• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Formation mechanism and properties of NiCoFeLDH@ZIF-67 composites

    2021-12-29 02:27:20HuijieZhouWeiyiCoNuochenSunLiJingYongLiuHunPng
    Chinese Chemical Letters 2021年10期

    Huijie Zhou,Weiyi Co,Nuochen Sun,Li Jing,Yong Liu,Hun Png,*

    a School of Chemistry and Chemical Engineering,Yangzhou University,Yangzhou 225009,China

    b Collaborative Innovation Center of Nonferrous Metals of Henan Province,Henan Key Laboratory of High Temperature Structural and Functional Materials,School of Materials Science and Engineering,Henan University of Science and Technology,Luoyang 471023 China

    Keywords:Formation Mechanism NiCoFeLDH@ZIF-67 Composite Surpercapacitor

    ABSTRACT Metal-organic frameworks(MOFs)have a regular porous structure and high porosity,which make them ideal electrode materials for supercapacitors.However,their capacitance performance is greatly limited by their poor conductivity.In this study,a multi-component hierarchical structure was obtained by growing NiCoFeLDH on the surface of ZIF-67,which increased the electron transfer between the MOF particles and greatly improved the capacitance of ZIF-67.The formation mechanism of the multicomponent layered hollow structure indicated that the hydrolysis acidity of metal ions and the coordination ability with ligands were the key factors for forming nanosheets and hollow structures.By controlling the type and valence state of the doped metals and the reaction time,the morphology transformation of MOF composites can be effectively controlled.Electrochemical studies showed that the specific capacitance of hollow NiCoFeLDH@ZIF-67 composite is 1202.08 F/g (0.5 A/g).In addition,aqueous devices were assembled and carefully tested.This scheme is crucial for the design of MOF-based materials used in supercapacitor devices and serves as a guide for the design of MOF-based composites.

    Metal-organic frameworks (MOFs) represent a new type of porous materials and have been preferred as electrode materials owing to their ordered porous and adjustable structure as well as large specific surface area[1-8].The morphology of MOFs can be adjusted by choosing different organic ligands and suitable surfactants [9-15].In addition,the application of MOFs as templates is an effective novel strategy for the synthesis of various new structures [16-19].For example,Xia et al.[20]obtained supercapacitor electrode materials with excellent electrochemical properties by simple thermal activation of the monodisperse metal oxide hollow nanoparticles(NPS)from large MOF crystals.Qu et al.[21]synthesized NiCoMOF-74,which is a metal-functionalized hydroxide with high porosity;this material been used as an electrode material for supercapacitors with good cycle stability and energy density.Liu et al.[22]prepared mesoporous nanoporous carbon with a high specific surface area and excellent electrochemical performance using MOF-5 as a template for supercapacitor electrode materials.Qu et al.[23]used MOF-based electrode materials to prepare electrode materials for hybrid supercapacitors by employing a“one-for-all”strategy,which has a wide applicability and exhibits an excellent electrochemical performance.Wang et al.[24]demonstrated that a conductive MOF/layered double hydroxide(cMOF/LDH)heteronanotube array had excellent oxygen evolution activity based on crystal matching growth.

    Zeolites based on an imidazole framework(ZIFs)have uniform pores,a large specific surface area,and good chemical stability and are therefore promising energy storage materials[25-28].Cobaltbased ZIFs (ZIF-67) have been widely studied as energy storage materials.ZIF-67 alone can be easily agglomerated in a solution,but the solution has a poor conductivity and low stability,resulting in low interfacial reaction kinetics [29,30].Therefore,the use of ZIF-67 alone as a supercapacitor material is limited.However,as ZIF-67 is a porous material with good crystallinity and easily adjustable crystal structure,it can be constructed into a central control frame structure with adjustable composition and morphology [31-33].Under controlled conditions,composite electrode materials with ZIF-67 as the template and precursor can be obtained using methods such as ion exchange,calcination,chemical corrosion and precursor conversion[34-42].Combining ZIF-67 with other electrode materials can synergistically enhance the physical/chemical properties of a single material.In recent years,ZIF-67 has been used as the precursor and coated with a polypyrrole (PPy) layer to obtain hollow materials exhibiting a good electrochemical storage performance [43].In addition,transition-metal-based layered double hydroxides (LDHs) exhibit a large theoretical capacity and good conductivity,low cost,and rich redox states;thus,they are suitable candidates as supercapacitor electrode materials [44].The hierarchical structures of the MOFs and LDH composites can effectively contribute to the electrochemical reaction and improve the storage performance of materials [45,46].

    In this work,ZIF-67 was used as the precursor to controllably synthesize a hollow-structure NiCoFeLDH@ZIF-67 composite by introducing Ni2+and Fe3+.The unique structure of the composite can increase the contact area required for the electrochemical reaction,which is conducive to the mass transfer of the electrolyte to improve Faraday redox reactions.In addition,the uniform compounding of LDH and ZIF-67 increases the activity and stability of ZIF-67.The specific capacitance of the hollow composite NiCoFeLDH@ZIF-67 was 1202.08 F/g in 3.0 mol/L potassium hydroxide (KOH) solution at 0.5 A/g,which is better than that of ZIF-67.In addition,we separately introduced Ni2+,Fe3+and Fe2+to analyze the effects of different metals and valence ions on the structure and morphology;we also explored the formation mechanism of the hollow structure of the NiCoFeLDH@ZIF-67 composite.To some extent,the formation of the hollow structure can be related to the effect of the pH of the added substances in the solution on the degree of hydrolysis.This study presents a controllable strategy for the synthesis of mesoporous composites and has a certain guiding significance for the synthesis of composites of LDH and other MOF materials.

