• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Effect of load-cycling amplitude on performance degradation for proton exchange membrane fuel cell

    2021-12-29 02:27:26KunWngNingLiYnnYngShojieKeZhengpingZhngMeilingDouFengWng
    Chinese Chemical Letters 2021年10期

    Kun Wng,Ning Li,Ynn Yng,Shojie Ke,Zhengping Zhng,b,Meiling Dou,b,*,Feng Wng,b,*

    a State Key Laboratory of Chemical Resource Engineering,Beijing Key Laboratory of Electrochemical Process and Technology for Materials,Beijing University of Chemical Technology,Beijing 100029,China

    b Beijing Advanced Innovation Center for Soft Matter Science and Engineering,Beijing University of Chemical Technology,Beijing 100029,China

    Keywords:Proton exchange membrane fuel cell Durability Load-cycling amplitude Degradation mechanism Platinum catalyst

    ABSTRACT Durability is one of the critical issues to restrict the commercialization of proton exchange membrane fuel cells(PEMFCs)for the vehicle application.The practical dynamic operation significantly affects the PEMFCs durability by corroding its key components.In this work,the degradation behavior of a single PEMFC has been investigated under a simulated automotive load-cycling operation,with the aim of revealing the effect of load amplitude (0.8 and 0.2 A/cm2 amplitude for the current density range of 0.1-0.9 and 0.1-0.3 A/cm2,respectively)on its performance degradation.A more severe degradation on the fuel cell performance is observed under a higher load amplitude of 0.8 A/cm2 cycling operation,with~10.5%decrease of cell voltage at a current density of 1.0 A/cm2.The larger loss of fuel cell performance under the higher load amplitude test is mainly due to the frequent fluctuation of a wider potential cycling.Physicochemical characterizations analyses indicate that the Pt nanoparticles in cathodic catalyst layer grow faster with a higher increase extent of particle size under this circumstance because of their repeated oxidation/reduction and subsequent dissolution/agglomeration process,resulting in the degradation of platinum catalyst and thus the cell performance.Additionally,the detected microstructure change of the cathodic catalyst layer also contributes to the performance failure that causes a distinct increase in mass transfer resistance.

    Proton exchange membrane fuel cells (PEMFC) have been regarded as one of the promising technologies for both vehicular and stationary power sources owing to their high energy efficiency,fast start capability,and environmental friendliness[1-7].Over the past years,significant progresses have been achieved towards reducing the cost and improving the performance of membrane electrode assemblies (MEAs) target required for the vehicle application of PEMFCs.However,the lifetime,identified as one of the prime issues in PEMFCs technology,still hinders their commercialization in electrical vehicles [8-10].Specifically,the lifetime of PEMFCs power system is generally below the 5000 h target under the practical operating condition for the vehicle application especially at low Pt loading.

    Previously reported works have indicated that the harsh operating conditions in fuel cells,including idling [11,12],startup/shut-down [13-16],load-cycling [17-19]and freeze/thaw[20,21]in automotive application,significantly affect the durability of the key components in fuel cells and thus their performance,making the lifetime target a tough challenge for the application of PEMFC technologies.Among them,the dynamic load-cycling operation is regarded as the one of the major factors for the performance degradation of PEMFCs,especially for the load variation between the idling and the working operation [22,23].Under the dynamic load-cycling operation,the cell voltage generally changes frequently in the range of 0.5-0.9 V that inevitably corrodes the Pt catalyst and thus leads to the decrease of fuel cell performance[24].Tu et al.[23]conducted a load-cycling test on a PEMFC stack with a 330 cm2active area under 10,000 dynamic cycles between 25 and 600 mA/cm2,and the result shows a higher percentage of cell voltage decrease at 600 mA/cm2than that of 25 mA/cm2.Yang et al.[25]investigated the durability of a 1.9 kW PEMFC stack under a rapidly continuous load-cycling operation at a low hydrogen stoichiometric ratio,and found an obvious performance degradation after 244 h test.In Wang et al.’s work [26],a 900 h durability test of a commercial MEA was performed to simulate the start-up/shut-down,idling and loadcycling operation in PEMFC vehicles.After 900 h accelerating life test,the performance decreases with a rate of approximately 70 μV/h at a current density of 500 mA/cm2.These above works have investigated the correlation of cell performance loss with the dynamic operation model.To ensure the PEMFC power system as durable as the internal combustion engine,the degradation behavior of a PEMFC and its degradation mechanism of key materials still need to be specifically unraveled,especially under the load-cycling operation with different load amplitude.

    In this work,the degradation behavior of a single PEMFC was investigated under a simulated automotive dynamic condition,and the effect of the load amplitude on its performance degradation was elucidated.A single PEMFC (active area:5 cm2)was operated under the load-cycling condition with the current density cycling in the range of 0.1-0.9 A/cm2(0.8 A/cm2amplitude)and 0.1-0.3 A/cm2(0.2 A/cm2amplitude),respectively.The selection of current density range is aiming to simulate the practical vehicle operation of fuel cells from the idling to the working conditions.The current density of 0.1 A/cm2operation represents the idling condition,while 0.9 and 0.3 A/cm2means that fuel cells work at high and low load condition,respectively.Results show that a higher amplitude load-cycling operation leads to a higher percentage of performance loss,showing a larger increase extent of mass transfer resistance.The higher percentage loss is due to the more serious degradation of cathodic catalyst layer with the microstructure change and Pt catalyst decay.

