• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Capture and separation of CO2 on BC3 nanosheets:A DFT study

    2021-12-29 02:27:34HouyongYangChaozhengHeLingFuJinrongHuoChenxuZhaoXiuyuanLiYanSong
    Chinese Chemical Letters 2021年10期

    Houyong Yang,Chaozheng He,*,Ling Fu,Jinrong Huo,Chenxu Zhao,Xiuyuan Li,Yan Song

    a Shaanxi Key Laboratory of Optoelectronic Functional Materials and Devices,School of Materials Science and Chemical Engineering,Xi'an Technological University,Xi'an 710021,China

    b Institute of Environmental and Energy Catalysis,School of Materials Science and Chemical Engineering,Xi'an Technological University,Xi'an 710021,China

    c College of Resources and Environmental Engineering,Tianshui Normal University,Tianshui 741001,China

    d School of Sciences,Xi'an Technological University,Xi'an 710021,China

    Keywords:Hexagonal BC3 Electric field Density functional theory CO2 capture and separation

    ABSTRACT In order to reduce the greenhouse effect caused by the rapid increase of CO2 concentration in the atmosphere,it is necessary to develop more efficient,controllable,and highly sensitive adsorbing materials.In this study,the adsorption behavior of CO2 on BC3 nanosheets under an external electric field was explored based on density functional theory (DFT).It was found that CO2 experienced a transition from physisorption to chemisorption in the electric field range of 0.0060-0.0065 a.u..In addition,the adsorption/desorption of CO2 is reversible and can be precisely controlled by switching on/off at the electric field of 0.0065 a.u..The selective adsorption of CO2/H2/CH4 by BC3 can also be used to realize gas separation and purification under different electric fields.This study highlighted the potential application of BC3 nanosheets as a high-performance,controllable material for CO2 capture,regeneration,and separation in an electric field.

    CO2capture and storage has attracted extensive research due to the greenhouse effect caused by its concentration rapid increase,which caused environmental deterioration and global warming.It is necessary to consider the nature of the adsorbent materials containing the high adsorption capacity,sensitive selectivity [1],low energy consumption during adsorption/desorption process,more reusable times [2,3]and structural stability [4].At present,the popular CO2adsorbents are the metal-organic frameworks(MOFS) [5,6],covalent organic frameworks (COFS) [7],2D solid materials including graphene [8],graphene-like materials [9],porous carbon materials and polymers [10-13].

    In the past few years,many researches have been done on the use of external electric fields to promote CO2adsorption and achieve CO2separation.Guo et al.found that the hexagonal BN nanosheets have high-efficiency adsorption and large capacity for CO2under an applied electric field,which is effectively separate CO2from the CO2/H2/N2/CH4/CO/H2O mixture [14].The work of Adnan et al.shows that under an external electric field of 0.013 a.u.,CO2achieves the transition from physisorption to chemisorption,while the desorption of CO2is a spontaneous exothermic process with 0.06 eV after the removal of electric field [13].Qiao et al.reports that CO2capture/regeneration on MoS2monolayers can be controlled by external electric fields,and the adsorbed CO2can be released without any energy barrier once the electric field is turned off [15].

    Recently,BC3monolayer with high crystalline quality has been successfully created by carbon-substituted technique in a boron hexagonal comb [16].BC3has excellent mechanical properties[17,18]and thermal stability [19].It has excellent performance in catalytic reactions [20],and the potential application for gas sensors [21,22].

    The first principle is the ab initio calculation,which does not need any parameters.It only needs to start from the most basic physical principle to directly solve the Schrodinger equation with some approximated algorithm,according to the interactions between nucleus and electron and its basic motion rules.The first principle is widely used to calculate the catalysis process of single atom supported or bimetallic catalysts [23-25],chemical reactions caused by external electrical fields [26,27],surface adsorption and activity[28],organics degradation simulation[29],analysis of photocatalytic mechanism [30,31],optical properties prediction [32]and so on [33-45].

    In this research,we systematically explored whether BC3has the potential to control capture and release of CO2under an external electric field.First,the adsorption of CO2/H2/CH4on BC3surface was studied,then the transformation of CO2adsorption behavior under gradient electric field and the thermodynamic process of CO2adsorption/desorption on the surface of BC3were further explored.Finally,the application of different electric field values to separate CO2/CH4/H2mixed gas was evaluated.

    All of the spin-polarized DFTcalculations were performed using the Dmol3[46]software.Generalized gradient approximation(GGA) formulated by Perdew,Burke,and Ernzerhof (PBE) are carried out to describe the exchange-correlation energy functional[47],and meanwhile we used all-electron core treatment for the electron ion-core interactions [48],and a double numerical basis set containing d polarization function,such as double numeric with polarization(DNP)to increase accuracy.The spin polarization is turned on all the way,and Grimme method was applied to describe the van der Waals interactions [49].The charge distributions and the charge transfer between BC3monolayer and molecules were analyzed by using Hirshfeld method.For geometry optimization and electronic self-consistency,the convergence tolerance is set to 1×10-6a.u.The convergence threshold parameters of geometric optimization are specified as 1×10-5Ha,2×10-3Ha/? and 5×10-3? for energy,maximum force and displacement,respectively.In the process of structural optimization,the coordinates of the internal atoms were relaxed with the fixed lattice parameters.

