• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    0D/1D AgI/MoO3 Z-scheme heterojunction photocatalyst:Highly efficient visible-light-driven photocatalyst for sulfamethoxazole degradation

    2021-12-29 02:27:38JingXuJuanChenYanhuiAoPeifangWang
    Chinese Chemical Letters 2021年10期

    Jing Xu,Juan Chen,Yanhui Ao,Peifang Wang

    Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes of Ministry of Education,College of Environment,Hohai University,Nanjing 210098,China

    Keywords:MoO3-based-photocatalyst 0D/1D Z-scheme Sulfamethoxazole Visible-light-responsive

    ABSTRACT Low dimension nano photocatalysts show great potential in the field of treating contaminated water for their large surface area and size effect.In this study,a 0D/1D AgI/MoO3 Z-scheme photocatalyst with striking photocatalytic performance was constructed successfully.The one-dimensional MoO3 nanobelts were prepared by a simple hydrothermal method,and then it was modified by AgI nanoparticles in a handy deposition approach.When choosing sulfamethoxazole(SMZ)as the target contaminant,the rate constant value of the optimal 0D/1D AgI/MoO3 composite could hit up to 0.13 min-1,which is nearly 22.4 times and 32.5 times as that of pure MoO3(0.0058 min-1)and AgI(0.0040 min-1),respectively.A series of detailed characterizations give evidences that the charge transfer in the composite followed Z scheme mechanism.Therefore,efficient separation/transfer and the remained high redox activity of photogenerated carriers played a vital role in the sharply enhanced photocatalytic properties.The possible degradation pathways of SMZ were proposed based on the intermediates detected by high-performance liquid chromatography-mass spectrometry (HPLC-MS).Meanwhile,the magnificent cyclic stability makes the material a promising material in the practical application.

    Pharmaceuticals and personal care products (PPCPs) recently have been frequently detected in various water environmental matrices,for lots of them are under heavy use and difficult to be naturally degraded[1,2].What is worse,some of them,especially antibiotics,have already brought threat to human health and environmental safety even at a very low level [3-5].However,traditional water treatment technologies have limitations in treating these emerging contaminants.Thus,finding proper methods to decompose and mineralize them is of great urgency.In all kinds of strategies,advanced oxidation processes have been proved versatile methods in treating contaminated water [6,7].Among them,photocatalysis has been proven as a rather promising approach for its attractive solar energy conversion ability,outstanding redox ability,low cost,low toxicity,and talent to function under diversified ambient conditions [8-11].To develop photocatalysts of high degradation and mineralization efficiency,various semiconductor catalytic materials have been studied.MoO3,as an intrinsic n-type semiconductor with high thermal and chemical stability,has attracted particular interest recently due to its optical properties,nontoxicity,and extensive sources [12-15].As a transition-metal oxide,MoO3has a high positive potential of the valence band,which makes MoO3an attractive photocatalyst for the oxidation of pollutants.Moreover,based on the previous study,the shape and size of MoO3prepared according to different synthetic strategies has significantly influence on its catalytic performance,among which,a one-dimensional nanostructured MoO3has drawn attention due to its large surface area and abundant active sites for catalytic degradation [16,17].However,MoO3has some shortcomings,such as limited electrical conductivity,high recombination rate of charge carriers and low reduction capacity,which bring restriction to its practical application [18].

    Recent studies have shown great success in improving catalytic performance of single materials by constructing heterojunctions which not only increase light harvesting capacity but speed up charge separation and transfer [19-23].Among them,the Zscheme system has become hotspot in the field of photocatalysis for improving redox capacity to a great extent [24,25].As it can keep the high reducing capacity from the reduction semiconductor with high conduction band (CB) position and the high oxidation capacity from the oxidation semiconductor with low valence band(VB) position [26-28].Hence,choosing semiconductors with proper CB and VB edge positions to construct a Z-scheme system heterojunction is an excellent way to optimize the photocatalytic performance of semiconducting materials.Among all these semiconductors,AgI is an anticipated candidate for its good light sensitivity,benign photocatalytic performance,and suitable band position [29-31].Recent studies have shown some successes in maximizing photocatalysts activity by building AgI-based direct Zscheme heterojunction [32-34].Thus,we believe that it is a worthwhile attempt to construct a Z-scheme system by combining AgI nanoparticles with MoO3nanobelts.

    Against this background,a 0D/1D AgI/MoO3Z-scheme heterojunction photocatalyst was obtained,aiming to achieve materials with high activity for antibiotics degradation under visible light irradiation.SMZ was chosen as the main target contaminant to reveal the degradation performance and operational principle of 0D/1D AgI/MoO3composite materials in detail.In addition,a series of tests were conducted to systematically investigate the morphology,structure,optical properties and photoelectrochemical properties of the as-prepared materials to provide a reference for the investigation of mechanism and practical application of 0D/1D AgI/MoO3Z-scheme photocatalysts.

