• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    FeBO3 as a low cost and high-performance anode material for sodium-ion batteries

    2021-12-29 02:27:18BozhuWuShuoQiXikiWuHoliWngQingqingZhungHuiminYiPuXuZhennnXiongGejunShiShungqingChenBofengWng
    Chinese Chemical Letters 2021年10期

    Bozhu Wu,Shuo Qi,Xiki Wu,Holi Wng,Qingqing Zhung,Huimin Yi,Pu Xu,Zhennn Xiong,Gejun Shi,Shungqing Chen,Bofeng Wng,*

    a Shanghai Key Laboratory of Materials Protection and Advanced Materials in Electric Power,Shanghai University of Electric Power,Shanghai 200090,China

    b Department of Chemical Engineering,School of Environmental and Chemical Engineering,Shanghai University,Shanghai 200444,China

    Keywords:FeBO3 Metal borates Anode materials Sodium-ion batteries Sodium storage mechanism

    ABSTRACT The research of borate materials as sodium-ion batteries(SIBs)anode is still in the early stages,but the boron polyoxoanions are attracting intense interest due to their low atomic weight and high electronegative features.In this work,FeBO3 was prepared with low-cost raw materials and evaluated as SIBs anode.The FeBO3 shows a high reversible capacity of 328 mAh/g at the current density of 0.4 A/g.In addition,the electrochemical performance of FeBO3 can be improved by carbon coating.The prepared carbon-coated FeBO3 composite has a reversible capacity of 426 mAh/g(at 0.4 A/g)and an outstanding rate capability of 272 mAh/g (at 1.6 A/g).Furthermore,the sodium storage mechanism of FeBO3 was studied by in-situ XRD and ex-situ XPS.

    Various renewable and clean energy sources,such as solar and wind,are growing rapidly due to the imminent depletion of nonrenewable fossil fuel resources and the increasingly serious environmental pollution problems[1,2].However,electric energy generated by renewable energy sources cannot be directly transmitted to the grid due to its intermittent characteristics[3].It is urgent to develop an energy storage device with high capacity.SIBs are considered to be the promising electric energy storage(EES)systems in the field of energy storage power stations due to their rich sodium resources,low cost and electrochemical behavior similar to LIBs[4-6].The key to commercialization of SIBs is to find electrode materials with low cost and high specific capacity [7].Nowadays,many SIBs anode materials have been developed,including hard carbon,transition metal oxides and intermetallic compounds [4].However,the drawbacks of these materials are noticeable.For example,the drawback of hard carbon lies in low electronic conductivity and poor initial coulombic efficiency [8-10].The transition metal oxides and intermetallic suffer massive volume changes during the reaction with the Na+ions,and some of them are expensive or toxic[11-16].Therefore,it is imperative to develop new types of SIBs anode materials with high specific capacity,low cost,simple synthesis process and ecological friendliness.

    Metal borates have attracted more and more attention as a promising anode for SIBs in the past few years owing to their low atomic weight and high electronegative features [17-19].To date,metal borates have been used as anode materials for sodium-ion batteries,but its sodium storage mechanism is still unclear[20-22].Recently,Tian et al.evaluated the electrochemical performance of Fe3BO6as a SIBs anode material and further explored its sodium storage mechanism[23].Based on the ex-situ XRD analysis results,they reported that Fe3BO6irreversibly transformed into crystalline Fe2O3and then into crystalline Fe metal during the initial discharge process.In the subsequent chargeand dischargeprocess,crystalline Fe metal and crystalline Fe2O3alternately appear.Namely,the sodium storage mechanism of Fe3BO6is a conversion reaction between crystalline Fe2O3(Fe3+) and crystalline Fe metal (Fe0).Wang et al.proposedthe reversible conversion reaction mechanism of Zn3B2O6(crystalline) with sodium ion via air-insulated ex-situ characterizations:Zn3B2O6(amorphous)+6Na++6e-? 3Zn(amorphous)+B2O3?3Na2O [18].According to the ex-situ characterization results,Zn3B2O6was reversibly transformed into amorphous Zn metal during the first discharge,and amorphous Zn3B2O6was formed in the subsequent charging process.Although some metal borate materials have been studied,there is no consensus on their sodium storage mechanism.Therefore,it is necessary to determine the sodium storage mechanism of metal borate and develop new metal borate materials.

    Fig.1.(a)XRD patterns of the FeBO3.(b)Crystal model of the FeBO3.(c)XPS survey spectrum of FeBO3.(d)Fe 2p spectrum of FeBO3.(e)B 1 s spectrum of FeBO3.(f)O 1s spectrum of FeBO3.

    In this work,a low-cost and environmentally friendly FeBO3was prepared and evaluated as anode for SIBs for the first time.Electrochemical test results show that the FeBO3electrode has an initial capacity of 684 mAh/g(at 0.4 A/g)and a reversible capacity of 328 mAh/g.Besides,the phase evolution of FeBO3during charging and discharging process was revealed by in-situ XRD analysis.And the changes in the chemical composition of FeBO3in the sodiation/desodiation process were monitored by an airinsulated ex-situ XPS.Based on the in-situ XRD and ex-situ analysis,a new metal borate sodium storage mechanism was proposed.