    The Brillouin k-point grid was sampled by the 6×6 × 1 Monkhorst packt grid [50].The BC3base model used 2×2 supercell cotaining 32 atoms with a 20 ? vacuum layer to weaken interaction between layers.The optimized lattice constant of the BC3structure is 10.35 ?,which is well consistent with the theoretica1 result of 10.33 ? [51].Then the adsorption energy was calculated by this formula (Eq.1):

    Where EAllis the total energy of the absorbed combination,Esuband Egasrepresent the energy of separate BC3substrate and gas molecules,respectively.It is worth noting that the E-field perpendiculars to the BC3surface and points downward.

    As shown in Fig.S1a(Supporting information),BC3nanosheets has a planar hexagonal honeycomb structure,each structural unit includes four C atoms and two B atoms.Each B atom was combined with three C atoms via sp2hybridization.The lengths of B--C and C--C are 1.565 and 1.422 ?,respectively,which was well consistent with the early literature [52].As depicted in the Fig.S1a,six adsorption sites are considered for molecular adsorption,including the top sites of B(T1)and C(T2)atoms,the bridge sites of C--C(B1)and B--C bond(B2),and the central position of C4B2six-membered ring (H1) and the C six-membered ring (H2).

    The structural stability of BC3nanosheets under the application of an E-field can be roughly evaluated by the polymerization energy and molecular dynamics simulation.The formula for polymerization energy was defined as Eq.2:

    Where EB,EC,EBC3represents the energy of B and C atoms and BC3nanosheets,respectively,n and m are the number of C and B atoms[53].As shown in Fig.S1b(Supporting information),as the E-field strength increased from 0 to 0.008 a.u.,the average binding energy decreased from 7.52 eV to 7.40 eV.Compared with that of no Efield,the average binding energy between BC3atoms changes little,indicating that the structure is stable.For the optimized structure under the electric field the microcanonical ensemble(NVE)ensemble was adopted,at 300 K,molecular dynamics simulation was done.As shown in Fig.S1c (Supporting information),the energy change of the structure is very small in the 2 ps interval of 1 fs,which also confirmed the stability of the BC3structure under the applied E-field.

    We studied three molecules (CO2,CH4,H2) adsorption on BC3substrate,the most stable adsorption structure and relative adsorption parameters were depicted in Fig.S2 and Table S1(Supporting information),respectively.As shown in Fig.S2,CO2tends to adsorb on H1 site of C4B2six-membered ring,however,CH4and H2tend to adsorb on T2 and T1 sites,respectively.No chemical bond is formed between the molecules and the substrate,where the CO2,CH4,H2are suspended above the surface.The minimum distance(Dm)between molecules and BC3substrate are 3.271,3.609 and 3.158 ? for CH4,CO2and H2,respectively,and the corresponding adsorption energy is very small with the value of-0.11,-0.09 and -0.07 eV,respectively.From the analysis of Hirshfeld-type charge transfer,the amount of charge transfer between gas molecules and BC3is also very small (0.004 e,-0.025 e and 0.012 e).

    As we all know,the strong interactions of the adsorbates combined with surface contribute to the evident results of gas detection selectivity [54]and sensitivity.In order to enhance the CO2sensitivity,we apply a forward E-field perpendicular to the Z axis [55]on BC3surface [52].The corresponding adsorption configurations were presented in Fig.1.According to the difference charge density,the adsorption effect gradually increases along with the increasing of the electric field strength.As shown in Fig.1c,the angle of ∠O-C-O decreased sharply from 180°to 158.6°along with the electric field increased from 0 to 0.006 a.u.,and the adsorption distance reduced from 3.10 ? to 2.94 ?.The adsorption energy adds up to -0.43 eV,and the charge transfer amount increases to 0.2 e,the charge density expands a lot resulting a stronger chemical adsorption.When the electric field value further increased to 0.008 a.u.,the distance between CO2an-d BC3suddenly decreased to 1.75 ?,the angle of ∠O-C-O further decreased to 127.3°,and the amount of charge transfer increased to 0.9 e.Seen from the Fig.1d,the charge density between CO2and BC3increased dramatically,resulting that the interaction between the CO2molecular and the BC3surface has been greatly improved.These evidences indicate that under an applied electric field of 0.008 a.u.,CO2is chemically adsorbed on the surface of BC3.It is clearly that CO2is ‘fixed’ to BC3surface via employing an electric field.The results indicate the interaction between CO2and BC3surface is enhanced,which cause the stronger gas monitoring sensitivity.

    Fig.1.Top and side views of the most favorable CO2 adsorption configurations,corresponding charge density difference in an external E-field of(a)0.002 a.u.,(b)0.004 a.u.,(c) 0.006 a.u.,(d) 0.008 a.u..The blue (yellow) color represents accumulation(diminishing)of electrons.The values of isosurface of(a-c)are 0.003 e/?3,and (d) is 0.02 e/?3.