    The Fig.1a depicts the synthesis process of 0D/1D AgI/MoO3composites,the details can be found in Supporting information.The morphology and microstructure of the as-prepared samples were investigated by scanning electron microscopy (SEM) and transmission electron microscope(TEM)characterizations.It could be observed that MoO3shows obvious nanobelts morphology with an average width of about 180 nm and length of more than 3 μm(Figs.1b and e).For pure AgI,uneven large particles clustering together were observed with an average size of more than 500 nm(Fig.1c).However,in Fig.1d,much smaller AgI particles closely anchor and adhere to the surface of MoO3nanobelts.This phenomenon validates that the growth and agglomeration of these AgI particles are suppressed in the formation process of the AgI/MoO3nanocomposites because of the interaction between the AgI and the MoO3surface,which is beneficial to charge transfer.The intimate interfaces between the MoO3and AgI can also imply that AgI/MoO3nanocomposites are heterojunction in structure rather than a physical mixture of two separate phases(Fig.1f).The high-resolution transmission electron microscope (HRTEM) gives information about the lattice fringe of the materials.In the HRTEM image of AM-50(Fig.1g),the measured d-spacing of 0.33 nm and 0.20 nm corresponded to the(040)and(112)lattice planes of MoO3and AgI,respectively,which confirms the AgI particles modified MoO3nanobelts heterojunction materials are successfully constructed.

    Fig.1.Synthesis process of 0D/1D AgI/MoO3 nanocomposites (a).SEM images of MoO3(b),AgI(c),AM-50(d).TEM images of MoO3(e),AM-50(f).HRTEM images of AM-50 (g).

    The crystal structures and phase purities of the as-prepared composites were determined by X-ray diffraction (XRD) analysis.As shown in Fig.2a,the characteristic diffraction peaks of MoO3are at 12.8°,23.4°,25.7°,27.3°,29.7°,39.0°and 58.8°,relating to the(020),(110),(040),(021),(130),(060) and (081) planes,respectively.It is in good agreement with the standard peaks for the orthorhombic phase of MoO3crystallites(JCPDS No.05-0508).The pure AgI shows the diffraction peaks at 22.3°,23.7°,25.4°,39.2°,42.6°and 46.3°,which could be ascribed to (100),(002),(101),(110),(103) and (112) crystal planes of the hexagonal phase AgI(JCPDS No.09-0374).Also,the AM-50 heterostructure obviously exhibits two groups of diffraction peaks that correspond to AgI and MoO3,respectively.Moreover,as the mass ratio of AgI increases,the peak intensity corresponding to (100),(002) and (112) lattice plane of AgI becomes stronger,indicating the 0D/1D AgI/MoO3composite materials are well synthesized (Fig.2b).Also,it is obvious that no characteristic peaks of other impurities appear and the diffraction peak positions in the XRD patterns hardly change,indicating that the synthesized samples are pure with little structure change.

    Fig.2.XRD patterns of as-prepared samples(a,b).High-resolution XPS spectra of MoO3 and AM-50:Mo 3d(c),O 1s(d).High-resolution XPS spectra of AgI and AM-50:Ag 3d (e),I 3d (f).

    The surface compositions and chemical states of MoO3,AgI and AM-50 were further investigated by X-ray photoelectron spectroscopy (XPS).For Mo 3d,four bands can be observed,which correspond to two different oxidative states.The two peaks at 236.0 eV(Mo 3d3/2)and 232.8 eV(Mo 3d5/2)indicate the presence of Mo6+(Fig.2c)[35].While,the weaker spectra peaks at 234.6 eV(Mo 3d3/2)and 231.7 eV(Mo 3d5/2)are attributed to the existence of Mo5+[36],demonstrating the minor existence of oxygen vacancies introduced during the synthesis of the nanomaterial.Typically,the presence of these vacancies may in favor of the production of oxidized radical species,the improvement of photocatalytic performance,and the enhancement of light absorption[37,38].The O 1s XPS spectrum of MoO3can be divided into two peaks at 530.6 eV and 531.7 eV,which can be assigned to lattice oxygen in MoO3and surface hydroxyl groups,respectively(Fig.2d)[35].We note that when the AgI are modified by MoO3the peaks of the Mo6+3d and O2-1s from MoO3in AM-50 display a slight shift toward a high binding energy,which can be attributed to the heterojunction interaction between MoO3and AgI.Meanwhile,the Ag 3d core region of AgI shows two peaks at 374.5 and 368.5 eV (Fig.2e),corresponding to Ag 3d3/2and Ag 3d5/2.And the I 3d XPS spectrum(Fig.2f)shows two major peaks with binding energies of 631.2 eV and 619.7 eV,which can be ascribed to 3d3/2and 3d5/2of I-in AgI[34].It is obviously that the binding energy of Ag+3d and I-3d in AM-50 all display slightly shift to the lower binding energy in comparison with pure AgI,indicating that the chemical coordination environment of Ag+and I-have changed to some extent because of strong interaction between AgI and MoO3.It is rational to infer that heterojunction have formed between the two materials,which can promote the migration of electron-hole pairs and enhance the photocatalytic performance and stability.

