• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Photocatalytic degradation of sulfadiazine in suspensions of TiO2 nanosheets with exposed (001) facets

    2021-12-29 02:27:36XiofnXingLiynWuJunjingZhuJizhouLiXiLioHonghengHungJijieFnKngleLv
    Chinese Chemical Letters 2021年10期

    Xiofn Xing,Liyn Wu*,Junjing Zhu,Jizhou LiXi LioHongheng HungJijie Fn,Kngle Lv*

    a Key Laboratory of Resources Conversion and Pollution Control of the State Ethnic Affairs Commission,College of Resources and Environmental Science,South-Central University for Nationalities,Wuhan 430074,China

    b Hubei Key Laboratory of Biomass Fibers and Eco-Dyeing &Finishing,College of Chemistry and Chemical Engineering,Wuhan Textile University,Wuhan 430200,China

    c School of Materials Science and Engineering,Zhengzhou University,Zhengzhou 450001,China

    Keywords:Sulfadiazine Antibiotics Photocatalytic degradation TiO2 nanosheets Degradation pathway

    ABSTRACT Antibiotics such as sulfonamides are widely used in agriculture as growth promoters and medicine in treatment of infectious diseases.However,the release of these antibiotics has caused serious environmental problems.In this paper,photocatalytic oxidation technology was used to degrade sulfadiazine(SDZ),one of the typical sulfonamides antibiotics,in UV illuminated TiO2 suspensions.It was found that TiO2 nanosheets (TiO2-NSs) with exposed (001) facets exhibit much higher photoreactivity towards SDZ degradation compared to TiO2 nanoparticles(TiO2-NPs)with a rate constant increases from 0.017 min-1 to 0.035 min-1,improving by a factor of 2.1.Under the attacking of reactive oxygen species(ROSs) such as superoxide radicals (? O2-) and hydroxyl radicals (? OH),SDZ was steady degraded on the surface of TiO2-NSs.Based on the identification of the produced intermediates by LC-MS/MS,possible degradation pathways of SDZ,which include desulfonation,oxidation and cleavage,were put forwards.After UV irradiation for 4 h,nearly 90%of the total organic carbon(TOC)can be removed in suspensions of TiO2-NSs,indicating the mineralization of SDZ.TiO2-NSs also exhibits excellent stability in photocatalytic degradation of SDZ in wide range of pH.Even after recycling used for 7 times,more than 91.3%of the SDZ can be efficiently removed,indicating that they are promising to be practically used in treatment of wastewater containing antibiotics.

    Sulfonamides(SNs)antibiotics are widely used in agriculture as growth promoters and medicine in treating of infectious diseases due to their low cost and high efficiency[1,2].However,the release of unconsumed antibiotics will spread widely and cause serious environmental problems.For example,sulfadiazine (SDZ),one type of sulfonamides antibiotics,has been widely detected in various environmental compartments such as WWTPs,hospitals and river water [3-6].In China,about 1260 tons of SDZ was used each year,which is the second largest used antibiotic in the common sulfonamides family[7].The uncontrolled use of SDZ and its exposure to environment would lead to potential health risk and ecological impacts,and therefore received increasing concerns in the past decades [8].

    Although a lot of attention has been drawn on the removal of SDZ in aquatic environment,traditional methods such as adsorption,biodegradation,chlorination and ozonation are ineffective for SDZ removal because of the microbial inhibition and disinfection byproducts(DBPs)formation[9-11].Therefore,new techniques to effectively decompose SDZ in wastewater are urgently anticipated but remain a great challenge.

    Recently,great attentions have been paid to advanced oxidation technologies(AOTs)[12-15],especially semiconductor photocatalysis,as they provide a sustainable way to solve the environmental problems [16-19].Upon irradiation,the photo-generated carriers(electronsand holes)will migrate to the surfaceof the photocatalyst.The electrons will be captured by surface adsorbed oxygen to produce superoxide radicals (?O2-),while hole will oxidize the surface adsorbed H2O to produce the produced hydroxyl radicals(?OH).These reactive oxygen species (ROSs) are strong oxidants,which can attack the organics in solution,resulting in the decomposition and even mineralization of organic pollutants[20,21].

    Among all the semiconductor photocatalysts,TiO2is the most popular due to its strong oxidation power,chemical inertness and excellent biocompatibility [22-25].However,the quantum efficiency of TiO2photocatalysis is not high enough due to the quick recombination of charge carriers[26].To overcome the limitations of bare TiO2,researches have focused on the modification of TiO2-based materials by introduction of surface oxygen vacancy [27],doping with heteroatoms [28,29]and coupling with another semiconductor photocatalyst to form heterojunctions [30,31].In 2008,Yang et al.successfully fabricated high energy TiO2nanocrystals with exposed (001) facets using HF as shape-directing agent [32].As (001) facet of anatase TiO2is more reactive than(101)facet,the study of high energy TiO2becomes a hot topic[33].Our previous study showed that the high photoreactivity of high energy TiO2nanocrystal is ascribed to the combination of exposed reactive(001)facets and surface fluorination[34,35].According to the study of Murakami et al.,TiO2nanocrystals with exposed high energy facets can drive electrons and holes to different crystal faces.The spatial separation of photo-generated electrons and holes can efficiently retard the recombination,enhancing the photocatalytic activity [36].