    For the accelerating test,the degradation behavior of a PEMFC under the higher amplitude load-cycling operation was first investigated (load amplitude:0.8 A/cm2,corresponding current density variation between 0.1 and 0.9 A/cm2) with the changing time of 1 s (each load lasts for 4 s) (Fig.S1 in Supporting information).Fig.1 shows the cell voltage variation versus the cycle numbers under 0.1-0.9 A/cm2load-cycling test.The cell voltage fluctuates in the range of 0.68-0.85 V for the load-cycling operation and both decreases after 11,520 cycles no matter at the current density of 0.1 or 0.9 A/cm2.Polarization curves show that the cell performance declines evidently with the increase of cycle numbers(Fig.2a),which is mainly related to the loss of three types of polarization,including the electrode kinetic loss,ohmic loss and mass transfer loss.The initial cell voltage is 0.666 V at a current density of 1.0 A/cm2.After 11,520 cycles,the cell voltage drops to 0.596 V with an approximate loss of 10.5%that represents the end of durability test for fuel cell in vehicle application [27].The performance loss is probably ascribed to the reduced Pt reactive sites during the load-cycling test due to the frequent potential fluctuation.The cell voltage degradation rate was calculated to be 1.35,5.86 and 16.77 μV/cycle at the current densities of 0.3,1.0 and 1.4 A/cm2,respectively (Fig.2b).It is noted that the performance degradation rate gradually rises with the increase of current densities,showing an approximate linear relation with the cycle numbers.The more prominent performance loss at 1.4 A/cm2reveals that Pt sites in the catalyst layer might not be able to provide an adequate number of reactive sites to catalyze the electrocatalytic reaction under such high current density,especially for the oxygen reduction reaction.Furthermore,the decreased performance is also probably related to the microstructure change in the catalyst layer during the load-cycling operation,which might hinder the effective mass transfer for the electrocatalytic reaction.

    Fig.1.Cell voltage variation under 0.1-0.9 A/cm2 load-cycling test.

    Fig.2.(a)Polarization curves before and after load-cycling test and(b)cell voltage versus cycle numbers at different current densities.Nyquist plots at (c)0.15 and(d)1.10 A/cm2 under load-cycling operation(Rm:ohmic resistance,Rct:charge transfer resistance,Rmt:mass transfer resistance,CPE:constant phase angle element).

    To further elucidate the degradation behavior under dynamic load-cycling test,electrochemical impedance spectroscopy (EIS)characterization was carried out to determine the three types of polarization loss by measuring the charge transfer resistance,ohmic resistance,and mass transfer resistance,respectively(Figs.2c and d).The membrane resistance and charge transfer resistance can be obtained by fitting the Nyquist plots at the low current density (0.15 A/cm2) [28,29].As shown in Fig.2c,a negligible change was observed for the membrane resistance during the load-cycling test,indicating that no obvious degradation occurs for the proton exchange membrane.The charge transfer resistance was found to be increased with the rise of cycle numbers,71.49,72.72,73.74,75.45 and 77.07 mOhm after 0,2880,5760,8640 and 11,520 cycles,respectively.It reveals the decrease of apparent catalytic activity during the load-cycling test,probably due to the gradual loss of Pt reactive sites with the increase of cycle numbers [22,30].To determine the mass transfer resistance,the EIS measurement was also performed under a high current density(1.1 A/cm2) [31](Fig.2d).EIS fitting results show that the mass transfer resistance increases by 66.35% after 11,520 cycles,rather higher than that of the change in charge transfer resistance(7.81%).Clearly,the increase in mass transfer resistance is more remarkable than that of the charge transfer resistance,indicating that the loadcycling operation leads to a prominent increase of mass transfer resistance.

    Fig.3.(a)Cell voltage responses under two different load amplitudes operation and(b)the performance decaypercentage at the currentdensityof 0.3,1.0,and 1.4 A/cm2.Nyquist plots at the current density of(c)0.15 and(d)1.10 A/cm2.