    The photocatalytic performance of the as-prepared samples was evaluated by the degradation of SMZ under visible light irradiation.As exhibited in Fig.3a,SMZ is rarely degraded without the addition of photocatalysts,indicating SMZ is quite stable under visible light irradiation.Meanwhile,pure MoO3and AgI exhibit poor photocatalytic activity,whose degradation rate in 20 min are just 10% and 8%,respectively.The photocatalytic degradation efficiency of SMZ is 13.6%,47.4%,97.6%,59.6%and 46.1%for the AM-10,AM-30,AM-50,AM-70,and pm-AM-50 after irradiation for 20 min.Among them,the AM-50 exhibits the highest photocatalytic activity with the rate constant of 0.13 min-1(Fig.S2 in Supporting information).Noted that all the 0D/1D AgI/MoO3composites display markedly higher photocatalytic degradation of SMZ than bare MoO3and AgI.And the AM-50 nanocomposites exhibit much better photocatalytic activity than that of pm-AM-50,which imply the form of heterostructure interaction between AgI nanoparticles and MoO3nanobelts rather than simple physical mixture.The heterostructure brings outstanding photocatalytic performance and promotes the transfer and separation of photogenerated charge carriers,which has already been confirmed by photocurrent curves (PC) and electrochemical impedance spectroscopy (EIS) tests (Fig.S4 in Supporting information).With the increase of AgI load,the photocatalytic performance of 0D/1D AgI/MoO3heterostructure composites first increases and then decreases.This probably because that excessive AgI particles have an intense propensity of agglomeration,which restrains their valid contact with MoO3nanobelts.

    To better reflect the degradation process of SMZ by AgI/MoO3composites,the transformation behavior of SMZ during the reaction was investigated by 3D excitation-emission matrix(EEM) spectra (Fig.3).The general characteristics of the EEM plots for the sample AM-50 show that SMZ has one main peak located at Ex/Em=260-300/315-380 nm [39].Before irradiation,strong extra signals presented in SMZ solution (Fig.3e).With irradiation time extending,this peak intensity begins to decrease,which attributed to the degradation of SMZ.When the irradiation time increases to 20 min (Fig.3h),the peak strength of SMZ becomes weak,showing that the SMZ molecules were almost completely degraded by AM-50 composite.The possible degradation pathways of SMZ achieved according to the results of HPLC-MS are shown in Fig.S5 (Supporting information).

    Fig.3.Photocatalytic degradation of SMZ with AgI/MoO3 composites(Blank:SMZ degraded under visible light without the addition of photocatalyst)(a);capture experiment of AM-50 for SMZ degradation(b);cycle experiments of AM-50 for SMZ degradation(c);photocatalytic degradation of ACE with AM-50(d);the 3D EEM spectra of the SMZ solution in AgI/MoO3 visible system:0 min (e),5 min (f),15 min (g) and 20 min (h).

    To investigate the photocatalytic mechanism,trapping experiments were carried out to quench the main reactive species involved in the degradation of SMZ.The results are shown in Fig.3b,when using ethylenediaminetetraacetic acid disodium salt(EDTA-2Na) as the direct hole scavenger,a remarkable inhibitory effect on the degradation efficiency of SMZ is observed and its rate constant k value(Fig.S2) is 0.02 min-1,which is far below that of control experiments of AM-50 without scavengers (0.13 min-1).When isopropanol alcohol (IPA) was introduced or Argon was passed through,64% and 46% of SMZ were degraded.Therefore,hole (h+),superoxide (?O2-) and hydroxyl (?OH) are all working species in the degradation of SMZ.Among them,h+is the leading radical.Moreover,the AM-50 sample maintains effective photocatalytic degradation stability during repeated tests(Fig.3c).So,it is obvious that AM-50 could work as a high-efficiency photocatalyst for the removal of SMZ in water.

    In order to verify the photocatalytic performance of the AM-50,Acetaminophen (ACE) was chosen as another contaminant for degradation under visible-light irradiation.As shown in Fig.3d,91.6% of ACE can be removed by AM-50 under visible light for 25 min.While the degradation rate for pure MoO3and AgI are 1%and 32%,respectively.The results indicate that the AM-50 heterostructures do have outstanding photocatalytic degradation capability.

    The electron spin resonance (ESR) technology was used to detected short-lived active species in the degradation process.As shown in the diagram Fig.4,typical peaks of?O2-were clearly recorded in DMPO-?O2-spectra after 10 min visible light irradiation,while there is no obvious signal appeared in the dark.As for?OH,compared with the dark condition,four evident peaks of 1:2:2:1 proportion appeared under irradiation,which is powerful evidence of the generation of?OH.The above results demonstrate convincingly that?O2-and?OH are produced and participated in the photocatalytic degradation process of SMZ.