    As shown in Fig.1a,all peaks of the XRD pattern of the sintered product are well indexed with the hexagonal crystal FeBO3(JCPDS No.76-0701),which is composed of FeO6octahedrons and BO3plane triangles(Fig.1b),indicating that a pure phase material was synthesized.The chemical composition and element valence of the FeBO3material were measured by XPS.It can be proved from the survey spectrum that Fe,B and O elements exist in FeBO3material(Fig.1c).XPS spectrum for Fe 2p consists of two peaks at 711.4 eV and 725.3 eV,and a satellite peak at 719.8 eV,which is characteristic of Fe3+(Fig.1d) [24,25].As shown in Fig.1e,there is a strong peak at 191.4 eV,which is the characteristic peak of B 1s[26,27].As for the O 1s peak,it can be divided into two peaks at 530.5 and 531.5 eV,which are attributed to Fe-O and B-O of FeBO3,respectively (Fig.1f) [28,29].

    The morphology and detailed crystal structure information of FeBO3were explored through advanced FE-SEM and TEM.As shown in Figs.2a and b,the morphology of FeBO3is a particle with a size of 50-300 nm.Further,the size of FeBO3particles is confirmed by the TEM image (Fig.2c).In addition,the HRTEM image exhibits a 0.35 nm d-spacing,which is attributed to the(012)plane of FeBO3and agrees well with the XRD result(Fig.2d).Moreover,the elemental mapping images (Fig.2e) reveal the uniform distribution of Fe,B and O all over the single FeBO3particle.

    Fig.2.(a)SEM image of FeBO3.(b)Particle size distribution chart of FeBO3.(c)TEM image of FeBO3.(d) HRTEM image of FeBO3.(e) Mapping images of FeBO3.

    Fig.3.(a)The initial three cycle CV curves for the FeBO3 electrode at 0.1 mV/s.(b)GCD curves of the FeBO3 electrode (0.4 A/g).(c) Cycle performance and corresponding CE of the FeBO3 and FeBO3@C electrodes.(d) Rate performance of the FeBO3 and FeBO3@C electrodes.

    The CV curves for the FeBO3electrode are measured at scan rate of 0.1 mV/s between 0.01 V and 3.0 V(Fig.3a).A sharp and intense reduction peak appeared at 0.24 V during the first cathodic scan and then shifted to 0.62 V in the following scans.During the anodic polarization process,one peak is observed at 1.32 V,and no obvious difference is noticed in the subsequent cycles.The result indicates that the FeBO3undergoes irreversible reaction during the first cathodic process and then keeps stable in the following cycles.The initial discharge profile shows a plateau at about 0.4 V,and the plateau shifted to 0.76 V in the subsequent cycles (Fig.3b).This result is in agreement with the CV curves.In the case of cycle performance,the initial discharge/charge specific capacity of the FeBO3electrode is 684/382 mAh/g,while the capacity decays to 78/74 mAh/g in the 100thcycle (Fig.3c).The rate performance of the FeBO3electrode is shown in Fig.3d.The FeBO3electrode exhibits discharge capacities of 390,291,198 and 107 mAh/g at current densities of 0.1,0.4,0.8 and 1.6 A/g,respectively.The FeBO3has obvious capacity decay upon cycling.So it is necessary to improve its cycle stability.

    Carbon coating has proven to be very effective in improving cycle stability[30-32].Most metal borates are synthesized in air at a temperature of >800°C.Under these conditions,carbon would be oxidized to carbon dioxide and escape.If calcined in an inert gas,the pyrolysis of the carbon source would create a reducing atmosphere,which can change the valence state of the transition metal in the metal borate or even destroy the crystal structure.As a cheap and non-toxic raw material,oleic acid has a carboxyl group that can produce a strong bond with metal ions,so it is suitable as a carbon source for coating [33].In addition,transition metals can catalyze the graphitization rate of oleic carbon during the sintering process and oleic carbon with good conductivity can be obtained even at low temperatures [34].Therefore,oleic acid was used as carbon source for preparing carbon-coated FeBO3(FeBO3@C).The structure of the FeBO3@C material remains unchanged after heat treatment at 500°C(Fig.S1 in Supporting information).As shown in Fig.3c,the FeBO3@C shows a higher initial discharge/charge capacities of 719/426 mAh/g and a higher retained capacities of 332/331 mAh/g in the 100thcycle.In addition,the FeBO3@C displays discharge capacities of 425,349,321 and 272 mAh/g,at current densities of 0.1,0.4,0.8 and 1.6 A/g,respectively(Fig.3d).Compared with FeBO3,the cycle performance and rate performance of FeBO3@C composite have been significantly improved.

