• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Chemical Composition and Crystal Structure of the Eggshell of the Green Crested Lizard Bronchocela cristatella (Agamidae)

    2021-12-30 08:24:06KunGUOJunZHONGLiMAYongpuZHANGandXiangJI
    Asian Herpetological Research 2021年4期

    Kun GUO ,Jun ZHONG ,Li MA ,Yongpu ZHANG and Xiang JI*

    1 College of Life and Environmental Sciences,Wenzhou University,Wenzhou 325035,Zhejiang,China 2 Faculty of Ecology,Lishui University,Lishui 323000,Zhejiang,China

    Abstract The majority of extant reptiles are oviparous and produce eggs with three major components:embryo,yolk,and eggshell.The eggshell is species-specific and more diverse in squamate reptiles than in other amniote taxa.Here,we study the crystal structure,chemical composition,and bonding states of the eggshell of the green crested lizard Bronchocela cristatella.X-ray diffractometer(XRD) analysis showed the existence of two clearly defined and distinguishable crystalline phases,aragonite and calcite.Using the XRD data and a unit cell refinement routine,we identified two sets of cell parameters:a=4.956 ?,b=7.965 ?,and c=5.734 ? for the aragonite phase;a=4.987 ?,b=4.987 ?,and c=17.056 ? for the calcite structure.We used x-ray photoelectron spectroscopy to examine detailed elemental composition and bonding states and found that the eggshell was composed primarily of elements C,N,Ca,and O,with C,N and O bonded to various types of hybridization in the protein of the eggshell membrane.The Ca:C:O ratio for the calcium carbonate yielded a value of~7:8:21,which is close to the expected stoichiometric value of CaCO3.

    Keywords agamid lizard,aragonite,calcite,crystal structure,eggshell,elemental bonding states,X-ray diffractometer,X-ray photoelectron spectroscopy

    1.Introduction

    The eggshell of oviparous vertebrates is a bi-layered biopolymer composed of an outer,inorganic layer chemically bonded to an underlying organic matrix of several layers of fibers generally referred to as eggshell membrane.Physical structure of eggshells is species-specific and more diverse in reptiles than in other amniote taxa,ranging from flexible,parchment-shelled eggs of many squamates (lizards,snakes,and amphisbaenians) to calcareous,rigid-shelled eggs of crocodilians,many geckos and turtles (Packard and DeMarco,1991;Schleich and K?stle,1988;Pike

    et al

    .,2012;Hallmann and Griebeler,2015;Deeming,2018).The eggshell is an important physiological structure that represents an important case of rapid,highly structured,and regulated biomineralization;this biologically self-organized material is a useful source for the development of novel biocompatible materials such as hydroxyapatite (Rivera

    et al

    .,1999;Stewart

    et al

    .,2009;Stewart and Ecay,2010;Campos-Casal

    et al

    .,2020).The mineral composite in eggshells of amniotes exists as pure calcium carbonate (CaCO) in the form of calcite,but two other polymorphs (aragonite and vaterite,both are more soluble than calcite;Falini

    et al

    .,2007) of CaCOhave also been found in eggshells of reptiles (Packard

    et al

    .,1982;You

    et al

    .,1993;Wang

    et al

    .,2014) and birds (Board and Perrott,1979;Portugal

    et al

    .,2018).The calcareous shell of turtle eggs is aragonitic(Packard

    et al

    .,1982;Packard and Hirsch,1986;Packard and DeMarco,1991;You

    et al

    .,1993;Deeming,2018),whereas the eggshell of crocodilians (Ferguson,1982),squamates (Osborne and Thompson,2005;Wang

    et al

    .,2014) and birds (Stapane

    et al

    .,2020;see also Portugal et al.,2018) is mainly calcitic.Both calcite and aragonite morphs co-exist in the eggshell of the green sea turtle

    Chelonia mydas

    ,as revealed by scanning electron microscopy (Baird and Solomon,1979).The organic matrix has nucleation sites to initiate crystal deposition on the eggshell and acts as a model for the inorganic crystal lattice-structure.The eggshell is not merely a“container”that separates the developing embryo from the environment,but also plays a key role in modulating the exchange of water and gases between the egg and its environment (Ji and Zhang,2001;Booth and Yu,2008;Zhao

    et al

    .,2013;Tang

    et al

    .,2018;Stapane

    et al

    .,2020),and in serving as a source of calcium during embryonic development (Ji and Bra?a,1999;Lu

    et al

    .,2009;Stewart

    et al

    .,2009,2019;Stewart and Ecay,2010;Wang

    et al

    .,2014).The allocation of the calcium resource,not just to the egg yolk,but also the shell,is a fine example of parental provisioning of mineral resource to offspring (Packard and Packard,1986,1989;Ji and Bra?a,1999;Du