    On considering the high photoreactivity of high energy faceted TiO2,anatase TiO2nanosheets (TiO2-NSs) exposed predominant high-energy (001) facets was prepared,which was used for photocatalytic degradation of SDZ.The degradation pathway of SDZ over the TiO2-NSs was also investigated based on the determination of the produced intermediates by LC-MS/MS techniques.

    XRD was used to identify the phase structures of the semiconductor photocatalysts,and the results are shown in Fig.1A.It can be seen that both TiO2-NPs and TiO2-NSs are pure anatase TiO2with the XRD diffraction peaks at around 2θ=25.3°,37.9°and 48.1°,corresponding to the(101),(004)and(200)plane diffraction of anatase TiO2(JCPDS No.21-1272) [37].Careful view shows that the (004) peak intensity of TiO2-NSs is weaker,while the intensity of the(200)peak is much stronger than that of TiO2-NPs.According to Scherrer equation,the crystalline sizes of anatase TiO2-NSs along(001)and(100)directions are 6.0 nm and 30.9 nm,respectively.As for TiO2-NPs,the crystalline sizes along(001)and(100)directions are 11.3 nm and 9.1 nm,respectively.These results suggest that the presence of shape-controlling agent(HF)results in the preferential growth of TiO2nanocrystals along a-axis,resulting in the exposure of high-energy (001) facets.

    According to the study of Yang et al.,the average surface energy for(001)facets(0.90 J/m2)is much higher than that of(101)facets(0.44 J/m2).Then anatase TiO2crystals usually exhibit octahedral bipyramidal shape with exposed 8 thermodynamically stable(101)facets.However,the strong adsorption of fluoride ions on the surface of TiO2nanocrystals can reverse the surface energy of(001)and (101) facets,resulting in the exposure of more reactive (001)facets [32].

    Fig.1B compares the diffuse reflectance spectra of the photocatalysts in UV and visible regions.It can be seen that TiO2-NPs exhibits slightly higher light-harvesting ability than TiO2-NSs in UV region,although both samples have the same light-absorption edge of 390 nm,corresponding to a bandgap of 3.18 eV.

    The bipyramidal shaped TiO2-NPs can be observed from the TEM image (Fig.S1A in Supporting information).Fig.S1B(Supporting information) is the high resolution TEM (HRTEM)image of TiO2-NPs,from which we can see a truncated octahedral bipyramidal shaped TiO2nanocrystal with width of ca.14 nm(along the a-axis) and thickness of ca.20 nm (along the c-axis).

    Fig.1.Comparison of the XRD patterns (A) and diffuse reflectance spectra (B) of the photocatalysts,SEM (C) and TEM (D and E) images of TiO2-NSs.(F) and (G) are the corresponding intensity profiles from the high resolution TEM image of TiO2-NSs (E) along line (a) and line (b),respectively.

    On the contrary,in the presence of shape-directing agent,sheet-like TiO2nanocrystals with sidelength of 40-50 nm and thickness of about 5-6 nm were obtained(Figs.1C and D).The HR TEM image of TiO2-NSs is shown in Fig.1E.From the side view of the HR TEM image,we can see that the lattice spacing parallel to the top and bottom facets is ca.0.235 nm (see intensity profile in Fig.1F),which is corresponding to the(001)planes of anatase TiO2.While the TiO2nanosheets lying on the grid have a rectangular outline with a lattice spacing of ca.0.35 nm,which is corresponding to the (101) planes of anatase TiO2(see intensity profile in Fig.1G).

    SDZ is very stable,which exhibits little degradation in the absence of any photocatalyst even under the UV irradiation.However,in the presence of TiO2photocatalyst,obvious SDZ degradation can be clearly observed,and compared with TiO2-NPs,TiO2-NSs show higher photoreactivity towards SDZ degradation(Fig.2A).The degradation curves of SDZ can be well fitted by pseudo-first order kinetics equation (Fig.2B).Here,the photocatalytic degradation rate constant is used to evaluate the photoreactivity of TiO2samples (inset of Fig.2B).It can be seen that the degradation rate constant of SDZ over TiO2-NSs is 0.035 min-1,which is two time higher than over TiO2-NPs (rate constant of only 0.17 min-1).As both TiO2samples have similar light harvesting ability(Fig.1B),and the BET surface area of TiO2-NSs only 63 m2/g,much smaller than that of TiO2-NPs(BET surface area of 138 m2/g),the higher photoreactivity of TiO2-NSs than that of TiO2-NPs should be caused by the exposure of reactive high(001)facets instead of by other factors such as light absorption and BET surface area of the photocatalyst.

    Further study shows that,after irradiation for 4 h,about 90%of TOC in solution can be removed during the photocatalytic degradation of SDZ (Fig.2C).In addition,TiO2-NSs exhibit stable photoreactivity towards SDZ oxidation.Even after 7 successive recycling use,the photoreactivity of SDZ almost keeps unchanged(Fig.2D),indicating it is promising to be practically used in wastewater treatment.