    In order to explain the turning point of CO2adsorption affected by the electric field,three values of electric field (0.0065,0007,0.0075 a.u.) were performed to explore the corresponding adsorption structure,adsorption energy and the differential charge density (as shown in Fig.2).As shown in Fig.S3a (Supporting information),the adsorption distance suddenly decreased from 1.97 ? under the electric field value of 0.0065 a.u.,which was 33%shorter than that of values at 0.006 a.u.(2.94 ?).It is noted that the adsorption energy was increased to -0.84 eV,which is almost diploid compared with that of -0.43 eV.In addition,the angle of∠O-C-O is reduced to 137.5°,due to the strong interaction of electrons accumulate between CO2and the substrate,which indicates that can be regarded as strong chemisorption.When the E-field value increased to 0.0075 a.u.,the adsorption distance was further shortened to 1.772 ?,the angle of ∠O-C-O was further reduced to 128.2°,and the adsorption energy was increased to -2.25 eV,which indicates that the interaction between CO2and BC3substrate is further enhanced.The applied E-field will promote the polarization of the charged particles[56,57],which will lead to the enhanced adsorption of CO2on the surface of BC3[55].As shown in Figs.S3a-c(Supporting information),the critical point of CO2from physical adsorption to chemical adsorption on the BC3substrate is between 0.006-0.0065 a.u..As shown in Fig.S4,the minimum Efield value (0.0065 a.u.) required for the conversion of CO2from physical adsorption to chemical adsorption is much smaller than that of Penta-graphene [4],and is also smaller than the E-field value required in the previous literature to capture CO2materials,such as C2N [55],h-BN [27],C3N [58],P-doped C60[59],P-doped graphene[60].It is a pity that the value is just slightly larger than that of MoS2[29]and PC5[24].Such as it is,BC3captures CO2is more economical and efficient.

    Fig.2.The side view of the most stable configurations and corresponding charge density difference in E-field of(a)0.0065 a.u.,(b)0.007 a.u.,(c)0.0075 a.u..The blue(yellow) color represents accumulation (diminishing) of electrons.Red and green represent increasing and decreasing electron density.The values of isosurface of(a),(b),(c) are 0.015 e/?3,respectively.

    In order to further study the interaction between CO2and BC3substrate under different E-field values,partial density of states(PDOS) was studied and presented in Fig.S5 (Supporting information).As shown in Fig.S5,between the E-field value of 0~0.004 a.u.,there is almost no overlap[48]between the orbits of CO2and B atoms,which indicates that the interaction between them is relatively weak physical adsorption.At this time,the E-field has little effect on the capture of CO2.However,when the E-field value increases to 0.006 a.u.,it can be seen that the overall PDOS has a significant right shift,and there is a clear overlapped orbitals of 2p(CO2)and 2p(B)between 3.0~5.0 eV,indicating the adsorption effect was enhanced,similarly as the previous results[52].Similarly,when the E-field values at 0.0065 and 0.007 a.u.,the orbital overlap formed by the 2p (CO2) and 2p (B) hybrid contributions can appear at -5.5,-1.2 and 5.0 eV,and the same results can be seen at 0.0075 and 0.008 a.u.It should be noted that the applied E-field can significantly enhance the ability of BC3to capture CO2.

    In order to further study the mechanism of CO2adsorption on BC3under an external E-field,the crystal orbital hamiltonian population (COHP) was performed to analyze the different adsorption structures [61-64].As shown in Fig.3,the red area is the contribution of the anti-bonding state,and the cyan area is the bonding state.Fig.3a shows that in the absence of an external E-field,the molecular orbital between C-O is composed by the σs-pbonding orbital(at-6.8 eV)that formed by the interaction of Csand Opand the anti-bonding π*p-p(at 4.5 eV)formed by the interaction of Csand Op.In addition,integrated COHP(ICOHP)was calculated to analyze the energy integral up to the highest occupied bands,and the value of ICOHP quantitatively reflected the strength of bonding.As shown in Figs.3a-d,as the value of the E-field increases,ICOHP gradually decreases,which indicating the weaker of C--O bond in CO2.The reason is that with the increases of the E-field,the interaction between the C of CO2and B atom is enhanced,inducing the electron cloud more shared with the B atom and a reduction in the overlap of the electron cloud of the C-O,which is accordance with the weakened C--O interaction.Figs.S6a-d show that as the E-field strength increases,the ICOHP between C and B atom increases with the bonding state broaden,indicating that the interaction between C and B is strengthen.It should be highlighted that in the range of 0.0065-0.0075 a.u.,the bonding molecular orbital σp-pbetween C and B atoms is mainly composed by Cpand Bp.Interestingly,bonding molecular orbitals σp-pwhich located in lower energy contributed by Cpand Bpappeared near the Fermi level.

