• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    2D/2D atomic double-layer WS2/Nb2O5 shell/core nanosheets with ultrafast interfacial charge transfer for boosting photocatalytic H2 evolution

    2021-12-29 02:27:22BoLinHoChnYoZhouXioLuoDnTinXioqingYnRuihunDunJunDiLixingKngAiminZhouGuiongYngYonghuiLiJiongZhouZhngLiuFuiLiu
    Chinese Chemical Letters 2021年10期

    Bo Lin,Ho Chn,Yo Zhou,Xio Luo,Dn Tin,Xioqing Yn,Ruihun Dun,Jun Di,Lixing Kng,Aimin Zhou,Guiong Yng,Yonghui Li,Jiong Zhou,Zhng Liu,*,Fui Liu,*

    a School of Optoelectronic Science and Engineering,University of Electronic Science and Technology of China,Chengdu 611731,China

    b Wuhan Second Ship Design and Research Institute,Wuhan 430200,China

    c School of Physical and Mathematical Sciences,Nanyang Technological University,Singapore 637371,Singapore

    d College of Materials Science and Engineering,Co-Innovation Center of Efficient Processing and Utilization of Forest Resources,Nanjing Forestry University,Nanjing 210037,China

    e XJTU-Oxford International Joint Laboratory for Catalysis,School of Chemical Engineering and Technology,Xi’an Jiaotong University,Xi’an 710049,China

    f School of Materials Science and Engineering,Nanyang Technological University,Singapore 639798,Singapore

    g Department of Physics and Tianjin Key Laboratory of Low Dimensional Materials Physics and Preparing Technology,School of Science,Tianjin University,Tianjin 300350,China

    h Key Lab of Advanced Optoelectronic Quantum Architecture and Measurement (Ministry of Education),Beijing Key Lab of Nanophotonics &Ultrafine Optoelectronic Systems,and School of Physics,Beijing Institute of Technology,Beijing 100081,China

    Keywords:2D/2D shell/core interface Atomic double-layer WS2 Nb2O5 nanosheet Charge transfer Photocatalytic H2 evolution

    ABSTRACT Low-efficiency charge transfer is a critical factor to limit the photocatalytic H2 evolution activity of semiconductor photocatalysts.The interface design is a promising approach to achieve high chargetransfer efficiency for photocatalysts.Herein,a new 2D/2D atomic double-layer WS2/Nb2O5 shell/core photocatalyst(DLWS/Nb2O5)is designed.The atom-resolved HAADF-STEM results unravel the presence of an unusual 2D/2D shell/core interface in DLWS/Nb2O5.Taking advantage of the advanced femtosecond-resolved ultrafast TAS spectra,the average lifetime of charge carriers for DLWS/Nb2O5(180.97 ps)is considerably shortened as compared to that of Nb2O5(230.50 ps),strongly indicating that the 2D/2D shell/core interface enables DLWS/Nb2O5 to achieve ultrafast charge transfer from Nb2O5 to atomic double-layer WS2,thus yielding a high photocatalytic H2 evolution rate of 237.6 μmol/h,up to 10.8 times higher than that of pure Nb2O5 nanosheet.This study will open a new window for the development of high-efficient photocatalytic systems through the interface design.

    Photocatalytic water splitting for hydrogen production is regarded as a promising pathway to convert solar-energy into fuels [1-3];however,recombination of charge carriers arriving from the random charge movement in semiconductor photocatalysts remains the critical limiting factor for the enhancement of photocatalytic quantum efficiency [4,5].One effective strategy for achieving high quantum efficiency is the introduction of cocatalysts to construct the cocatalyst/photocatalyst interface,which not only facilitates the separation and transfer of charges,but also provides plenty of active sites for H2O adsorption and activation [6-8].The common cocatalyst/photocatalyst interfaces include 0D-1D,0D-2D,1D-1D,1D-2D and 2D-2D.Among these coupled interfaces,2D-2D intimate interface has triggered keen interests due to its large contact area derived from the large lateral size of 2D/2D cocatalyst/photocatalyst[9,10].Generally,the larger contact area on the cocatalyst/photocatalyst interface can provide more sufficient charge transfer and trapping channels for the extraction of charges [11].From this perspective,in the design of cocatalyst/photocatalyst interface,if the contact area on 2D/2D cocatalyst/photocatalyst interface is maximized through covering the whole surface of 2D photocatalyst with 2D cocatalyst to construct 2D/2D shell/core cocatalyst/photocatalyst,it is most beneficial to the exciton dissociation and charge transfer.However,it is noted that the thicker shell of 2D cocatalyst in 2D/2D shell/core cocatalyst/photocatalyst is not expected,which may have an adverse effect on charge transfer to surface active sites of the cocatalyst and solar absorption of the photocatalyst core.Therefore,towards the development of high-activity photocatalytic system with high charge-transfer efficiency,reducing the thickness of 2D cocatalyst shell is always the ultimate goal for the design of 2D/2D shell/core cocatalyst/photocatalyst.It would be ideal if the thickness of 2D cocatalyst in 2D/2D shell/core cocatalyst/photocatalyst could be reduced to the atomic-thin level.This is because the 2D atomic-thin cocatalysts have numerous unique advantages,such as high surface area,fully exposed active sites,and shorter diffusion paths of charges,which are highly conducive to the charge transfer [12-14].Hence,the construction of 2D/2D atomic-thin cocatalyst/photocatalyst shell/core system is precisely the feasible approach for achieving high quantum efficiency of photocatalytic H2evolution.

