(lán)光對延緩后熟衰老、保持香蕉耐貯藏性和食用性比紫光照射更有效。
由于紅光照射使香蕉呼吸和乙烯高峰期提前,2種可溶性糖含量(蔗糖和葡萄糖)的峰值均出現(xiàn)在第4 天,且2種糖的峰值達(dá)到105.2 mg/g、49.87 mg/g,均明顯高于CK組(<0.05),這證明紅光不僅可以增加呼吸強(qiáng)度和乙烯釋放量,還可以使其快速進(jìn)入最佳可食用狀態(tài),但其后續(xù)耐貯藏性可能降低[34-35]。橙光照射下香蕉的三種糖和淀粉含量的變化趨勢與CK組相同,蔗糖、葡萄糖含量的高峰出現(xiàn)在第4天,果糖持續(xù)上升,淀粉含量持續(xù)下降,但6 d時的總糖含量和淀粉含量分別為149.70 mg/g、31.10 mg/g,略高于CK組。這說明橙光照射可能有較緩催熟香蕉的作用,既能夠促使香蕉淀粉分解、加快糖含量累積程度,提升食用性,又能夠保證香蕉不過快地通過后熟階段進(jìn)入衰老進(jìn)程。橙光照射的香蕉催熟效果接近于王文萍[36]使用定量和定比例乙烯利精準(zhǔn)催熟香蕉的效果,可以避免香蕉催熟過程中的催熟劑量使用不當(dāng)導(dǎo)致的過熟腐爛。
黃光和綠光照射的香蕉淀粉含量大幅度下降,第4天的淀粉含量僅為24.56 mg/g和27.65 mg/g,顯著低于其他組別(<0.05)。這兩個處理組的可溶性糖含量在4 d內(nèi)的變化趨勢和CK組不同,僅呈現(xiàn)逐漸上升趨勢但并無下降趨勢,但第4天的三種糖含量數(shù)值均顯著低于CK組(<0.05)。結(jié)合黃光、綠光照射香蕉乙烯和呼吸的情況分析,可能是黃、綠光誘導(dǎo)香蕉出現(xiàn)內(nèi)源性生理損傷[37],導(dǎo)致表皮部分變黃,淀粉快速被分解消耗,但可溶性糖轉(zhuǎn)化被抑制,無法正常后熟而快速腐爛。
果實軟化是所有果實成熟及衰老的一個重要標(biāo)志[38],果蔬在采后貯藏過程中硬度會隨著呼吸、乙烯高峰期的出現(xiàn)逐漸軟化,這與果實中含有的果膠物質(zhì)、半纖維素和淀粉含量減少有關(guān)[39]。通常,呼吸躍變型果實的果膠、纖維素等物質(zhì)的分解減少和果實的呼吸強(qiáng)度、乙烯釋放量成正相關(guān)[40]。因此,質(zhì)構(gòu)和果膠、纖維素含量的變化,也可以側(cè)面驗證香蕉的成熟狀態(tài)。圖8a是香蕉果肉的硬度變化,圖8 b、c、d是香蕉的纖維素含量、原果膠、可溶性果膠的變化。CK組的香蕉在自然成熟過程中硬度呈下降趨勢,在第4天時硬度下降的速率激增,后續(xù)逐漸平緩,和初始狀態(tài)相比,CK組貯藏6 d后硬度下降比率達(dá)33.42%,表現(xiàn)出典型的呼吸躍變型果實在自然成熟下硬度與乙烯釋放量、呼吸作用呈負(fù)相關(guān)的關(guān)系[41]。香蕉纖維素含量和硬度的下降趨勢相同,這是因為青熟香蕉在成熟過程中淀粉和纖維素大量減少,轉(zhuǎn)化為果膠和糖類物質(zhì)[37]。CK組原果膠在第4天出現(xiàn)明顯的峰值(21.21 mg/g),可溶性果膠呈持續(xù)上升的趨勢,最終第6天含量達(dá)到42.78 mg/g。這是由于在成熟度較低的果實中,果膠物質(zhì)與纖維素緊密結(jié)合在一起,以原果膠等形式存在,果實后熟過程隨著呼吸和乙烯的變化,逐步降解果實的結(jié)構(gòu)支撐物質(zhì),果實中的果膠物質(zhì)逐漸與纖維素分離形成可溶性果膠[40]。