    The synthesis diagram of NiCoFeLDH@ZIF-67 is shown in Scheme 1.The precursor was synthesized by a previously reported synthesis method and used to prepare the composite [45].As shown in Fig.1a,ZIF-67,Ni2+and Fe3+were stirred at room temperature for 0.5,2 and 6 h,respectively,to obtain composite materials with different internal structures(denoted as H1,H2 and H3,respectively).The change in morphology with the stirring time was studied.The structure and morphology of each sample were characterized by transmission electron microscopy (TEM) and scanning electron microscopy(SEM).The morphologies of ZIF-67,H1,H2 and H3 were characterized by SEM.As shown in Figs.1b1-e1,the surface of ZIF-67 was changed by the doping with Ni2+and Fe3+.With the increase in stirring time,the surface of ZIF-67 gradually transformed into a regular flake.Figs.1c2-e2show the TEM diagrams of samples H1,H2 and H3.As can be seen from the TEM characterization,there is no cavity in the polyhedron of sample H1;however,compared with the TEM diagram of the ZIF-67 precursor(Fig.1b2),there is a lamellar structure on the surface.With the increase in the stirring time,the nucleus of ZIF-67 gradually became smaller and a hollow structure was finally formed after 6 h of stirring.

    Scheme 1.The synthesis diagram of NiCoFeLDH@ZIF-67.

    Fig.1.Structural characterization of all sample.(a)Diagram of formation of H1,H2 and H3.(b1,c1,d1,e1) SEM image of ZIF-67,H1,H2 and H3.(b2,c2,d2,e2) TEM image of ZIF-67,H1,H2 and H3.

    Fig.2.Structural characterization of H3 particles.(a,b) The low-magnified TEM image.(c)The high-magnified TEM images.(d)The HRTEM image and SAED pattern(inset).(e) the EDX-elemental mapping of Co,Fe,Ni,C,N and O.

    The hollow structure of ZIF-67 was formed only when the stirring time was appropriate.Figs.2a-c show the TEM diagram of H3.It can be seen that ZIF-67 completely transformed into a hollow structure that retains the ZIF-67 dodecahedron.The outer layer has a sheet structure.The selected area electron diffraction(SAED)and high-resolution TEM (HRTEM) patterns show that there are no noticeable diffraction rings and lattice fringes (Fig.2d).This is because the main component of the material is ZIF-67,which has no noticeable lattice fringes and diffraction rings because the crystal structure is destroyed by the high-energy electron beam excitation.The elemental mapping results (Fig.2e) show the uniform distribution of Co,Fe,Ni,N,O and C and further explain the successful incorporation of Fe and Ni.

    Using ZIF-67 as a framework template,hollow polyhedral nanostructures can be prepared.As can be seen in the XRD diagram,it can be seen from the XRD patterns that the relative intensity and local position of the characteristic diffraction peaks of H1,H2 and H3(when 2θ is about 7.38°,10.37°,12.79°,14.74°,16.48°,18.08°and 22.22°) are well matched with the standard XRD patterns of ZIF-67 (Fig.3a).However,it can be seen that the crystallinity of H3 changes in a certain extent when the peak position is 22.22°,but the peak position does not change noticeably compared with that of ZIF-67.Fig.3b shows the Fourier-transform infrared (FT-IR) spectra of various structural samples in the range of 400-4000 cm-1.The stretching and bending modes of the imidazole ring correspond to at the peak position in the range of 600-1500 cm-1.Both 3409 and 3200-3500 cm-1correspond to stretching vibration modes of the hydroxyl group.The vibration modes of 1580-2929 and 3135 cm-1were attributed to C=N,C--H and 2-methylimidazole,respectively.With the introduction of Ni2+and Fe3+,the peak positions of H1,H2 and ZIF-67 did not change significantly,while the peak positions of the hydroxyl group shifted higher.Compared with ZIF-67,H3 had more hydroxyl peaks between 3409 and 3200-3500 cm-1.Although the bond between C=N of the imidazole ring at 1579 and 600-1500 cm-1is partially broken,the basic bond structure remains unchanged.

    Fig.3.(a)XRD of simulated ZIF-67,H1,H2 and H3.(b)FT-IR spectra of ZIF-67,H1,H2 and H3.(c)XPS full spectra of ZIF-67,H1,H2 and H3.(d)Co 2p spectra of ZIF-67,H1,H2 and H3.(e)Ni 2p spectra of H1,H2 and H3.(f) Fe 2p spectra of H1,H2 and H3.