    In order to further explore the possible mechanism of CO2adsorption and desorption on BC3substrate under the external E-field existence,the potential energy [65]surface was shown in Fig.4.The energy of the CO2adsorption system without an E-field is defined as 0.Clearly,the energy of the system gradually decreases along with E-field increases,indicating that the adsorption of CO2under the external E-field is a spontaneous exothermic process.In addition,when applying 0.006 a.u.E-field,the relative system energy decreases to-0.26 eV.It is worth noting that when the external E-field increases to 0.0065 a.u.,the relative energy difference immediately decreases to-0.69 eV,well consistent with the Eadsof -0.84 eV,resulting to strong chemical adsorption.Besides,we also systematically studied the capture and separation of CO2gas on the BC3substrate by switching the E-field.As shown in Fig.4b,under the external electric field of 0.0065 a.u.,CO2is chemically adsorbed on the surface of BC3.When the external electric field is turned off,the CO2adsorption distance is extended from 1.965 ? to 3.264 ? with the CO2angle shifted from 137.5°to 179.9°after restructuring optimization.The above results demonstrate that the removal of the electric field can promote the transition from chemical adsorption to physical adsorption,in this process the endothermic reaction relative energy value is 0.69 eV.Similarly,when the E-field is switched on,CO2changed from physical adsorption to chemical adsorption with a linear structure to a V-shaped structure,and the adsorption distance is shortened to 1.965 ?.This process is exothermic process with relative energy-4.06 eV without energy barrier.These results shows that the adsorption/desorption of CO2on the BC3substrate can be easily controlled by the opening/closing of the electric field.

    Fig.3.PDOS(partial density of states)and molecular orbital of CO2 molecule adsorbed on BC3 under different E-field values,above and below the 0 value of crystal orbital hamiltonian population (COHP) are the anti-bonding state and bonding state,respectively.Red stands for bonding contributions,while cyan stands for antibonding contributions.

    Fig.4.The energy profile for the chemisorption to physisorption of the adsorbed CO2 over BC3 due to removing or switching of E-field (EF=0.0065 a.u.).

    CH4and H2are high-quality energy gases and important raw materials for the manufacture and synthesis of many chemical products.However,in the actual production and processing of CH4and H2,the presence of CO2impurities will inevitably be introduced.Therefore,the separation of CO2from the CO2/H2/CH4mixed gas is of great research significance for improving the purity of CH4and H2.In order to evaluate the separation effect of the electric field on the CO2/CH4/H2mixed gas,we studied the adsorption behavior of BC3to CO2/CH4/H2under the E-Field of 0.004 and 0.0065 a.u..In the external E-Field of 0.004 a.u.,the most stable adsorption structure is shown in Fig.S7 (Supporting information).The adsorption distances of CO2/H2/CH4on the BC3substrate are 3.032,2.118,and 2.952 ?,and the corresponding Eadsare -0.35,-0.43 and -0.38 eV,respectively.No obvious electron distribution was observed between the CO2/CH4gas molecules and the substrate.According to the difference in adsorption energy,it can be concluded that H2can be efficiently separated from the CO2/H2/CH4mixed gas under the 0.004 a.u..In addition,the adsorption behaviors of CO2/H2/CH4gas under an electric field of 0.0065 a.u.has been studied,which is shown in Fig.S8(Supporting information).Differ from the physical adsorption of CO2/H2/CH4under no electric field (Fig.S2.),the Eadsand Dmof CO2change significantly (-0.11 to -0.84 eV,3.371 to 1.965 ?).There is no electron density distribution between the H2/CH4and the BC3substrate,but there is a distinct electron density overlaps between the CO2and the substrate,as shown in Fig.S8.Obviously,the adsorption properties of CO2and H2/CH4are different,under this circumstance the former is chemical adsorption and can be captured by BC3,but in fact the latter is physical adsorption.

    We used the spin-polarized DFT calculation method to study the adsorption/desorption behavior of CO2gas with an external Z-axis vertical positive electric field.An external electric field vertical to the BC3surface can significantly enhance the interaction between CO2and the substrate.In particular,in the range of 0.006-0.0065 a.u.electric field value,CO2shifted from BC3physisorption on C4B2vacancy with the rapid decrease of Eadsby 663%(-0.11 to-0.84 eV).Desorption of chemisorbed CO2occurred from the BC3surface without passing any energy barrier and released an energy of 0.69 eV when the E-Field is switched off.Utilizing the difference in the adsorption properties of CO2/CH4/H2on BC3under the EField value of 0.004 and 0.0065 a.u.,H2and CO2gas can be separated from the CO2/H2/CH4gas mixture.These results confirmed that BC3is a potential material for capturing CO2under external electric field.

    Declaration of competing interest

    The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

    Acknowledgments

    This study was funded by the National Natural Science Foundation of China (No.21603109),the Henan Joint Fund of the National Natural Science Foundation of China(No.U1404216),the Scientific Research Program Funded by Shaanxi Provincial Education Department (No.20JK0676).

    Appendix A.Supplementary data

    Supplementary material related to this article can be found,in the online version,at doi:https://doi.org/10.1016/j.cclet.2021.03.038.