    Fig.4.ESR spectra of the DMPO-?O2-(a),and DMPO-?OH(b)adducts recorded with pristine AM-50 in the dark and under visible light irradiation.Scheme diagram of possible photocatalytic mechanism of AM-50 (c).

    In the light of the active species verification test and the band position of each photocatalytic material obtained from the diffuse reflectance spectra(DRS)(Fig.S3 in Supporting information)and empirical equation,the possible carriers transfer path and photocatalytic mechanism of 0D/1D AgI/MoO3heterostructures is proposed.Under the irradiation of visible light,the photogenerated electrons would be inspired and then transfer form VB to CB both in MoO3and AgI.If the carriers transfer following a traditional type-II heterojunction(Fig.S6 in Supporting information),the electrons on the CB of AgI would shift to the CB of MoO3and the holes on the VB of MoO3would move to the VB of AgI,leaving electrons on the CB(0.35 V)of MoO3and holes on the VB(2.39 V) of AgI which cannot satisfy the reduction potential of O2/?O2-(-0.33 V vs.NHE) [40]and the oxidation potential of H2O/?OH (2.68 V vs.NHE) [32].Hence,a Z-system heterojunction may be a reasonable way to explain the photocatalytic reaction mechanism.As is illustrated in Fig.4c,after being inspired by visible light,the electrons accumulated on the CB of MoO3would transfer and recombine with the holes on the VB of AgI.Thus,the photogenerated electrons at the CB of AgI (-0.43 V) and the holes at the VB of MoO3(3.44 V) could be retained,which ensures a strong redox capability for the generation of reactive species,such as?O2-and?OH,that are highly efficient for the degradation of SMZ.The assumption is consistent with the results of the above tests.

    Overall,a novel 0D/1D AgI/MoO3Z-system heterostructure was successfully synthesized.The optimum composite sample AM-50 presented outstanding photocatalytic performance for both SMZ and ACE degradation.Compared with single MoO3and AgI,the degradation efficiency of SMZ by AM-50 increased by 87%and 89%,respectively.Meanwhile,the increasement of ACE degradation efficiency depended on AM-50 was up to 90% and 59%,when compared with MoO3and AgI,respectively.The 0D/1D nano heterostructure plays the key role in the increased exposure of active sites and the accelerated separation of photogenerated charge carriers,which brings excellent photocatalytic properties and stability.It is the first time that the MoO3-based photocatalytic samples have been used in SMZ degradation,which is a worthwhile attempt that widen the road of MoO3-based photocatalysts in PPCPs degradation.Based on this study,the construction of other low dimension MoO3-based heterostructure system materials could be considered.

    Declaration of competing interest

    The authors report no declarations of interest.

    Acknowledgments

    This work was financially supported by the National Key Plan for Research and Development of China (No.2016YFC0502203),Natural Science Foundation of China(No.51979081),Fundamental Research Funds for the Central Universities (No.B200202103),National Science Funds for Creative Research Groups of China(No.51421006),the Key Program of National Natural Science Foundation of China (No.91647206),and the Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD).

    Appendix A.Supplementary data

    Supplementarymaterialrelatedtothisarticlecanbefound,inthe online version,at doi:https://doi.org/10.1016/j.cclet.2021.04.003.