    To illustrate the effect of load amplitude on performance degradation,we also conducted the dynamic load-cycling test under the low load amplitude operation (0.2 A/cm2) with the corresponding current density range of 0.1-0.3 A/cm2.Fig.3a shows the cell voltage variation range is 0.84-0.78 V for 0.1-0.3 A/cm2load-cyclingoperation,whichisnarrowerthanthatof0.1-0.9 A/cm2cycling test(0.85-0.68 V).The voltage decrease percentage was also calculated according to the polarization curves,and the result shows that the decrease percentage of cell voltage both rises with the increase of current density no matter under low or high load amplitudecycles(Fig.3b).Notably,thedecreaseextentofcellvoltage atthecurrentdensityof1.0and1.4A/cm2wascalculatedtobehigher for 0.8 A/cm2amplitude operation than that of 0.2 A/cm2,implying that the performance decayat 1.0 and 1.4 A/cm2is more server under the higherloadamplitudetestcondition.However,thecellvoltageat the current density of 0.3 A/cm2decreases with a slightly higher percentageforthe0.2A/cm2amplitudethanthatof0.8A/cm2,which suggests that the electrode kinetic loss under the low amplitude operation is probably larger.EIS fitting results show that no obvious change of membrane resistance was observed,indicating that both two ranges of load vibration do not lead to the degradation of the proton exchange membrane(Figs.3c and d).The increase extent of charge transfer resistance under the 0.8 A/cm2amplitude operation isslightlylowerthanthatof0.2A/cm2amplitude,consistentwiththe performance decrease percentage as indicated as the polarization curve analyses.For the mass transfer resistance,an approximately 2-fold increase extent was observed after 11,520 cycles for the 0.8 A/cm2amplitude operation (~66.35%) compared to that of 0.2 A/cm2amplitude (~31.63%),which consequently results in a larger mass transfer loss during the high amplitude load-cycling operation.It is speculated that the microstructure change of catalyst layer is more prominently under the wider range of load-cycling condition,probably due to the degradation of Pt catalyst.

    To examine the underlying degradation characteristics of the MEA under dynamic load-cycling test,ex-characterizations including scanning electron microscopy (SEM),transmission electron microscopy (TEM),and X-ray photoelectric spectroscopy(XPS)were conducted for the catalyst layer before and after 11,520 cycles test.SEM images show that the initial catalyst layer has a relatively smooth surface distributed with Pt/C catalyst for both anode and cathode(Figs.4a and d).After 11,520 cycles,the surface of cathodic catalyst layer becomes rougher for the sample that operated under the high amplitude (0.8 A/cm2) load-cycling test compared to the low amplitude operation(0.2 A/cm2)(Figs.4b and c).More collapsed pores appeared in most regions of the cathodic catalyst layer,especially for the sample operated at high amplitude condition,suggesting that the carbon structure in the catalytic layer was probably corroded.It reveals that the dynamic loadcycling has a negative effect on the cathodic catalyst layer.However,for the anodic catalyst layer,small changes were observed after 11,520 load cycles for both high and low amplitude test (Figs.4e and f),implying that the anodic catalyst layer is basically not affected by the load-cycling operation due to the low potential.SEM cross-sectional images display that the thickness of proton exchange membranes is in the range of 50.2-51.4 μm without any obvious pinholes on the surface after load-cycling test(Figs.4g-i),suggesting no significant degradation occurred for the membrane,which is in agreement with the EIS result.

    Fig.4.SEM images of the(a)cathodic and(d)anodic catalyst layer surface and(g)SEM cross-sectional images before the load-cycling test,and the corresponding images after 11,520 load cycles under different load range of (b,e,h) 0.1-0.9 and(c,f,i) 0.1-0.3 A/cm2 test.

    TEM characterization was performed to further explore the microstructure change of cathodic catalyst layer before and after load-cycling test (Fig.5).As shown in Fig.5a,the initial Pt nanoparticles (NPs) are uniformly distributed on the carbon support with a small average particle size of~4.05 nm,and most of Pt NPs are spherical.After 11,520 cycles,the Pt NPs in the cathodic catalyst layer grow significantly with an obvious aggregation,and thus their initial sphere morphology appears to be irregular.Further investigations show that the Pt NPs grow faster during a higher amplitude load-cycling test after 11,520 cycles,with the average Pt diameter of 6.66 and 5.36 nm for 0.8 and 0.2 A/cm2amplitude test,respectively.This result reveals that a more serious degradation of the cathodic Pt catalyst occurs under the higher amplitude load-cycling test.The major reason is that the corresponding potential variation range is wider for 0.8 A/cm2amplitude load operation than that of 0.2 A/cm2.Under circumstance of the frequently wider potential fluctuation(0.85-0.68 V),the Pt species tend to be oxidized and reduced repeatedly [9,18].The possible reaction mechanism is shown as follows (Eqs.1-5) [32]:

    Fig.5.TEM images of cathodic Pt catalyst and corresponding Pt NPs distribution(a-c)before and after load-cycling test with the current density ranges of (d-f) 0.1-0.9 and(g-i)0.1-0.3 A/cm2.

    Subsequently,the small reduced Pt are dissolved and then redeposit on the surface of the large Pt NPs to reach a more stable state by reducing the interface energy of Pt NPs,leading to the growth of Pt NPs,that is,the called Ostwald ripening mechanism explains the enlarged particle size phenomenon(Fig.6) [33,34].The growth of particle size will lead to the decrease of electrochemical surface area and ultimately result in a decline in the electrocatalytic activity and thus the fuel cell performance.Besides,the potential cycling also causes the corrosion of the carbon support because that carbon corrosion tends to occur at high potential through the electrochemical oxidation,although this phenomenon is not distinct under the load-cycling condition.