    Recently,transition metal dichalcogenides (such as WS2) have attracted wide attention due to their excellent optical properties,tailorable electronic structure,low cost and high aspect ratio[15-17].More importantly,atomic-layer WS2has a typical 2D layered structure with more exposed edges and surfaces,highly active basal-plane sites [18,19],which enable it to be an ideal cocatalyst for constructing 2D/2D atomic-thin cocatalyst/photocatalyst shell/core system.Herein,we construct novel 2D/2D atomic doublelayer WS2/Nb2O5shell/core nanosheet(DLWS/Nb2O5)using a new in-situ vapor-phase (ISVP) growth method.Owing to the welldesigned 2D/2D shell/core interface,the charge transfer is accelerated significantly,thus yielding a high photocatalytic H2evolution rate of 237.6 μmol/h for DLWS/Nb2O5,up to 10.8 times by contrast with that of Nb2O5nanosheet.

    Fig.1.(a) Schematic of the formation of DLWS/Nb2O5.(b,c) TEM and (d) HRTEM images of DLWS/Nb2O5.(e) HAADF-STEM and (f,g) atom-resolved HAADF-STEM images of DLWS/Nb2O5.(h) HAADF-STEM and corresponding mapping images of Nb,O,W and S.

    DLWS/Nb2O5was synthesized using a novel ISVP growth method.As displayed in Fig.1a,Nb2O5nanosheet was synthesized via a template-assisted calcination method.After that,the synthetic Nb2O5nanosheet was dispersed into an aqueous solution containing ammonium metatungstate hydrate (shorthand for AMT),where AMT molecules absorbed on the surface of Nb2O5nanosheet to obtain AMT/Nb2O5.Subsequently,the AMT/Nb2O5and sulfur powder were synchronously heated to 700°C in a mixed atmosphere (20% H2+80% Ar).Under high temperature,sulfur vapor reacted with H2to form H2S,which can reduce AMT molecules to generate WS2seed crystals.Such seed crystals gradually grew into double-layer WS2nanosheet that covered the whole surface of Nb2O5nanosheet to obtain DLWS/Nb2O5.The unique structure of DLWS/Nb2O5was investigated by transmission electron microscopy (TEM) and high-angle annular dark-field scanning transmission electron microscopy (HAADF-STEM).As shown in Figs.1b and e,numerous well-dispersed nanosheets with a size of~50 nm are found accompanied with abundant mesopores in DLWS/Nb2O5.Fig.1c further indicates that Nb2O5nanosheets are completely surrounded by atomic few-layer WS2nanosheets to form the unique 2D/2D shell/core structure,and the WS2shell has an average layer-number of double-layer.The highresolution TEM (HRTEM) is used to reveal the interface details of 2D/2D double-layer WS2/Nb2O5shell/core nanosheet.As shown in Fig.1d,the adjacent lattice-fringe spacings of 0.314 and 0.62 nm are attributed to the (180) reflection plane of Nb2O5and the interlayer spacing of WS2,respectively [20],indicating the presence of 2D/2D shell/core interface.To disclose the fine structure of DLWS/Nb2O5,atomic-resolution HAADF-STEM is performed.As exhibited in Figs.1f and g,the 2D/2D shell/core interface between atomic double-layer WS2and Nb2O5nanosheet can be easily observed,which is highly conducive to the charge transfer from Nb2O5to WS2.Elemental mappings(Fig.1h)and EDX image (Fig.S1 in Supporting information) well support the construction of 2D/2D shell/core interface in the double-layer WS2/Nb2O5photocatalyst.

    Fig.2.(a)XRD patterns of Nb2O5 and DLWS/Nb2O5.XPS spectra of DLWS/Nb2O5 in the regions of (b) S 2p,(c) W 4f,(d) Nb 3d and O 1s.

    The X-ray diffraction (XRD) patterns of Nb2O5nanosheet(shorthand for Nb2O5) and DLWS/Nb2O5are shown in Fig.2a.Concerning Nb2O5,all XRD diffraction peaks are assigned to the orthorhombic crystal structure of Nb2O5(JCPDS No.30-0873).For the XRD patterns of DLWS/Nb2O5,three minor peaks at 14.2°,32.9°and 33.7°correspond to the(002),(100)and(101)crystal planes of hexagonal WS2,respectively (JCPDS No.08-0237),and all other XRD peaks belong to the orthorhombic crystal structure of Nb2O5,strongly indicating the successful construction of WS2/Nb2O5heterojunctions.To further investigate the element composition and surface chemical state of DLWS/Nb2O5,the X-ray photoelectron spectroscopy(XPS)was carried out.As displayed in Fig.2b,the peaks in the S 2p region at 162.7 and 163.9 eV are ascribed to S 2p3/2and S 2p1/2regarding S2-in WS2,respectively [21,22].The peaks in the W 4f region(Fig.2c)at 33.0 and 35.3 eV are attributed to W 4f7/2and W 4f5/2regarding W4+in WS2,respectively,and the peaks at 36.5 and 38.2 eV are probably due to the presence of W(VI)originating from W oxides [21,23-25].In Fig.2d,the peaks in the Nb 3d region at 206.8 and 209.6 eV belong to Nb 3d5/2and Nb 3d3/2in Nb2O5,respectively,while the peaks in the O 1s region at 529.9 and 531.5 eV are due to the Nb-O bond in Nb2O5and oxygen from the precursor of ammonium metatungstate,respectively [26,27].The XPS results presented above strongly suggest the formation of double-layer WS2/Nb2O5shell/core nanosheet with the unique 2D/2D shell/core interface,which is beneficial to the acceleration of charge transfer and the improvement of photocatalytic H2evolution activity.