    又爽又黄a免费视频| 精品午夜福利在线看| 国产白丝娇喘喷水9色精品| 久久久精品免费免费高清| 亚洲成人一二三区av| 中文乱码字字幕精品一区二区三区| 91久久精品国产一区二区成人| 久久影院123| 久久国产乱子免费精品| 亚洲成色77777| 久久精品熟女亚洲av麻豆精品| 欧美3d第一页| 性色avwww在线观看| 噜噜噜噜噜久久久久久91| 久久精品久久久久久噜噜老黄| 日韩一本色道免费dvd| 欧美性感艳星| 成人18禁高潮啪啪吃奶动态图 | 精品一区二区免费观看| 国产爱豆传媒在线观看| 欧美日韩综合久久久久久| 欧美激情国产日韩精品一区| 国产av一区二区精品久久 | 在线精品无人区一区二区三 | 亚洲av.av天堂| 我的女老师完整版在线观看| .国产精品久久| 国产在线视频一区二区| 人妻 亚洲 视频| 一级爰片在线观看| 久热这里只有精品99| 国产欧美日韩一区二区三区在线 | 亚洲欧美日韩东京热| 亚洲av成人精品一区久久| 国产一级毛片在线| 婷婷色综合www| 能在线免费看毛片的网站| 丰满迷人的少妇在线观看| 亚洲av福利一区| 中文字幕av成人在线电影| 少妇精品久久久久久久| 久久精品国产a三级三级三级| 精品亚洲乱码少妇综合久久| 国产亚洲一区二区精品| 久久人人爽人人片av| 欧美丝袜亚洲另类| 免费看av在线观看网站| 亚洲欧美日韩另类电影网站 | 99热6这里只有精品| 少妇熟女欧美另类| 天天躁日日操中文字幕| 大片免费播放器 马上看| 国内精品宾馆在线| 美女内射精品一级片tv| 亚洲国产精品一区三区| 亚洲av福利一区| 99久久精品热视频| 国产精品成人在线| 夜夜看夜夜爽夜夜摸| 亚洲国产精品999| av在线老鸭窝| 亚洲美女搞黄在线观看| 久久久久国产精品人妻一区二区| 水蜜桃什么品种好| 一级毛片我不卡| 久久午夜福利片| 啦啦啦中文免费视频观看日本| 我要看日韩黄色一级片| 国产精品人妻久久久影院| 2018国产大陆天天弄谢| 成人国产av品久久久| 一区二区三区乱码不卡18| av在线播放精品| 日韩成人av中文字幕在线观看| 成人18禁高潮啪啪吃奶动态图 | 一级二级三级毛片免费看| 黑人猛操日本美女一级片| 国产黄片视频在线免费观看| 高清欧美精品videossex| 国产中年淑女户外野战色| 欧美日韩亚洲高清精品| 国产亚洲一区二区精品| 亚洲图色成人| 99热这里只有是精品50| av黄色大香蕉| 久久精品国产亚洲网站| 熟妇人妻不卡中文字幕| 久久精品国产亚洲av天美| 成人午夜精彩视频在线观看| 亚洲性久久影院| 九草在线视频观看| 国产精品久久久久久精品古装| 51国产日韩欧美| 国产中年淑女户外野战色| 最新中文字幕久久久久| 国产欧美亚洲国产| 香蕉精品网在线| 春色校园在线视频观看| 久久综合国产亚洲精品| 夜夜骑夜夜射夜夜干| 亚洲精品国产色婷婷电影| 国产欧美另类精品又又久久亚洲欧美| 少妇人妻一区二区三区视频| 欧美xxⅹ黑人| 亚洲中文av在线| 亚洲人成网站在线观看播放| 国产av一区二区精品久久 | 欧美97在线视频| 午夜视频国产福利| 亚洲在久久综合| 欧美日韩综合久久久久久| 亚洲精品亚洲一区二区| av.在线天堂| 免费观看在线日韩| 国产爱豆传媒在线观看| 少妇人妻久久综合中文| 美女主播在线视频| 汤姆久久久久久久影院中文字幕| 亚洲第一区二区三区不卡| 大香蕉久久网| 成年女人在线观看亚洲视频| 亚洲图色成人| 欧美日韩亚洲高清精品| 少妇 在线观看| 欧美性感艳星| 91久久精品国产一区二区三区| 自拍欧美九色日韩亚洲蝌蚪91 | 免费人妻精品一区二区三区视频| 亚洲欧美日韩无卡精品| 精华霜和精华液先用哪个| 久久久久久久久大av| 久久久久久久久大av| 美女国产视频在线观看| 黑人高潮一二区| 高清av免费在线| 亚洲国产欧美人成| 国产精品女同一区二区软件| 大片免费播放器 马上看| 一级av片app| 夜夜爽夜夜爽视频| 日韩一区二区视频免费看| 赤兔流量卡办理| 伊人久久精品亚洲午夜| av天堂中文字幕网| 你懂的网址亚洲精品在线观看| 国产熟女欧美一区二区| 身体一侧抽搐| 一区二区三区精品91| 国产真实伦视频高清在线观看| 日本wwww免费看| 国产亚洲欧美精品永久| 亚洲色图综合在线观看| 亚洲精品日本国产第一区| 亚洲国产精品成人久久小说| 黄色视频在线播放观看不卡| 久久久久性生活片| 