藍(lán)、紫光照射組別香蕉的硬度和纖維素含量下降比CK組平緩,8 d時藍(lán)光照射組硬度和纖維素含量分別為26.6N和44.71 mg/g,紫光照射組的硬度和纖維素含量下降略低于藍(lán)光組但高于其他組別,藍(lán)、紫光照射8 d的香蕉最終硬度仍然比CK組自然成熟6 d的香蕉高出2.5和0.1 N,說明藍(lán)光和紫光對于香蕉后熟中細(xì)胞壁完整度和質(zhì)地的保持有效。紅、橙光照射的香蕉硬度和纖維素含量在貯運末期的下降比例均明顯高于CK組,并且原果膠含量伴隨呼吸高峰出現(xiàn)峰值,可溶性果膠含量均顯著高于CK(橙光和紅光比CK組分別高出8.33和14.77 mg/g,<0.05)。說明紅、橙光照射組別在促進(jìn)香蕉呼吸代謝和乙烯釋放的同時,也可能刺激香蕉細(xì)胞壁的多聚半乳糖醛酸酶和纖維素酶活性,從而促使香蕉加快軟化,達(dá)到催熟效果。這與LED光照技術(shù)在草莓采后成熟、轉(zhuǎn)色、軟化的結(jié)果相似,特定LED光照刺激可以促進(jìn)轉(zhuǎn)色和軟化相關(guān)酶活性,加快成熟進(jìn)程[42]。
黃光和綠光照射的香蕉在4 d內(nèi)硬度呈下降趨勢,但4 d貯藏期后的硬度高于CK組(黃、綠光最終硬度是CK的1.25和1.15倍)。黃、綠光照射樣品纖維素含量下降顯著(<0.05),4 d時原果膠和可溶性果膠含量較初始值略微上升。黃光和綠光照射香蕉,在質(zhì)地和細(xì)胞壁關(guān)鍵物質(zhì)含量的變化與淀粉-糖含量、丙二醛含量的變化趨勢不一致,說明在這兩種光色照射下的香蕉沒有呈現(xiàn)自然后熟和衰老狀態(tài)。這可能是由于黃、綠光照射下香蕉的活性氧代謝遭受破壞,導(dǎo)致活性氧和丙二醛等代表植物衰老腐爛的物質(zhì)逐漸累積[26],從而使呼吸、乙烯、糖、酸、細(xì)胞壁等代謝途徑出現(xiàn)紊亂[41],促使果實產(chǎn)生一系列生理病害。例如Toledom等[43]在光照處理菠菜的研究中報道經(jīng)過24 d的連續(xù)光照后,菠菜抗壞血酸等抗氧化活性物質(zhì)下降了44%;Carmen等[44]在西蘭花和花椰菜的研究中報道不當(dāng)光照處理不僅不能促進(jìn)光合作用,還會增加其呼吸作用,導(dǎo)致?lián)p失率增加。
本試驗系統(tǒng)的使用可見光全光譜的6種代表光色對香蕉在模擬貯運條件下進(jìn)行照射處理,發(fā)現(xiàn)不同光色照射下香蕉的后熟衰老進(jìn)程呈現(xiàn)3種不同的表征。
1)綜合香蕉后熟的各項指標(biāo)發(fā)現(xiàn),>640~700 nm紅光和>605~640 nm橙光照射可以分別快速地促進(jìn)香蕉的后熟,這兩種光色下可以刺激轉(zhuǎn)色、加快呼吸強(qiáng)度和乙烯釋放量,加快淀粉、纖維素和原果膠分解,增加可溶性糖和可溶性果膠的累積,從而促使香蕉快速達(dá)到可食用狀態(tài),此外橙光照射的催熟速率較紅光更緩慢,可被開發(fā)為精準(zhǔn)調(diào)控后熟的技術(shù)。
2)>440~550 nm藍(lán)光和>400~440 nm紫光照射可以通過抑制香蕉呼吸和乙烯釋放,從而達(dá)到延緩保鮮貯藏期和品質(zhì)的目的,使色澤、質(zhì)地、可溶性糖等指標(biāo)更接近青熟香蕉狀態(tài)。
3)>565~605 nm黃光和>505~565 nm綠光照射不能促進(jìn)呼吸作用和乙烯釋放,但導(dǎo)致香蕉丙二醛迅速累積,致使香蕉快速喪失可食用性。
本研究為以香蕉為代表的呼吸躍變型果實保鮮和催熟技術(shù)提供了一種新的方法和理論依據(jù),但對于相關(guān)光照條件下香蕉出現(xiàn)不同表征現(xiàn)象的具體代謝機(jī)理還尚待研究。
[1] 胡從九. 淺析世界香蕉市場變化及趨勢[J]. 中國熱帶農(nóng)業(yè),2020(6):39-41,11.