    et al

    .,2001;Cai

    et al

    .,2007;Lu

    et al

    .,2009).Given that the success of egg incubation is dependent on the physiological role of the shell and its multiple functions such as an effective barrier against pathogens and a selective biofilter,it follows that an understanding of the shell’s physical structure,chemical composition and bonding states at the atomic level could elucidate adaptive value of eggshell structure and organization that defines a species ecology (Packard and DeMarco,1991;Benton,2005;Osborne and Thompson,2005;Hallmann and Griebeler,2015;Campos-Casal

    et al

    .,2020).Studies on eggshell structure of reptiles have been focused mainly on shell crystal morphology,elemental composition,and/or heavy metal distribution associated with environmental pollution,the organic matrix,and bioprocessing strategy of shell mineralization (You

    et al

    .,1993;Sim and Nakai,1994;Sahoo

    et al

    .,1996a,b;Wang

    et al

    .,2014).However,despite the important contribution of the shell to embryogenesis and successful incubation (Deeming and Ferguson,1991),our knowledge on the chemical organization of the shell structure at the atomic level,in particular the binding energy of various bonds in the calcareous shell and the underlying proteinaceous shell membrane,is limited.There has been no previous study on binding energies of chemical bonds in reptilian eggshell.In this study,we used an X-ray photoelectron spectroscopy and an X-ray diffractometer to elucidate the chemical composition,crystalline structure,and the binding energy of the constituent elements in the eggshell of the green crested lizard

    Bronchocela cristatella

    (Agamidae).This arboreal lizard exists throughout Southeast Asia;it usually lays a clutch of two or three long,fusiform,soft-shelled eggs (Diong and Lim,1998).

    2.Materials and Methods

    2.1.Eggshell samples for structural analyses

    Eggs of

    B.cristatella

    used in this study were obtained from five gravid females collected in June 2001 on Dioman Island in Malaysia.Five freshly-laid eggs,one from each clutch,were rinsed with distilled water to remove oviductal contents on the shell.Eggs were dissected to remove egg contents and their inner shell membranes were rinsed with distilled water to remove traces of yolk or albumen.Eggshells were lyophilized to a constant mass and stored in a dessicator for later use.In order to make accurate measurements of the chemical structure and binding energies,the eggshells were softened for 24 h in deionized water and cut into~5 × 5 mmpieces.Eggshell pieces were individually sandwiched between two Pyrex glass slides whose ends secured together.Flattened eggshells were oven-dried at 40 °C for 48 h prior to measurements.

    2.2.Eggshell structural and lattice parameters

    Structure of the five eggshells was measured using a D5005 X-ray diffractometer (XRD,Siemens,Germany) at 40 kV tube voltage and 40 mA current in a θ-2θ mode with an incident X-ray wavelength of 1.540 ? (Cu Kα line).A standard XRD reference database was used to identify the specific structure of the sample.For precise lattice parameter determination,a least square fitting routine CELREF was performed for the cell refinement.

    2.3.Structural composition and bonding states

    Elemental composition and bonding states of the five shell samples were studied by X-ray photoelectron spectroscopy (XPS) in a VG ESCALAB 220i-XL spectrometer.An Al Kα (1486.6 eV) X-ray source was used,with the analyzer set at a constant passing energy of 10 eV.The spectrometer was calibrated on the Au 4fpeak at 84.00 eV.All the core-level peaks were curve fitted after Shrieley background subtraction was performed.The percentage of atomic concentrations of each element present in the sample was calculated using the peak area,the transmission function and the sensitivity factors for each of the constituent atoms.The chemical states of various bondings were determined using deconvolution techniques provided by the VG software.

    2.4.Structural analyses and cell refinement

    Quantitative investigation of the crystalline structure of the eggshell was carried out using a D5005 X-ray diffractometer with divergence slit DS=0.8°,anti-scattering slit AS=1.0°,and receiving slit RS=1.0 mm.Data were collected over a range of 15°–90°,sufficient to cover most reflections.A sample piece was mounted on a standard specimen holder,which is amorphous in nature.

    2.5.X-ray photoelectron spectroscopy analysis

    The composition and chemical bonding states of the five shell samples were examined by XPS using an Al K (1486.6 eV)X-ray source.The usual argon ion sputter-cleaning process was not performed due to the porous nature of the eggshell.Surface clearing by ion sputtering often has an influence on the bonding configuration in the sample as was reported in Moulder

    et al

    .(1992).

    3.Results and Discussion

    3.1.X-ray diffraction pattern of eggshell crystalline structure

    Examination of the XRD pattern of a typical eggshell sample revealed that the shell was of polycrystalline structure with a high degree of crystallization (Figure 1).We used the crystallography database of American Society for Testing and Materials to identify the crystalline structure of the eggshell.The presence of strong reflections corresponding to 26.3°,33.1°,and 48.7° indicates the existence of aragonite phase of CaCO.The sharp peak at 26.3° suggests that the aragonite phase of the eggshell has a preferred orientation of (111).This peak is also the preferred orientation of orthorhombic aragonite calcium carbonate.In this structure,each C atom is bonded by three O atoms to form a flat COgroups.The COgroups are aligned in the same plane but point in two directions.For this phase,as the Ca is relatively large for the structure at room pressure and temperature,so the aragonite phase is metastable at the room conditions.This phase,however,is commonly observed to be a constituent of the shell structures in fresh water turtles and soft-shelled turtles (Packard

    et al

    .,1982;You

    et al

    .,1993).