    Fig.6.The degradation mechanism of Pt/C catalyst under load cycling operation.Illustration schemes of the Pt/C catalyst (a) before and (b) after load-cycling test.

    XPS analysis was performed to quantify the change of surface element composition and content on cathodic catalyst layer(Fig.S2 in Supporting information).XPS spectra show the presence of C,Pt,F,S and O on the surface of cathodic catalyst layer for both before and after 11,520 cycles test.Notably,the surface Pt content decreases after the load cycling test(1.96 and 2.31 at%for 0.8 and 0.2 A/cm2amplitude,respectively)compare with the initial sample(initial Pt content:4.75 at%),indicating the dissolution of Pt element no matter under low or high load amplitude cycles.Previously reported works have indicated that the potential cycling operation results in a higher extent of Pt dissolution compare with that of the steady-state operation[32].It should be mentioned that the decrease percentage of Pt content was found to be substantially higher after 11,520 cycles test for the sample under higher load amplitude cycles(58.7%and 51.4%for 0.8 and 0.2 A/cm2amplitude,respectively),suggesting that the dissolution of Pt is more serious under higher amplitude operation.For the C element,the content(initial:49.05 at%) obviously decreases after 11,520 cycles test(43.58 and 43.61 at%for 0.8 and 0.2 A/cm2amplitude,respectively),implying that the carbon support corrosion probably occurs and the Pt NPs are subsequently detached from the carbon surface.XPS results combined with above SEM and TEM analyses reveal that Pt species in the cathodic catalyst layer tend to be dissolved,migrated/redeposited and agglomerated to form the large Pt NPs during the accelerating test,leading to the loss of Pt electrochemical active surface area.Furthermore,the catalyst layer was also corroded with more collapsed pores on its surface that results in a poor mass transport path for the cathodic electrocatalytic process.

    In summary,the degradation behavior of a single PEMFC under a simulated automotive load-cycling operation was investigated.Two different load amplitude of 0.8 and 0.2 A/cm2were adopted to simulate the dynamic cycling operation between the idling and the working condition,and its effect on cell performance and its key materials were also explored.Results show that the 0.8 A/cm2amplitude cycling operation leads to a higher percentage performance loss than that of 0.2 A/cm2amplitude cycling.The cell performance decays with a rate of~5.86 μV/cycle at a current density of 1.0 A/cm2under 0.8 A/cm2amplitude test,equivalent to a maximum total voltage loss of 70 mV after 11,520 cycles.Physicochemical characterizations indicate that the cathodic catalyst layer degradation is the decisive factor for the durability deterioration of PEMFC,showing a faster growth of Pt NPs with accelerated dissolution and aggregation under the higher amplitude loadcycling operation because of the wider vibration of potential.Furthermore,the microstructure change of the cathodic catalyst layer also affects the durability of PEMFC,resulting in a higher increase extent of mass transfer resistance.The proposed degradation mechanism in this work holds the promise for providing valuable guidance for the migration strategies to improve the durability of PEMFCs.

    Declaration of competing interest

    The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

    Acknowledgment

    This work was supported by the National Key R&D Program of China (No.2018YFB0105503).

    Appendix A.Supplementary data

    Supplementary material related to this article can be found,in the online version,at doi:https://doi.org/10.1016/j.cclet.2021.02.045.