    We also studied the effect of solution pH on the degradation of SDZ degradation in suspensions of TiO2-NSs,and the results are shown in Fig.S3(Supporting information).It was found that more than 98%SDZ can be removed in illuminated TiO2-NSs suspensions in a wide range of solution pH (pH 3.0-11.0) within 120 min.The pKa1and pKa2values of SDZ are 1.57 and 6.50,respectively [38].When the solution pH is greater than 4.16,SDZ exists as a protonated neutral or negatively charged molecule [23],which is easily to be adsorbed on surface of positively charged TiO2-NSs(zeta potential of 26 mV),facilitating the degradation.

    Fig.2.Photocatalytic degradation profiles of sulfadiazine in the absence and presence of TiO2 photocatalysts (A) and the corresponding curves fitted by firstorder kinetics equation (B),mineralization curve of sulfadiazine in suspensions of TiO2-NSs as irradiation time(C),and the recycling use of TiO2-NSs in photocatalytic degradation of sulfadiazine within 120 min (D).

    To study the degradation mechanism of SDZ in suspensions of TiO2-NSs,electron spin resonance (ESR) was used to study the produced reactive oxygen species(ROSs).It was found that obvious signals for DMPO-trapped superoxide radicals(?O2-)and hydroxyl radicals(?OH)were detected(Figs.3A and B).Both?O2-and?OH are typical ROSs,which should be responsible for the efficient degradation and mineralization of SDZ.

    We also measured the photocurrent and surface photovoltage spectrum (SPS) of the photocatalyst,which can indirectly reflect the ability of the semiconductor photocatalyst to separate photogenerated charge carriers.From Fig.3C,it can be clearly seen that the photocurrent of TiO2-NSs is almost 2 times higher than that of TiO2-NPs,indicating that the charge carriers of TiO2-NPs under UV irradiation can be more efficiently separated than that of TiO2-NPs.Similarly,TiO2-NSs also exhibits much higher SPS signal than TiO2-NPs(Fig.3D).As the photocatalytic activity of TiO2is highly related to the number of the separated photo-generated charge carriers,it is not strange to see the superior photoreactivity of TiO2-NSs compared to TiO2-NPs (Fig.2A).

    Fig.3.Time-dependent DMPO spin-trapping ESR spectra for DMPO-?OH in aqueous solution (A) and DMPO-? OOH/?O2- (B) in methanol solutions of TiO2-NSs under the irradiation of UV LED lamp,comparison of the photocurrents(C)and surface photovoltage spectra(D)between TiO2-NPs and TiO2-NSs,and migration of photo-generated carriers from the bulk to surface of the photocatalysts between TiO2-NPs (E) and TiO2-NSs (F).

    According to the study of Yu et al.[39],the co-exposed(101)and(001) facets of high energy TiO2nanocrystals can form a surface heterojunction,resulting in the transfer of photo-generated electrons and holes to (101) and (001) facets,respectively.The(101)facets can act as reduction sites,while(001)facets can act as oxidation sites.The spatial separation of charge carriers to different facets can retard the recombination,significantly enhances the photocatalytic activity of TiO2-NSs.However,as for TiO2-NPs,most of the photo-generated electrons and holes have to accumulate on the (101) facets due to the smaller percentages of the exposed (001)facets(usually smaller than 5%),which results in an easily recombine,causing a relative lower photoreactivity.In addition,the thickness of TiO2-NSs is much smaller than that of TiO2-NPs,which can greatly reduce the charge migration distance from the bulk to the surface of the photocatalyst,facilitating the separation of electrons and holes.Therefore,when compared with TiO2-NPs (Fig.3E),TiO2-NSs(Fig.3F)exhibits enhanced photoreactivity towards SDZ degradation.

    The electrons can be captured by surface adsorbed oxygen to produce?O2-radicals,and holes can oxidize solvent water to produce?OH radicals.Under the attacks of?O2-and?OH radicals,SDZ steady decomposed and finally mineralized into CO2and H2O.

    The 3D fluorescence spectra of the samples obtained with different treatments are showed in Fig.4.It can be seen from Figs.4A and B that the fluorescence intensity of SDZ in region I and II(Ex<250 nm,Em<350 nm)gradually decreased after irradiation for 20 min,suggesting the degradation of SDZ [40].After photocatalytic oxidation for 60 min,the peaks in region III(Ex<250 nm,Em >350 nm) and region V appeared (Fig.4C),which are commonly correlated with soluble byproducts [41].After further extending the photocatalytic reaction time for 120 min,obviously enlarged peak area in regions IV(Ex>250 nm,Em<380 nm)can be observed,together with the increased fluorescence intensity(Fig.4D),reflecting the steady formation of degradation intermediates.Thus,the degradation of SDZ might begin from the benzene ring(decreased areas in region I and II),and the following oxidation results in the formation of soluble intermediates(located at regions IV and V).

    To reveal the mechanism of SDZ photocatalytic degradation,we analyzed the photodegradation intermediates by LC-MS/MS and screened by MZmine.The detailed data and proposed structures of the intermediates,together with the MS/MS fragments,are shown in Table S1 and Figs.S5-S11 (Supporting information).