国产无遮挡羞羞视频在线观看| av黄色大香蕉| 久久久精品免费免费高清| 久久久久久久久久成人| 亚洲经典国产精华液单| 亚洲精品亚洲一区二区| 亚洲国产精品专区欧美| 国产成人精品婷婷| 国产精品三级大全| 午夜福利视频精品| 97精品久久久久久久久久精品| 国产在线一区二区三区精| 观看免费一级毛片| 精品亚洲成国产av| 麻豆成人av视频| 不卡视频在线观看欧美| 国产伦理片在线播放av一区| 日韩在线高清观看一区二区三区| 青春草视频在线免费观看| 国产v大片淫在线免费观看| 亚洲av免费高清在线观看| 国产精品久久久久成人av| 男人和女人高潮做爰伦理| 2021少妇久久久久久久久久久| 99久国产av精品国产电影| 亚洲欧美一区二区三区国产| 国产黄色视频一区二区在线观看| 人妻少妇偷人精品九色| 久久久久久久大尺度免费视频| 又爽又黄a免费视频| 久久久久久久久久久丰满| 男人狂女人下面高潮的视频| 99热这里只有是精品在线观看| 国产美女午夜福利| 亚洲欧美中文字幕日韩二区| 日本欧美国产在线视频| 一本一本综合久久| 久久国内精品自在自线图片| 在现免费观看毛片| 国产美女午夜福利| 国产黄色视频一区二区在线观看| 51国产日韩欧美| 一级毛片黄色毛片免费观看视频| 日本与韩国留学比较| 免费久久久久久久精品成人欧美视频 | 熟女人妻精品中文字幕| av免费在线看不卡| 精品一区在线观看国产| 卡戴珊不雅视频在线播放| 久久精品夜色国产| 中文字幕免费在线视频6| 国产亚洲av片在线观看秒播厂| 尾随美女入室| 色综合色国产| 国产精品成人在线| 丰满迷人的少妇在线观看| 视频中文字幕在线观看| 最后的刺客免费高清国语| 国产乱来视频区| 国产精品国产av在线观看| 国产永久视频网站| 欧美bdsm另类| 日韩av免费高清视频| 91精品国产国语对白视频| 一本一本综合久久| 亚洲av在线观看美女高潮| 大又大粗又爽又黄少妇毛片口| 国产成人一区二区在线| 边亲边吃奶的免费视频| 又大又黄又爽视频免费| 欧美国产精品一级二级三级 | 在线观看一区二区三区| 精品久久国产蜜桃| 亚洲欧美清纯卡通| 欧美3d第一页| 免费人成在线观看视频色| 久久久久久久久久人人人人人人| 亚洲欧美成人综合另类久久久| 国精品久久久久久国模美| 亚洲av综合色区一区| 亚洲丝袜综合中文字幕| 国产欧美亚洲国产| 国产乱人视频| 一本色道久久久久久精品综合| 色视频在线一区二区三区| 大香蕉97超碰在线| 欧美成人精品欧美一级黄| 亚洲三级黄色毛片| 性高湖久久久久久久久免费观看| 日本色播在线视频| 五月玫瑰六月丁香| 国产成人a∨麻豆精品| 国产精品国产三级国产专区5o| 精品亚洲乱码少妇综合久久| 国产伦在线观看视频一区| 国产精品一区二区在线观看99| 亚洲精品亚洲一区二区| 亚洲国产欧美在线一区| 偷拍熟女少妇极品色| 中文字幕精品免费在线观看视频 | 干丝袜人妻中文字幕| 国产黄色视频一区二区在线观看| 国产在线一区二区三区精| 国产午夜精品一二区理论片| 亚洲成色77777| 亚洲精品自拍成人| 亚洲精品视频女| 少妇丰满av| 日本猛色少妇xxxxx猛交久久| 高清不卡的av网站| 黄色视频在线播放观看不卡| 亚洲av在线观看美女高潮| 另类亚洲欧美激情| 全区人妻精品视频| 少妇人妻一区二区三区视频| 狂野欧美激情性xxxx在线观看| 亚洲,一卡二卡三卡| 男人和女人高潮做爰伦理| 九九爱精品视频在线观看| 一级爰片在线观看| 看免费成人av毛片| 亚洲精品自拍成人| 91久久精品国产一区二区三区| 精品一区二区三区视频在线| 99热这里只有是精品50| 国产av精品麻豆| 九色成人免费人妻av| 欧美3d第一页| 精品国产露脸久久av麻豆| 欧美少妇被猛烈插入视频| 在线免费观看不下载黄p国产| 亚洲在久久综合| 一本色道久久久久久精品综合| 久久精品国产亚洲网站| 国产一区二区三区综合在线观看 | 91久久精品电影网| 日韩中文字幕视频在线看片 | 青春草视频在线免费观看| 伦理电影大哥的女人| 国产黄频视频在线观看| 久久久精品94久久精品| 韩国av在线不卡| 欧美人与善性xxx| 中文字幕av成人在线电影| 日韩强制内射视频| 国产精品久久久久久久久免| 亚洲av中文字字幕乱码综合| 国产精品国产三级专区第一集| av在线播放精品| 国产无遮挡羞羞视频在线观看| 小蜜桃在线观看免费完整版高清| 欧美最新免费一区二区三区| 少妇人妻一区二区三区视频| 