    亚洲国产精品sss在线观看| 国产91精品成人一区二区三区| 波多野结衣高清作品| 久久久久久久久久黄片| 美女免费视频网站| 97超级碰碰碰精品色视频在线观看| 精品欧美国产一区二区三| 麻豆成人午夜福利视频| 欧美日韩福利视频一区二区| 最新在线观看一区二区三区| 国产视频内射| 精品午夜福利视频在线观看一区| 日韩有码中文字幕| 欧美3d第一页| 国产v大片淫在线免费观看| 日韩欧美国产在线观看| 日日摸夜夜添夜夜添小说| 手机成人av网站| 小说图片视频综合网站| 一区二区三区激情视频| 日韩成人在线观看一区二区三区| 黄色日韩在线| 性欧美人与动物交配| 老司机午夜十八禁免费视频| 久久久久九九精品影院| 免费在线观看成人毛片| 久久久精品大字幕| 少妇的逼水好多| 国内精品一区二区在线观看| netflix在线观看网站| 一本综合久久免费| 男女那种视频在线观看| 内地一区二区视频在线| 丰满人妻熟妇乱又伦精品不卡| 精品国内亚洲2022精品成人| 欧美乱色亚洲激情| 脱女人内裤的视频| 一进一出好大好爽视频| 99久久精品热视频| 久久久久久久久大av| 波多野结衣高清作品| 日韩欧美免费精品| 嫁个100分男人电影在线观看| 国产欧美日韩一区二区精品| 国产激情欧美一区二区| 最好的美女福利视频网| 亚洲欧美日韩卡通动漫| 内地一区二区视频在线| 亚洲中文字幕一区二区三区有码在线看| 丰满人妻一区二区三区视频av | 精品熟女少妇八av免费久了| 午夜日韩欧美国产| 欧美在线黄色| 十八禁人妻一区二区| av黄色大香蕉| 日本黄色视频三级网站网址| 国产精品日韩av在线免费观看| 久9热在线精品视频| 天堂网av新在线| 亚洲精品在线美女| 久久久国产精品麻豆| 美女 人体艺术 gogo| 亚洲午夜理论影院| 欧美在线黄色| 亚洲五月婷婷丁香| 国产精品野战在线观看| 日韩精品青青久久久久久| 亚洲av日韩精品久久久久久密| 少妇人妻精品综合一区二区 | 国产精品99久久99久久久不卡| 美女大奶头视频| 岛国在线免费视频观看| 一本精品99久久精品77| 一区二区三区高清视频在线| 亚洲性夜色夜夜综合| 美女高潮的动态| 熟妇人妻久久中文字幕3abv| 久久精品国产清高在天天线| 国产真实乱freesex| 亚洲av中文字字幕乱码综合| 亚洲美女黄片视频| 一区二区三区免费毛片| 免费人成在线观看视频色| 久久久久久人人人人人| 国产成年人精品一区二区| 中文字幕人妻丝袜一区二区| 窝窝影院91人妻| av黄色大香蕉| 午夜日韩欧美国产| 精品一区二区三区视频在线观看免费| 国产男靠女视频免费网站| 国产精品免费一区二区三区在线| 淫秽高清视频在线观看| 成人鲁丝片一二三区免费| 欧美绝顶高潮抽搐喷水| 久久精品国产清高在天天线| a在线观看视频网站| 可以在线观看的亚洲视频| 日日夜夜操网爽| 99久久九九国产精品国产免费| 美女大奶头视频| 色播亚洲综合网| 日韩欧美国产在线观看| 国产三级中文精品| 国产精品久久久久久人妻精品电影| 日本三级黄在线观看| 亚洲中文字幕日韩| 欧美性猛交黑人性爽| 夜夜夜夜夜久久久久| 亚洲最大成人中文| 岛国视频午夜一区免费看| 国产欧美日韩一区二区精品| 日韩国内少妇激情av| 男女做爰动态图高潮gif福利片| 日韩高清综合在线| 国产亚洲精品av在线| eeuss影院久久| 最后的刺客免费高清国语| 亚洲av成人精品一区久久| 老熟妇仑乱视频hdxx| 午夜福利免费观看在线| 亚洲国产中文字幕在线视频| 国产精品综合久久久久久久免费| 亚洲欧美一区二区三区黑人| 精品久久久久久久久久免费视频| 久久国产乱子伦精品免费另类| 亚洲欧美日韩卡通动漫| 欧美最黄视频在线播放免费| 97人妻精品一区二区三区麻豆| 免费搜索国产男女视频| 日日夜夜操网爽| 村上凉子中文字幕在线| 禁无遮挡网站| 91九色精品人成在线观看| 搡老岳熟女国产| 亚洲aⅴ乱码一区二区在线播放| 中文在线观看免费www的网站| 美女 人体艺术 gogo| 内地一区二区视频在线| 免费在线观看影片大全网站| 性色av乱码一区二区三区2| 在线播放国产精品三级| av天堂在线播放| 制服丝袜大香蕉在线| 欧美日韩亚洲国产一区二区在线观看| ponron亚洲| 国内毛片毛片毛片毛片毛片| 黑人欧美特级aaaaaa片| 成人三级黄色视频| 99久久精品一区二区三区| 亚洲精品亚洲一区二区| 欧美激情在线99| 男女那种视频在线观看| 美女免费视频网站| 在线观看免费午夜福利视频| 黄色日韩在线| 天堂√8在线中文| e午夜精品久久久久久久| 国产精品1区2区在线观看.