    免费高清在线观看视频在线观看| 色视频在线一区二区三区| 97热精品久久久久久| 婷婷色av中文字幕| 久久这里有精品视频免费| 欧美最新免费一区二区三区| 欧美日韩精品成人综合77777| 国产高清国产精品国产三级 | 国产成人a∨麻豆精品| 在线免费观看不下载黄p国产| 亚洲精品国产av蜜桃| 久热这里只有精品99| 99视频精品全部免费 在线| 欧美日韩精品成人综合77777| 一级毛片久久久久久久久女| 青春草国产在线视频| 成人一区二区视频在线观看| 国产爱豆传媒在线观看| 丰满人妻一区二区三区视频av| 久久久久久久精品精品| 91精品国产九色| av专区在线播放| 国产高清不卡午夜福利| 亚洲国产av新网站| 能在线免费看毛片的网站| 成年av动漫网址| 国产精品99久久久久久久久| 国产真实伦视频高清在线观看| 亚洲精品国产色婷婷电影| 国产精品久久久久久精品电影小说 | 久热久热在线精品观看| 看免费成人av毛片| 成人国产麻豆网| 校园人妻丝袜中文字幕| 热re99久久精品国产66热6| 免费看不卡的av| 成人毛片60女人毛片免费| 色吧在线观看| 一本一本综合久久| 日韩电影二区| 午夜日本视频在线| 在线观看国产h片| 国产成人aa在线观看| 亚洲三级黄色毛片| 亚洲av欧美aⅴ国产| xxx大片免费视频| 狂野欧美激情性xxxx在线观看| 91久久精品国产一区二区三区| 18禁动态无遮挡网站| 亚洲精品456在线播放app| 又爽又黄无遮挡网站| 久久精品国产亚洲av天美| 美女被艹到高潮喷水动态| 伦精品一区二区三区| av在线蜜桃| 日本wwww免费看| 日韩大片免费观看网站| 久久6这里有精品| 秋霞在线观看毛片| 成人欧美大片| 身体一侧抽搐| www.色视频.com| 97在线视频观看| 亚洲aⅴ乱码一区二区在线播放| 欧美日韩国产mv在线观看视频 | 日韩 亚洲 欧美在线| 午夜爱爱视频在线播放| 欧美极品一区二区三区四区| 午夜精品一区二区三区免费看| 麻豆成人av视频| 欧美日韩一区二区视频在线观看视频在线 | 国内少妇人妻偷人精品xxx网站| 97人妻精品一区二区三区麻豆| 国产精品国产三级国产av玫瑰| 听说在线观看完整版免费高清| 18禁在线播放成人免费| 99久久精品国产国产毛片| 日本黄色片子视频| 丝袜喷水一区| 内射极品少妇av片p| 国产有黄有色有爽视频| 五月伊人婷婷丁香| 嫩草影院精品99| 成人无遮挡网站| 麻豆乱淫一区二区| 国产日韩欧美亚洲二区| 特级一级黄色大片| 交换朋友夫妻互换小说| 五月伊人婷婷丁香| 国产一区亚洲一区在线观看| 久久精品综合一区二区三区| 国产av国产精品国产| 亚洲婷婷狠狠爱综合网| 18禁裸乳无遮挡免费网站照片| 国产免费视频播放在线视频| 日日摸夜夜添夜夜爱| 一级毛片久久久久久久久女| 毛片一级片免费看久久久久| av国产久精品久网站免费入址| 日韩欧美精品免费久久| 日本一二三区视频观看| 在线免费十八禁| 最后的刺客免费高清国语| 日韩免费高清中文字幕av| 春色校园在线视频观看| 国产精品国产三级国产专区5o| 麻豆成人av视频| 日韩伦理黄色片| videossex国产| 久久久a久久爽久久v久久| 精品熟女少妇av免费看| 久久人人爽av亚洲精品天堂 | 国产成人免费观看mmmm| 91久久精品国产一区二区三区| 国产乱来视频区| 国产精品99久久久久久久久| 日本wwww免费看| 婷婷色综合www| 欧美97在线视频| 亚洲激情五月婷婷啪啪| 久久影院123| 免费看日本二区| 成人亚洲精品一区在线观看 | 激情五月婷婷亚洲| 嘟嘟电影网在线观看| 女人久久www免费人成看片| 99热网站在线观看| 精品一区二区三区视频在线| 国产探花极品一区二区| 亚洲国产精品专区欧美| 久久久久精品性色| 97超碰精品成人国产| 97人妻精品一区二区三区麻豆| 亚洲高清免费不卡视频| 亚洲丝袜综合中文字幕| 亚洲天堂av无毛| 一个人观看的视频www高清免费观看| av在线app专区| 在线看a的网站| 久久ye,这里只有精品| 国产精品久久久久久精品古装| 日本熟妇午夜| 丰满人妻一区二区三区视频av| 欧美成人a在线观看| 香蕉精品网在线| 亚洲av在线观看美女高潮| 国产乱人视频| 国产一区亚洲一区在线观看| 成人无遮挡网站| 中文字幕亚洲精品专区| 大又大粗又爽又黄少妇毛片口| 边亲边吃奶的免费视频| 精品国产乱码久久久久久小说| 