    In order to explore the reasons for the improved electrochemical performance,the EIS spectra of FeBO3and FeBO3@C electrodes were measured.As shown in Figs.S2a and b (Supporting information),the Nyquist diagrams consist of two semicircles and a diagonal line,which can be described as solid electrolyte interface layer resistance(RSEI),charge transfer resistance(Rct),and Weber impedance.In addition,the Rctand RSEIdata of FeBO3and FeBO3@C calculated using the equivalent circuit (Figs.S2a and b inset)are shown in Table S1(Supporting information).The values RSEIof FeBO3@C are lower than that of FeBO3owing to the less sodium-ion consumption during the formation of the SEI process,which explains the high coulomb efficiency and less irreversible capacity of FeBO3@C in the first cycle [35].Comparing the RSEIchange from 50 cycles to 100 cycles,it can be seen that the RSEIrate of the FeBO3electrode is much greater than that of FeBO3@C.This indicates that more SEI is continuously generated upon the FeBO3electrode during the sodiation/desodiation process,resulting in low capacity and poor stability.Simultaneously,the Rctvalue of the FeBO3electrode increased from 27.4 Ω to 23945.3 Ω,but the Rctvalue of the FeBO3@C electrode only increased from 17.3 Ω to 48.5 Ω.The results show that the carbon coating can reduce the charge transfer resistance.The improved cycle and rate performance of the FeBO3@C electrode composite can be ascribed to the enhancement in rapid charge transfer kinetics with the effect of C.

    In addition,the reason for the improvement of electrode stability was studied by observing the evolution of the surface morphology for FeBO3and FeBO3@C electrodes under different conditions.Both the fresh FeBO3and FeBO3@C electrodes have smooth surface morphology (Figs.S3a and d in Supporting information).However,after 50 cycles,the FeBO3electrode shows some cracks on the electrode surface (Fig.S3b in Supporting information),whereas the FeBO3@C electrode still maintains a crack-free surface (Fig.S3e in Supporting information).After continuous sodiation/desodiation for 100 cycles,the FeBO3@C electrode still shows a smooth surface,while the FeBO3electrode shows a lot of pits and cracks (Figs.S3c and f in Supporting information).The carbon coating with oleic acid as the carbon source can reduce the side reaction between the electrode and the electrolyte,thereby maintaining the stability of the electrode[36].

    In order to evaluate whether carbon coating affects the reaction kinetics of FeBO3anode materials,the galvanostatic intermittent titration technique (GITT) was used to determine the sodium ion diffusion coefficient (Fig.4a and Fig.S4a in Supporting information).The diffusion coefficient can be calculated by Eq.1[37,38]:

    Fig.4.(a)GITTcurve and(b)sodium ion diffusion coefficient of FeBO3 and FeBO3@C electrodes during the second discharge process.(c)CV curves for FeBO3 electrode at different sweep rates (0.2-0.6 mV/s).(d)The calculated b value of the cathodic and anodic peaks for FeBO3 electrode at 0.2-0.6 mV/s.(e)The green area represents the capacitance contribution at specific 0.6 mV/s of FeBO3 electrode.(f) The ratio of pseudocapacitive contribution for FeBO3 electrode at different sweep rates.

    Where τ,mB,MB,VM,S,ΔESand ΔEτ correspond to relaxation time,active material mass,molar mass,molar volume,electrode/electrolyte contact area,voltage change caused by pulse and constant current charging(discharging),respectively.As shown in Fig.4b and Fig.S4b(Supporting information),the calculated Na ion diffusion coefficient (DNa) of FeBO3@C is higher than that of the FeBO3electrode.The reason for this result may be that carbon coating reduces the repetitive formation of the SEI film that hinders ion diffusion [39].

    In addition,to explore the charge storage mechanism of FeBO3,pseudocapacitance analysis was performed through CV measurements at different sweep rates (0.2-0.6 mV/s) (Fig.4c).The peak current (i) and sweep rate (V) of the CV curves follow the Eq.2 below:

    where a,b are adjustable values[40].Generally,b=0.5 corresponds to a diffusion control process,b=0.5-1 is a common control process of diffusion and capacitance,and b=1 corresponds to a capacitance control process[41].The value of b can be obtained by Eq.3 below:

    where b is the slope.As shown in Fig.4d,the calculated b values for peak 1 and peak 2 are 0.556 and 0.671,which indicates that the kinetics of the charge storage process of the FeBO3electrode is controlled by diffusion and capacitance.In addition,the capacitance contribution at a given scan rate can be determined according to Eq.4:

    Fig.5.(a) The first GCD curve of FeBO3 electrode and corresponding in-situ XRD patterns.(b) The first GCD curve of FeBO3 electrode and corresponding contour maps.(c)the second discharge charge curve.(d,e)ex-situ XPS Fe 2p and B 1s spectra at the pristine state and 2nd cycle of FeBO3 electrode.

    where k1v corresponds to the capacitance control contribution,andcorresponds to the diffusion control contribution,respectively.The capacitive-controlled contribution was calculated to be 56%for FeBO3at 0.6 mV/s(Fig.4e).In addition,as shown in Fig.4f,the ratio of capacitance control gradually increases with the scan rate increases.The results show that the diffusion process of the FeBO3electrode has a great influence on the charge storage process.