    Figure 1 A typical XRD spectrum of the eggshell of Bronchocela cristatella,showing the co-existence of both aragonite (A) and calcite (C) phases.

    In addition to the above observed aragonite phase,the XRD spectra further revealed the presence of a calcite phase as was evidenced by strong peaks at 29.6° and 43.3° (Figure 1).These peaks were due to the reflection of the (104) and (202).In the calcite phase,it could be seen that the intensity of the(104) reflection was much stronger than that of other planes(Figure 1).This phenomenon can be due to enhanced nucleation associated with the nuclear growth that is mediated by shell membrane proteins of different types during the process of biogenic crystal growth (Ronnig

    et al

    .,1998),which results in an extraordinary grain growth along this direction.In this phase,the COgroups are arranged in a flat triangle with C in the middle.These groups are all aligned perpendicular to the c-axis.It is remarkable to note that both aragonite and calcite phases of CaCOcrystals are present in the eggshell of

    B.cristatella

    .While this finding has not been previously reported for squamate reptiles (see also Wang

    et al

    .,2014),our result nonetheless demonstrates that the co-occurrence of two of the three polymorphs (aragonite,calcite,and vaterite) of CaCO,is not restricted to turtles.Baird and Solomon’s (1979) study on eggshells

    of

    C.mydas

    shows a X-ray pattern similar to the twophase structure of the eggshell in this study.

    3.2.Unit shell characteristics and lattice parameters

    When examining the aragonite and the calcite phases in the spectrum,we found a noticeable deviation between the measured peaks and standard data.A precision refinement of the unit-cell was therefore performed to find the true lattice parameters.Detailed refinement process was undertaken using a minimization software CELREF.For the aragonite phase,the structure was refined using 21 peaks,whereas for the calcite phase,only 12 peaks were used.Using the identified reflections,the minimization process yields a set of lattice parameters for each phase of the shell.For aragonite,the routine generated values of a=4.956 ?,b=7.965 ? and c=5.734 ?.The volume of a unit cell was calculated to be 226.356 ?,making this phase of the shell slightly denser than that of standard CaCO.Similar cell refinement process yielded values of a=4.987 ?,b=4.987 ? and c=17.056 ? for the calcite structure.The parameter c is approximately 3 times larger than that of a and b.In this case the volume of the cell is almost 1.6 times that of aragonite.Table 1 shows the detailed refined parameters.

    Table 1 Refined structural parameters of aragonite and calcite phases of CaCO3 using CELREF.V is equilibrium volume of the unit cell.

    Applying the refined cell parameters,the d-spacings and the Miller indices were re-calculated and tabulated in Table 2.It could be clearly seen that the measured d-values agreed with the recalculated values remarkably well.The refinement process indeed improved the precision of the lattice parameters.

    3.3.Bonding energy and Ca:C:O ratio

    Th XPS survey scan of a typical sample clearly revealed that the eggshell was composed primarily of elements C,N,Ca,and O (Figure 2).The percentage of atomic concentrations of the total elements present in the sample,calculated using the transmission function and the sensitivity factors for each of the constituent atoms,provided with the VG analytical software,were C=52.5%,N=9.8%,Ca=6.8 %,and O=29.8%.

    Figure 2 XPS wide scan spectra of the eggshell sample,showing the presence of elements Ca,C,N,and O.

    Subsequent investigation on bonding state was performed using both the C 1s,N 1s,O 1s and Ca 2p photoelectron spectra.Figure 3 shows a narrow scan of C 1s,N 1s,O 1s and Ca 2p spectra,respectively.The broadness and asymmetry of the species core-level indicate the presence of multi-component peaks.The spectra were therefore fitted with Gaussian peak components mixed with Lorentzian shapes using a least squares routine,after Shirley background subtraction.

    The result of peak fitting performed on C 1s spectrum yields four peaks,located at binding energy (BE)=284.6 eV (FWHM 1.6eV),285.6 eV (FWHM 1.5eV),287.1 eV (FWHM 2.1eV),and 288.9 eV (FWHM 2.0eV),respectively (Figure 3a).The lowest peak at 284.6 eV is due to CH species and the adventitious carbon species on the surface originated from contamination,and the second higher BE peak located at 285.6 eV is attributed to C-N bondings in proteins as suggested by Xu

    at al

    .(1998).The third peak with the BE at 287.1 eV is originated from the C=NHin arginine,and the last one at 288.9 eV is due to the C-O bonding in calcium carbonate.Similar three peaks have also been observed in artificial synthesis of modified carbon nitride materials (Xu

    et al

    .,1998).