六月丁香七月| 美女cb高潮喷水在线观看| 国产色爽女视频免费观看| 成年美女黄网站色视频大全免费 | 丝袜脚勾引网站| 国产高清三级在线| 国产精品久久久久久久电影| 我的女老师完整版在线观看| av国产久精品久网站免费入址| 久久久久久久国产电影| 久久久久国产网址| 日韩中字成人| 欧美zozozo另类| 九九爱精品视频在线观看| 美女脱内裤让男人舔精品视频| 七月丁香在线播放| 嫩草影院入口| 欧美日韩亚洲高清精品| 波野结衣二区三区在线| 欧美精品国产亚洲| 麻豆精品久久久久久蜜桃| 九九在线视频观看精品| 最新中文字幕久久久久| 免费观看性生交大片5| 亚洲成人一二三区av| 欧美+日韩+精品| 婷婷色综合大香蕉| 日本av手机在线免费观看| 欧美丝袜亚洲另类| 久热这里只有精品99| 在线看a的网站| 黑人猛操日本美女一级片| 亚洲欧美一区二区三区国产| 国产色婷婷99| 日韩av在线免费看完整版不卡| 日韩三级伦理在线观看| 18禁裸乳无遮挡免费网站照片| 国产色爽女视频免费观看| 日本免费在线观看一区| 国产精品秋霞免费鲁丝片| 精品久久久精品久久久| 日韩欧美一区视频在线观看 | 国产av精品麻豆| 国产男人的电影天堂91| 美女cb高潮喷水在线观看| 一级毛片aaaaaa免费看小| 天天躁夜夜躁狠狠久久av| 国产精品女同一区二区软件| 丝瓜视频免费看黄片| 夜夜看夜夜爽夜夜摸| 国产精品人妻久久久影院| 最近2019中文字幕mv第一页| 欧美日韩亚洲高清精品| 亚洲中文av在线| av免费观看日本| 一二三四中文在线观看免费高清| 国产精品一区www在线观看| 丝袜喷水一区| 亚洲国产高清在线一区二区三| 亚洲国产av新网站| 亚洲aⅴ乱码一区二区在线播放| 如何舔出高潮| 在线天堂最新版资源| 欧美国产精品一级二级三级 | 偷拍熟女少妇极品色| 国产69精品久久久久777片| 人人妻人人爽人人添夜夜欢视频 | 麻豆成人av视频| 成人毛片60女人毛片免费| 一本色道久久久久久精品综合| 国产免费一区二区三区四区乱码| 天堂俺去俺来也www色官网| 国产免费又黄又爽又色| 最近中文字幕2019免费版| 久久久久久久久大av| 免费看日本二区| 91久久精品电影网| 久久精品久久精品一区二区三区| 亚洲丝袜综合中文字幕| 国产精品偷伦视频观看了| 啦啦啦在线观看免费高清www| 亚洲色图综合在线观看| 亚洲欧美日韩另类电影网站 | 成人亚洲精品一区在线观看 | 免费大片18禁| 亚洲人成网站在线播| 夫妻性生交免费视频一级片| 少妇人妻 视频| 六月丁香七月| 亚洲精品成人av观看孕妇| 夜夜爽夜夜爽视频| 久久久久久久久久人人人人人人| 久久国产乱子免费精品| 成人18禁高潮啪啪吃奶动态图 | 毛片女人毛片| 亚洲av不卡在线观看| 91精品一卡2卡3卡4卡| 国产精品一区二区性色av| 一级毛片 在线播放| 好男人视频免费观看在线| 极品教师在线视频| kizo精华| 国产黄色免费在线视频| 日本vs欧美在线观看视频 | 亚洲一区二区三区欧美精品| 免费av中文字幕在线| 亚洲欧美一区二区三区国产| 免费人成在线观看视频色| 欧美精品人与动牲交sv欧美| 一边亲一边摸免费视频| 欧美精品亚洲一区二区| av在线老鸭窝| 边亲边吃奶的免费视频| 国产免费视频播放在线视频| av黄色大香蕉| 只有这里有精品99| 免费观看的影片在线观看| 亚洲经典国产精华液单| 日韩成人av中文字幕在线观看| 精品久久久噜噜| av在线蜜桃| 亚洲精品国产色婷婷电影| 干丝袜人妻中文字幕| 国产毛片在线视频| 国产大屁股一区二区在线视频| 免费黄网站久久成人精品| 一级毛片黄色毛片免费观看视频| 青青草视频在线视频观看| 久久久精品免费免费高清| 又大又黄又爽视频免费| 国产精品久久久久久久久免| 国产爱豆传媒在线观看| 我要看日韩黄色一级片| 亚洲美女搞黄在线观看| 欧美最新免费一区二区三区| 18禁裸乳无遮挡动漫免费视频| 国产精品嫩草影院av在线观看| 亚洲丝袜综合中文字幕| 午夜福利网站1000一区二区三区| 啦啦啦在线观看免费高清www| 日韩免费高清中文字幕av| 国产v大片淫在线免费观看| 大香蕉久久网| 日韩av在线免费看完整版不卡| 国产精品欧美亚洲77777| 在线免费十八禁| 赤兔流量卡办理| 两个人的视频大全免费| 国产亚洲午夜精品一区二区久久| 亚洲av免费高清在线观看| 男人添女人高潮全过程视频| 午夜日本视频在线| 