    On the basis of the elucidated structures of the produced intermediates,transfomation pathways for SDZ degradation in suspensions of TiO2-NSs under UV light irradiation were proposed in Fig.5.Briefly,four reaction processes,including hydroxylation,desulfonation,oxidation and cleavage(mainly S-N and C-S)of SDZ,take place during the photocatalytic oxidation process.Since hydroxide radical attacks occurred at sulfonamide group [42,43],benzene ring moiety [44],several hydroxy-and amino-intermediates were identified,such as mono/di-hydroxylated products,as well as suspects Sp1-Sp4.The products cleaved at S-N and C-S sites,including 2-aminopyrimidine,aniline and other intermediates,were also identified.

    Fig.4.Time dependent 3D fluorescence spectra of SDZ before (A) and after irradiation for 20 min (B),60 min (C) and 120 min (D),respectively.

    Fig.5.Possible degradation pathways of sulfadiazine in illuminated TiO2-NSs suspensions.

    Electrophilic attacks of the C2,C6 or N8 atoms on the aromatic ring by?OH radicals lead to the generation of mono-hydroxylated productPIA(Fig.S5)and di-hydroxylated productPIB(Fig.S6)with a molecular weight of 16 Da and 32 Da,respectively,which is higher than that of the parent SDZ (Fig.S5,m/z 251.01).Consecutively,these hydrophilic hydroxylated products was further attacked by ROSs such as h+,?O2-and?OH,yieldingPIC(Fig.S7),including the H-abstraction reaction due to the attack of?OH radicals on N8 amino group.This pathway is considered as a vital photocatalytic reaction for SDZ degradation in UV-irradiated TiO2[45].

    Bond cleavage was another classic photodegradation pathway of sulfadiazine,which can be cut off directly from β,γ,δ and ε sites[38].For example,2-aminopyrimidine (PIIAin Fig.S8) was produced due to the break of δ-site,which has been deemed to commonly occur for sulfonamides degradation [46,47].The detected aniline (PIIBin Fig.S9) is from the γ-cleavage of SDZ,where S site was further attacked by?OH to form 2-sulfamic acid pyrimidine (PIICin Fig.S10).

    Nucleophilic addition and rearrangement on N9 and C4 of aniline ring occurred to yieldPIIIA(Fig.S11),proposed as the product generated from the SO2extrusion in SDZ molecule [48-50].

    Some intermediates that were rarely observed were screened from MZmine peak list by procedure of suspects screening[51].By simply removal of peaks in blank sample and exclusion of peaks without Lorentzian or Gaussian shape and other procedures,we selected peaks with intensity >1×107(ESI+) for analysis.Four suspects with 5 peaks were screened(Table S1).The m/z 149.0065(SP4) peaks might be double charged ions of trihydroxysulfadiazine.The peaks at m/z 353.27 (SP1) and m/z 337.3523 (SP2) were proposed as a secondary products formed by combination of hydroxylatedPIIC.Due to the polyhydroxylated of degradation,a tricharged ion at m/z 118.4378 was also observed forSP1.The peaks at m/z 360.2704 (SP3) was suggested to hexa-hydroxylatedPIC.Hence,further studies for the identification of other intermediates are needed in future work.

    In summary,compared with TiO2nanoparticles,TiO2nanosheets exhibit higher photoreactivity towards sulfadiazine degradation.The enhanced photoreactivity of TiO2nanosheets is ascribed to the combined effect of (1) shorter migration distance for photo-generated carriers from bulk to the surface of the photocatalyst,(2) exposure of high photo-active (001) facets,and(3) both the exposure of (101) and (001) facets can efficiently retard the recombination of charge carriers,as photo-generated electrons and holes prefer to migrate to(101)and(001)facets due to the different surface energy.Under the attacks of ROSs such as?O2-and?OH,sulfadiazine steady degraded and mineralized into CO2and H2O.The degradation pathway of sulfadiazine was also proposed by identification of some intermediates through LC-MS/MS techniques.The degradation steps of sulfadiazine include hydroxylation,desulfonation,denitrification,oxidation and cleavage.As TiO2nanosheets exhibit relative stability in photocatalytic oxidation of sulfadiazine,the present study developed a potential approach for the remediation of wastewater contaminated by sulfonamides.

    Declaration of competing interest

    The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

    Acknowledgments

    This study was financially supported by the National Natural Science Foundation of China (Nos.51672312 and 21976141),the Fundamental Research Funds for the Central Universities:South-Central University for Nationalities(Nos.CZY17016 and CZZ21012),and Environmental Pollution and Prevention (Team-Construction Project,No.KTZ20043),Undergradate Training Program for Innovation and Entrepreneurship for South-Central University for Nationalities (No.XCX2054).

    Appendix A.Supplementary data

    Supplementary material related to this article can be found,in the online version,at doi:https://doi.org/10.1016/j.cclet.2021.03.064.