    X-ray photoelectron spectroscopy (XPS) was used to further characterize the surface element composition.As shown in Fig.3c,there are certain main peaks of Fe 2p,Co 2p,Ni 2p,O 1s,C 1s and N 1s in the full spectrum of samples H1,H2 and H3.In addition,the high-resolution spectrum of Co 2p is shown in Fig.3d.After adding Ni and Fe,the position of the Co 2p peak shifted toward a low binding energy.Two prominent peaks with binding energies of 780.85 and 796.72 eV correspond to Co3+and the prominent peaks at 782.73 and 802.41 eV correspond to Co2+.The high-resolution Ni 2p spectra indicate the existence of Ni2+.It can be seen from the high-resolution spectrum of Fe 2p that the valence states of Fe ions are+3 and+2(Figs.3d and e).The high-resolution spectra of N 1s showed that the pyridine-N and pyrrole-N peaks in H3 were noticeably weak.The peaks at 406.6 and 402.81 eV can be attributed to nitrate and nitrate ions,which can be attributed to the charge balance between the layers of nitrate ions (Fig.S1a in Supporting information).In the O 1s high-resolution spectra,the peak positions of 531.22 and 532.11 eV can be attributed to O--C--O and C--OH,respectively (Fig.S1b in Supporting information).The peak positions of 284.67,285.56 and 286.55 eV in the C 1s high-resolution spectrum can be attributed to C--C and C--O bonds (Fig.S1c in Supporting information).

    The formation mechanism of the hollow structure was further studied.Iron nitrate,ammonium ferrous sulfate hexahydrate,and nickel nitrate hexahydrate were added to the ethanol dispersion of ZIF-67 to analyze the effects of different valence states of the same metal and different metals on the nanosheets and on the hollow structure.As can be seen in the TEM and SEM images(Fig.4),the addition of Fe3+and Fe2+has no effect on the structure and morphology of ZIF-67,and no nanosheet or hollow structure has been formed.However,the introduction of Ni2+results in the formation of surface nanosheets and internal hollow structures.The formation of the hollow and nanosheet structures can result from the hydrolysis of ions in the system,the different coordination ability of different ions with N,and the different number of nucleation sites.The hydrolysis acidity of Fe3+is stronger than that of Ni2+and Fe2+.Further increasing the content of Fe3+destroys the structure and eventually leads to the formation of a flaky structure(Fig.S2 in Supporting information).As shown in Fig.S3(Supporting information),we analyzed the EDX-elemental mapping of increased Fe(NO)3?6H2O content in the lamellar structure.It can be seen that the destroyed structure still contains Fe,Co,Ni,C,N,O and other elements,but the carbon content is significantly reduced.To further study the effect of pH on the morphology,the change in pH of the solution in the reaction process was measured.It can be seen in Table S1(Supporting information)that the addition of nickel ions significantly reduces the pH value,and the addition of Fe3+further reduces it.After that,the pH remained nearly unchanged with time.The hydrolysis acidity of Fe2+is weaker than that of Fe3+,but the addition of Fe2+results in a series of changes on the surface of ZIF-67,and etched traces appear on the surface,which may result from the stronger coordination ability of Fe2+with N than that of Fe3+.To further analyze the formation mechanism,we characterized and compared the color changes of the dispersion in the reaction process.As shown in Fig.S4(Supporting information),the color of the ZIF-67 dispersion is purple;the addition of Ni2+changes the color of the dispersion,and the addition of Fe3+further changes the color of the solution.As the reaction proceeds,the purple color gradually fades,and the color of the dispersion gradually turns to yellow-green.The process of color change is consistent with that shown in Fig.1a.

    Fig.4.SEM and TEM images of (a1,a2) only Fe(III)was added;(b1,b2) only Fe(II)was added;(c1,c2) only Ni(II) was added.

    The capacitance performance of NiCoFeLDH@ZIF-67 in 3.0 mol/L KOH,was initially evaluated in a three-electrode system.The ZIF-67,H1,H2 and H3 electrodes were characterized by cyclic voltammetry (CV) at different sweep speeds with a voltage window of 0.48 V.All CV curves show a pair of noticeable redox peaks.This is due to the reversible Faraday reaction between the samples and the electrolyte OH-ions,which indicates that all samples have good pseudo-capacitance characteristics.Sample H3 has a larger CV integration area and stronger redox peak than the other samples,indicating that the hollow structure material exhibits better pseudo-capacitance performance,larger specific capacity,and better charge storage performance.A pair of redox peaks appeared on the CV with the fixed potential window at different scan rates of 5-100 mV/s,indicating that the behavior of the capacitance was mainly controlled by the reversible Faraday redox reaction.With an increase in the scanning rate from 5 mV/s to 100 mV/s,the anode and cathode peaks shifted slightly in the direction with more positive and negative potentials,respectively.The shift of the peak position is due to the polarization of the electrode,resulting from the increase in the scanning rate(Fig.S7 in Supporting information).