    Time-dependent photocatalytic H2evolution experiments of diverse samples were performed with triethanolamine as the holescavenger under simulated solar-light irradiation(λ ≥300 nm).As displayed in Fig.3a,Nb2O5exhibits a low photocatalytic hydrogen evolution rate (HER) of 21.9 μmol/h,indicative of its inferior charge-transfer capacity.With the construction of 2D/2D doublelayer WS2/Nb2O5shell/core nanosheet,DLWS/Nb2O5shows a dramatically enhanced HER of 237.6 μmol/h,up to 10.8 times by contrast with that of Nb2O5,even far exceeding lots of the state-ofthe-art photocatalysts for H2evolution[28-31],strongly suggesting the advantages of 2D/2D shell/core interface.Additionally,different 2D/2D few-atomic-layer WS2/Nb2O5shell/core nanosheets were controllably synthesized to investigate the relationship between the average-layer-number of WS2shell and HER.As shown in Fig.3b and Fig.S2 (Supporting information),in comparison with monolayer WS2/Nb2O5shell/core nanosheet(MLWS/Nb2O5,113.4 μmol/h) and three-layer WS2/Nb2O5shell/core nanosheet (TLWS/Nb2O5,153.3 μmol/h),DLWS/Nb2O5displays the highest HER of 237.6 μmol/h,indicating that the doubleatomic-layer is the optimal average-layer-number of WS2shell for the design of WS2/Nb2O5shell/core nanosheet with high photocatalytic H2evolution activity.The wavelength-dependent apparent quantum efficiency (AQE) for H2evolution over DLWS/Nb2O5was performed.As exhibited in Fig.3c,the AQE of DLWS/Nb2O5was estimated to be 4.17% at 365 nm,outperforming many wideband-gap photocatalysts in previous reports[32-35].The stability of H2evolution for DLWS/Nb2O5was investigated.As displayed in Fig.3d,DLWS/Nb2O5shows a negligible photoactivity loss after 5 cycling tests,indicative of its excellent stability.This result is evidenced by the HAADF-STEM and TEM images of the DLWS/Nb2O5sample after 5 cycling tests (Fig.S3 in Supporting information),where the recycled DLWS/Nb2O5remains the relatively intact structure of 2D/2D shell/core nanosheet similarly to the fresh DLWS/Nb2O5in Figs.1 b-e.Moreover,the elemental mappings of recycled DLWS/Nb2O5exhibit the uniform spatial distribution of the elements of Nb,O,S and W(Fig.S4 in Supporting information),indicating the presence of 2D/2D double-layer WS2/Nb2O5shell/core nanosheet,thereby evidencing excellent stability of DLWS/Nb2O5.Additionally,the XRD patterns of fresh DLWS/Nb2O5and recycled DLWS/Nb2O5display no obvious differences(Fig.S5 in Supporting information),strongly supporting prominent stability of DLWS/Nb2O5.

    Fig.3.(a)Time-dependent photocatalytic H2 evolution of Nb2O5 and DLWS/Nb2O5 under simulated solar-light irradiation (λ ≥300 nm).(b) Photocatalytic H2 evolution rate over MLWS/Nb2O5,DLWS/Nb2O5,and TLWS/Nb2O5 under simulated solar-light irradiation (λ ≥300 nm).(c) Wavelength-dependent AQE for photocatalytic H2 evolution over DLWS/Nb2O5.(d) Cycling H2 evolution tests of DLWS/Nb2O5 under simulated solar-light irradiation (λ ≥300 nm).

    To unravel the dominating factors related to the excellent photocatalytic H2evolution activity of double-layer WS2/Nb2O5photocatalyst with the well-designed 2D/2D shell/core interface,diverse properties of DLWS/Nb2O5including optics,texture and photoelectricity were investigated.In the UV-vis diffuse reflectance spectra (DRS,Fig.4a),Nb2O5shows an absorption in ultraviolet regionwith a calculated band-gap energy(Eg)of 3.15 eV.With the construction of 2D/2D shell/core interface,DLWS/Nb2O5displays dramatically enhanced optical absorption both in ultraviolet and visible regions due to the effect of WS2shell[36,37],as evidenced by the incident photon-to-current conversion efficiency (IPCE) values of Nb2O5and DLWS/Nb2O5in Fig.S6(Supporting information).The ultraviolet photoelectron spectroscopy(UPS)was performed to investigate the energy band structure of Nb2O5.As shown in Fig.4b,based on the UPS curve with an excitation energy of 21.22 eV,the valence band energy (Ev) and conduction band energy(Ec)concerning the vacuum level of Nb2O5are calculated to be -6.83 eV and-3.68 eV,respectively.According to the reference standard that 0 V versus normal hydrogen electrode (NHE) equals -4.44 eV versus the vacuum level,the Evand Ecof Nb2O5regarding the NHE are equal to 2.39 V and -0.76 V,respectively.Additionally,to acquire the texture information of Nb2O5and DLWS/Nb2O5,the N2adsorption-desorption isotherms were measured.As displayed in Fig.4c,Nb2O5and DLWS/Nb2O5show the IV adsorption-desorption isotherm of N2with the H3-type hysteresis loop,indicating the presence of mesopores.This result is well evidenced by the pore-size distributions in Fig.4d,where both Nb2O5and DLWS/Nb2O5exhibit a pore-size distribution in the region of 2-70 nm,suggesting the coexistence of massive mesopores and a small amount of macropores.The specific surface area and pore volume of Nb2O5and DLWS/Nb2O5are listed in Table S1 (Supporting information).As shown in Table S1,DLWS/Nb2O5exhibits increased specific surface area(14.48 m2/g) and pore volume (0.11 cm3/g) in comparison with those of Nb2O5(6.65 m2/g and 0.03 cm3/g,respectively),which is due to the building of 2D/2D shell/core interface.