国产精品精品国产色婷婷| 日韩亚洲欧美综合| 国产亚洲一区二区精品| 午夜精品一区二区三区免费看| 日韩视频在线欧美| 成人高潮视频无遮挡免费网站| 国产毛片a区久久久久| 亚洲av日韩在线播放| av网站免费在线观看视频| 国产精品福利在线免费观看| 亚洲av.av天堂| 国国产精品蜜臀av免费| 色播亚洲综合网| 日韩欧美精品免费久久| 成人鲁丝片一二三区免费| 国产日韩欧美在线精品| 国产男女超爽视频在线观看| 男女边吃奶边做爰视频| 内地一区二区视频在线| 蜜臀久久99精品久久宅男| 丝袜美腿在线中文| 久久久精品免费免费高清| 国产一区二区在线观看日韩| 午夜爱爱视频在线播放| av天堂中文字幕网| 欧美一区二区亚洲| 亚洲在线观看片| 黄色怎么调成土黄色| 亚洲国产成人一精品久久久| 天天躁夜夜躁狠狠久久av| 欧美日韩视频高清一区二区三区二| 97在线人人人人妻| 午夜日本视频在线| 最近手机中文字幕大全| 亚洲最大成人中文| 国内揄拍国产精品人妻在线| 国产视频首页在线观看| 制服丝袜香蕉在线| 精品国产一区二区三区久久久樱花 | 免费播放大片免费观看视频在线观看| 能在线免费看毛片的网站| 午夜精品一区二区三区免费看| 日韩一本色道免费dvd| av又黄又爽大尺度在线免费看| av一本久久久久| 最近手机中文字幕大全| 51国产日韩欧美| 99久久人妻综合| 91精品一卡2卡3卡4卡| av网站免费在线观看视频| 黄片wwwwww| 黑人高潮一二区| 丝袜美腿在线中文| 免费在线观看成人毛片| 老师上课跳d突然被开到最大视频| 特级一级黄色大片| 欧美日韩综合久久久久久| 黄色配什么色好看| 午夜福利在线在线| 色哟哟·www| 最近2019中文字幕mv第一页| 国产伦精品一区二区三区四那| 午夜日本视频在线| 18禁裸乳无遮挡动漫免费视频 | 欧美激情国产日韩精品一区| 在线播放无遮挡| 亚洲性久久影院| 国内少妇人妻偷人精品xxx网站| 街头女战士在线观看网站| 激情五月婷婷亚洲| 黄色视频在线播放观看不卡| 新久久久久国产一级毛片| 国产伦理片在线播放av一区| 欧美精品人与动牲交sv欧美| 色吧在线观看| 激情 狠狠 欧美| 国产亚洲精品久久久com| 美女视频免费永久观看网站| 亚洲在线观看片| 肉色欧美久久久久久久蜜桃 | 欧美区成人在线视频| 国产精品精品国产色婷婷| 国产一区有黄有色的免费视频| 国产精品国产三级专区第一集| 午夜老司机福利剧场| 国产精品不卡视频一区二区| 七月丁香在线播放| 黄色视频在线播放观看不卡| 一级毛片黄色毛片免费观看视频| 欧美成人a在线观看| 91精品一卡2卡3卡4卡| 国产成年人精品一区二区| 51国产日韩欧美| 在线天堂最新版资源| 偷拍熟女少妇极品色| 一级爰片在线观看| 又大又黄又爽视频免费| 欧美丝袜亚洲另类| 国产老妇女一区| 午夜免费鲁丝| 亚洲国产精品999| 精品午夜福利在线看| 欧美极品一区二区三区四区| 日韩欧美精品v在线| 男人爽女人下面视频在线观看| 久久久久久久久久成人| 九九久久精品国产亚洲av麻豆| 禁无遮挡网站| 欧美变态另类bdsm刘玥| 2022亚洲国产成人精品| 国产精品爽爽va在线观看网站| 日韩一区二区三区影片| 久久鲁丝午夜福利片| 婷婷色综合大香蕉| 亚洲aⅴ乱码一区二区在线播放| 亚洲精品国产av蜜桃| 久久久欧美国产精品| 亚洲精品乱码久久久久久按摩| 高清日韩中文字幕在线| 啦啦啦中文免费视频观看日本| 又爽又黄无遮挡网站| 成人综合一区亚洲| 国产精品国产三级专区第一集| 99久久中文字幕三级久久日本| 深爱激情五月婷婷| 一级黄片播放器| 免费看不卡的av| 边亲边吃奶的免费视频| 中文精品一卡2卡3卡4更新| 在线观看美女被高潮喷水网站| 美女cb高潮喷水在线观看| 99热这里只有精品一区| 一个人看视频在线观看www免费| 久久久成人免费电影| 香蕉精品网在线| 午夜福利在线在线| 久久久久国产精品人妻一区二区| 一级毛片黄色毛片免费观看视频| 精品久久久久久久末码| 国产白丝娇喘喷水9色精品| 国产精品女同一区二区软件| 国产成人午夜福利电影在线观看| av一本久久久久| 男人添女人高潮全过程视频| 在线观看三级黄色| 真实男女啪啪啪动态图| 日韩大片免费观看网站| 国产 一区 欧美 日韩| 黄片wwwwww| 成人鲁丝片一二三区免费| 亚洲精品亚洲一区二区| 午夜爱爱视频在线播放| 日韩欧美 