    For the N 1s,however,the broadness (FWHM of 2.7 eV)and asymmetry of the spectrum showing in Figure 3b implies that the N curve consists of several overlapping peaks.Fitting routine yielded three decomposed peaks located at BE=398.8 eV (FWHM 1.8 eV),399.6 eV (FWHM 1.7 eV) and 401.2 eV(FWHM 1.6 eV),respectively.The first peak at 398.8 eV is attributed to nitrogen atoms having two carbon neighbors in protein whereas the contribution at 399.6 eV is asssigned to the cyanogroup (-C≡N) which often exists at room temperatures in protein.The third peak is attributed to N-O bondings in various proteins.Peaks corresponding to atomic N (BE=409.9 eV) werenot observed in the N 1s spectrum,which implies that all N atoms in the shell were indeed bonded to other atoms.

    Table 2 XRD data for the sample under investigation,showing expected and calculated d-spacings and the crystal indices.

    The O 1s spectra can be used to further substantiate the interpretation of the above data.The spectra in Figure 3c show two components at 530.5 and 531.4 eV,which testify bonded O atoms to C in the form N≡C=O in proteins and C?O in CaCO.Figure 3d shows the binding energy of Ca 2p.The doublet characteristics of the Ca 2p is clearly seen.From this spectrum,we found that all Ca atoms were bonded with CO3 group with the binding energy of 346.8 eV (Figure 3d).Using the peak areas of the Ca 2p,C 1s and O 1s spectra,the Ca:C:O ratio calculated from the deconvoluted components for calcium carbonate yields a value of 7:8:21.It is remarkable that the ratio of Ca:C:O of the shell sample is close to the expected stoichiometric value of CaCO.

    4.Conclusions

    Figure 3 XPS core-level spectra for (a) C 1s,(b) N 1s,(c) O 1s,and (d) Ca 2p in an eggshell sample of Bronchocela cristatella.

    In this study,we used XRD and XPS techniques to investigate the structure and chemical state of the eggshell of

    B.cristatella

    .A dual CaCOphase (calcite and aragonite) was found in the eggshell of this lizard.Previous work reports this chemical phenomenon from turtle eggshells only (Deeming,2018).Using the refinement technique,we identified two sets of lattice parameters.Recalculation of the reflections revealed remarkable agreement between the experimentally measured peaks and the calculated values.Measurements of chemical composition revealed that the eggshell of

    B.cristatella

    consists mainly of elements Ca,C,N,and O.Various bonding states were identified and a near stoichiometric value of CaCOwas obtained.Significant amounts of chemical bonds were found in between carbon,nitrogen and oxygen in the proteins of the shell membrane.Further work could usefully test whether the dual CaCOphase offers reproductive and/or protective advantages.In

    Crotophaga major

    ,a communally nesting bird,vaterite may act as a shock absorber protecting the underlying calcite shell from mechanical damage caused by collision with other eggs and reducing the risk of eggshell fracture during incubation (Portugal

    et al

    .,2018).

    Acknowledgments We thank Cheong-Hoong DIONG for arranging animal collection in Malaysia,and Ling ZHANG for collecting and preparing eggshell specimens.