| 波多野结衣高清作品| 国产亚洲欧美98| 网址你懂的国产日韩在线| 国产高清视频在线观看网站| 亚洲欧美精品综合久久99| 99久久九九国产精品国产免费| 亚洲成人精品中文字幕电影| 又粗又爽又猛毛片免费看| 成人18禁在线播放| 黄色丝袜av网址大全| 久久精品亚洲精品国产色婷小说| 好男人电影高清在线观看| 日本精品一区二区三区蜜桃| 午夜老司机福利剧场| 日本三级黄在线观看| 在线观看66精品国产| 99在线人妻在线中文字幕| 欧美丝袜亚洲另类 | 日本三级黄在线观看| 99久久久亚洲精品蜜臀av| 制服丝袜大香蕉在线| 国产又黄又爽又无遮挡在线| 亚洲成人中文字幕在线播放| 午夜激情欧美在线| 日本黄色视频三级网站网址| 欧美日韩乱码在线| 99久久精品一区二区三区| 国产不卡一卡二| 欧美色视频一区免费| 免费看光身美女| 久久久久久久久久黄片| 亚洲男人的天堂狠狠| ponron亚洲| 91久久精品国产一区二区成人 | 99久久精品热视频| 国产精品亚洲av一区麻豆| 中文亚洲av片在线观看爽| 亚洲狠狠婷婷综合久久图片| 国产成人av激情在线播放| 国产真实伦视频高清在线观看 | 啪啪无遮挡十八禁网站| 搡老熟女国产l中国老女人| 久久精品国产清高在天天线| 婷婷丁香在线五月| 亚洲精品一区av在线观看| 一边摸一边抽搐一进一小说| 欧美高清成人免费视频www| 亚洲美女视频黄频| 女人被狂操c到高潮| 亚洲精品在线美女| 男女之事视频高清在线观看| 看黄色毛片网站| 久久99热这里只有精品18| 国产麻豆成人av免费视频| 亚洲色图av天堂| 国产一区二区在线av高清观看| 99热这里只有精品一区| 欧美日本亚洲视频在线播放| 国产成人aa在线观看| 激情在线观看视频在线高清| 欧美一区二区亚洲| 天堂av国产一区二区熟女人妻| 最新中文字幕久久久久| 两人在一起打扑克的视频| 一个人看的www免费观看视频| 中文字幕人妻丝袜一区二区| 国产淫片久久久久久久久 | 亚洲午夜理论影院| 国产精品99久久99久久久不卡| 在线观看一区二区三区| 亚洲av熟女| 一卡2卡三卡四卡精品乱码亚洲| 又黄又爽又免费观看的视频| 十八禁网站免费在线| 首页视频小说图片口味搜索| 午夜福利高清视频| 欧美成人一区二区免费高清观看| 久久久久久久久中文| 免费av毛片视频| aaaaa片日本免费| 午夜福利在线观看免费完整高清在 | 少妇的逼好多水| 成人亚洲精品av一区二区| 国产乱人视频| 午夜福利视频1000在线观看| 亚洲av二区三区四区| 噜噜噜噜噜久久久久久91| 最近最新中文字幕大全电影3| 美女大奶头视频| 日韩有码中文字幕| av在线蜜桃| 国产精品久久久久久人妻精品电影| 午夜免费男女啪啪视频观看 | 在线播放无遮挡| 99热只有精品国产| www.熟女人妻精品国产| 色噜噜av男人的天堂激情| 很黄的视频免费| 一区二区三区激情视频| 亚洲精品久久国产高清桃花| 亚洲av五月六月丁香网| 国产伦人伦偷精品视频| 在线观看舔阴道视频| 88av欧美| 欧洲精品卡2卡3卡4卡5卡区| 国产av在哪里看| 麻豆国产av国片精品| 欧美日韩精品网址| 99国产精品一区二区蜜桃av| 99国产精品一区二区三区| 亚洲无线在线观看| 国产精品野战在线观看| 九色成人免费人妻av| 亚洲第一电影网av| 最新中文字幕久久久久| 精品日产1卡2卡| 人人妻人人澡欧美一区二区| 中文字幕精品亚洲无线码一区| 欧美三级亚洲精品| 久久天躁狠狠躁夜夜2o2o| 99国产精品一区二区三区| 综合色av麻豆| 日日摸夜夜添夜夜添小说| 精品乱码久久久久久99久播| 尤物成人国产欧美一区二区三区| 国产伦精品一区二区三区视频9 | 午夜福利18| 成人性生交大片免费视频hd| 欧美日韩黄片免| 中亚洲国语对白在线视频| 国产免费男女视频| 最近视频中文字幕2019在线8| 真实男女啪啪啪动态图| 欧美午夜高清在线| www.