国产精品| 国模一区二区三区四区视频| 在线a可以看的网站| 69人妻影院| 尾随美女入室| av在线天堂中文字幕| 国产在线男女| 欧美国产精品一级二级三级 | 欧美成人午夜免费资源| 在线观看一区二区三区| 特大巨黑吊av在线直播| 日本色播在线视频| 国产精品久久久久久精品古装| 日日啪夜夜撸| 人妻系列 视频| 22中文网久久字幕| 人妻少妇偷人精品九色| 日韩欧美 国产精品| 亚洲四区av| 成人亚洲欧美一区二区av| 亚洲,一卡二卡三卡| 亚洲国产精品999| av一本久久久久| 国产欧美日韩精品一区二区| 欧美国产精品一级二级三级 | 亚洲天堂国产精品一区在线| 国产成人免费观看mmmm| 尤物成人国产欧美一区二区三区| 久久久久久久久大av| 亚洲精品456在线播放app| 自拍偷自拍亚洲精品老妇| 日韩 亚洲 欧美在线| 边亲边吃奶的免费视频| 国产成人aa在线观看| 91久久精品电影网| 欧美xxxx性猛交bbbb| 在线看a的网站| 亚洲最大成人手机在线| 亚洲国产高清在线一区二区三| 午夜老司机福利剧场| 国产男女超爽视频在线观看| 一本久久精品| 日本黄大片高清| 午夜福利视频1000在线观看| 在线看a的网站| 色婷婷久久久亚洲欧美| 午夜福利高清视频| 狂野欧美激情性bbbbbb| 久久久亚洲精品成人影院| 人妻少妇偷人精品九色| 亚洲一区二区三区欧美精品 | 在线观看一区二区三区| 熟妇人妻不卡中文字幕| 成人国产麻豆网| 99热这里只有精品一区| 九九久久精品国产亚洲av麻豆| 欧美高清性xxxxhd video| 精品国产乱码久久久久久小说| 欧美 日韩 精品 国产| 亚洲自拍偷在线| 最近的中文字幕免费完整| 国产精品一区二区在线观看99| 国产高清国产精品国产三级 | 伊人久久国产一区二区| 国产女主播在线喷水免费视频网站| 最近中文字幕高清免费大全6| tube8黄色片| 日本色播在线视频| 日韩欧美精品免费久久| 国产精品不卡视频一区二区| 精品久久久久久久久亚洲| 王馨瑶露胸无遮挡在线观看| 成人综合一区亚洲| 深夜a级毛片| 热99国产精品久久久久久7| 人妻 亚洲 视频| 亚洲自拍偷在线| 欧美日韩国产mv在线观看视频 | 日韩国内少妇激情av| 精品国产三级普通话版| 国内精品宾馆在线| 色5月婷婷丁香| 18禁裸乳无遮挡动漫免费视频 | 91午夜精品亚洲一区二区三区| 麻豆久久精品国产亚洲av| 日韩三级伦理在线观看| 晚上一个人看的免费电影| 国内少妇人妻偷人精品xxx网站| 18禁在线无遮挡免费观看视频| 熟女av电影| av又黄又爽大尺度在线免费看| 中文字幕免费在线视频6| 亚洲精品日韩在线中文字幕| 禁无遮挡网站| 国产成人一区二区在线| 丰满人妻一区二区三区视频av| 18禁动态无遮挡网站| 我的老师免费观看完整版| 国产黄片视频在线免费观看| 新久久久久国产一级毛片| 久久国产乱子免费精品| 好男人在线观看高清免费视频| 国产精品.久久久| 69人妻影院| 又爽又黄无遮挡网站| 国产成人精品一,二区| 国产女主播在线喷水免费视频网站| 久久国内精品自在自线图片| 女人久久www免费人成看片| 久久97久久精品| 人妻一区二区av| 国产精品久久久久久精品电影| 久久久久久久大尺度免费视频| 97人妻精品一区二区三区麻豆| 一本一本综合久久| 91精品一卡2卡3卡4卡| 91久久精品国产一区二区三区| 秋霞伦理黄片| 99久久中文字幕三级久久日本| 老司机影院成人| 伊人久久精品亚洲午夜| 国产精品爽爽va在线观看网站| 热re99久久精品国产66热6| av在线蜜桃| 久久ye,这里只有精品| 国产在线一区二区三区精| 亚洲真实伦在线观看| 91在线精品国自产拍蜜月| 国产探花在线观看一区二区| 国产女主播在线喷水免费视频网站| 亚洲国产精品成人综合色| 大又大粗又爽又黄少妇毛片口| 日本午夜av视频| 亚洲欧美中文字幕日韩二区| 五月开心婷婷网| 国产亚洲午夜精品一区二区久久 | 欧美日韩综合久久久久久| 中国国产av一级| av线在线观看网站| 国产精品偷伦视频观看了| 国产成人a∨麻豆精品| 日韩电影二区| 丰满人妻一区二区三区视频av| 18禁动态无遮挡网站| 亚洲伊人久久精品综合| 日韩视频在线欧美| 久久综合国产亚洲精品| 免费av不卡在线播放| av天堂中文字幕网| 亚洲综合精品二区| 亚洲精品视频女| 欧美丝袜亚洲另类| 国内揄拍国产精品人妻在线| 