色视频在线一区二区三区| 欧美极品一区二区三区四区| 黄色配什么色好看| 99久久中文字幕三级久久日本| 久久久久网色| 成人午夜精彩视频在线观看| 国产黄频视频在线观看| 亚洲精品久久午夜乱码| 内地一区二区视频在线| 国产av精品麻豆| 中国三级夫妇交换| 人妻少妇偷人精品九色| 在线观看人妻少妇| 国产在线免费精品| 欧美日韩精品成人综合77777| 成人18禁高潮啪啪吃奶动态图 | 亚洲四区av| 97超碰精品成人国产| 99热国产这里只有精品6| 一区二区三区免费毛片| 80岁老熟妇乱子伦牲交| 少妇被粗大猛烈的视频| 久久韩国三级中文字幕| 国产免费又黄又爽又色| 久久精品人妻少妇| 女人十人毛片免费观看3o分钟| 国产乱人偷精品视频| av在线蜜桃| 亚洲婷婷狠狠爱综合网| 不卡视频在线观看欧美| 自拍欧美九色日韩亚洲蝌蚪91 | 午夜免费鲁丝| 蜜桃久久精品国产亚洲av| 插逼视频在线观看| 一级a做视频免费观看| 欧美精品亚洲一区二区| 岛国毛片在线播放| 丰满人妻一区二区三区视频av| 青青草视频在线视频观看| 妹子高潮喷水视频| 久久亚洲国产成人精品v| 搡女人真爽免费视频火全软件| 热99国产精品久久久久久7| 91狼人影院| 色婷婷av一区二区三区视频| 少妇人妻精品综合一区二区| 国产高清不卡午夜福利| 久久久久视频综合| 少妇熟女欧美另类| 人妻制服诱惑在线中文字幕| 日日撸夜夜添| 亚洲欧美中文字幕日韩二区| kizo精华| 男的添女的下面高潮视频| 99久久综合免费| 亚洲久久久国产精品| 日韩成人av中文字幕在线观看| 麻豆成人av视频| 久久人人爽av亚洲精品天堂 | 插逼视频在线观看| 欧美国产精品一级二级三级 | 欧美成人a在线观看| 18禁动态无遮挡网站| 99精国产麻豆久久婷婷| 自拍欧美九色日韩亚洲蝌蚪91 | 女人十人毛片免费观看3o分钟| 亚洲欧美成人精品一区二区| 精品一区二区免费观看| 中文字幕人妻熟人妻熟丝袜美| freevideosex欧美| 美女内射精品一级片tv| 联通29元200g的流量卡| 搡女人真爽免费视频火全软件| 少妇 在线观看| 一个人看的www免费观看视频| 麻豆国产97在线/欧美| 亚洲精品乱码久久久v下载方式| 男人舔奶头视频| 欧美xxxx黑人xx丫x性爽| 熟女av电影| 亚洲欧美成人综合另类久久久| 久久久色成人| 看十八女毛片水多多多| 久久久久人妻精品一区果冻| 极品少妇高潮喷水抽搐| 3wmmmm亚洲av在线观看| 最近手机中文字幕大全| 国产精品.久久久| 久久 成人 亚洲| 三级经典国产精品| av国产精品久久久久影院| 亚洲最大成人中文| 欧美性感艳星| 成人午夜精彩视频在线观看| 日韩三级伦理在线观看| 久久精品国产a三级三级三级| 亚洲美女黄色视频免费看| 人妻少妇偷人精品九色| 久久女婷五月综合色啪小说| 久久综合国产亚洲精品| a级一级毛片免费在线观看| 日本vs欧美在线观看视频 | 色视频在线一区二区三区| 日韩欧美一区视频在线观看 | 欧美日韩精品成人综合77777| 一级黄片播放器| 永久免费av网站大全| 毛片一级片免费看久久久久| 高清视频免费观看一区二区| 成人特级av手机在线观看| 国产色婷婷99| 一级毛片 在线播放| 九九爱精品视频在线观看| 国产黄频视频在线观看| 亚洲精品日本国产第一区| 国产白丝娇喘喷水9色精品| 深爱激情五月婷婷| 国产淫语在线视频| 各种免费的搞黄视频| 亚洲美女搞黄在线观看| 亚洲美女黄色视频免费看| 少妇人妻精品综合一区二区| 亚洲成人av在线免费| 免费观看性生交大片5| 91精品一卡2卡3卡4卡| 免费不卡的大黄色大毛片视频在线观看| 香蕉精品网在线| 久久99蜜桃精品久久| 久久精品国产亚洲网站| 亚洲精品日韩在线中文字幕| 国产老妇伦熟女老妇高清| 日本-黄色视频高清免费观看| 18禁裸乳无遮挡免费网站照片| av福利片在线观看| 国精品久久久久久国模美| 99re6热这里在线精品视频| 五月玫瑰六月丁香| 精品亚洲成国产av| 日日撸夜夜添| 中文字幕人妻熟人妻熟丝袜美| 精品国产三级普通话版| 欧美日韩亚洲高清精品| 最黄视频免费看| 中文字幕人妻熟人妻熟丝袜美| 大片电影免费在线观看免费| 欧美+日韩+精品| 久久午夜福利片| 欧美精品一区二区大全| 国产美女午夜福利| 男女边摸边吃奶| 少妇熟女欧美另类| 只有这里有精品99| 国产亚洲一区二区精品| 久久99蜜桃精品久久|