    In-situ XRD test was performed to study the structural transformation and sodium ion storage mechanism of FeBO3during the sodiation/desodiation process.The obtained in-situ XRD patterns and corresponding intensity contour maps are shown in Figs.5a and b.For the pristine electrode,all peaks are indexed to FeBO3with the hexagonal structure,except for the background peaks (Al foil,Be and BeO).Details information of the structural evolutions during cycling were monitored via the shifts/changes of selected characteristic peaks of 26°,34°,47°and 55°(Fig.5a).The intensity of FeBO3peaks decreased gradually with the initial discharge process.When the cell was discharged to~0.46 V,FeBO3peaks were fully disappeared and no peak reappearance was observed in the following charge process.This indicates that the crystalline FeBO3transformed into an non-crystal (nc) phase during the first sodiation process.

    Since the FeBO3electrode changes to the amorphous phase after the first discharge,it is difficult to determine the phase evolution during the cycle by comparing XRD patterns.Therefore,an ex-situ XPS test was performed to study the sodium ion storage mechanism of FeBO3at fresh and different discharge/charge state in the second cycle.The results are shown in Figs.5c and d.In the pristine state,the Fe 2p peaks of the electrode appear at 711.5 and 725.3 eV with the two satellite peaks appear at 718.2 and 733.3 eV,which are characteristic peaks of Fe3+[24,25,42].When discharge to 0.01 V and then charge to 3 V,the characteristic peaks of Fe3+does not appear.However,the Fe 2p peaks of the electrode appear at 709 eV and 722.5 eV with the shaking satellite peaks appear at 713 eV and 729 eV,which indicates that the valence state of Fe is+2 instead of +3 (Fig.5d).During the second sodiation process,Fe2+partially transformed into Fe0,while the Fe0can completely return to Fe2+in the desodiation process,Fe2+exist at all charging and discharging states.The results show that the electrode experienced a partially reversible process in the second cycle.The fine spectrum of B 1 s was shown in Fig.5e.It can be seen that the peak of B moves in the second cycle and finally returns to the 3 V state,indicating that boron participates in the reaction and the process is reversible.Based on the above in-situ XRD and ex-situ XPS test results,it can be concluded that the possible sodium storage mechanism of FeBO3is:

    The first cycle:

    Discharge:

    Charge:

    In summary,FeBO3was prepared and evaluated as a SIBs anode for the first time.The FeBO3electrode showed a reversible capacity of 328 mAh/g at a current density of 0.4 A/g.The cycle stability and rate performance of FeBO3were effectively improved by carbon coating.The prepared FeBO3@C composite had a reversible capacity of 426 mAh/g (at 0.4 A/g) and an outstanding rate capability of 272 mAh/g(1.6 A/g).The results of EIS and GITT show that carbon coating can improve electrochemical performance by reducing the generation of side reactions,avoiding the excessive formation of SEI films and improving charge transfer kinetics.Furthermore,in-situ XRD and ex-situ XPS analysis demonstrate that FeBO3material transforms into an amorphous phase in the first sodiation/desodiation process.It was indicated that Fe3+is irreversibly transformed into Fe2+.During the second sodiation process,Fe2+partially transformed into Fe0,while the Fe0can completely return to Fe2+in the second desodiation process.The above results show that FeBO3is a new potential anode material for SIBs.

    Declaration of competing interest

    The authors report no declarations of interest.

    Acknowledgments

    This work was supported by the National Natural Science Foundation of China (Nos.21673136 and 22075173) and the Science and Technology Commission of Shanghai Municipality(No.19DZ2271100).

    Appendix A.Supplementary data

    Supplementary material related to this article can be found,in the online version,at doi:https://doi.org/10.1016/j.cclet.2021.03.014.