    Fig.4.(a) UV-vis diffuse reflectance spectra of Nb2O5 and DLWS/Nb2O5.(b) UPS spectra of Nb2O5.(c) Nitrogen adsorption-desorption isotherms and (d) pore-size distributions of Nb2O5 and DLWS/Nb2O5.

    In order to investigate the separation and transfer nature of charges,transient photocurrent responses of Nb2O5and DLWS/Nb2O5were detected.As displayed in Fig.5a,DLWS/Nb2O5displays a high photocurrent density of 5.19 μA/cm2,up to 6.33 times higher than that of Nb2O5(0.82 μA/cm2),suggestive of significantly accelerated charge separation and transfer [38-41].This result is evidenced by electrochemical impedance spectroscopy(EIS,Fig.5b) and photoluminescence (PL) spectra(Fig.5c),where DLWS/Nb2O5displays a smaller radius of Nyquist circle and a far lower emission peak intensity compared to Nb2O5,indicating the advantages of 2D/2D shell/core interface on accelerating charge migration [42-45].Additionally,femtosecond-resolved transient absorption spectroscopy (TAS) is powerful technique for probing the charge separation and transfer.Figs.5d and e exhibit the ultrafast TAS spectra of Nb2O5and DLWS/Nb2O5at select time points from 1 ps to 1000 ps.These spectra display broad negative induced absorption features from 360 nm to 630 nm,which are ascribed to the effect of overlapping electron and hole absorption in Nb2O5[46].The TAS kinetics at 380-410 nm is used to probe the lifetime of charge carriers(Fig.5f).The relative lifetimes of charge carriers were obtained by fitting the kinetics with threeexponential decay functions.As shown in Table S2 (Supporting information),the average lifetime of charge carriers for DLWS/Nb2O5(180.97 ps) is considerably shortened in comparison with that of Nb2O5(230.50 ps),indicating fast charge transfer from Nb2O5to WS2via the well-designed 2D/2D shell/core interface[47-50],which is consistent with the time-resolved fluorescence decay spectra results (Fig.S7 and Table S3 in Supporting information).

    According to all results presented above,an underlying mechanism regarding the charge transfer in 2D/2D atomic double-layer WS2/Nb2O5shell/core nanosheet for photocatalytic H2evolution has been proposed.According to the UV-vis DRS and UPS results,Nb2O5nanosheet can be excited to generate the photoexcited electron-hole pairs under simulated solar-light irradiation (λ ≥300 nm).The photoexcited electrons of Nb2O5are rapidly injected into its conduction band (CB),while the photoexcited holes remained in its valence band (VB) are consumed by the hole-scavenger of triethanolamine.Owing to the presence of unusual 2D/2D shell/core interface with the large contact area,the photoexcited electrons on the CB of Nb2O5can fast transfer to the atomic double-layer WS2shell in time,thus boosting the charge separation and migration efficiency significantly (Fig.5).Moreover,the unique atomic double-layer WS2cocatalyst endows DLWS/Nb2O5with the increased specific surface area to provide massive exposed active edges and sites(Fig.4c and Table S1),where the electrons can reduce the H+in aqueous solution to generate H2.The synergetic effect of significantly accelerated charge transfer and enhanced specific surface area leads to high photocatalytic H2evolution activity of DLWS/Nb2O5.

    In summary,2D/2D atomic double-layer WS2/Nb2O5shell/core nanosheet was successfully synthesized using a new in-situ vaporphase growth method.Through the results of atom-resolved HAADF-STEM and HRTEM images,we reveal the presence of unique 2D/2D shell/core interface in DLWS/Nb2O5.According to the femtosecond-resolved ultrafast TAS spectra,we unravel fast charge transfer from Nb2O5to atomic double-layer WS2,which leads to a high photocatalytic H2generation rate of 237.6 μmol/h for DLWS/Nb2O5,up to 10.8 times by contrast with that of Nb2O5nanosheet.

    Fig.5.(a)Transient photocurrent responses of Nb2O5 and DLWS/Nb2O5.(b)EIS Nyquist plots of Nb2O5 and DLWS/Nb2O5.The inset in(b)displays the impedance equivalent circuit.(c)PL spectra of Nb2O5 and DLWS/Nb2O5.Femtosecond-resolved TAS spectra of(d)Nb2O5 and(e)DLWS/Nb2O5.(f)TAS kinetics probed at 380-410 nm for Nb2O5 and DLWS/Nb2O5.

    Declaration of competing interest

    The authors declare no conflict of interest.