    The galvanostatic charge-discharge (GCD) curve shown in Fig.S6 (Supporting information) indicates that the chargedischarge time of electrode H3 is the longest.The specific capacitance values of ZIF-67,H1,H2 and H3 were 156.57,337.19,765.63 and 1202.08 F/g at 0.5 A/g,respectively.H3 had a larger specific capacitance compared with those of ZIF-67,H1 and H2,which is consistent with the CV results.In addition,compared with other MOF-related compounds,the hollow structure NiCoFeLDH@-ZIF-67 also had a higher specific capacitance (Table S2 in Supporting information).These results,combined with the analysis of the characterization results,suggest that the hollow structure material provides a suitable space for the deintercalation of ions and for the electrochemical reaction during the energy storage process.At current densities of 0.5,1,2,3,5,10 and 20,the specific capacitances of H3 were 1202.08,1200,1172.5,1160,1114.58,1045.83 and 947.08 F/g,respectively(Fig.S5d in Supporting information),exhibiting an excellent rate capability (78.79%from 0.5 A/g to 20 A/g).The specific capacity of the hollow structure is noticeably better than that of other structures.Fig.S5(Supporting information)shows the GCD cycle of the ZIF-67,H1,H2 and H3 electrodes at different current densities (0.5-20 mA/cm2)in the 0-0.48 V potential range.The GCD curve exhibits a plateau area of noticeable battery properties and shows good pseudocapacitance characteristics.

    NiCoFeLDH@ZIF-67 and activated carbon(AC)water-containing devices were used to further study the practical application of the NiCoFeLDH@ZIF-67 electrode in 3.0 mol/L KOH.Fig.S9(Supporting Information)shows the CV curves of samples ZIF-67,H1,H2 and H3 at different scanning rates(10-100 mV/s).The CV curve maintains an appropriate shape at 100 mV/s,which indicates that the waterphase device has an excellent rate performance.In addition,all samples exhibit a pseudo-capacitance behavior.

    The GCD curve of NiCoFeLDH@ZIF-67//AC (aqueous solution device) at 1 A/g is shown in Fig.S8(Supporting information).The specific capacities of samples ZIF-67,H1,H2 and H3 were 32.31,45.3,71.83 and 112 F/g,respectively.Sample H3 had a larger specific capacity compared with those of ZIF-67,H1,and H2.The GCD curves of all samples exhibit a typical triangular symmetry and approximate linear distribution.The calculated specific capacitances of the H3//AC (aqueous solution devices) were 222.67,164.93,143.8,133.33,122.4 and 109.07 F/g,respectively,which were significantly higher than those of ZIF-67,H1 and H2 (Fig.5).In addition,the capacitance retention rate of H3 after 1000 cycles was 62.1% (Fig.S10 in Supporting information).After 5000 cycles of testing,the XRD pattern indicates that the crystallinity of the material underwent a series of changes,indicating that the crystal structure of the material changed after a long cycling period(Fig.S11 in Supporting information).The chemical stability of ZIF-67 and NiCoFeLDH@ZIF-67 composite were characterized at 3 mol/L KOH.The original morphology of the hollow-structure NiCoFeLDH@ZIF-67 composite can be maintained after soaking in 3.0 mol/L KOH for 0 h,12 h and 24 h.However,ZIF-67 appeared surface etching and flake clusters after 12 h,and the structure of ZIF -67 collapsed seriously after 24 h.The reason is that the structure of ZIF-67 is unstable under acidic and alkaline conditions.The transition metal hydroxyl compounds on the surface of the ZIF-67 can significantly improve the chemical stability of ZIF-67 structure in alkaline solution(Fig.S12 in Supporting information).To study the overall performance of H3//AC (aqueous system device),the relationship between the specific energy and specific power was determined according to the GCD curve of its twoelectrode system(Fig.S13 in supporting information).The H3//AC showed a high specific energy of 69.58 Wh/kg at a specific power of 750.00 W/kg and 38.25 Wh/kg at 7500 W/kg,which were significantly higher than those of the other four devices.To verify the practical application of the hollow structure H3,two supercapacitors were charged in series to light up a blue light-emitting diode (LED).

    In conclusion,we synthesized a hollow-structure NiCoFeLDH@-ZIF-67 composite and analyzed the structure formation mechanism.Without changing the basic structure of ZIF-67,we prepared conductive porous hollow nanomaterials,which could effectively improve the Faraday redox reaction.In a 3.0 mol/L KOH solution,the specific capacitance of the composite hollow structure was 1202.08 F/g at 1 A/g.Compared with ZIF-67 and other structural materials,this device had a higher specific capacitance when applied to supercapacitors.Studying the effect of different metal ions and different valence states of the same ion on the formation of hollow structures provides an effective method for the controllable synthesis of mesoporous materials.This study has a certain guiding significance for the structure control of future MOFs.

    Fig.5.Electrochemical properties of samples ZIF-67,H1,H2 and H3 in a twoelectrode cell.(a) CV curves of H3 at different scanning speeds.(b) GCD curves of samples ZIF-67,H1,H2 and H3 at 1 A/g.(c)GCD curve of H3 at 1,2,3,5,10 and 20 A/cm2.(d) The specific capacitance of ZIF-67,H1,H2 and H3 samples at different current densities.

    Declaration of competing interest

    The authors report no declarations of interest.

    Acknowledgments

    This work was supported by the National Natural Science Foundation of China (No.U1904215),Natural Science Foundation of Jiangsu Province (No.BK20200044),Changjiang scholars program of the Ministry of Education (No.Q2018270).

    Appendix A.Supplementary data

    Supplementary material related to this article can be found,in the online version,at doi:https://doi.org/10.1016/j.cclet.2021.03.050.