    久久草成人影院| 少妇裸体淫交视频免费看高清 | 男女之事视频高清在线观看| 久久久国产成人免费| 中文字幕最新亚洲高清| 无限看片的www在线观看| 男人舔女人的私密视频| 免费在线观看完整版高清| 18禁美女被吸乳视频| 日本撒尿小便嘘嘘汇集6| 精品国内亚洲2022精品成人 | 国产欧美日韩精品亚洲av| 国产aⅴ精品一区二区三区波| 无人区码免费观看不卡| 久久久国产成人免费| 视频区图区小说| 女人被狂操c到高潮| 中文字幕色久视频| 免费在线观看亚洲国产| 黄色片一级片一级黄色片| 99久久国产精品久久久| 极品人妻少妇av视频| 老司机午夜十八禁免费视频| 国产区一区二久久| 18禁裸乳无遮挡动漫免费视频| 婷婷丁香在线五月| 伦理电影免费视频| 欧美久久黑人一区二区| 窝窝影院91人妻| 亚洲午夜理论影院| 下体分泌物呈黄色| 精品国产亚洲在线| 欧美黑人精品巨大| 丝袜人妻中文字幕| 久久人人爽av亚洲精品天堂| 婷婷成人精品国产| 视频区欧美日本亚洲| 久久久国产成人免费| 高潮久久久久久久久久久不卡| 亚洲欧美激情在线| 99国产精品免费福利视频| 国产成人影院久久av| www.熟女人妻精品国产| 久久国产精品影院| 精品一品国产午夜福利视频| 久久久久国内视频| 人妻丰满熟妇av一区二区三区 | 亚洲熟妇熟女久久| 国产精品秋霞免费鲁丝片| 欧美最黄视频在线播放免费 | 国产日韩欧美亚洲二区| а√天堂www在线а√下载 | 女性生殖器流出的白浆| 夜夜夜夜夜久久久久| 91在线观看av| 国产xxxxx性猛交| 国产亚洲精品久久久久5区| 国产成人免费观看mmmm| 一边摸一边抽搐一进一出视频| 天天影视国产精品| 男女免费视频国产| av网站在线播放免费| 欧美精品啪啪一区二区三区| 国产又爽黄色视频| 女警被强在线播放| 国精品久久久久久国模美| 三上悠亚av全集在线观看| 国产亚洲欧美在线一区二区| 国产精品秋霞免费鲁丝片| netflix在线观看网站| 久久人人97超碰香蕉20202| 视频区欧美日本亚洲| 日本wwww免费看| 精品高清国产在线一区| 黑人巨大精品欧美一区二区蜜桃| 91av网站免费观看| 久久久国产一区二区| 午夜激情av网站| 女人高潮潮喷娇喘18禁视频| 久久国产精品男人的天堂亚洲| 窝窝影院91人妻| 国产精品电影一区二区三区 | 久热这里只有精品99| 99国产精品免费福利视频| videosex国产| 国产亚洲精品久久久久5区| 国产av又大| www.精华液| 久久久久国产精品人妻aⅴ院 | 美女高潮喷水抽搐中文字幕| 叶爱在线成人免费视频播放| 成人黄色视频免费在线看| 久久精品国产99精品国产亚洲性色 | 免费高清在线观看日韩| 国产伦人伦偷精品视频| 欧美色视频一区免费| 国产av又大| 99精品久久久久人妻精品| av片东京热男人的天堂| 国产区一区二久久| 国产精品久久电影中文字幕 | 91字幕亚洲| 成人亚洲精品一区在线观看| 校园春色视频在线观看| 国产亚洲av高清不卡| 免费在线观看完整版高清| 一区在线观看完整版| 中文字幕av电影在线播放| 久久久久久人人人人人| 51午夜福利影视在线观看| 熟女少妇亚洲综合色aaa.| av免费在线观看网站| 1024香蕉在线观看| 亚洲欧美激情综合另类| 一边摸一边抽搐一进一出视频| 热99久久久久精品小说推荐| 99精品久久久久人妻精品| 色播在线永久视频| 欧美黑人精品巨大| 18禁黄网站禁片午夜丰满| 亚洲专区字幕在线| 少妇被粗大的猛进出69影院| 操出白浆在线播放| 老熟妇乱子伦视频在线观看| 19禁男女啪啪无遮挡网站| 99热国产这里只有精品6| 亚洲成人手机| 一区二区日韩欧美中文字幕| 制服诱惑二区| 男男h啪啪无遮挡| 精品久久久久久,| 国产精品久久久久久人妻精品电影| 欧洲精品卡2卡3卡4卡5卡区| 人人妻人人添人人爽欧美一区卜| 亚洲av电影在线进入| 国产成人精品在线电影| 在线观看免费日韩欧美大片| 久久久国产成人免费| 自拍欧美九色日韩亚洲蝌蚪91| 看片在线看免费视频| 日本五十路高清| 国产成人精品久久二区二区91| www.