    国产精品一区二区精品视频观看| 国产高潮美女av| 国产亚洲精品久久久com| 亚洲九九香蕉| 色吧在线观看| www.自偷自拍.com| 国产精品久久久久久久电影 | 欧美激情在线99| 99在线人妻在线中文字幕| 免费在线观看影片大全网站| 精品不卡国产一区二区三区| 757午夜福利合集在线观看| 国产成人精品久久二区二区免费| 精品久久久久久成人av| 99久久精品国产亚洲精品| 麻豆av在线久日| cao死你这个sao货| 琪琪午夜伦伦电影理论片6080| www日本黄色视频网| 日韩欧美国产一区二区入口| 国产乱人视频| 国内少妇人妻偷人精品xxx网站 | 亚洲九九香蕉| 香蕉av资源在线| 18禁黄网站禁片免费观看直播| 国产乱人伦免费视频| 日日摸夜夜添夜夜添小说| 久久人妻av系列| 精品午夜福利视频在线观看一区| 热99re8久久精品国产| 十八禁人妻一区二区| 我要搜黄色片| 精品国产乱码久久久久久男人| 亚洲成人中文字幕在线播放| 18禁黄网站禁片午夜丰满| 一级黄色大片毛片| 精品国产乱子伦一区二区三区| а√天堂www在线а√下载| avwww免费| 一二三四在线观看免费中文在| 亚洲av电影不卡..在线观看| 在线永久观看黄色视频| 日本成人三级电影网站| 成人性生交大片免费视频hd| 九九热线精品视视频播放| 无遮挡黄片免费观看| 99热精品在线国产| 成人鲁丝片一二三区免费| 男女视频在线观看网站免费| 亚洲国产精品999在线| 99久久99久久久精品蜜桃| 久久久国产成人免费| 国产成人福利小说| 国产高清视频在线播放一区| 韩国av一区二区三区四区| 国内精品久久久久久久电影| 偷拍熟女少妇极品色| 日本免费一区二区三区高清不卡| 午夜亚洲福利在线播放| 精品人妻1区二区| 欧美激情久久久久久爽电影| 国产精品久久电影中文字幕| 久久性视频一级片| 一个人免费在线观看的高清视频| 国产高清视频在线播放一区| 免费看光身美女| 两个人看的免费小视频| 精品久久久久久久末码| 丰满人妻一区二区三区视频av | 亚洲无线观看免费| 精品久久久久久久久久久久久| 99久久无色码亚洲精品果冻| 亚洲成人精品中文字幕电影| 免费av不卡在线播放| 精品国内亚洲2022精品成人| 成人无遮挡网站| 国产欧美日韩一区二区三| 亚洲av片天天在线观看| 久99久视频精品免费| avwww免费| 精品电影一区二区在线| 黑人操中国人逼视频| 99久久综合精品五月天人人| 天天躁日日操中文字幕| 黄片小视频在线播放| 国产精品久久久久久亚洲av鲁大| 99久久99久久久精品蜜桃| 免费在线观看亚洲国产| 成人无遮挡网站| 俄罗斯特黄特色一大片| 亚洲美女视频黄频| 国产爱豆传媒在线观看| 国产精品国产高清国产av| 国产高清三级在线| aaaaa片日本免费| 亚洲国产欧美一区二区综合| 欧美一区二区国产精品久久精品| 久久国产精品影院| 成人永久免费在线观看视频| 男女那种视频在线观看| 91麻豆av在线| 欧美成狂野欧美在线观看| 禁无遮挡网站| 久久久久久久久久黄片| 久久天堂一区二区三区四区| 一区二区三区高清视频在线| 老熟妇仑乱视频hdxx| 搡老熟女国产l中国老女人| 亚洲国产精品久久男人天堂| 成年人黄色毛片网站| 黄色视频,在线免费观看| 啦啦啦免费观看视频1| 日本成人三级电影网站| 亚洲av成人一区二区三| 国产成人aa在线观看| 成人无遮挡网站| 国内毛片毛片毛片毛片毛片| 亚洲18禁久久av| 亚洲成人精品中文字幕电影| 亚洲无线观看免费| 日韩大尺度精品在线看网址| 2021天堂中文幕一二区在线观| 一本一本综合久久| 黄片小视频在线播放| 国产真人三级小视频在线观看| 欧美乱码精品一区二区三区| 综合色av麻豆| 他把我摸到了高潮在线观看| 国产亚洲精品av在线| 国产又黄又爽又无遮挡在线| 日本黄色片子视频| 两性夫妻黄色片| 免费看美女性在线毛片视频| 久久中文看片网| 五月伊人婷婷丁香| 日韩欧美 国产精品| 午夜两性在线视频| 亚洲av五月六月丁香网| 91在线观看av| 精品久久久久久久久久久久久| 午夜福利欧美成人| 国产三级中文精品| 麻豆成人av在线观看| 99久久成人亚洲精品观看| 精品欧美国产一区二区三| 90打野战视频偷拍视频| 亚洲av成人不卡在线观看播放网| 国产精品国产高清国产av| 亚洲男人的天堂狠狠| 性色av乱码一区二区三区2| 午夜福利免费观看在线| 国产高清激情床上av| av国产免费在线观看| 