    av欧美777| 亚洲熟女毛片儿| 国产亚洲精品综合一区在线观看 | 一级黄色大片毛片| 丝袜美足系列| 午夜日韩欧美国产| 波多野结衣巨乳人妻| 黄片播放在线免费| 国产高清videossex| 九色国产91popny在线| 精品熟女少妇八av免费久了| 亚洲五月天丁香| 日韩av在线大香蕉| 啪啪无遮挡十八禁网站| 大型av网站在线播放| 51午夜福利影视在线观看| 黄频高清免费视频| av在线天堂中文字幕| 51午夜福利影视在线观看| 国产精品自产拍在线观看55亚洲| 国产精品一区二区三区四区久久 | 九色亚洲精品在线播放| 手机成人av网站| 日韩精品中文字幕看吧| 国产精品国产高清国产av| 亚洲va日本ⅴa欧美va伊人久久| 两性午夜刺激爽爽歪歪视频在线观看 | 黄色毛片三级朝国网站| 一级毛片女人18水好多| 91老司机精品| 人妻丰满熟妇av一区二区三区| 精品一区二区三区av网在线观看| 国产人伦9x9x在线观看| 久久伊人香网站| 久久国产精品人妻蜜桃| 最新美女视频免费是黄的| 亚洲欧洲精品一区二区精品久久久| 日韩欧美国产在线观看| 国产aⅴ精品一区二区三区波| 久久午夜综合久久蜜桃| 国产日韩一区二区三区精品不卡| 精品国产乱子伦一区二区三区| 两个人看的免费小视频| 久久午夜综合久久蜜桃| 黄色a级毛片大全视频| 日日夜夜操网爽| 日日爽夜夜爽网站| 亚洲国产日韩欧美精品在线观看 | 一边摸一边做爽爽视频免费| 亚洲电影在线观看av| 亚洲无线在线观看| 日本五十路高清| 久久人人97超碰香蕉20202| 久久人人97超碰香蕉20202| 老司机靠b影院| 最好的美女福利视频网| 动漫黄色视频在线观看| 亚洲精品国产区一区二| 欧美亚洲日本最大视频资源| 亚洲成人久久性| 国产高清视频在线播放一区| 纯流量卡能插随身wifi吗| 天天躁夜夜躁狠狠躁躁| 12—13女人毛片做爰片一| 日韩精品青青久久久久久| 国产精品影院久久| 久久久国产欧美日韩av| 午夜福利18| 男人舔女人下体高潮全视频| 黄色女人牲交| 亚洲第一青青草原| 国产三级黄色录像| 美女高潮到喷水免费观看| 国内毛片毛片毛片毛片毛片| 亚洲性夜色夜夜综合| 久久久精品欧美日韩精品| 国产伦人伦偷精品视频| 一个人观看的视频www高清免费观看 | 欧美日韩瑟瑟在线播放| or卡值多少钱| 欧美黑人欧美精品刺激| 黄色女人牲交| 亚洲,欧美精品.| 男女床上黄色一级片免费看| 深夜精品福利| 人人妻,人人澡人人爽秒播| 亚洲欧美激情在线| 国产亚洲精品综合一区在线观看 | 色综合站精品国产| 一个人免费在线观看的高清视频| 国产精品av久久久久免费| 制服丝袜大香蕉在线| a级毛片在线看网站| 亚洲成av人片免费观看| 欧美日韩一级在线毛片| 日韩一卡2卡3卡4卡2021年| 午夜福利成人在线免费观看| 国产97色在线日韩免费| 久久香蕉激情| 女警被强在线播放| 精品国产一区二区久久| 老司机午夜十八禁免费视频| 亚洲第一欧美日韩一区二区三区| 丰满人妻熟妇乱又伦精品不卡| 久久久久久久久免费视频了| 午夜免费鲁丝| 搡老熟女国产l中国老女人| 国语自产精品视频在线第100页| 少妇 在线观看| 12—13女人毛片做爰片一| 欧美一区二区精品小视频在线| 天天躁夜夜躁狠狠躁躁| 亚洲精品在线观看二区| 亚洲国产毛片av蜜桃av| 亚洲国产精品sss在线观看| 无遮挡黄片免费观看| 久热这里只有精品99| 欧美日本中文国产一区发布| АⅤ资源中文在线天堂| 国产成人精品在线电影| 国产精品 国内视频| 国产欧美日韩一区二区精品| 欧美中文日本在线观看视频| 国产精品永久免费网站| 国产成人免费无遮挡视频| 欧美绝顶高潮抽搐喷水| 九色亚洲精品在线播放| 999久久久精品免费观看国产| 精品电影一区二区在线| 最好的美女福利视频网| 在线观看免费视频网站a站| 少妇被粗大的猛进出69影院| 亚洲精品美女久久av网站| 国产精品自产拍在线观看55亚洲| 亚洲av熟女| 香蕉国产在线看| 99久久国产精品久久久| 色综合欧美亚洲国产小说| 免费在线观看日本一区| 亚洲午夜精品一区,二区,三区| 亚洲三区欧美一区| 少妇 在线观看| www.