乱码一卡2卡4卡精品| 亚洲欧洲日产国产| 亚洲欧美日韩东京热| 亚洲国产最新在线播放| 久久久亚洲精品成人影院| 婷婷色av中文字幕| 成人国产av品久久久| 亚洲国产欧美人成| 欧美人与善性xxx| 欧美xxxx黑人xx丫x性爽| 国产成人精品久久久久久| 亚洲精品成人av观看孕妇| 黄片wwwwww| 真实男女啪啪啪动态图| 在线观看国产h片| 网址你懂的国产日韩在线| 国内精品宾馆在线| av播播在线观看一区| 亚洲av在线观看美女高潮| 国产av不卡久久| 熟女av电影| 亚洲高清免费不卡视频| 欧美精品一区二区大全| 国产片特级美女逼逼视频| 99精国产麻豆久久婷婷| 97热精品久久久久久| 国产男女超爽视频在线观看| 国产老妇伦熟女老妇高清| 日日啪夜夜撸| 亚洲国产精品国产精品| 成人特级av手机在线观看| 久久鲁丝午夜福利片| 99久久精品国产国产毛片| 免费高清在线观看视频在线观看| 99久久人妻综合| 麻豆国产97在线/欧美| 内射极品少妇av片p| 一本久久精品| 免费看a级黄色片| 国产乱人偷精品视频| 精品久久国产蜜桃| 少妇高潮的动态图| 老司机影院成人| 日韩欧美精品v在线| 在线观看人妻少妇| 深爱激情五月婷婷| 欧美日韩一区二区视频在线观看视频在线 | 欧美成人午夜免费资源| 日本猛色少妇xxxxx猛交久久| 伊人久久精品亚洲午夜| 国产精品熟女久久久久浪| 国产午夜精品久久久久久一区二区三区| 精品99又大又爽又粗少妇毛片| 一级片'在线观看视频| 亚洲,欧美,日韩| 97热精品久久久久久| 国产乱人视频| 亚洲图色成人| 国产精品爽爽va在线观看网站| 一个人看的www免费观看视频| 国产精品久久久久久精品电影小说 | 精品国产乱码久久久久久小说| 国产日韩欧美在线精品| 日本av手机在线免费观看| 国产午夜福利久久久久久| 国产视频内射| 亚洲av男天堂| 亚洲无线观看免费| 国产在视频线精品| 婷婷色麻豆天堂久久| 免费黄网站久久成人精品| 美女国产视频在线观看| 国产乱人偷精品视频| av播播在线观看一区| 亚州av有码| 亚洲国产精品国产精品| 精品国产三级普通话版| 中文在线观看免费www的网站| 免费不卡的大黄色大毛片视频在线观看| 男女那种视频在线观看| 亚洲av福利一区| 成年女人在线观看亚洲视频 | 成年av动漫网址| 国产成人免费观看mmmm| 国产日韩欧美在线精品| 亚洲内射少妇av| 日韩在线高清观看一区二区三区| 在线观看美女被高潮喷水网站| 亚洲欧美日韩东京热| 嫩草影院入口| 高清午夜精品一区二区三区| 午夜福利视频1000在线观看| 纵有疾风起免费观看全集完整版| 天天躁日日躁夜夜躁夜夜| 亚洲欧美一区二区三区黑人| 欧美日韩av久久| 18在线观看网站| 飞空精品影院首页| 久久久久精品久久久久真实原创| 高清在线视频一区二区三区| 亚洲av福利一区| 精品人妻在线不人妻| 中国国产av一级| 国产欧美亚洲国产| 咕卡用的链子| 亚洲一码二码三码区别大吗| 久久久久久久久久久免费av| 中文乱码字字幕精品一区二区三区| 国产黄色免费在线视频| 悠悠久久av| 日韩制服骚丝袜av| 日本91视频免费播放| 国产精品免费大片| 精品少妇黑人巨大在线播放| 亚洲欧美清纯卡通| 69精品国产乱码久久久| 80岁老熟妇乱子伦牲交| 人妻人人澡人人爽人人| 成人黄色视频免费在线看| 一区福利在线观看| netflix在线观看网站| 十八禁人妻一区二区| 在线观看一区二区三区激情| 久久97久久精品| 亚洲激情五月婷婷啪啪| 久久久国产欧美日韩av| 亚洲色图综合在线观看| 亚洲精品视频女| av在线app专区| 久久久久久久精品精品| 日韩av不卡免费在线播放| 丁香六月天网| 啦啦啦中文免费视频观看日本| 久久久亚洲精品成人影院| 91成人精品电影| 人人妻人人添人人爽欧美一区卜| 在线看a的网站| av线在线观看网站| 综合色丁香网| 老鸭窝网址在线观看| 丁香六月天网| 亚洲色图综合在线观看| 亚洲av中文av极速乱| 人人妻,人人澡人人爽秒播 | 各种免费的搞黄视频| 精品人妻熟女毛片av久久网站| 亚洲精品国产av成人精品| 丝袜人妻中文字幕| 久久精品国产a三级三级三级| 欧美久久黑人一区二区| 精品福利永久在线观看| videos熟女内射| 国精品久久久久久国模美| 日韩大码丰满熟妇| 精品国产一区二区三区四区第35| netflix在线观看网站| 免费观看a级毛片全部|