Hu Congjiu. Analysis on the change and trend of banana market in the world[J]. China Tropical Agriculture, 2020(6): 39-41, 11. (in Chinese with English abstract)
[2] 謝江輝. 新中國果樹科學(xué)研究70年:香蕉[J]. 果樹學(xué)報,2019,36(10):1429-1440.
Xie Jianghui. Fruit scientific research in New China in the past 70 years: Banana[J]. Journal of Fruit Science, 2019, 36(10): 1429-1440. (in Chinese with English abstract)
[3] 劉彥英,倪珊珊,項蕾蕾,等. 香蕉靶基因的克隆及其在低溫脅迫下的表達(dá)分析[J]. 果樹學(xué)報,2020,37(1):29-39.
Liu Yanying, Ni Shanshan, Xiang Leilei, et al. Cloning of miR408b target geneand analysis of its expression under cold stress in banana[J]. Journal of Fruit Science, 2020, 37(1): 29-39. (in Chinese with English abstract)
[4] Elbagoury M, Turoop L, Runo S, et al. Regulatory influences of methyl jasmonate and calcium chloride on chilling injury of banana fruit during cold storage and ripening[J]. Food Science & Nutrition, 2020, 9(2): 929-942.
[5] 魏軍亞,耿沙,劉躍威,等. 乙烯利處理對采后寶島蕉果實后熟期品質(zhì)的影響[J]. 熱帶農(nóng)業(yè)科學(xué),2021,41(1):68-73.
Wei Junya, Geng Sha, Liu Yuewei. Effect of ethephon treatment onquality of postharvest baodao banana fruit[J]. Chinese Journal of Tropical Agriculture, 2021, 41(1): 68-73. (in Chinese with English abstract)
[6] 鄒冬梅,李敏,高兆銀,等. 香蕉采收及貯運保鮮技術(shù)[J]. 農(nóng)村新技術(shù),2020(8):58-59.
Zou Dongmei, Li Min, Gao Zhaoyin, et al. Banana harvesting, storage and fresh-keeping technology[J]. Rural New Technology, 2020(8): 58-59. (in Chinese with English abstract)
[7] 李倩,沈春生,林啟昉,等. 采后香蕉果實冷害發(fā)生與控制技術(shù)研究進(jìn)展[J]. 果樹學(xué)報,2021,38(5):817-827.
Li Qian, Shen Chunsheng, Lin Qifang, et al. Advances in research on the chilling injury occurrence and control technologies of postharvest banana fruit[J]. Journal of Fruit Science, 2021, 38(5): 817-827. (in Chinese with English abstract)
[8] 王全永,歐燕芳. 我國香蕉產(chǎn)業(yè)標(biāo)準(zhǔn)化現(xiàn)狀和對策[J]. 中國標(biāo)準(zhǔn)化,2021(3):147-152.
Wang Quanyong, Ou Yanfang. Present situation and countermeasures of banana industry standardization in China[J]. China Standardization, 2021(3): 147-152. (in Chinese with English abstract)
[9] 游淑玲. 香蕉富氧控溫催熟技術(shù)的研究與應(yīng)用[J]. 福建熱作科技,2015,40(3):15-18.
You Shuling. Research and application of banana ripe technology with enriched oxygen and temperature control[J]. Fujian Science & Technology of Tropical Crops, 2015, 40(3): 15-18. (in Chinese with English abstract)
[10] 劉澤松,史君彥,王清,等. 輻照技術(shù)在果蔬貯藏保鮮中的應(yīng)用研究進(jìn)展[J]. 保鮮與加工,2020,20(4):236-242.