熟女人妻精品国产| 国产无遮挡羞羞视频在线观看| 国产三级黄色录像| 精品午夜福利视频在线观看一区| 国产精品免费视频内射| 精品久久久久久久毛片微露脸| e午夜精品久久久久久久| 国产精品国产高清国产av | 校园春色视频在线观看| 日韩免费av在线播放| 叶爱在线成人免费视频播放| 国产在线精品亚洲第一网站| 涩涩av久久男人的天堂| 日韩大码丰满熟妇| 韩国av一区二区三区四区| 国产精品香港三级国产av潘金莲| 男人操女人黄网站| 免费日韩欧美在线观看| 国产欧美日韩精品亚洲av| 777米奇影视久久| 亚洲色图综合在线观看| 村上凉子中文字幕在线| 青草久久国产| 亚洲精品av麻豆狂野| 亚洲熟女毛片儿| 精品国产美女av久久久久小说| 人人妻人人澡人人爽人人夜夜| 亚洲成国产人片在线观看| 亚洲精品成人av观看孕妇| 欧美激情极品国产一区二区三区| www.精华液| 少妇粗大呻吟视频| 亚洲av第一区精品v没综合| 色尼玛亚洲综合影院| 成人av一区二区三区在线看| 精品福利永久在线观看| 真人做人爱边吃奶动态| 久久精品熟女亚洲av麻豆精品| 国产色视频综合| 精品久久久精品久久久| 日本精品一区二区三区蜜桃| 人妻久久中文字幕网| 动漫黄色视频在线观看| 亚洲国产精品一区二区三区在线| 亚洲欧美日韩高清在线视频| av欧美777| 别揉我奶头~嗯~啊~动态视频| 久久精品亚洲精品国产色婷小说| 美女视频免费永久观看网站| 亚洲av日韩在线播放| 91老司机精品| 国产高清激情床上av| 成年人黄色毛片网站| 一区二区三区国产精品乱码| 在线免费观看的www视频| 日本vs欧美在线观看视频| 水蜜桃什么品种好| 国产有黄有色有爽视频| 国精品久久久久久国模美| 国产xxxxx性猛交| 成人黄色视频免费在线看| 欧美性长视频在线观看| 日本精品一区二区三区蜜桃| 夫妻午夜视频| 18禁观看日本| 两性夫妻黄色片| 免费一级毛片在线播放高清视频 | 大型黄色视频在线免费观看| 男女下面插进去视频免费观看| 久久青草综合色| 国产一区在线观看成人免费| 日本vs欧美在线观看视频| 黑人巨大精品欧美一区二区mp4| 90打野战视频偷拍视频| 50天的宝宝边吃奶边哭怎么回事| 黄色女人牲交| 成年女人毛片免费观看观看9 | 日韩人妻精品一区2区三区| 亚洲 欧美一区二区三区| 国产精品香港三级国产av潘金莲| 女人精品久久久久毛片| 国产欧美日韩一区二区三区在线| 亚洲五月婷婷丁香| 国产乱人伦免费视频| 色94色欧美一区二区| av一本久久久久| 女人高潮潮喷娇喘18禁视频| 欧美成狂野欧美在线观看| 亚洲自偷自拍图片 自拍| 国产欧美日韩精品亚洲av| 欧美另类亚洲清纯唯美| 久久国产乱子伦精品免费另类| 中文欧美无线码| 一本大道久久a久久精品| 高清视频免费观看一区二区| 欧美中文综合在线视频| 日韩成人在线观看一区二区三区| 99精品久久久久人妻精品| 国产乱人伦免费视频| 午夜福利在线免费观看网站| 伦理电影免费视频| avwww免费| 精品无人区乱码1区二区| 一级黄色大片毛片| 在线看a的网站| 国产1区2区3区精品| 久久精品国产亚洲av香蕉五月 | 精品人妻在线不人妻| 无人区码免费观看不卡| 12—13女人毛片做爰片一| 交换朋友夫妻互换小说| 国产成+人综合+亚洲专区| 国产精品二区激情视频| 男女高潮啪啪啪动态图| 久久精品熟女亚洲av麻豆精品| 日本wwww免费看| 国产无遮挡羞羞视频在线观看| 天天操日日干夜夜撸| 亚洲午夜理论影院| 欧美日韩中文字幕国产精品一区二区三区 | 午夜福利一区二区在线看| 精品久久久久久电影网| 三上悠亚av全集在线观看| 在线观看午夜福利视频| 久久精品亚洲精品国产色婷小说| 久久国产精品大桥未久av| 精品第一国产精品| 国产不卡av网站在线观看| 亚洲精品乱久久久久久| 新久久久久国产一级毛片| tocl精华| 亚洲欧美激情在线| 久久精品成人免费网站| 曰老女人黄片| 18禁美女被吸乳视频| 亚洲中文日韩欧美视频| 欧美日本中文国产一区发布| 国产成人av激情在线播放| 日韩精品免费视频一区二区三区| 久久草成人影院| 嫩草影视91久久| 91国产中文字幕| 精品福利观看| 亚洲av欧美aⅴ国产| 欧美乱码精品一区二区三区| 90打野战视频偷拍视频| 一级毛片高清免费大全| 亚洲精品粉嫩美女一区| 亚洲 欧美一区二区三区| 宅男免费午夜| 国产精品一区二区在线不卡| 人妻 亚洲 视频| 久久久国产成人精品二区 | 国产免费现黄频在线看| 啦啦啦在线免费观看视频4| a级片在线免费高清观看视频| 777米奇影视久久| av中文乱码字幕在线| 亚洲精品自拍成人| 国产成人免费无遮挡视频| 日韩欧美国产一区二区入口| 精品免费久久久久久久清纯 | 他把我摸到了高潮在线观看| 中文欧美无线码| 国产精品电影一区二区三区 | 无人区码免费观看不卡| 啦啦啦视频在线资源免费观看| 巨乳人妻的诱惑在线观看| 亚洲一卡2卡3卡4卡5卡精品中文| 