自偷自拍.com| 午夜福利欧美成人| 深夜精品福利| 嫩草影院精品99| 久久人妻福利社区极品人妻图片| 人成视频在线观看免费观看| 国产色视频综合| 婷婷丁香在线五月| 淫妇啪啪啪对白视频| 欧美日本视频| 九色亚洲精品在线播放| 亚洲 国产 在线| 搡老岳熟女国产| 国产午夜精品久久久久久| 国产精品 国内视频| 最新在线观看一区二区三区| 国产aⅴ精品一区二区三区波| 男男h啪啪无遮挡| 黑人巨大精品欧美一区二区mp4| 嫩草影视91久久| 国产一卡二卡三卡精品| av在线天堂中文字幕| 两性夫妻黄色片| 老司机福利观看| 我的亚洲天堂| 免费在线观看视频国产中文字幕亚洲| 女同久久另类99精品国产91| 午夜福利高清视频| 亚洲精品久久成人aⅴ小说| 嫩草影院精品99| 丝袜人妻中文字幕| 极品人妻少妇av视频| 日本在线视频免费播放| 窝窝影院91人妻| 亚洲欧美日韩另类电影网站| 国产精品久久久久久亚洲av鲁大| 精品国产一区二区三区四区第35| 99国产精品免费福利视频| 性色av乱码一区二区三区2| 如日韩欧美国产精品一区二区三区| 极品人妻少妇av视频| 两个人看的免费小视频| 国产亚洲精品综合一区在线观看 | 老熟妇乱子伦视频在线观看| 少妇 在线观看| 亚洲少妇的诱惑av| 精品国产美女av久久久久小说| 久久中文字幕一级| 91国产中文字幕| 很黄的视频免费| 国产av一区在线观看免费| 热re99久久国产66热| 国产精品99久久99久久久不卡| 国产高清视频在线播放一区| 国产高清激情床上av| 亚洲人成77777在线视频| 男人的好看免费观看在线视频 | 涩涩av久久男人的天堂| 国产精品二区激情视频| 国内毛片毛片毛片毛片毛片| 一进一出抽搐动态| 精品第一国产精品| 人人澡人人妻人| 国产成+人综合+亚洲专区| 黄网站色视频无遮挡免费观看| 婷婷精品国产亚洲av在线| 宅男免费午夜| 黄色视频,在线免费观看| a在线观看视频网站| 成年女人毛片免费观看观看9| 50天的宝宝边吃奶边哭怎么回事| 亚洲午夜精品一区,二区,三区| 在线视频色国产色| av有码第一页| 真人一进一出gif抽搐免费| 精品午夜福利视频在线观看一区| 看黄色毛片网站| 精品国产亚洲在线| 精品国产美女av久久久久小说| 狠狠狠狠99中文字幕| 国内精品久久久久久久电影| 亚洲情色 制服丝袜| 亚洲av五月六月丁香网| 天天躁狠狠躁夜夜躁狠狠躁| 琪琪午夜伦伦电影理论片6080| a在线观看视频网站| 欧洲精品卡2卡3卡4卡5卡区| 精品国产国语对白av| 欧美成人午夜精品| 久久精品aⅴ一区二区三区四区| 男女之事视频高清在线观看| 99精品久久久久人妻精品| 国产精品永久免费网站| 国产免费男女视频| 久久人人97超碰香蕉20202| 黄片小视频在线播放| 久久亚洲真实| 夜夜夜夜夜久久久久| 亚洲色图综合在线观看| 精品少妇一区二区三区视频日本电影| 日韩欧美国产一区二区入口| 亚洲精品美女久久av网站| 一区二区三区精品91| 国产高清videossex| 亚洲一区二区三区不卡视频| 91字幕亚洲| 国产精品一区二区三区四区久久 | 国产精品,欧美在线| 一级,二级,三级黄色视频| 性少妇av在线| 亚洲国产日韩欧美精品在线观看 | 久99久视频精品免费| 窝窝影院91人妻| 久久精品91蜜桃| 国产又色又爽无遮挡免费看| 欧美日韩中文字幕国产精品一区二区三区 | 黄色视频不卡| 两性夫妻黄色片| 成人18禁在线播放| 国产精品一区二区精品视频观看| 色在线成人网| 国产午夜精品久久久久久| 真人一进一出gif抽搐免费| 黄色毛片三级朝国网站| 精品国产超薄肉色丝袜足j| 亚洲激情在线av| 男人操女人黄网站| 精品国内亚洲2022精品成人| 国产精品1区2区在线观看.| 国产xxxxx性猛交| а√天堂www在线а√下载| 国产av一区在线观看免费| 国产精品99久久99久久久不卡| 巨乳人妻的诱惑在线观看| 91成年电影在线观看| 亚洲人成伊人成综合网2020| 免费在线观看日本一区| 久久婷婷成人综合色麻豆| 成在线人永久免费视频| 国产精品秋霞免费鲁丝片| 亚洲精品av麻豆狂野| 亚洲 欧美 日韩 在线 免费| 欧美午夜高清在线| 国产精品 国内视频| 欧美一级毛片孕妇| 激情在线观看视频在线高清| 亚洲精品一区av在线观看| 19禁男女啪啪无遮挡网站| 日韩有码中文字幕| 日日爽夜夜爽网站| 每晚都被弄得嗷嗷叫到高潮| 亚洲精品美女久久av网站| 国产av又大| 国内精品久久久久精免费| 一本综合久久免费| 日韩成人在线观看一区二区三区| 亚洲熟女毛片儿| 国产精品香港三级国产av潘金莲| 搡老妇女老女人老熟妇| 亚洲欧美激情综合另类| 久久精品国产综合久久久| 亚洲伊人色综图| 亚洲av电影在线进入| 国内精品久久久久久久电影| 