Liu Zesong, Shi Junyan, Wang Qing, et al. Research advance on application of irradiation technology in storage and preservation of fruits and vegetables[J]. Storage and Process, 2020, 20(4): 236-242. (in Chinese with English abstract)
[11] 董俊岑,高溯楠,陳健初. 發(fā)光二極管光照食品保鮮技術(shù)的應(yīng)用進(jìn)展及展望[J/OL]. 食品工業(yè)科技, 2021, 1-13[2021-05-11]. https: //doi. org/10. 13386/j. issn1002-0306. 2020080116.
Dong Juncen, Gao Sunan, Chen Jianchu. Application progress and prospect of light-emitting diode light technology in food preservation[J/OL]. Science and Technology of Food Industry, 2021, 1-13[2021-05-11]. https: //doi. org/10. 13386/j. issn1002-0306. 2020080116. (in Chinese with English abstract)
[12] Olarte C, Sanz S, Federico J, et al. Effect of plastic permeability and exposure to light during storage on the quality of minimally processed broccoli and cauliflower[J]. LWT - Food Science and Technology, 2008, 42(1): 402-411.
[13] 劉幫迪,孫靜,孫潔,等. 不同LED照射方式對雞毛菜貨架期品質(zhì)及活性氧代謝影響[J]. 保鮮與加工,2021,21(4):7-16.
Liu Bangdi, Sun Jing, Sun Jie, et al. Effects of different LED illumination modes on shelf life quality and reactive oxygen metabolism of Chinese little greens[J]. Storage and Process, 2021, 21(4): 7-16. (in Chinese with English abstract)
[14] Dhakal R, Baek K H. Short period irradiation of single blue wavelength light extends the storage period of mature green tomatoes[J]. Postharvest Biology and Technology, 2014, 90: 73-77.
[15] Kokalj D, Hribar J, Cigi? B, et al. Influence of yellow light-emitting diodes at 590 nm on storage of apple, tomato and bell pepper fruit[J]. Food Technology and Biotechnology, 2016, 54(1): 228-235.
[16] Nassarawa S S, Abdelshafy A M, Xu Y, et al. Effect of light-emitting diodes (LEDs) on the quality of fruits and vegetables during postharvest period: A review[J]. Food and Bioprocess Technology, 2021, 14(1): 388-414.
[17] Huang J Y, Xu F, Zhou W. Effect of led irradiation on the ripening and nutritional quality of postharvest banana fruit[J]. Journal of the Science of Food and Agriculture, 2018, 98(14): 5486-5493.
[18] 傅金鳳,王娟,王琳,等. 特色香蕉類型‘美食蕉’品種果肉中淀粉與礦物質(zhì)在后熟期的變化[J]. 食品科學(xué),2021,42(1):86-92.
Fu Jinfeng, Wang Juan, Wang Lin, et al. Changes of starch and minerals in pulp of plantain cultivars (spp. AAB) during postharvest ripening[J]. Food Science, 2021, 42(1): 86-92. (in Chinese with English abstract)
[19] 王子蕊. 蘋果運輸包裝振動損傷特性的研究[D]. 天津:天津科技大學(xué),2016.
Wang Zirui. Study on Vibration Damage Characteristics of Apple Transportation package[D]. Tianjin: Tianjin University of Science and Technology, 2016. (in Chinese with English abstract)
[20] 曹建康,姜微波,趙玉梅. 果蔬采后生理生化實驗指導(dǎo)[M]. 北京:中國輕工業(yè)出版社,2009.
[21] 陳麗花,郝德蘭,夏彬,等. 香蕉催熟過程中生理生化指標(biāo)變化分析及其品質(zhì)評價模型的建立[J]. 現(xiàn)代食品科技,2018,34(10):147-155.
Chen Lihua, Hao Delan, Xia Bin, et al. Analysis of changes of physiological and biochemical parameters in banana ripening process and establishment of banana quality evaluation model[J]. Modern Food Science and Technology, 2018, 34(10): 147-155. (in Chinese with English abstract)
[22] Liu B, Jiao W, Wang B, et al. Near freezing point storage compared with conventional low temperature storage on apricot fruit flavor quality (volatile, sugar, organic acid) promotion during storage and related shelf life[J]. Scientia Horticulturae, 2019, 249: 100-109.