色婷婷久久久亚洲欧美| 国产不卡av网站在线观看| x7x7x7水蜜桃| 亚洲精品成人av观看孕妇| 90打野战视频偷拍视频| 精品第一国产精品| 午夜免费成人在线视频| 国产av精品麻豆| 多毛熟女@视频| 99久久人妻综合| 十八禁人妻一区二区| 91九色精品人成在线观看| av视频免费观看在线观看| 午夜精品久久久久久毛片777| 黑人操中国人逼视频| 国产精品国产av在线观看| 人人妻人人澡人人看| 成人精品一区二区免费| 成人国产一区最新在线观看| 天堂中文最新版在线下载| 高清在线国产一区| 亚洲国产欧美日韩在线播放| 国产亚洲欧美在线一区二区| 久久草成人影院| 久热爱精品视频在线9| 亚洲精品美女久久av网站| 精品国产一区二区久久| 久久久久国产精品人妻aⅴ院 | 熟女少妇亚洲综合色aaa.| 麻豆乱淫一区二区| 欧美激情极品国产一区二区三区| 国产精品美女特级片免费视频播放器 | 中出人妻视频一区二区| 国产成人欧美| 男人的好看免费观看在线视频 | 久久久精品免费免费高清| 久久久国产一区二区| 亚洲第一av免费看| 成熟少妇高潮喷水视频| 日韩精品免费视频一区二区三区| 夫妻午夜视频| 午夜福利一区二区在线看| 法律面前人人平等表现在哪些方面| 天天影视国产精品| 欧美丝袜亚洲另类 | 激情视频va一区二区三区| 中国美女看黄片| 亚洲精品一卡2卡三卡4卡5卡| 国产成人精品无人区| av不卡在线播放| 日韩欧美免费精品| 久久精品亚洲精品国产色婷小说| 久久精品国产亚洲av高清一级| 国产免费男女视频| 亚洲精品中文字幕一二三四区| 国产免费男女视频| 国产成人精品久久二区二区91| 女性被躁到高潮视频| 国产伦人伦偷精品视频| 欧美激情久久久久久爽电影 | 黄色视频,在线免费观看| 精品高清国产在线一区| 国产精品av久久久久免费| 精品国产国语对白av| 国产精品自产拍在线观看55亚洲 | 国产精品久久久久久人妻精品电影| 色老头精品视频在线观看| 亚洲av日韩在线播放| 久久久久国产精品人妻aⅴ院 | 国产一区二区三区视频了| 欧美日韩视频精品一区| 欧美日韩亚洲高清精品| 久久久精品国产亚洲av高清涩受| 精品亚洲成国产av| 国产亚洲欧美精品永久| 国产精品久久久人人做人人爽| 伦理电影免费视频| 国产精品二区激情视频| 91精品国产国语对白视频| 亚洲精品国产精品久久久不卡| 久久国产亚洲av麻豆专区| 久久久国产精品麻豆| 亚洲av成人一区二区三| 性色av乱码一区二区三区2| 欧美人与性动交α欧美软件| 亚洲av欧美aⅴ国产| 亚洲欧美精品综合一区二区三区| 十八禁人妻一区二区| 动漫黄色视频在线观看| 国产极品粉嫩免费观看在线| 国产野战对白在线观看| 自拍欧美九色日韩亚洲蝌蚪91| 久久精品熟女亚洲av麻豆精品| 多毛熟女@视频| 久久精品国产清高在天天线| 亚洲欧美日韩高清在线视频| 人人妻人人澡人人爽人人夜夜| 亚洲午夜理论影院| 亚洲av日韩在线播放| 老司机在亚洲福利影院| 欧美亚洲 丝袜 人妻 在线| 热re99久久精品国产66热6| 后天国语完整版免费观看| 每晚都被弄得嗷嗷叫到高潮| 在线观看免费午夜福利视频| 女人高潮潮喷娇喘18禁视频| 国产亚洲欧美精品永久| a级片在线免费高清观看视频| 亚洲欧美日韩高清在线视频| 一个人免费在线观看的高清视频| av不卡在线播放| 久久亚洲真实| 午夜两性在线视频| 免费在线观看黄色视频的| 日韩欧美国产一区二区入口| 91麻豆av在线| 国产蜜桃级精品一区二区三区 | 国产精品自产拍在线观看55亚洲 | 国产精品成人在线| 午夜精品国产一区二区电影| 少妇猛男粗大的猛烈进出视频| 久久香蕉国产精品| 国产亚洲精品一区二区www | 999久久久精品免费观看国产| 99精品久久久久人妻精品| 日韩欧美国产一区二区入口| 自拍欧美九色日韩亚洲蝌蚪91| av视频免费观看在线观看| 国产精品一区二区免费欧美| av有码第一页| 日韩免费高清中文字幕av| а√天堂www在线а√下载 | 精品无人区乱码1区二区| 欧美精品高潮呻吟av久久| 熟女少妇亚洲综合色aaa.