    69av精品久久久久久| 欧美黑人巨大hd| 青草久久国产| 欧美另类亚洲清纯唯美| 成人高潮视频无遮挡免费网站| 男人舔奶头视频| 欧美黄色片欧美黄色片| 夜夜看夜夜爽夜夜摸| 国产爱豆传媒在线观看| 欧美黑人欧美精品刺激| 欧美xxxx黑人xx丫x性爽| 精品日产1卡2卡| 国产亚洲精品av在线| 午夜视频精品福利| 女生性感内裤真人,穿戴方法视频| 性色avwww在线观看| 法律面前人人平等表现在哪些方面| 欧美绝顶高潮抽搐喷水| 啦啦啦免费观看视频1| 黄色视频,在线免费观看| 久99久视频精品免费| 日韩大尺度精品在线看网址| 国产极品精品免费视频能看的| 亚洲激情在线av| 老鸭窝网址在线观看| 特大巨黑吊av在线直播| www日本在线高清视频| 久久久久亚洲av毛片大全| 搡老岳熟女国产| 一进一出好大好爽视频| 亚洲aⅴ乱码一区二区在线播放| 亚洲精华国产精华精| 女人被狂操c到高潮| 脱女人内裤的视频| 亚洲成人久久性| 91麻豆精品激情在线观看国产| 男女视频在线观看网站免费| 日韩欧美国产在线观看| 熟女电影av网| 天堂√8在线中文| 一本一本综合久久| 99国产精品99久久久久| 午夜免费成人在线视频| 天天添夜夜摸| 精品午夜福利视频在线观看一区| 国语自产精品视频在线第100页| 一a级毛片在线观看| 成人午夜高清在线视频| 久久久久精品国产欧美久久久| 欧美不卡视频在线免费观看| 国产一区二区在线观看日韩 | 亚洲激情在线av| 国模一区二区三区四区视频 | 一二三四社区在线视频社区8| 午夜精品在线福利| 少妇的逼水好多| 日韩免费av在线播放| 麻豆国产97在线/欧美| 国产淫片久久久久久久久 | 精品一区二区三区视频在线 | 午夜视频精品福利| 亚洲国产欧美人成| 国产69精品久久久久777片 | 1024手机看黄色片| 久久久久久久久中文| 97碰自拍视频| 午夜福利免费观看在线| 亚洲欧美精品综合久久99| 熟妇人妻久久中文字幕3abv| 久久精品夜夜夜夜夜久久蜜豆| 免费人成视频x8x8入口观看| 一卡2卡三卡四卡精品乱码亚洲| 国产精品乱码一区二三区的特点| 国产精品av视频在线免费观看| 老鸭窝网址在线观看| 色尼玛亚洲综合影院| av天堂中文字幕网| АⅤ资源中文在线天堂| 久久久国产成人精品二区| 欧美绝顶高潮抽搐喷水| 免费电影在线观看免费观看| 午夜激情欧美在线| 国产成人精品久久二区二区免费| 18禁黄网站禁片免费观看直播| 最近最新中文字幕大全免费视频| 伦理电影免费视频| ponron亚洲| 久久精品综合一区二区三区| 国产成人欧美在线观看| 日本成人三级电影网站| 长腿黑丝高跟| 午夜激情福利司机影院| 手机成人av网站| 草草在线视频免费看| 午夜福利在线观看吧| 观看免费一级毛片| 日韩欧美 国产精品| 国产三级黄色录像| 亚洲精品456在线播放app | 午夜福利视频1000在线观看| 美女被艹到高潮喷水动态| 久久精品人妻少妇| 最近最新中文字幕大全免费视频| 两个人看的免费小视频| 此物有八面人人有两片| 免费观看人在逋| 色av中文字幕| 亚洲精品在线美女| 俄罗斯特黄特色一大片| 中文在线观看免费www的网站| 中文亚洲av片在线观看爽| 岛国视频午夜一区免费看| 一级作爱视频免费观看| 搡老熟女国产l中国老女人| 亚洲国产精品999在线| 国产精品久久久久久人妻精品电影| 国产久久久一区二区三区| 亚洲中文字幕日韩| or卡值多少钱| 亚洲国产中文字幕在线视频| 999精品在线视频| 亚洲av日韩精品久久久久久密| 97超级碰碰碰精品色视频在线观看| 日本熟妇午夜| 一进一出好大好爽视频| 国产一区二区三区在线臀色熟女| 国内毛片毛片毛片毛片毛片| 久久精品aⅴ一区二区三区四区| 日韩欧美免费精品| 国产成人av教育| 亚洲av电影不卡..在线观看| 可以在线观看毛片的网站| 757午夜福利合集在线观看| 国产精品国产高清国产av| 日韩成人在线观看一区二区三区| aaaaa片日本免费| 麻豆国产av国片精品| www.