久久久久久久精品吃奶| 久久久久久久精品吃奶| 国产一区二区在线av高清观看| 久久久久久久午夜电影| 欧美一区二区国产精品久久精品| 精品国产美女av久久久久小说| 中文字幕人成人乱码亚洲影| 99国产极品粉嫩在线观看| 精品久久久久久久人妻蜜臀av| 中出人妻视频一区二区| 成人性生交大片免费视频hd| 男女之事视频高清在线观看| 欧美性猛交黑人性爽| avwww免费| 在线观看66精品国产| 欧美乱色亚洲激情| 美女黄网站色视频| 国产乱人伦免费视频| 小蜜桃在线观看免费完整版高清| 两人在一起打扑克的视频| 嫩草影院入口| 日本a在线网址| 麻豆国产97在线/欧美| 男女床上黄色一级片免费看| 草草在线视频免费看| 网址你懂的国产日韩在线| 午夜日韩欧美国产| 国产成人av激情在线播放| 婷婷丁香在线五月| 欧美3d第一页| 精品无人区乱码1区二区| 国产美女午夜福利| 免费人成视频x8x8入口观看| 99精品欧美一区二区三区四区| 一区二区三区高清视频在线| 在线a可以看的网站| 熟妇人妻久久中文字幕3abv| 国产99白浆流出| 一区二区三区激情视频| 手机成人av网站| 三级男女做爰猛烈吃奶摸视频| 窝窝影院91人妻| 国产综合懂色| 亚洲在线观看片| 伦理电影免费视频| 丝袜人妻中文字幕| 动漫黄色视频在线观看| 久久精品91蜜桃| 黄色 视频免费看| 熟女电影av网| 国产精品98久久久久久宅男小说| 国产av麻豆久久久久久久| 黄色片一级片一级黄色片| 免费在线观看亚洲国产| 免费在线观看成人毛片| 中国美女看黄片| 丝袜人妻中文字幕| 91在线精品国自产拍蜜月 | x7x7x7水蜜桃| 热99re8久久精品国产| 日韩有码中文字幕| 国产真实乱freesex| 久久九九热精品免费| 欧美激情在线99| 久久99热这里只有精品18| 精品人妻1区二区| 人人妻人人澡欧美一区二区| 一进一出抽搐gif免费好疼| 国产高潮美女av| 久久久久久人人人人人| aaaaa片日本免费| 99热这里只有精品一区 | 搞女人的毛片| 国产熟女xx| 久久久久久久久中文| 国产成人精品久久二区二区免费| 精品一区二区三区av网在线观看| 伦理电影免费视频| 亚洲欧美精品综合久久99| 精品国产超薄肉色丝袜足j| 国内少妇人妻偷人精品xxx网站 | 亚洲国产欧美网| 九九在线视频观看精品| 嫩草影视91久久| 亚洲,欧美精品.| 国产精品久久久久久人妻精品电影| 国产一区二区三区在线臀色熟女| 国产成人系列免费观看| 黄色 视频免费看| 成年女人看的毛片在线观看| 99视频精品全部免费 在线 | 精品人妻1区二区| 91字幕亚洲| 黄色 视频免费看| 日本免费一区二区三区高清不卡| 少妇熟女aⅴ在线视频| 亚洲午夜理论影院| 亚洲无线观看免费| 国产精品一区二区三区四区免费观看 | 一级黄色大片毛片| 免费无遮挡裸体视频| 午夜两性在线视频| 国产乱人视频| av中文乱码字幕在线| 亚洲美女黄片视频| 97人妻精品一区二区三区麻豆| 国产极品精品免费视频能看的| 久久久久国产精品人妻aⅴ院| 天堂av国产一区二区熟女人妻| 真实男女啪啪啪动态图| 精品一区二区三区av网在线观看| 两个人视频免费观看高清| 欧美成人性av电影在线观看| 国产成人影院久久av| 国产精品 国内视频| 中亚洲国语对白在线视频| 在线永久观看黄色视频| 国产欧美日韩精品亚洲av| 亚洲熟妇熟女久久| 国产精品自产拍在线观看55亚洲| 丰满人妻一区二区三区视频av | 国产99白浆流出| 欧美日韩瑟瑟在线播放| 国产免费男女视频| 一级毛片精品| 亚洲午夜理论影院| 色老头精品视频在线观看| 国产精品1区2区在线观看.| 国产毛片a区久久久久| 夜夜看夜夜爽夜夜摸| 悠悠久久av| 老熟妇仑乱视频hdxx| 人人妻人人澡欧美一区二区| 一区福利在线观看| 又粗又爽又猛毛片免费看| 757午夜福利合集在线观看| 国产精品亚洲一级av第二区| 两个人的视频大全免费| 伊人久久大香线蕉亚洲五| 久久人人精品亚洲av| 他把我摸到了高潮在线观看| 国产三级在线视频| 国产精品影院久久| 精品不卡国产一区二区三区| 国产精品98久久久久久宅男小说| 激情在线观看视频在线高清| 麻豆一二三区av精品| 久久精品国产综合久久久| 亚洲国产精品成人综合色| 亚洲欧美日韩高清专用| 精品无人区乱码1区二区| 波多野结衣巨乳人妻| 国产亚洲精品av在线| 国产精品98久久久久久宅男小说| 