| 亚洲精品一二三| 国产精品电影一区二区三区 | 一级a爱视频在线免费观看| 十八禁人妻一区二区| 午夜视频精品福利| 亚洲成国产人片在线观看| 久久精品aⅴ一区二区三区四区| 中文字幕最新亚洲高清| 黄色视频不卡| 国产在视频线精品| 国产成人精品无人区| 午夜两性在线视频| 精品国产一区二区久久| 午夜福利欧美成人| 国产成人av激情在线播放| 90打野战视频偷拍视频| 欧美激情久久久久久爽电影 | 国产成人精品久久二区二区91| 亚洲五月色婷婷综合| 国产av又大| 精品人妻1区二区| 亚洲一区高清亚洲精品| videos熟女内射| 色婷婷av一区二区三区视频| 国产精品综合久久久久久久免费 | 成人三级做爰电影| 自线自在国产av| 制服诱惑二区| 亚洲一区中文字幕在线| 极品教师在线免费播放| 亚洲av成人一区二区三| 中文字幕人妻丝袜一区二区| 国产男女内射视频| 亚洲美女黄片视频| 精品一区二区三区av网在线观看| 精品亚洲成国产av| 操出白浆在线播放| 12—13女人毛片做爰片一| 精品福利永久在线观看| 曰老女人黄片| 最近最新中文字幕大全免费视频| 亚洲va日本ⅴa欧美va伊人久久| 叶爱在线成人免费视频播放| 一级毛片高清免费大全| 精品久久久久久久毛片微露脸| 免费在线观看日本一区| 天天躁狠狠躁夜夜躁狠狠躁| e午夜精品久久久久久久| 久久精品国产a三级三级三级| 国产欧美日韩综合在线一区二区| 欧美日韩黄片免| 免费人成视频x8x8入口观看| 两性午夜刺激爽爽歪歪视频在线观看 | 国产成人一区二区三区免费视频网站| 一进一出抽搐gif免费好疼 | 最近最新中文字幕大全免费视频| 一本大道久久a久久精品| 国产av精品麻豆| 亚洲欧美一区二区三区久久| 色94色欧美一区二区| 少妇猛男粗大的猛烈进出视频| 大香蕉久久网| 亚洲色图综合在线观看| 成年人免费黄色播放视频| xxxhd国产人妻xxx| 亚洲精品美女久久av网站| 黄色怎么调成土黄色| 99精品欧美一区二区三区四区| 黄片播放在线免费| 一二三四社区在线视频社区8| 午夜福利影视在线免费观看| 黄片大片在线免费观看| 涩涩av久久男人的天堂| 91大片在线观看| 大陆偷拍与自拍| 亚洲精品成人av观看孕妇| 久久久精品国产亚洲av高清涩受| 人妻 亚洲 视频| 真人做人爱边吃奶动态| 久久久久久久久久久久大奶| 久久人人97超碰香蕉20202| 狂野欧美激情性xxxx| 一本一本久久a久久精品综合妖精| 天天躁日日躁夜夜躁夜夜| 一边摸一边抽搐一进一小说 | 国产成人啪精品午夜网站| 国产一区二区激情短视频| 美女国产高潮福利片在线看| 精品熟女少妇八av免费久了| 一a级毛片在线观看| 国产激情欧美一区二区| 免费人成视频x8x8入口观看| 亚洲专区中文字幕在线| 国产激情久久老熟女| 亚洲中文av在线| 水蜜桃什么品种好| 国产精品秋霞免费鲁丝片| av视频免费观看在线观看| 中文字幕高清在线视频| 在线观看午夜福利视频| 精品亚洲成a人片在线观看| 正在播放国产对白刺激| 俄罗斯特黄特色一大片| 在线观看www视频免费| 国产成人免费观看mmmm| 高清视频免费观看一区二区| 免费日韩欧美在线观看| 欧美日韩福利视频一区二区| 一区福利在线观看| 丝袜美足系列| 18在线观看网站| 涩涩av久久男人的天堂| 精品一区二区三区av网在线观看| 久久精品国产亚洲av高清一级| 成人av一区二区三区在线看| 法律面前人人平等表现在哪些方面| 亚洲av日韩精品久久久久久密| 美女国产高潮福利片在线看| 热99re8久久精品国产| 人妻 亚洲 视频| 黑人操中国人逼视频| 桃红色精品国产亚洲av| 精品亚洲成国产av| 黄色怎么调成土黄色| 69av精品久久久久久| 成人国产一区最新在线观看| 制服人妻中文乱码| 欧美激情高清一区二区三区| 免费在线观看影片大全网站| 国产成人啪精品午夜网站| 老司机影院毛片| 午夜两性在线视频| 精品久久蜜臀av无| 美女高潮到喷水免费观看| 水蜜桃什么品种好| 亚洲成a人片在线一区二区| 亚洲av美国av| 成年人午夜在线观看视频| 国产极品粉嫩免费观看在线| 国产欧美日韩一区二区三| 欧美乱码精品一区二区三区| 欧美日韩视频精品一区| 人人妻,人人澡人人爽秒播| 成熟少妇高潮喷水视频| 精品乱码久久久久久99久播| 50天的宝宝边吃奶边哭怎么回事| 亚洲中文av在线| 精品卡一卡二卡四卡免费| 99精国产麻豆久久婷婷| 午夜91福利影院| 亚洲av熟女| 精品一区二区三区视频在线观看免费 | 亚洲成人免费av在线播放| 欧美日韩亚洲国产一区二区在线观看 | 午夜福利乱码中文字幕| 国产在线精品亚洲第一网站| 90打野战视频偷拍视频| 欧美性长视频在线观看| 18禁裸乳无遮挡免费网站照片 | 老熟妇仑乱视频hdxx| 欧美丝袜亚洲另类 | 精品人妻熟女毛片av久久网站| 色综合婷婷激情| 精品免费久久久久久久清纯 | 又大又爽又粗| 国产精品久久久av美女十八| 国精品久久久久久国模美| 18在线观看网站| 精品一区二区三卡|