熟女人妻精品国产| 欧美乱色亚洲激情| 曰老女人黄片| 国产高清激情床上av| 亚洲精品久久国产高清桃花| 在线国产一区二区在线| 日韩 欧美 亚洲 中文字幕| 这个男人来自地球电影免费观看| 日韩大尺度精品在线看网址| av国产免费在线观看| 中国美女看黄片| 午夜精品一区二区三区免费看| 国产精品久久久久久亚洲av鲁大| 麻豆av在线久日| 可以在线观看毛片的网站| 色在线成人网| 毛片女人毛片| 国产免费男女视频| 五月玫瑰六月丁香| 国产v大片淫在线免费观看| 黄色成人免费大全| 淫秽高清视频在线观看| 国产高清videossex| 欧美三级亚洲精品| 成在线人永久免费视频| 国产激情久久老熟女| 一区二区三区激情视频| 一个人免费在线观看电影 | 国产午夜精品久久久久久| 欧美3d第一页| 人妻夜夜爽99麻豆av| 免费大片18禁| svipshipincom国产片| 12—13女人毛片做爰片一| 观看美女的网站| 天堂影院成人在线观看| 亚洲欧美日韩无卡精品| 一级作爱视频免费观看| av福利片在线观看| 亚洲性夜色夜夜综合| 亚洲国产中文字幕在线视频| 波多野结衣高清无吗| 免费搜索国产男女视频| 亚洲午夜理论影院| 天堂动漫精品| 亚洲精品乱码久久久v下载方式 | 国产精品精品国产色婷婷| 国产成人啪精品午夜网站| 两个人的视频大全免费| 嫩草影院入口| 99精品在免费线老司机午夜| 久久这里只有精品中国| 午夜精品久久久久久毛片777| 在线观看舔阴道视频| 色综合亚洲欧美另类图片| 无人区码免费观看不卡| 精品国产亚洲在线| 国产精品女同一区二区软件 | 国产精品九九99| 欧美3d第一页| 成人精品一区二区免费| 午夜视频精品福利| 欧美一区二区国产精品久久精品| 男人的好看免费观看在线视频| 中文字幕高清在线视频| 国产精品免费一区二区三区在线| av片东京热男人的天堂| 女同久久另类99精品国产91| 亚洲精品中文字幕一二三四区| 亚洲人成网站高清观看| 搡老岳熟女国产| 国产欧美日韩一区二区精品| 亚洲欧美日韩东京热| 一二三四社区在线视频社区8| 国产成人欧美在线观看| 日韩人妻高清精品专区| 久久性视频一级片| 婷婷精品国产亚洲av| 久久久国产精品麻豆| www.熟女人妻精品国产| 2021天堂中文幕一二区在线观| 午夜福利在线观看吧| 欧美高清成人免费视频www| 精品国产美女av久久久久小说| 三级毛片av免费| 亚洲最大成人中文| 亚洲狠狠婷婷综合久久图片| 中文字幕久久专区| 国产不卡一卡二| 亚洲成人久久爱视频| 老司机在亚洲福利影院| 琪琪午夜伦伦电影理论片6080| 欧美国产日韩亚洲一区| 国产精品久久久av美女十八| 国产成人av教育| 久久国产精品影院| 亚洲av第一区精品v没综合| 高潮久久久久久久久久久不卡| 国产精品久久久av美女十八| 热99re8久久精品国产| 小说图片视频综合网站| 我要搜黄色片| 精品久久久久久久人妻蜜臀av| 他把我摸到了高潮在线观看| 人妻久久中文字幕网| ponron亚洲| 国产精品久久视频播放| 99国产精品一区二区三区| 一二三四社区在线视频社区8| 亚洲男人的天堂狠狠| 波多野结衣高清无吗| 日本一二三区视频观看| 免费无遮挡裸体视频| 舔av片在线| 亚洲在线观看片| 五月伊人婷婷丁香| 欧美3d第一页| 日本五十路高清| 两性夫妻黄色片| 国产亚洲精品一区二区www| 97人妻精品一区二区三区麻豆| 成年女人永久免费观看视频| 最近在线观看免费完整版| 国产成人aa在线观看| 日本 欧美在线| 蜜桃久久精品国产亚洲av| 日韩精品中文字幕看吧| 午夜福利在线在线| 精品国产乱码久久久久久男人| 国产成人啪精品午夜网站| 午夜两性在线视频| 亚洲精品美女久久久久99蜜臀| 午夜精品久久久久久毛片777| 天堂av国产一区二区熟女人妻| 男人舔奶头视频| 精品免费久久久久久久清纯| 亚洲天堂国产精品一区在线| 成人av一区二区三区在线看| 露出奶头的视频| 欧美成人免费av一区二区三区| 亚洲午夜精品一区,二区,三区| 91麻豆精品激情在线观看国产| 亚洲成人久久爱视频| 亚洲一区二区三区不卡视频| 搡老岳熟女国产| 日本一二三区视频观看| 99国产精品99久久久久| 午夜福利在线在线| 叶爱在线成人免费视频播放| 国产免费男女视频| 黄色女人牲交| 国产美女午夜福利| 亚洲欧美日韩东京热| 国产精品一区二区三区四区久久| 精品熟女少妇八av免费久了| 亚洲最大成人中文| 国产伦精品一区二区三区视频9 | 最新中文字幕久久久久 | 国产1区2区3区精品| www日本黄色视频网| 国产淫片久久久久久久久 | 最近视频中文字幕2019在线8| www.