    Acknowledgements

    This work was funded by the China Postdoctoral Science Foundation(pre-station,No.2019TQ0050),Applied Basic Research Program of Sichuan Province (No.2020YJ0068),the China Postdoctoral Science Foundation (No.2020M673186),National Natural Science Foundation of China (No.22002014),National Natural Science Foundation of China (No.11804248),Natural Science Foundation of Tianjin(No.18JCQNJC03200).Thanks for the technical help from Sichuan Province Key Laboratory of Display Science and Technology,State key Laboratory of Electronic Thin Films and Integrated Devices.This work is also supported by MOE Tier 1 RG4/17 and MOE Tier 2 MOE2019-T2-2-105.Dr.Dan Tian gratefully acknowledged the financial support from the National Natural Science Foundation of China (No.21971113).

    Appendix A.Supplementary data

    Supplementary material related to this article can be found,in the online version,at doi:https://doi.org/10.1016/j.cclet.2021.03.057.

    国产精品人妻久久久久久| 国产欧美日韩一区二区三| 成人精品一区二区免费| 成人性生交大片免费视频hd| 宅男免费午夜| 亚洲第一区二区三区不卡| 免费人成在线观看视频色| av女优亚洲男人天堂| 久久久精品欧美日韩精品| 97人妻精品一区二区三区麻豆| 国产精品乱码一区二三区的特点| 色综合欧美亚洲国产小说| 欧美在线一区亚洲| www.999成人在线观看| 丰满的人妻完整版| 亚洲一区二区三区色噜噜| 欧美绝顶高潮抽搐喷水| 波多野结衣巨乳人妻| 亚洲天堂国产精品一区在线| 老司机午夜福利在线观看视频| 久久久色成人| 欧美成人一区二区免费高清观看| 麻豆国产97在线/欧美| 自拍偷自拍亚洲精品老妇| 九九在线视频观看精品| 成人精品一区二区免费| 日韩 亚洲 欧美在线| 亚洲最大成人av| 精品人妻视频免费看| 国内精品美女久久久久久| 赤兔流量卡办理| 丁香六月欧美| 男女那种视频在线观看| 精品人妻熟女av久视频| 97热精品久久久久久| 男女床上黄色一级片免费看| 亚洲av成人av| 免费高清视频大片| 美女大奶头视频| 国产精品久久久久久亚洲av鲁大| 成年女人看的毛片在线观看| 精品一区二区三区av网在线观看| 无人区码免费观看不卡| 成人午夜高清在线视频| 国产精品免费一区二区三区在线| 好男人电影高清在线观看| 婷婷亚洲欧美| 日日夜夜操网爽| 色视频www国产| 色精品久久人妻99蜜桃| 久久精品综合一区二区三区| 中文字幕人成人乱码亚洲影| 国产免费一级a男人的天堂| 国产精品亚洲美女久久久| 国产大屁股一区二区在线视频| x7x7x7水蜜桃| 色播亚洲综合网| 长腿黑丝高跟| 美女大奶头视频| 两个人的视频大全免费| 色噜噜av男人的天堂激情| 久久久久久久久久黄片| 久久精品影院6| 成人三级黄色视频| 色哟哟哟哟哟哟| 欧美日本视频| 天天躁日日操中文字幕| 91麻豆精品激情在线观看国产| 一a级毛片在线观看| av在线观看视频网站免费| 日韩欧美国产一区二区入口| 国产精品1区2区在线观看.