[23] Liu B, Zhao H, Fan X, et al. Near freezing point temperature storage inhibits chilling injury and enhances the shelf life quality of apricots following long-time cold storage[J]. Journal of Food Processing and Preservation, 2019, 43(7): 1-9.
[24] Satekge K, Magwaza S. The combined effect of 1-methylcyclopropene (1-MCP) and ethylene on green-life and postharvest quality of banana fruit[J]. International Journal of Fruit Science, 2020, 20: 1539-1551.
[25] 鄒冬梅,高兆銀,李敏,等. 香蕉主要采后病害及防控技術(shù)[J]. 中國熱帶農(nóng)業(yè),2018(3):35-37,34.
Zou Dongmei, Gao Zhaoyin, Li Min, et al. Main postharvest diseases of bananas and their prevention and control techniques[J]. China Tropical Agriculture, 2018(3): 35-37, 34. (in Chinese with English abstract)
[26] 劉幫迪,范新光,舒暢,等. 長時間近冰點溫度貯藏對杏果實貨架品質(zhì)的影響[J]. 食品科學(xué),2020,41(1):223-230.
Liu Bangdi, Fan Xinguang, Shu Chang, et al. Effect of near freezing temperature storage on the shelf quality of apricots after long time cold storage[J]. Food Science, 2020, 41(1): 223-230. (in Chinese with English abstract)
[27] 張娜,閻瑞香,關(guān)文強(qiáng),等. LED單色紅光對西蘭花采后黃化抑制效果的影響[J]. 光譜學(xué)與光譜分析,2016,36(4):955-959.
Zhang Na, Yan Ruixiang, Guan Wenqiang, et al. The effect of LED monochromatic red light on the inhibition of postharvest yellowing of broccoli[J]. Spectroscopy and Spectral Analysis, 2016, 36(4): 955-959. (in Chinese with English abstract)
[28] Erdberga I, Alsina I, Dubova L, et al. Changes in the biochemical composition of tomato fruit under the influence of illumination quality[J]. Key Engineering Materials, 2020, 850: 172-178.
[29] Huang J Y, Xu F, Zhou W. Effect of led irradiation on the ripening and nutritional quality of postharvest banana fruit[J]. Journal of the Science of Food and Agriculture, 2018, 98(14): 5486-5493.
[30] 祁文彩,吳寧,張亮,等. 香蕉采后生理及貯藏保鮮研究進(jìn)展[J]. 河南師范大學(xué)學(xué)報:自然科學(xué)版,2019,47(3):99-105.
Qi Wencai, Wu Ning, Zhang Liang, et al. Research progress of physiology, storage and preservation for postharvest banana fruit[J]. Journal of Henan Normal University: Natural Science Edition, 2019, 47(3): 99-105. (in Chinese with English abstract)
[31] Dhakal R, Baek K. Short period irradiation of single blue wavelength light extends the storage period of mature green tomatoes[J]. Postharvest Biology and Technology, 2014, 90: 73-77.
[32] 雷靜,張娜,閻瑞香,等. LED紅藍(lán)弱光照射保持櫻桃番茄冷庫貯藏品質(zhì)[J]. 農(nóng)業(yè)工程學(xué)報,2016,32(9):248-254.
Lei Jing, Zhang Na, Yan Ruixiang, et al. Red and blue LED weak light irradiation maintaining quality of cherry tomatoes during cold storage[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2016, 32(9): 248-254. (in Chinese with English abstract)
[33] Ritesh W, Sourav C, Prem S, et al. Physicochemical and mechanical properties during storage-cum maturity stages of raw harvested wild banana (, BB)[J]. Journal of Food Measurement and Characterization, 2021, 15: 3336-3349.
[34] 朱孝揚(yáng),李雪萍,單偉,等. 香蕉貯運保鮮技術(shù)研究進(jìn)展[J].熱帶作物學(xué)報,2020,41(10):2013-2021.
Zhu Xiaoyang, Li Xueping, Shan Wei, et al. Research progress of technologies in banana fruit preservation and transportation[J]. Chinese Journal of Tropical Crops, 2020, 41(10): 2013-2021. (in Chinese with English abstract)
[35] 賈彩紅,徐碧玉,劉菊華,等. 香蕉ASR的特征和采后表達(dá)分析[J]. 生物技術(shù)通報,2014(1):105-111.