精华液| 动漫黄色视频在线观看| 亚洲无线在线观看| aaaaa片日本免费| 在线观看66精品国产| or卡值多少钱| 欧美一级毛片孕妇| 老司机在亚洲福利影院| 床上黄色一级片| xxxwww97欧美| 久久精品亚洲精品国产色婷小说| 午夜福利欧美成人| 嫁个100分男人电影在线观看| 成人一区二区视频在线观看| 亚洲自拍偷在线| 一本久久中文字幕| 亚洲av片天天在线观看| 国产精品香港三级国产av潘金莲| 国产精华一区二区三区| 99久久99久久久精品蜜桃| avwww免费| 最近在线观看免费完整版| 搞女人的毛片| 亚洲激情在线av| 99热6这里只有精品| 白带黄色成豆腐渣| 亚洲av电影在线进入| 一级毛片精品| 欧美性猛交黑人性爽| 免费观看精品视频网站| 国产午夜精品久久久久久| 欧美一级a爱片免费观看看| 国产欧美日韩一区二区三| 法律面前人人平等表现在哪些方面| 一级a爱片免费观看的视频| 欧美色欧美亚洲另类二区| 97碰自拍视频| 国产视频内射| 国产乱人视频| 三级毛片av免费| 老熟妇仑乱视频hdxx| 久久久色成人| 老汉色∧v一级毛片| 美女cb高潮喷水在线观看 | 操出白浆在线播放| 国产高潮美女av| 1024手机看黄色片| 日韩免费av在线播放| 别揉我奶头~嗯~啊~动态视频| 精品一区二区三区视频在线观看免费| 亚洲成av人片免费观看| 12—13女人毛片做爰片一| 男人和女人高潮做爰伦理| 亚洲精品在线美女| 麻豆成人午夜福利视频| 老熟妇仑乱视频hdxx| 国产真实乱freesex| 日本黄大片高清| 国产亚洲精品久久久com| 小说图片视频综合网站| 国产亚洲av嫩草精品影院| 夜夜看夜夜爽夜夜摸| 嫁个100分男人电影在线观看| 国产视频一区二区在线看| 制服丝袜大香蕉在线| 国产综合懂色| 免费看a级黄色片| 给我免费播放毛片高清在线观看| 免费一级毛片在线播放高清视频| 少妇丰满av| 操出白浆在线播放| 国产精品1区2区在线观看.| 久久久久久大精品| 91老司机精品| 日韩 欧美 亚洲 中文字幕| 在线观看免费午夜福利视频| 手机成人av网站| 视频区欧美日本亚洲| 日本三级黄在线观看| 国产精品久久久久久亚洲av鲁大| 在线观看午夜福利视频| 国产精品亚洲美女久久久| 亚洲,欧美精品.| 久久久久国产一级毛片高清牌| 人妻夜夜爽99麻豆av| 久久精品91无色码中文字幕| 天天一区二区日本电影三级| 变态另类丝袜制服| 亚洲第一电影网av| 18禁观看日本| 91av网站免费观看| 怎么达到女性高潮| 国产一区二区在线观看日韩 | 午夜亚洲福利在线播放| 99热精品在线国产| 久久99热这里只有精品18| 日本撒尿小便嘘嘘汇集6| 欧美三级亚洲精品| 99国产精品一区二区蜜桃av| 国产欧美日韩精品一区二区| 国产精品久久久人人做人人爽| 成人鲁丝片一二三区免费| 99久久久亚洲精品蜜臀av| 亚洲五月天丁香| 亚洲va日本ⅴa欧美va伊人久久| 床上黄色一级片| 天堂网av新在线| 男女做爰动态图高潮gif福利片| www.熟女人妻精品国产| 国产高清视频在线观看网站| 亚洲中文日韩欧美视频| 男女之事视频高清在线观看| 老司机在亚洲福利影院| 禁无遮挡网站| 久久精品人妻少妇| 成年女人毛片免费观看观看9| 美女免费视频网站| 国产av一区在线观看免费| 日韩欧美三级三区| 精品久久久久久久人妻蜜臀av| 亚洲性夜色夜夜综合| 免费看光身美女| 夜夜爽天天搞| 亚洲精品在线美女| 美女 人体艺术 gogo| 2021天堂中文幕一二区在线观| 亚洲欧美精品综合久久99| 亚洲美女视频黄频| 日本一本二区三区精品| 女生性感内裤真人,穿戴方法视频| 人人妻人人看人人澡| 91av网站免费观看| 免费av不卡在线播放| 国产亚洲精品久久久com| 午夜福利高清视频| 色视频www国产| 美女免费视频网站| 制服人妻中文乱码| 成年女人永久免费观看视频| 国产精品99久久久久久久久| 最近最新免费中文字幕在线| 我的老师免费观看完整版| 精品无人区乱码1区二区| 久久久国产欧美日韩av| 国产精品永久免费网站| 一二三四社区在线视频社区8| 少妇的逼水好多| 欧美日韩乱码在线| 精品不卡国产一区二区三区| 久99久视频精品免费| 2021天堂中文幕一二区在线观| 成熟少妇高潮喷水视频| 久久久久久久久久黄片| 久久久久久久久中文| 我要搜黄色片| 麻豆成人av在线观看| 成年人黄色毛片网站| 大型黄色视频在线免费观看| 91麻豆av在线| 99热只有精品国产| 美女大奶头视频| 国产成人啪精品午夜网站| 黄片小视频在线播放| 成人欧美大片| 一个人免费在线观看电影 | 