亚洲国产中文字幕在线视频| 一区二区三区国产精品乱码| 欧美激情久久久久久爽电影 | 母亲3免费完整高清在线观看| 精品午夜福利视频在线观看一区| 亚洲最大成人中文| 亚洲第一av免费看| 欧美在线一区亚洲| 在线播放国产精品三级| 在线观看www视频免费| 国产欧美日韩精品亚洲av| 久久香蕉激情| 久久精品国产综合久久久| 精品久久久久久,| 久久精品国产亚洲av高清一级| 校园春色视频在线观看| 黑人巨大精品欧美一区二区mp4| 在线视频色国产色| 亚洲aⅴ乱码一区二区在线播放 | 两个人免费观看高清视频| а√天堂www在线а√下载| 日本在线视频免费播放| 女同久久另类99精品国产91| 欧美激情 高清一区二区三区| 麻豆国产av国片精品| 久久久久久久久免费视频了| 国产欧美日韩一区二区三区在线| 亚洲九九香蕉| 亚洲欧美精品综合久久99| 女同久久另类99精品国产91| 亚洲精品粉嫩美女一区| 久久久国产成人免费| 色综合婷婷激情| 国产精品久久久av美女十八| 久久天躁狠狠躁夜夜2o2o| 久久午夜综合久久蜜桃| 动漫黄色视频在线观看| 啦啦啦 在线观看视频| 亚洲第一欧美日韩一区二区三区| 亚洲熟女毛片儿| 久久久久久大精品| 成人国语在线视频| 精品一区二区三区视频在线观看免费| 国产黄a三级三级三级人| 首页视频小说图片口味搜索| 亚洲精品一卡2卡三卡4卡5卡| 中文字幕人妻丝袜一区二区| 一进一出抽搐动态| 色婷婷久久久亚洲欧美| 91麻豆精品激情在线观看国产| 麻豆国产av国片精品| 一级毛片精品| 男女下面进入的视频免费午夜 | 精品国产乱码久久久久久男人| 国产精品永久免费网站| 亚洲一区二区三区色噜噜| 久久人妻熟女aⅴ| 精品一区二区三区av网在线观看| 久久人人97超碰香蕉20202| 99国产综合亚洲精品| 欧洲精品卡2卡3卡4卡5卡区| 亚洲国产高清在线一区二区三 | 国产99白浆流出| av在线天堂中文字幕| 成人18禁在线播放| 久久人人97超碰香蕉20202| 欧美日韩亚洲综合一区二区三区_| 人妻久久中文字幕网| 侵犯人妻中文字幕一二三四区| 欧美日本中文国产一区发布| 精品欧美一区二区三区在线| 国产精品99久久99久久久不卡| 天堂√8在线中文| 亚洲免费av在线视频| 变态另类成人亚洲欧美熟女 | 9色porny在线观看| 搡老岳熟女国产| 操出白浆在线播放| av电影中文网址| 久久狼人影院| 午夜福利视频1000在线观看 | 亚洲欧美一区二区三区黑人| 人妻丰满熟妇av一区二区三区| 亚洲精品久久成人aⅴ小说| 18禁黄网站禁片午夜丰满| 亚洲精品一卡2卡三卡4卡5卡| 久久久国产精品麻豆| 欧美日韩亚洲国产一区二区在线观看| 国产成人欧美| 制服丝袜大香蕉在线| 高清在线国产一区| 丝袜在线中文字幕| 99国产综合亚洲精品| 国产精品一区二区在线不卡| 此物有八面人人有两片| 一个人观看的视频www高清免费观看 | 亚洲性夜色夜夜综合| 免费在线观看日本一区| avwww免费| 国产麻豆69| 亚洲中文字幕日韩| 久久人妻福利社区极品人妻图片| 欧美日韩亚洲国产一区二区在线观看| 亚洲一区二区三区色噜噜| 久久人妻福利社区极品人妻图片| 国产人伦9x9x在线观看| 成人国产一区最新在线观看| 日韩高清综合在线| 亚洲国产日韩欧美精品在线观看 | 精品国产乱子伦一区二区三区| 在线视频色国产色| 一区在线观看完整版| 亚洲av五月六月丁香网| 久久精品人人爽人人爽视色| 91大片在线观看| 99国产极品粉嫩在线观看| 电影成人av| 9191精品国产免费久久| 亚洲视频免费观看视频| 成人三级做爰电影| ponron亚洲| 免费看十八禁软件| 搞女人的毛片| 天堂√8在线中文| 老司机福利观看| 女人爽到高潮嗷嗷叫在线视频| 欧美av亚洲av综合av国产av| 99香蕉大伊视频| av免费在线观看网站| 国产精品av久久久久免费| 高潮久久久久久久久久久不卡| 国产伦人伦偷精品视频| 久久久久久亚洲精品国产蜜桃av| 亚洲三区欧美一区| 久久中文字幕一级| 日日爽夜夜爽网站| 亚洲成人国产一区在线观看| 熟女少妇亚洲综合色aaa.