Jia Caihong, Xu Biyu, Liu Juhua, et al. Characteristic and expression analysis of ASR gene from banana[J]. Biotechnology Bulletin, 2014(1): 105-111. (in Chinese with English abstract)
[36] 王文萍. 香蕉精準(zhǔn)催熟技術(shù)研究[D]. 廣州:華南農(nóng)業(yè)大學(xué),2018.
Wang Wenping. Studies on Precise Ripening Technology of Banana Fruit[D]. Guangzhou: South China Agricultural University, 2018. (in Chinese with English abstract)
[37] 項蕾蕾,李丹,孫雪麗,等. LED補(bǔ)光對香蕉組培苗增殖和生理生化指標(biāo)的影響[J]. 應(yīng)用與環(huán)境生物學(xué)報,2020,26(3):590-596.
Xiang Leilei, Li Dan, Sun Xueli, et al. Effects of LED supplementation on proliferation, and physiological and biochemical indices of tissue-cultured banana plantlets[J]. China Journal of Applied and Environmental Biology, 2020, 26(3): 590-596. (in Chinese with English abstract)
[38] 王志華,王文輝,姜云斌,等. 不同采收期對蘋果常溫貯藏品質(zhì)和衰老的影響[J]. 農(nóng)業(yè)工程學(xué)報,2020,36(7):300-306.
Wang Zhihua, Wang Wenhui, Jiang Yunbin, et al. Effects of different harvesting periods on the storage quality and senescence of apple at room temperature[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2020, 36(7): 300-306. (in Chinese with English abstract)
[39] 劉袆帆,杜卉妍,鐘玉鳴,等. 基于香蕉、粉蕉成熟過程中硬度變化建立成熟度隨機(jī)森林模型[J]. 廣東農(nóng)業(yè)科學(xué),2020,47(6):106-115.
Liu Huifan, Du Huiyan, Zhong Yuming, et al. Construction of maturity random forest models based on the changes of fruit firmness of musa AAA group banana and musa ABB group banana during ripening[J]. Guangdong Agricultural Sciences, 2020, 47(6): 106-115. (in Chinese with English abstract)
[40] Fan X, Jiang W, Gong H, et al. Cell wall polysaccharides degradation and ultrastructure modification of apricot during storage at a near freezing temperature[J]. Food Chemistry, 2019, 300 (125194): 1-8.
[41] 舒暢,劉幫迪,張萬立,等. 近冰溫冷藏對‘金冠’蘋果貯藏品質(zhì)的影響[J]. 食品科學(xué),2020,41(1):244-251.
Shu Chang, Liu Bangdi, Zhang Wanli, et al. Improving postharvest quality of apple(×. cv. Golden Delicious) fruit by storage at near freezing temperature[J]. Food Science, 2020, 41(1): 244-251. (in Chinese with English abstract)
[42] 黎金鑫,解新方,張潔,等. 光照處理在草莓采后貯藏保鮮中應(yīng)用研究進(jìn)展[J]. 北方園藝,2019(21):130-135.
Li Jinxin, Xie Xinfang, Zhang Jie, et al. Research progress on the effect of light treatment on strawberry postharvest quality[J]. Northern Horticulture, 2019(21): 130-135. (in Chinese with English abstract)
[43] Toledo M, Ueda Y, Imahori Y, et al. L-ascorbic acid metabolism in spinach (L.) during postharvest storage in light and dark[J]. Postharvest Biology & Technology, 2003, 28(1): 47-57.
[44] Carmen O, Susana S, Echávarri J F, et al. Effect of plastic permeability and exposure to light during storage on the quality of minimally processed broccoli and cauliflower[J]. LWT - Food Science and Technology, 2008, 42(1): 402-411.