熟女人妻精品国产| 亚洲片人在线观看| 青草久久国产| 免费人成在线观看视频色| 丰满人妻一区二区三区视频av | 午夜福利18| 精品欧美国产一区二区三| 国产视频一区二区在线看| 岛国在线免费视频观看| 757午夜福利合集在线观看| 舔av片在线| 成人欧美大片| 亚洲精品国产精品久久久不卡| 九色国产91popny在线| 亚洲国产精品999在线| 欧美成人一区二区免费高清观看| 别揉我奶头~嗯~啊~动态视频| 国产淫片久久久久久久久 | 麻豆久久精品国产亚洲av| 免费电影在线观看免费观看| www.www免费av| 国产av麻豆久久久久久久| 丁香欧美五月| 老鸭窝网址在线观看| 美女被艹到高潮喷水动态| 日本精品一区二区三区蜜桃| 人妻丰满熟妇av一区二区三区| 高清日韩中文字幕在线| 国产 一区 欧美 日韩| 国产高清激情床上av| 色综合欧美亚洲国产小说| 日本与韩国留学比较| 99热6这里只有精品| 国内少妇人妻偷人精品xxx网站| 毛片女人毛片| 人妻夜夜爽99麻豆av| 毛片女人毛片| 免费在线观看影片大全网站| 在线观看日韩欧美| 亚洲 国产 在线| 午夜精品久久久久久毛片777| 动漫黄色视频在线观看| 久久午夜亚洲精品久久| 国内精品美女久久久久久| 国产成人影院久久av| 亚洲专区国产一区二区| 十八禁人妻一区二区| 国产老妇女一区| 欧美成人一区二区免费高清观看| 国产精品久久久久久久电影 | 不卡一级毛片| 99精品久久久久人妻精品| 国产一区二区三区视频了| 99riav亚洲国产免费| 婷婷精品国产亚洲av| 国产精品久久久久久人妻精品电影| 欧美精品啪啪一区二区三区| 色播亚洲综合网| 少妇高潮的动态图| 欧美黑人巨大hd| 欧美不卡视频在线免费观看| 久久天躁狠狠躁夜夜2o2o| 国语自产精品视频在线第100页| 国产精品久久久久久人妻精品电影| 日韩精品中文字幕看吧| 精品久久久久久久末码| 精品不卡国产一区二区三区| 桃红色精品国产亚洲av| 老汉色∧v一级毛片| 亚洲欧美日韩高清专用| 午夜福利高清视频| aaaaa片日本免费| 免费看a级黄色片| 99久久精品国产亚洲精品| 精品人妻1区二区| 精品无人区乱码1区二区| 久久久久亚洲av毛片大全| 一级黄片播放器| 99国产极品粉嫩在线观看| 亚洲欧美激情综合另类| 日韩成人在线观看一区二区三区| 欧美极品一区二区三区四区| 搡女人真爽免费视频火全软件 | 国产真人三级小视频在线观看| 91麻豆av在线| 国产伦精品一区二区三区视频9 | 久久这里只有精品中国| 中文字幕人妻熟人妻熟丝袜美 | 在线播放无遮挡| av在线天堂中文字幕| 黄色丝袜av网址大全| 精品一区二区三区视频在线观看免费| www日本在线高清视频| 亚洲美女视频黄频| 成年人黄色毛片网站| 好看av亚洲va欧美ⅴa在| 欧美黄色片欧美黄色片| 亚洲精品456在线播放app | 国产精品美女特级片免费视频播放器| 亚洲精品一卡2卡三卡4卡5卡| 天天添夜夜摸| 真实男女啪啪啪动态图| av国产免费在线观看| 日韩有码中文字幕| 小说图片视频综合网站| 午夜亚洲福利在线播放| 脱女人内裤的视频| 国产蜜桃级精品一区二区三区| 色视频www国产| 悠悠久久av| 操出白浆在线播放| 91字幕亚洲| xxxwww97欧美| 日韩 欧美 亚洲 中文字幕| 亚洲不卡免费看| 色吧在线观看| 国产伦精品一区二区三区四那| 亚洲av电影在线进入| 国产午夜精品论理片| 日日干狠狠操夜夜爽| 国产黄片美女视频| 欧美成狂野欧美在线观看| 老汉色∧v一级毛片| 黄色片一级片一级黄色片| 婷婷精品国产亚洲av在线| 欧美3d第一页| 久久99热这里只有精品18| 久久国产精品人妻蜜桃| 欧美日韩中文字幕国产精品一区二区三区| 国产午夜精品论理片| 女人十人毛片免费观看3o分钟| 国语自产精品视频在线第100页| a在线观看视频网站| 麻豆久久精品国产亚洲av| 黄色片一级片一级黄色片| 亚洲美女黄片视频| 精品99又大又爽又粗少妇毛片 | 亚洲国产精品sss在线观看| 亚洲人成网站在线播| 香蕉av资源在线| 精品一区二区三区av网在线观看| 久久精品综合一区二区三区| 伊人久久精品亚洲午夜| www.www免费av| 每晚都被弄得嗷嗷叫到高潮| 亚洲成a人片在线一区二区| 国产一区二区在线观看日韩 | 五月伊人婷婷丁香| 欧美大码av| 长腿黑丝高跟| 国产成+人综合+亚洲专区| 日韩av在线大香蕉| 亚洲精品在线美女| 老司机午夜十八禁免费视频| 久久精品夜夜夜夜夜久久蜜豆| av黄色大香蕉| 琪琪午夜伦伦电影理论片6080| 国产精品久久久人人做人人爽| 国产又黄又爽又无遮挡在线| 九九热线精品视视频播放| 日韩国内少妇激情av| 欧美成人一区二区免费高清观看| 老熟妇仑乱视频hdxx| 亚洲一区高清亚洲精品| 婷婷六月久久综合丁香| 日日夜夜操网爽| 国内毛片毛片毛片毛片毛片| 亚洲专区国产一区二区| 