| 亚洲成人精品中文字幕电影| 黄片大片在线免费观看| 久久热在线av| 午夜a级毛片| 成人国语在线视频| 国产高清视频在线播放一区| 丝袜人妻中文字幕| 成年版毛片免费区| 日韩视频一区二区在线观看| 精品国内亚洲2022精品成人| 国产高清激情床上av| 国产亚洲av嫩草精品影院| 成年版毛片免费区| 免费女性裸体啪啪无遮挡网站| 日日爽夜夜爽网站| 91精品三级在线观看| 天堂影院成人在线观看| av中文乱码字幕在线| 免费在线观看黄色视频的| 国产精品亚洲一级av第二区| 黄频高清免费视频| 看黄色毛片网站| 深夜精品福利| 国产片内射在线| 亚洲国产毛片av蜜桃av| 日韩一卡2卡3卡4卡2021年| 国产一区二区三区视频了| 亚洲国产欧美一区二区综合| www日本在线高清视频| 亚洲人成77777在线视频| 一级毛片女人18水好多| 欧美午夜高清在线| 校园春色视频在线观看| 精品人妻1区二区| 日韩有码中文字幕| 老汉色∧v一级毛片| 一级,二级,三级黄色视频| 日韩精品中文字幕看吧| 国产av精品麻豆| 热re99久久国产66热| 亚洲av成人av| 久久热在线av| 欧美黑人精品巨大| 自拍欧美九色日韩亚洲蝌蚪91| 欧美日本亚洲视频在线播放| 亚洲成a人片在线一区二区| 伊人久久大香线蕉亚洲五| 国产欧美日韩一区二区精品| 亚洲熟女毛片儿| 老鸭窝网址在线观看| 国产亚洲精品综合一区在线观看 | 50天的宝宝边吃奶边哭怎么回事| 欧美黑人精品巨大| 亚洲欧美精品综合久久99| 久久国产精品男人的天堂亚洲| 免费不卡黄色视频| 国产精品综合久久久久久久免费 | 国产片内射在线| 国产在线观看jvid| 桃色一区二区三区在线观看| 国产av在哪里看| 日韩有码中文字幕| 老司机靠b影院| 国产色视频综合| 亚洲国产精品合色在线| 精品国产乱码久久久久久男人| 精品久久久久久久人妻蜜臀av | 国产亚洲av嫩草精品影院| 亚洲 欧美 日韩 在线 免费| 视频在线观看一区二区三区| 不卡av一区二区三区| av有码第一页| 亚洲精品av麻豆狂野| 黄片小视频在线播放| 两个人看的免费小视频| 亚洲,欧美精品.| 国产精品永久免费网站| 婷婷六月久久综合丁香| 国内久久婷婷六月综合欲色啪| 村上凉子中文字幕在线| 老司机午夜十八禁免费视频| 女人高潮潮喷娇喘18禁视频| 老司机午夜十八禁免费视频| 韩国精品一区二区三区| 操出白浆在线播放| 日本免费一区二区三区高清不卡 | 每晚都被弄得嗷嗷叫到高潮| 一区在线观看完整版| 麻豆久久精品国产亚洲av| 久久精品成人免费网站| 一边摸一边抽搐一进一出视频| 18禁美女被吸乳视频| 成人永久免费在线观看视频| 久久中文字幕人妻熟女| 91精品国产国语对白视频| 国产午夜精品久久久久久| 可以在线观看毛片的网站| 亚洲成人国产一区在线观看| 级片在线观看| 欧美黄色片欧美黄色片| 久久影院123| 中文字幕人妻丝袜一区二区| 两个人看的免费小视频| 亚洲成人国产一区在线观看| 最近最新中文字幕大全电影3 | 在线观看www视频免费| 给我免费播放毛片高清在线观看| 黄色成人免费大全| 视频在线观看一区二区三区| 欧美成人午夜精品| 免费看十八禁软件| av免费在线观看网站| 一本久久中文字幕| 欧美日韩黄片免| 一区二区三区精品91| 亚洲欧美激情在线| 国产精华一区二区三区| 欧美日韩黄片免| 亚洲成av人片免费观看| 亚洲精品国产区一区二| 别揉我奶头~嗯~啊~动态视频| 妹子高潮喷水视频| 欧美成狂野欧美在线观看| 亚洲精品在线美女| 99香蕉大伊视频| 国产欧美日韩一区二区三区在线| 无人区码免费观看不卡| 嫩草影视91久久| 两人在一起打扑克的视频| 最好的美女福利视频网| 国产区一区二久久| 免费少妇av软件| 一卡2卡三卡四卡精品乱码亚洲| av欧美777| 中文字幕最新亚洲高清| 日本精品一区二区三区蜜桃| 亚洲在线自拍视频| 亚洲精品粉嫩美女一区| 热re99久久国产66热| 黄色视频,在线免费观看| 在线十欧美十亚洲十日本专区| 母亲3免费完整高清在线观看| 少妇 在线观看| 视频在线观看一区二区三区| 欧美亚洲日本最大视频资源| 亚洲一卡2卡3卡4卡5卡精品中文| 久久久国产精品麻豆| 91九色精品人成在线观看| 亚洲av熟女| 精品国产超薄肉色丝袜足j| 在线观看日韩欧美| av天堂在线播放| 精品日产1卡2卡| 午夜福利欧美成人| 高清在线国产一区| 午夜福利,免费看| 午夜日韩欧美国产| 久久人妻福利社区极品人妻图片| 97人妻天天添夜夜摸| 香蕉国产在线看| 此物有八面人人有两片| 国产成人欧美在线观看| 美女午夜性视频免费| 操美女的视频在线观看| 老汉色∧v一级毛片| 午夜老司机福利片| 国产野战对白在线观看| 麻豆国产av国片精品| 日本黄色视频三级网站网址| av福利片在线| 女人高潮潮喷娇喘18禁视频|