| 国产精品电影一区二区三区| 国内久久婷婷六月综合欲色啪| 国产精品久久久久久久久免 | 可以在线观看的亚洲视频| 最近中文字幕高清免费大全6 | 色5月婷婷丁香| 免费在线观看日本一区| 国内精品久久久久精免费| 久久伊人香网站| 丰满乱子伦码专区| 深夜精品福利| 3wmmmm亚洲av在线观看| 无遮挡黄片免费观看| 亚洲精品亚洲一区二区| 亚洲自拍偷在线| 色哟哟哟哟哟哟| 亚洲av五月六月丁香网| 窝窝影院91人妻| 丰满人妻熟妇乱又伦精品不卡| 老司机午夜十八禁免费视频| 亚洲最大成人手机在线| 免费人成视频x8x8入口观看| 午夜福利免费观看在线| 精品乱码久久久久久99久播| 美女大奶头视频| 成人国产一区最新在线观看| 国产老妇女一区| 99国产精品一区二区三区| 成人欧美大片| 亚洲天堂国产精品一区在线| 亚洲欧美精品综合久久99| 熟女人妻精品中文字幕| 午夜福利在线观看吧| 免费观看人在逋| 哪里可以看免费的av片| 国产精品久久久久久精品电影| 亚洲自拍偷在线| 97碰自拍视频| 欧美日韩黄片免| 国产免费一级a男人的天堂| 日日摸夜夜添夜夜添av毛片 | 欧美色视频一区免费| 18禁裸乳无遮挡免费网站照片| 最后的刺客免费高清国语| 青草久久国产| 毛片一级片免费看久久久久 | 亚洲色图av天堂| 欧美日韩黄片免| netflix在线观看网站| 91麻豆av在线| 午夜激情欧美在线| 免费在线观看成人毛片| 最近中文字幕高清免费大全6 | 午夜福利在线在线| 两个人的视频大全免费| 国产高清视频在线播放一区| 国内少妇人妻偷人精品xxx网站| 亚洲第一区二区三区不卡| 欧美日韩黄片免| 91午夜精品亚洲一区二区三区 | 伊人久久精品亚洲午夜| 看免费av毛片| 高潮久久久久久久久久久不卡| 日韩欧美国产在线观看| 丰满人妻熟妇乱又伦精品不卡| 一卡2卡三卡四卡精品乱码亚洲| 国产精品亚洲av一区麻豆| 简卡轻食公司| 精品欧美国产一区二区三| av女优亚洲男人天堂| 亚洲第一欧美日韩一区二区三区| 韩国av一区二区三区四区| 国产熟女xx| 小蜜桃在线观看免费完整版高清| 看免费av毛片| 国内精品久久久久精免费| 久久久久久久亚洲中文字幕 | 99国产极品粉嫩在线观看| 91字幕亚洲| 91字幕亚洲| 又粗又爽又猛毛片免费看| 国产高潮美女av| 久久久久久九九精品二区国产| 午夜福利在线观看免费完整高清在 | 波多野结衣高清作品| 美女高潮喷水抽搐中文字幕| 亚洲综合色惰| 中文字幕人成人乱码亚洲影| av欧美777| 黄色女人牲交| 美女免费视频网站| 日本与韩国留学比较| 午夜福利欧美成人| 97超视频在线观看视频| 变态另类丝袜制服| 精品免费久久久久久久清纯| 51午夜福利影视在线观看| 久久久久亚洲av毛片大全| 午夜福利在线在线| 日本与韩国留学比较| 精品国产三级普通话版| 一区福利在线观看| 热99在线观看视频| avwww免费| 国产欧美日韩一区二区三| 美女黄网站色视频| 哪里可以看免费的av片| 俄罗斯特黄特色一大片| 欧美激情在线99| 亚洲av第一区精品v没综合| 国产精品女同一区二区软件 | 亚洲欧美日韩无卡精品| 一进一出抽搐gif免费好疼| 亚洲精品成人久久久久久| 97人妻精品一区二区三区麻豆| 日韩欧美精品v在线| 亚洲精品日韩av片在线观看| 国产精品影院久久| 国内少妇人妻偷人精品xxx网站| 又粗又爽又猛毛片免费看| 久久久久亚洲av毛片大全| 亚洲自拍偷在线| 在线观看一区二区三区| 久久这里只有精品中国| 久久久成人免费电影| 亚洲av免费在线观看| 亚洲熟妇熟女久久| 琪琪午夜伦伦电影理论片6080| 嫩草影院精品99| 一夜夜www| 制服丝袜大香蕉在线| 我要搜黄色片| 91久久精品国产一区二区成人| 欧美成人一区二区免费高清观看| 嫁个100分男人电影在线观看| 国产成人aa在线观看| 嫁个100分男人电影在线观看| 一个人观看的视频www高清免费观看| 18禁在线播放成人免费| 亚洲国产欧美人成| 久久久成人免费电影| 午夜影院日韩av| 久久精品国产清高在天天线| 三级国产精品欧美在线观看| 欧美激情国产日韩精品一区| 在线十欧美十亚洲十日本专区| 变态另类成人亚洲欧美熟女| 亚洲精品在线美女| 身体一侧抽搐| 91字幕亚洲| 99久久久亚洲精品蜜臀av| 欧美区成人在线视频| 国产精品亚洲一级av第二区| 在线a可以看的网站| 国产精品久久久久久久电影| 91字幕亚洲| 精品国产三级普通话版| 少妇的逼好多水| 哪里可以看免费的av片| 亚洲国产精品成人综合色| 国产精华一区二区三区| 久久精品国产99精品国产亚洲性色| 直男gayav资源| 别揉我奶头 嗯啊视频| 久久国产精品人妻蜜桃| 免费在线观看日本一区| 女同久久另类99精品国产91| 日韩中字成人| or卡值多少钱| 色哟哟·www| 麻豆国产97在线/欧美| 淫秽高清视频在线观看| 成人午夜高清在线视频| 久久久久九九精品影院| 精品日产1卡2卡| 日日夜夜操网爽| 亚洲va日本ⅴa欧美va伊人久久| 亚洲成人免费电影在线观看| 午夜福利高清视频| 高清日韩中文字幕在线| 国产精品爽爽va在线观看网站| 久久久久久久精品吃奶| 一夜夜www| 欧美日韩乱码在线| 欧美成人a在线观看| 欧美色欧美亚洲另类二区| 老女人水多毛片| 美女被艹到高潮喷水动态| 欧美潮喷喷水| 免费看光身美女| 成年女人看的毛片在线观看| 欧美日本亚洲视频在线播放| av欧美777| 欧美一区二区亚洲| 国产人妻一区二区三区在| 精品日产1卡2卡| 怎么达到女性高潮| 黄色配什么色好看| 