可以在线观看的亚洲视频| 亚洲欧美日韩无卡精品| 级片在线观看| 久久久久久大精品| 白带黄色成豆腐渣| 亚洲成人免费电影在线观看| 18禁黄网站禁片午夜丰满| 丁香欧美五月| 黑人欧美特级aaaaaa片| 亚洲性夜色夜夜综合| 国产乱人伦免费视频| 亚洲欧美日韩高清专用| 日韩成人在线观看一区二区三区| 国产在视频线在精品| 国产一区二区亚洲精品在线观看| 国产精品乱码一区二三区的特点| 青草久久国产| 亚洲乱码一区二区免费版| 亚洲国产精品久久男人天堂| 19禁男女啪啪无遮挡网站| 老司机深夜福利视频在线观看| 18美女黄网站色大片免费观看| 一进一出抽搐gif免费好疼| 最新在线观看一区二区三区| 午夜免费观看网址| 18+在线观看网站| 欧美成人性av电影在线观看| 夜夜看夜夜爽夜夜摸| 非洲黑人性xxxx精品又粗又长| 男人舔女人下体高潮全视频| 脱女人内裤的视频| 欧美性猛交黑人性爽| 久久久欧美国产精品| 日韩制服骚丝袜av| 久久精品综合一区二区三区| 成人综合一区亚洲| 国产精品久久久久久精品电影| 99热这里只有精品一区| 久久这里只有精品中国| 国产伦精品一区二区三区四那| 日本爱情动作片www.在线观看| 欧美区成人在线视频| 免费黄色在线免费观看| 九九久久精品国产亚洲av麻豆| 美女被艹到高潮喷水动态| av在线播放精品| 精品一区二区三区人妻视频| 成人鲁丝片一二三区免费| 国产成人免费观看mmmm| 国产亚洲精品av在线| 97热精品久久久久久| 亚洲精品视频女| 久久精品国产亚洲av天美| 国产男人的电影天堂91| 亚洲最大成人中文| 男人爽女人下面视频在线观看| 日本与韩国留学比较| videos熟女内射| 中国国产av一级| 久久久久久久久久人人人人人人| 99热全是精品| 亚洲国产精品专区欧美| 欧美日本视频| 亚洲va在线va天堂va国产| av在线观看视频网站免费| 午夜久久久久精精品| 乱人视频在线观看| 一级毛片黄色毛片免费观看视频| 色视频www国产| 美女黄网站色视频| 久久久久久久久久成人| 久久国内精品自在自线图片| 少妇人妻一区二区三区视频| 亚洲在线自拍视频| 91在线精品国自产拍蜜月| 寂寞人妻少妇视频99o| 蜜桃亚洲精品一区二区三区| 亚洲熟妇中文字幕五十中出| 少妇熟女aⅴ在线视频| 日韩亚洲欧美综合| 国产不卡一卡二| av专区在线播放| 亚洲国产精品成人综合色| 日韩人妻高清精品专区| 丝瓜视频免费看黄片| 国产精品爽爽va在线观看网站| 成人亚洲欧美一区二区av| 国产视频内射| 亚洲自偷自拍三级| 国内精品一区二区在线观看| 熟女人妻精品中文字幕| 亚洲国产av新网站| 国产又色又爽无遮挡免| 插阴视频在线观看视频| 欧美日韩在线观看h| 精品一区二区三卡| 欧美激情在线99| 中文字幕av成人在线电影| 久久精品国产鲁丝片午夜精品| 舔av片在线| 成年女人看的毛片在线观看| 欧美成人精品欧美一级黄| 精品久久国产蜜桃| 久久久久久久久久人人人人人人| 美女高潮的动态| 国产亚洲91精品色在线| 亚洲色图av天堂| 99热6这里只有精品| 美女黄网站色视频| 国产一区二区三区综合在线观看 | 深爱激情五月婷婷| 亚洲欧美一区二区三区黑人 | 国产精品日韩av在线免费观看| 免费av不卡在线播放| 久久人人爽人人片av| 一本—道久久a久久精品蜜桃钙片 精品乱码久久久久久99久播 | 岛国毛片在线播放| 欧美xxxx性猛交bbbb| 七月丁香在线播放| 日韩国内少妇激情av| 国产精品美女特级片免费视频播放器| 亚洲国产精品专区欧美| 久久精品国产亚洲av涩爱| 简卡轻食公司| 99热网站在线观看| 伊人久久精品亚洲午夜| 亚洲人与动物交配视频| 高清日韩中文字幕在线| 午夜视频国产福利| 啦啦啦中文免费视频观看日本| 亚洲成色77777| 国产精品福利在线免费观看| 国产黄色视频一区二区在线观看| 神马国产精品三级电影在线观看| 欧美3d第一页| 久久这里只有精品中国| 久久久久久久亚洲中文字幕| 亚洲国产欧美人成| 国产探花极品一区二区| 欧美日韩国产mv在线观看视频 | 最近的中文字幕免费完整| 亚洲国产精品sss在线观看| 久久久久久久久久久丰满| 国产黄a三级三级三级人| 国产伦一二天堂av在线观看| 精品久久久久久久末码| 国产高潮美女av| 婷婷色av中文字幕| 一级毛片 在线播放| 看黄色毛片网站| 一个人观看的视频www高清免费观看| 亚洲欧美精品自产自拍| 麻豆精品久久久久久蜜桃| 亚洲怡红院男人天堂|