Effects of LED light on the ripening regulation of green mature banana during storage and transportation
Liu Bangdi1,2, Zhang Yali1,2,3, Ke Zehua1,2,3, Sun Jing1,2※, Zhou Xinqun1,2, Sun Jie1,2
(1.,,100125,; 2.-,,100121,;3.,,056038,)
The purpose of this research was to clarify the effects of monochromatic lights with different fixed bands on the post-ripeness regulation in typical respiration fruits. Specifically, a systematic investigation was made on the effects of red, orange, yellow, green, blue, and purple LED lights on delaying and accelerating low maturity bananas ripening during simulated storage and transportation at room temperature (20±0.7 ℃). The low maturity of bananas ripening and quality changes were observed under different colors of LED lighting treatment. The results showed that the >440-505 nm blue and 400-440 nm violet LED light greatly contributed to inhibiting the intensity respiratory of banana and release quantity of ethylene. Two colors of LED light were utilized to effectively delay the shelf storage time of banana for 2 days, while decreasing the color turn and decomposition of cellulose and starch. Subsequently, the final firmness of bananas under the blue and purple lighting treatment after 8 days was 2.5 and 0.1 N higher than the CK group. In addition, the total sugars content of bananas in the blue lighting group was 51.71% of CK. Hence, better preservation was achieved under the blue and purple LED lighting treatment, where the bananas post-ripening was inhibited to prolong the freshness preservation period. The >640-700 nm red and >605-640 nm orange LED lighting treatments were utilized to effectively promote 2 days earlier on bananas respiration and ethylene peak. In addition, the red light was used to increase the respiratory peak by 24.20% and the ethylene release peak by 23.97%, compared with the CK group. More importantly, the peel color of bananas turned more outstandingly under red and orange light, and the total color difference (Δ) reached 94.70 and 83.25 at full ripeness. The red-orange light was also employed to stimulate the decomposition of starch and cellulose, thus speeding up the accumulation of bananas soluble sugar and softening. Therefore, it was found that both red and orange LED lights were selected to effectively accelerate the ripening of bananas. Among them, the orange light was used as an accurate of ripening, due to its intensity less than the red light. Additionally, the bananas exposed to yellow and green LED lighting showed premature rotting and post-ripening disorder. Moreover, the banana peels rotted seriously after 4 days, but the color differences (Δ) of peels were 40.35 and 46.23 less than those of the CK group. Particularly, the>565-605 nm yellow and >505-565 nm green light also prevented the rapid decline of banana firmness, but accelerated the cellulose decomposition, compared with the CK group. At the same time, the pectin contents in the yellow and green light group were lower than those in CK. The changes of cellulose, pectin, and hardness varied in the groups. A comprehensive analysis was performed on the texture, sugar content, and respiration of bananas. It was found that the six LED light colors treatments were used to delay ripening, promote ripening and disturb ripening. Correspondingly, the red light was selected to promote banana ripening faster, the orange light to promote banana ripening slower, the blue light to inhibit post-ripening and delayed senescence better than purple light, the yellow and green light to disrupt the normal post-ripening of banana. In conclusion, monochromatic LED lighting can be widely expected to serve as physical preservation to delay or accelerate ripeness in the process of storage and transportation of bananas. This finding can provide a theoretical basis for the ripening regulation on more respiration fruits and vegetables.
light; storage; transportation; LED; green mature banana; ripening regulation; preservation; ripening
劉幫迪,張雅麗,柯澤華,等. LED光照對青熟香蕉貯運中后熟調(diào)控的影響[J]. 農(nóng)業(yè)工程學(xué)報,2021,37(20):295-302.doi:10.11975/j.issn.1002-6819.2021.20.033 http://www.tcsae.org
Liu Bangdi, Zhang Yali, Ke Zehua, et al. Effects of LED light on the ripening regulation of green mature banana during storage and transportation[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2021, 37(20): 295-302. (in Chinese with English abstract) doi:10.11975/j.issn.1002-6819.2021.20.033 http://www.tcsae.org
2021-05-19
2021-08-02
農(nóng)業(yè)部農(nóng)產(chǎn)品產(chǎn)后處理重點實驗室開放課題項目(KLAPPH2019-03);國家重點研發(fā)計劃項目(2017YFD0401305)
劉幫迪,博士,工程師,研究方向為果蔬貯藏與保鮮,果蔬冷凍技術(shù),農(nóng)產(chǎn)品產(chǎn)后品質(zhì)調(diào)控。Email:328442307@qq.com
孫靜,博士,正高級工程師,研究方向為農(nóng)產(chǎn)品產(chǎn)后貯藏加工,農(nóng)產(chǎn)品倉儲冷鏈物流體系建設(shè)。Email:cynthiasj@163.com
10.11975/j.issn.1002-6819.2021.20.033
S531
A
1002-6819(2021)-20-0295-08