免费看a级黄色片| avwww免费| 婷婷丁香在线五月| 中文字幕av在线有码专区| 国产精品亚洲一级av第二区| 日韩欧美国产一区二区入口| 久久精品国产自在天天线| 日本精品一区二区三区蜜桃| 嫩草影院精品99| 亚洲精品久久国产高清桃花| 久9热在线精品视频| 婷婷丁香在线五月| 99热这里只有是精品50| 9191精品国产免费久久| 麻豆成人av在线观看| 人人妻,人人澡人人爽秒播| 午夜a级毛片| 露出奶头的视频| 97热精品久久久久久| 亚洲人成伊人成综合网2020| 级片在线观看| 赤兔流量卡办理| 一级黄色大片毛片| 此物有八面人人有两片| 久久久成人免费电影| 舔av片在线| 日本一二三区视频观看| 国产成人欧美在线观看| 十八禁国产超污无遮挡网站| 欧美最新免费一区二区三区 | 少妇人妻一区二区三区视频| 亚洲av.av天堂| 99国产精品一区二区蜜桃av| 又爽又黄无遮挡网站| 看免费av毛片| 国产免费一级a男人的天堂| 精品一区二区免费观看| 五月玫瑰六月丁香| а√天堂www在线а√下载| 精品一区二区三区视频在线| 99久久成人亚洲精品观看| 欧美日韩瑟瑟在线播放| 嫩草影视91久久| 精品久久久久久久久亚洲 | 婷婷色综合大香蕉| 哪里可以看免费的av片| 国产精品久久视频播放| 99热这里只有精品一区| 久久久久久久久久成人| 亚洲真实伦在线观看| 在线观看一区二区三区| 精品久久国产蜜桃| 久久久久国内视频| 成年女人毛片免费观看观看9| 国产在线男女| 99久久久亚洲精品蜜臀av| 高清日韩中文字幕在线| 搡老妇女老女人老熟妇| 欧美色视频一区免费| 日本三级黄在线观看| 国产伦在线观看视频一区| 我的老师免费观看完整版| 国产高清激情床上av| 亚洲av电影在线进入| www.www免费av| 如何舔出高潮| 在线观看舔阴道视频| 悠悠久久av| 日韩欧美三级三区| 91久久精品国产一区二区成人| 两人在一起打扑克的视频| 男女那种视频在线观看| 久久久久国产精品人妻aⅴ院| 91久久精品电影网| 国产精品久久久久久精品电影| 一区二区三区四区激情视频 | 一区二区三区四区激情视频 | 国产精品久久久久久久久免 | 深夜精品福利| 97超级碰碰碰精品色视频在线观看| 国产成+人综合+亚洲专区| 日本黄色视频三级网站网址| 一a级毛片在线观看| 欧美一区二区亚洲| bbb黄色大片| 99精品在免费线老司机午夜| 亚洲中文字幕日韩| 国产伦精品一区二区三区视频9| 制服丝袜大香蕉在线| 亚洲欧美激情综合另类| 日日摸夜夜添夜夜添小说| 亚洲第一区二区三区不卡| 久久99热这里只有精品18| 69人妻影院| 国产v大片淫在线免费观看| 国产精品国产高清国产av| 午夜福利18| 深爱激情五月婷婷| 久久精品国产99精品国产亚洲性色| 亚洲一区二区三区不卡视频| 午夜福利18| 日韩av在线大香蕉| 尤物成人国产欧美一区二区三区| 欧美三级亚洲精品| 五月玫瑰六月丁香| 久久久久国内视频| 欧洲精品卡2卡3卡4卡5卡区| 国产精品国产高清国产av| 亚洲片人在线观看| 日本 欧美在线| 99热这里只有是精品50| 国产精品久久久久久久电影| 日韩欧美三级三区| 日本 欧美在线| 久久久久精品国产欧美久久久| 免费无遮挡裸体视频| 嫩草影院新地址| 热99re8久久精品国产| 日韩欧美在线乱码| 无遮挡黄片免费观看| 亚洲aⅴ乱码一区二区在线播放| 51国产日韩欧美| 欧美潮喷喷水| 亚洲精品在线美女| 亚洲性夜色夜夜综合| 两人在一起打扑克的视频| 日韩国内少妇激情av| 午夜福利欧美成人| 国产成人影院久久av| 成人精品一区二区免费| 97人妻精品一区二区三区麻豆| 久久久久久大精品| 国内精品久久久久久久电影| 人人妻人人看人人澡| 午夜福利在线在线| 俄罗斯特黄特色一大片| 久久99热6这里只有精品| 国产伦在线观看视频一区| 亚洲欧美日韩无卡精品| 天美传媒精品一区二区| 亚洲欧美精品综合久久99| 国产精品国产高清国产av| 最新中文字幕久久久久| 啪啪无遮挡十八禁网站| 欧美国产日韩亚洲一区| 在线观看66精品国产| 国产91精品成人一区二区三区| 男插女下体视频免费在线播放| 久久久久久久亚洲中文字幕 | 男女之事视频高清在线观看| 99久国产av精品| 精品福利观看| 我的女老师完整版在线观看| 国产成人影院久久av| 亚洲在线观看片| 精品人妻偷拍中文字幕| 舔av片在线| 久久精品国产99精品国产亚洲性色| 少妇熟女aⅴ在线视频| 久久亚洲精品不卡| 俺也久久电影网| 成人一区二区视频在线观看| 日韩精品青青久久久久久| 一级毛片久久久久久久久女| 极品教师在线视频| 婷婷精品国产亚洲av| 亚洲熟妇中文字幕五十中出| 亚洲人成电影免费在线| 亚洲国产日韩欧美精品在线观看| 午夜福利18| 欧美zozozo另类| 精品99又大又爽又粗少妇毛片 | 国产精品亚洲一级av第二区| 欧美黑人欧美精品刺激| av视频在线观看入口| 