亚洲色图av天堂| 亚洲国产高清在线一区二区三| 欧美三级亚洲精品| 国产三级中文精品| 成人特级黄色片久久久久久久| 欧美激情久久久久久爽电影| 日本成人三级电影网站| 欧美乱色亚洲激情| 国产激情欧美一区二区| 母亲3免费完整高清在线观看| tocl精华| 欧美成人一区二区免费高清观看 | 老司机午夜十八禁免费视频| 国产精品亚洲av一区麻豆| 99久国产av精品| 精品久久久久久久久久久久久| svipshipincom国产片| 99热6这里只有精品| 99热这里只有精品一区 | 九色国产91popny在线| 国产1区2区3区精品| 久久精品亚洲精品国产色婷小说| 99国产精品99久久久久| 小蜜桃在线观看免费完整版高清| 亚洲 欧美一区二区三区| netflix在线观看网站| 亚洲欧美日韩东京热| 成人国产综合亚洲| 麻豆成人av在线观看| 999精品在线视频| 人人妻,人人澡人人爽秒播| 久久亚洲真实| www国产在线视频色| 色av中文字幕| 免费看日本二区| 一本一本综合久久| 91老司机精品| 在线十欧美十亚洲十日本专区| 欧美日韩精品网址| 国产精品一区二区精品视频观看| 麻豆成人av在线观看| 搡老岳熟女国产| 午夜福利免费观看在线| 夜夜爽天天搞| 91久久精品国产一区二区成人 | 999久久久国产精品视频| 又粗又爽又猛毛片免费看| 色吧在线观看| 俄罗斯特黄特色一大片| 听说在线观看完整版免费高清| 香蕉av资源在线| 舔av片在线| 久久精品91无色码中文字幕| tocl精华| 国产v大片淫在线免费观看| 国产探花在线观看一区二区| 久久精品国产综合久久久| 国产极品精品免费视频能看的| 亚洲精品一卡2卡三卡4卡5卡| 麻豆成人av在线观看| 伊人久久大香线蕉亚洲五| 久久人人精品亚洲av| 一进一出好大好爽视频| 久久中文字幕一级| 一夜夜www| 日韩高清综合在线| 久久这里只有精品19| 欧美色欧美亚洲另类二区| 日本三级黄在线观看| 国产探花在线观看一区二区| 欧美一级a爱片免费观看看| 久久精品亚洲精品国产色婷小说| 欧美绝顶高潮抽搐喷水| 午夜视频精品福利| 舔av片在线| 国产激情久久老熟女| 熟女电影av网| 欧美性猛交黑人性爽| 精品午夜福利视频在线观看一区| 两性午夜刺激爽爽歪歪视频在线观看| 在线视频色国产色| 美女cb高潮喷水在线观看 | 12—13女人毛片做爰片一| 国产精品日韩av在线免费观看| 天堂√8在线中文| 日韩欧美免费精品| 熟女人妻精品中文字幕| 99久久综合精品五月天人人| 看免费av毛片| 搞女人的毛片| 波多野结衣巨乳人妻| 免费一级毛片在线播放高清视频| 亚洲国产欧美网| 欧美三级亚洲精品| av在线蜜桃| 精品国产美女av久久久久小说| 亚洲美女黄片视频| 国产精品一区二区三区四区久久| 亚洲av免费在线观看| 免费观看人在逋| 国产精华一区二区三区| 欧美一级毛片孕妇| 可以在线观看毛片的网站| 99国产综合亚洲精品| 久久这里只有精品19| 午夜精品一区二区三区免费看| 久久久久久久久免费视频了| netflix在线观看网站| 日本黄大片高清| 国内揄拍国产精品人妻在线| 亚洲av免费在线观看| 国产黄色小视频在线观看| 精品一区二区三区视频在线 | 中文字幕久久专区| 国产免费男女视频| 999久久久国产精品视频| 少妇人妻一区二区三区视频| 一二三四社区在线视频社区8| 一夜夜www| 麻豆成人午夜福利视频| 天堂影院成人在线观看| 亚洲专区字幕在线| 日韩欧美 国产精品| 老熟妇仑乱视频hdxx| 色哟哟哟哟哟哟| 色哟哟哟哟哟哟| 久久久成人免费电影| 国产精品精品国产色婷婷| 18禁裸乳无遮挡免费网站照片| 99国产综合亚洲精品| 桃红色精品国产亚洲av| aaaaa片日本免费| 天堂av国产一区二区熟女人妻| 国产免费男女视频| 网址你懂的国产日韩在线| av天堂在线播放| svipshipincom国产片| 一个人看视频在线观看www免费 | 一区福利在线观看| 国产精品日韩av在线免费观看| 精品久久久久久久末码| 精品99又大又爽又粗少妇毛片 | 91久久精品国产一区二区成人 | 99精品欧美一区二区三区四区| 日本免费a在线| 亚洲无线在线观看| 麻豆国产av国片精品| 国产成人啪精品午夜网站| 国产亚洲精品一区二区www| 成人国产一区最新在线观看| 美女黄网站色视频| 亚洲av免费在线观看| 久久午夜亚洲精品久久| 免费一级毛片在线播放高清视频| 欧美最黄视频在线播放免费| 