久久久国产成人免费| 亚洲av成人不卡在线观看播放网| 又爽又黄无遮挡网站| 国内揄拍国产精品人妻在线| 亚洲在线自拍视频| 最近视频中文字幕2019在线8| 少妇熟女aⅴ在线视频| 一边摸一边抽搐一进一小说| 久久久久久久午夜电影| 中文字幕av在线有码专区| 俄罗斯特黄特色一大片| 精品福利观看| 久9热在线精品视频| 亚洲真实伦在线观看| 校园春色视频在线观看| 日韩欧美三级三区| 亚洲国产日韩欧美精品在线观看 | 校园春色视频在线观看| 亚洲熟妇中文字幕五十中出| 久久精品亚洲精品国产色婷小说| 18禁裸乳无遮挡免费网站照片| 18禁观看日本| 精品99又大又爽又粗少妇毛片 | 韩国av一区二区三区四区| 免费人成视频x8x8入口观看| 老汉色∧v一级毛片| 久久久久性生活片| 精品电影一区二区在线| 久久久色成人| 不卡一级毛片| 男人的好看免费观看在线视频| 亚洲专区国产一区二区| 99久久无色码亚洲精品果冻| 欧美不卡视频在线免费观看| 日日干狠狠操夜夜爽| 欧美绝顶高潮抽搐喷水| 性色av乱码一区二区三区2| 日本熟妇午夜| 久久久久久久精品吃奶| 欧美乱色亚洲激情| 制服丝袜大香蕉在线| 搞女人的毛片| 最近最新中文字幕大全免费视频| 欧美激情久久久久久爽电影| 男女视频在线观看网站免费| 成年版毛片免费区| 99riav亚洲国产免费| 一个人看的www免费观看视频| 精品国产乱码久久久久久男人| 美女被艹到高潮喷水动态| 欧美午夜高清在线| 久久精品国产99精品国产亚洲性色| 久久精品人妻少妇| 午夜福利视频1000在线观看| 麻豆久久精品国产亚洲av| 可以在线观看的亚洲视频| 波多野结衣高清无吗| 性欧美人与动物交配| 男人舔女人下体高潮全视频| 国产久久久一区二区三区| 国产精品一及| xxx96com| 亚洲熟妇熟女久久| 成人欧美大片| 国产精品女同一区二区软件 | 中文字幕久久专区| 精品国产美女av久久久久小说| 国产97色在线日韩免费| 日本免费一区二区三区高清不卡| 久久久久九九精品影院| 欧美精品啪啪一区二区三区| 欧美xxxx黑人xx丫x性爽| 亚洲专区国产一区二区| 嫁个100分男人电影在线观看| 国内精品美女久久久久久| 久99久视频精品免费| 一二三四在线观看免费中文在| 久久久久久国产a免费观看| 一卡2卡三卡四卡精品乱码亚洲| 不卡一级毛片| 亚洲av第一区精品v没综合| 日本一本二区三区精品| 午夜影院日韩av| 日本一二三区视频观看| 成人永久免费在线观看视频| 一进一出好大好爽视频| 老司机午夜十八禁免费视频| 免费av不卡在线播放| 国产一区二区三区在线臀色熟女| 国内久久婷婷六月综合欲色啪| 伊人久久大香线蕉亚洲五| 国产成人影院久久av| 黄色 视频免费看| 99久久国产精品久久久| 国产av在哪里看| 成年女人毛片免费观看观看9| 国产极品精品免费视频能看的| 制服丝袜大香蕉在线| 高潮久久久久久久久久久不卡| 丁香欧美五月| 操出白浆在线播放| av福利片在线观看| 精品久久久久久久毛片微露脸| av黄色大香蕉| 国产成人系列免费观看| 国产淫片久久久久久久久 | 亚洲av五月六月丁香网| 成人特级av手机在线观看| 伦理电影免费视频| 久久国产乱子伦精品免费另类| 欧美乱妇无乱码| 亚洲午夜精品一区,二区,三区| 色综合站精品国产| 级片在线观看| 在线视频色国产色| 亚洲成人久久爱视频| 午夜两性在线视频| 亚洲精品中文字幕一二三四区| 日日夜夜操网爽| 免费av毛片视频| 特大巨黑吊av在线直播| 日韩精品青青久久久久久| 99riav亚洲国产免费| 又黄又爽又免费观看的视频| 综合色av麻豆| 精品久久久久久久久久免费视频| 男人舔女人下体高潮全视频| 国产日本99.免费观看| 1000部很黄的大片| 18禁裸乳无遮挡免费网站照片| 欧美精品啪啪一区二区三区| or卡值多少钱| 国产精品电影一区二区三区| 久久精品国产清高在天天线| 成人亚洲精品av一区二区| 女人高潮潮喷娇喘18禁视频| 国产真实乱freesex| 成人特级黄色片久久久久久久| 欧美激情在线99| 久久精品亚洲精品国产色婷小说| 成年女人永久免费观看视频| 精品久久久久久久久久免费视频| 久久久成人免费电影| 久久久久国产一级毛片高清牌| 国产精品影院久久| 18禁黄网站禁片午夜丰满| 亚洲一区二区三区色噜噜| a在线观看视频网站| 国语自产精品视频在线第100页| 性色av乱码一区二区三区2| 99久久99久久久精品蜜桃|