日韩欧美在线二视频| 中文亚洲av片在线观看爽| 最新中文字幕久久久久| 久久九九热精品免费| 特级一级黄色大片| 深夜精品福利| 又爽又黄无遮挡网站| 身体一侧抽搐| 日韩欧美免费精品| 国产v大片淫在线免费观看| 亚洲中文字幕一区二区三区有码在线看| 国产成人福利小说| 一卡2卡三卡四卡精品乱码亚洲| 精品国产亚洲在线| 亚洲av日韩精品久久久久久密| 成人亚洲精品av一区二区| 亚洲精品在线美女| 国产精品三级大全| 欧美日韩亚洲国产一区二区在线观看| 精品一区二区三区人妻视频| 在线观看美女被高潮喷水网站 | 国产伦在线观看视频一区| 亚洲激情在线av| 久久久久性生活片| 午夜两性在线视频| 欧美性感艳星| 日本三级黄在线观看| 午夜精品一区二区三区免费看| 黄色一级大片看看| 亚洲自偷自拍三级| 两人在一起打扑克的视频| 国产黄片美女视频| 国产国拍精品亚洲av在线观看| 成年免费大片在线观看| 又黄又爽又免费观看的视频| 88av欧美| 色视频www国产| 日本黄色视频三级网站网址| 亚洲av电影在线进入| 国产成人啪精品午夜网站| 成人av一区二区三区在线看| 天美传媒精品一区二区| 真实男女啪啪啪动态图| 波多野结衣高清无吗| 老鸭窝网址在线观看| 美女被艹到高潮喷水动态| 久久精品国产自在天天线| 国产精品嫩草影院av在线观看 | 久久天躁狠狠躁夜夜2o2o| 亚洲av中文字字幕乱码综合| 婷婷色综合大香蕉| 1024手机看黄色片| 在线十欧美十亚洲十日本专区| 国产成年人精品一区二区| 最新在线观看一区二区三区| 在线天堂最新版资源| 美女xxoo啪啪120秒动态图 | 欧美在线黄色| 麻豆成人午夜福利视频| 黄色一级大片看看| 精品久久国产蜜桃| 蜜桃久久精品国产亚洲av| 日本免费一区二区三区高清不卡| 丝袜美腿在线中文| 天堂av国产一区二区熟女人妻| 一a级毛片在线观看| 黄片小视频在线播放| 免费黄网站久久成人精品 | 少妇人妻精品综合一区二区 | 欧美潮喷喷水| 美女大奶头视频| 国产真实乱freesex| 国产精品98久久久久久宅男小说| 嫩草影院精品99| 亚洲三级黄色毛片| 91麻豆精品激情在线观看国产| 极品教师在线视频| 自拍偷自拍亚洲精品老妇| 久久久国产成人免费| 亚洲精品一卡2卡三卡4卡5卡| 亚洲国产欧美人成| 日韩欧美在线二视频| 国产三级在线视频| 精品熟女少妇八av免费久了| 在线a可以看的网站| 国产伦人伦偷精品视频| 99热精品在线国产| 亚洲精品在线观看二区| 亚洲av熟女| 十八禁国产超污无遮挡网站| 久久精品久久久久久噜噜老黄 | 国产免费一级a男人的天堂| 嫩草影院入口| 在线播放无遮挡| 国产精品三级大全| 成人亚洲精品av一区二区| 精品国产亚洲在线| 日日干狠狠操夜夜爽| 91在线观看av| 国产一区二区亚洲精品在线观看| 天堂影院成人在线观看| 久久亚洲精品不卡| 国产v大片淫在线免费观看| 99国产极品粉嫩在线观看| 久久久国产成人免费| 女同久久另类99精品国产91| 免费人成视频x8x8入口观看| 亚洲一区二区三区不卡视频| 一个人免费在线观看的高清视频| 日本一本二区三区精品| 午夜a级毛片| 欧美丝袜亚洲另类 | 欧美激情国产日韩精品一区| 亚洲国产欧美人成| 亚洲人成网站高清观看| 男女做爰动态图高潮gif福利片| 欧美3d第一页| 日韩欧美国产一区二区入口| 成人性生交大片免费视频hd| 中文亚洲av片在线观看爽| 69av精品久久久久久| 国产午夜精品论理片| 欧美日韩中文字幕国产精品一区二区三区| 国产aⅴ精品一区二区三区波| 国产一区二区在线观看日韩| 两人在一起打扑克的视频| 欧美一区二区精品小视频在线| 午夜老司机福利剧场| 人妻制服诱惑在线中文字幕| 18禁在线播放成人免费| 看片在线看免费视频| 一二三四社区在线视频社区8| 乱码一卡2卡4卡精品| 人人妻,人人澡人人爽秒播| 成人午夜高清在线视频| 国产熟女xx| 国产高清视频在线观看网站| 亚洲人成伊人成综合网2020| 永久网站在线| 午夜免费激情av| 三级男女做爰猛烈吃奶摸视频| 女人十人毛片免费观看3o分钟| 日本熟妇午夜| 极品教师在线免费播放| 看黄色毛片网站| 成年女人永久免费观看视频| 99久久精品一区二区三区| 国产国拍精品亚洲av在线观看| 精品一区二区三区av网在线观看| 国产欧美日韩一区二区三| 久久伊人香网站| 搡女人真爽免费视频火全软件 | 亚洲,欧美,日韩| 欧美性感艳星| 国产伦一二天堂av在线观看| 黄色视频,在线免费观看| 少妇的逼水好多| 亚洲av电影在线进入| 韩国av一区二区三区四区| 最近视频中文字幕2019在线8| 真人做人爱边吃奶动态| 成人特级av手机在线观看| 真人做人爱边吃奶动态| 色综合站精品国产| 中文字幕av在线有码专区| 色综合站精品国产| 色综合婷婷激情| 在线观看美女被高潮喷水网站 | 国产精品综合久久久久久久免费| 精品熟女少妇八av免费久了|