999久久久精品免费观看国产| av中文乱码字幕在线| 午夜福利免费观看在线| 美女cb高潮喷水在线观看 | 亚洲色图 男人天堂 中文字幕| 亚洲人成电影免费在线| 天堂网av新在线| 亚洲在线自拍视频| 无限看片的www在线观看| 老司机在亚洲福利影院| 悠悠久久av| 琪琪午夜伦伦电影理论片6080| 91在线精品国自产拍蜜月 | h日本视频在线播放| 一区福利在线观看| 男女视频在线观看网站免费| 欧美中文综合在线视频| 国产精品99久久99久久久不卡| 免费看a级黄色片| 精华霜和精华液先用哪个| 啪啪无遮挡十八禁网站| 国产亚洲精品综合一区在线观看| 99re在线观看精品视频| 99热6这里只有精品| 国产一区二区三区视频了| 91久久精品国产一区二区成人 | 91在线精品国自产拍蜜月 | 久久伊人香网站| 亚洲自拍偷在线| 久久久国产成人免费| 亚洲精品一卡2卡三卡4卡5卡| 欧美一区二区国产精品久久精品| 国产精品久久电影中文字幕| 2021天堂中文幕一二区在线观| 18美女黄网站色大片免费观看| 欧美最黄视频在线播放免费| 他把我摸到了高潮在线观看| 欧美丝袜亚洲另类 | 又黄又粗又硬又大视频| 亚洲av成人av| 制服人妻中文乱码| 久久亚洲精品不卡| 在线观看日韩欧美| 久久国产精品影院| 精品国产乱码久久久久久男人| 国产成人av激情在线播放| 99久久精品热视频| 亚洲欧美精品综合久久99| 午夜福利高清视频| 欧美乱妇无乱码| 国产黄片美女视频| av视频在线观看入口| 亚洲国产日韩欧美精品在线观看 | 黄色女人牲交| 成年女人毛片免费观看观看9| 黄色 视频免费看| 男人的好看免费观看在线视频| 国产精品99久久久久久久久| 久久久国产精品麻豆| 久久久久久久久免费视频了| 91麻豆精品激情在线观看国产| 亚洲欧美激情综合另类| 成人av一区二区三区在线看| 桃红色精品国产亚洲av| 欧美日韩综合久久久久久 | 欧美日本亚洲视频在线播放| 欧美日韩福利视频一区二区| 欧美三级亚洲精品| 麻豆av在线久日| 国产精品1区2区在线观看.| 18禁美女被吸乳视频| 99久久99久久久精品蜜桃| 国产精品日韩av在线免费观看| 美女扒开内裤让男人捅视频| 人人妻,人人澡人人爽秒播| 日韩有码中文字幕| 国产极品精品免费视频能看的| 一夜夜www| 欧美乱码精品一区二区三区| 19禁男女啪啪无遮挡网站| 欧美最黄视频在线播放免费| 亚洲精品美女久久久久99蜜臀| 老司机午夜福利在线观看视频| 12—13女人毛片做爰片一| 久久性视频一级片| 国语自产精品视频在线第100页| 亚洲av日韩精品久久久久久密| xxx96com| 少妇熟女aⅴ在线视频| 香蕉丝袜av| 亚洲成av人片在线播放无| 亚洲国产欧美人成| 日日摸夜夜添夜夜添小说| 久久久久久国产a免费观看| 国产1区2区3区精品| 亚洲中文av在线| 成人欧美大片| 色吧在线观看| www.精华液| 热99在线观看视频| 亚洲国产精品久久男人天堂| 亚洲美女视频黄频| 色综合欧美亚洲国产小说| 亚洲成人中文字幕在线播放| 欧美3d第一页| 亚洲真实伦在线观看| 欧美色欧美亚洲另类二区| av中文乱码字幕在线| 国内精品久久久久久久电影| 神马国产精品三级电影在线观看| 99riav亚洲国产免费| 99视频精品全部免费 在线 | 欧美成人免费av一区二区三区| 成人av一区二区三区在线看| 一本一本综合久久| av在线蜜桃| а√天堂www在线а√下载| 国产熟女xx| 中文字幕人妻丝袜一区二区| 91老司机精品| 亚洲精品美女久久久久99蜜臀| 性欧美人与动物交配| 男女午夜视频在线观看| 国产麻豆成人av免费视频| 欧美+亚洲+日韩+国产| 亚洲人成伊人成综合网2020| 午夜福利在线在线| 很黄的视频免费| 最好的美女福利视频网| 两人在一起打扑克的视频| 午夜福利18| 欧美黄色淫秽网站| 啦啦啦免费观看视频1| 人妻久久中文字幕网| 国产高清激情床上av| 国产高清videossex| 国产精品一及| 高潮久久久久久久久久久不卡| 久久中文看片网| 夜夜躁狠狠躁天天躁| 19禁男女啪啪无遮挡网站| 日日摸夜夜添夜夜添小说| 亚洲精品国产精品久久久不卡| 亚洲人成网站高清观看| 一二三四社区在线视频社区8| 最新美女视频免费是黄的| 亚洲av美国av| 久久久久久久久免费视频了| 长腿黑丝高跟| 成人精品一区二区免费| 久久久久久久午夜电影| 真人做人爱边吃奶动态| 99国产综合亚洲精品|