• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Monitoring intracellular pH fluctuation with an excited-stateintramolecular proton transfer-based ratiometric fluorescent sensor

    2021-12-29 02:27:10BinFengYingliZhuJiaxinWuXueyanHuangRongSongLiuHuangXuepingFengWenbinZeng
    Chinese Chemical Letters 2021年10期

    Bin Feng,Yingli Zhu,Jiaxin Wu,Xueyan Huang,Rong Song,Liu Huang,Xueping Feng,Wenbin Zeng,*

    a Xiangya School of Pharmaceutical Sciences,Central South University,Changsha 410013,China

    b The Molecular Imaging Research Center,Central South University,Changsha 410013,China

    c Hunan Key Laboratory of Diagnostic and Therapeutic Drug Research for Chronic Diseases,Central South University,Changsha 410013,China

    d Xiangya Hospital,Central South University,Changsha 410013,China

    Keywords:Excited-state intramolecular proton transfer Intracellular pH Sulfonamide Ratiometric sensor Fluorescent imaging

    ABSTRACT Intracellular pH is a key parameter related to various biological and pathological processes.In this study,a ratiometric pH fluorescent sensor ABTT was developed harnessing the amino-type excited-state intramolecular proton transfer(ESIPT)process.Relying on whether the ESIPT proceeds normally or not,ABTT exhibited the yellow fluorescence in acidic media,or cyan fluorescence in basic condition.According to the variation,ABTT behaved as a promising sensor which possessed fast and reversible response to pH change without interference from the biological substances,and exported a steady ratiometric signal(I478/I546).Moreover,due to the ESIPT effect,large Stokes shift and high quantum yield were also exhibited in ABTT.Furthermore,ABTT was applied for monitoring the pH changes in living cells and visualizing the pH fluctuations under oxidative stress successfully.These results elucidated great potential of ABTT in understanding pH-dependent physiological and pathological processes.

    Hydronium ion plays critical roles in many biological[1-3]and pathological processes[4-7].Generally,the pH of normal tissue is carefully maintained at 7.2-7.4[8],while abnormal changes in the pH gradient can be observed under pathological conditions,including cancer [9-11],sepsis [12],hyperkalemia [13],and chronic kidney disease [14].For example,a lower pH (6.7~7.1)is always found in tumor microenvironment.And these specific pH gradients in pathological tissues can be used as biomarkers for targeted therapy[15-19].Furthermore,the imbalance of pH is also considered to be the cause of a variety of secondary diseases[4,20].Acidosis,for instance,is an important component of the pathogenetic events that lead to ischemic brain damage [21].Therefore,monitoring changes in intracellular pH is very important to understand these pH-dependent cellular behaviors and pathological processes.Although many methods for measuring intracellular pH such as microelectrodes [22],NMR [23],and absorbance spectroscopy[24]have been developed,but they suffer from several drawbacks such as low sensitivity,poor selectivity,complicated sampling process,and high cost [25].By contrast,fluorescence spectroscopy exhibited the advantages of high sensitivity,ease-to-use and capability of visualizing the temporal and spatial changes of intracellular pH [26-28].However,the traditional fluorescent sensors operating on the fluorescent intensity may be significantly affected by the environmental factors,including changes of optical path length,varied emission collection efficiencies,and altered excitation intensities.Ratiometric fluorescence probes or sensors work on the changes of two individual emission bands,by which they can efficiently selfcalibrate to exclude the interference from the environment [29-31].Nevertheless,the delicate difference in wavelength and serious crosstalk between emission bands still limits their effectiveness and resolution [32,33].Therefore,it is still of significance to develop renewed ratiometric pH fluorescent sensors with optimized signals.

    Herein,we developed a ratiometric fluorescent sensor 2-(2'-tosylamino-4'-chlorophenyl)benzothiazole (ABTT) allowing continuously monitoring pH in living cells.Upon appending with strong electron-withdrawing tosyl group,the amino-type excitedstate intramolecular proton-transfer(ESIPT)process was favorable without apparent energy barriers.However,the process can be blocked partly or overwhelmingly upon deprotonation of sulfonamide moiety in basic condition.As a result,the sensor exhibits yellow fluorescence from tautomer form in acidic media while cyan fluorescence from deprotonation form in basic media(Scheme 1).Thanks to its unique working mechanism,ABTT inherited its innate excellent photostability and reversibility,as well as high quantum yield and large Stokes shift.More importantly,ABTT was further applied to imaging pH changes and monitoring pH fluctuations under oxidative stress in living cells.

    ESIPT is a photophysical process occurring in fluorophores involving tautomerization upon excitation,in which a proton was transferred from the proton donor to acceptor [34,35].Compared with the energetically favorable ESIPT involving phenolic hydroxyl group (pKa≈10) [36],higher energy barrier exists in thermodynamic regimes in N--H type ESIPT due to the much weaker acidity of aromatic amino group (pKa≈30) [37,38].Interestingly,the acidity of the amine,together with the polarization of the N--H bond and the strength of the H-bond donor,can be modulated by the introduction of electron-withdrawing N-substituent at amino group,to give a substantial ESIPT driving force[39,40].Further,the resultant tautomer fluorescence exhibited high sensitivity toward local surroundings,e.g.,the pH and polarization of solution [34].Hence,2-(2'-amino-4'-chlorophenyl)benzothiazole (ABT) was appended with a strong electron-withdrawing tosyl group to facilitate its ESIPT process,and endow it sensing capability toward local pH value.Sensor ABTT was facilely prepared by a four-step process and details of synthetic route were outlined in Scheme S1(Supporting information) [41].

    As a starting point,the solvent effect of ABT and ABTT was first investigated in various organic solvents.As shown in Fig.S2a(Supporting information),ABT exhibited only a sole fluorescent emission in various solvents with Stokes shift as little as~90 nm,meaning the prohibition of ESIPT process.On the contrary,ESIPT underwent well in ABTT,and a dominant emission with large Stokes shift was observed in Hexane,THF,DCM and ethanol(Fig.1a).While,the emission peak bule-shifted and broadened a lot in methanol,illustrating that the ESIPT process in ABTT was blocked partly.In MeCN,DMSO,and DMF,a further hypsochromic shift appeared and only an emission with little Stokes shift were observed,demonstrating that the substantial change of Stokes shift is not derived from the solvatochromism but the overwhelmingly blocked ESIPT process.These results demonstrate that ESIPT process proceeds without apparent energy barrier in ABTT upon tosyl substitution,and it can be tuned as well by the outer stimulation [42].

    With this in mind,the absorbance and fluorescence spectra of ABTT at different pH was evaluated in aqueous solution (buffer/DMSO=99.5:0.5 (v/v)).As shown in Fig.S1 (Supporting information),the maximal absorption peak red-shifted upon the media changing from acidic (pH 4) and basic (pH 9).In Fig.1b,a sole emission peaked at 546 nm(fluorescent quantum yield(F)=0.40,Table S2 in Supporting information)was observed in acidic media,while a new emission peaked at 478 nm (F=0.58,Table S2) was observed in basic media.Importantly,owing to the ESIPT process,the sensor displayed large Stokes shift (186 nm/118 nm) in acidic and basic media,respectively,which can distinctly reduce interference from the excitation and avoid self-reabsorption[34,43].Compared with the significant change in ABTT,no noticeable spectral change was observed in ABT (Fig.S2b in Supporting information).Hence,the spectral shifts of ABTT can be attributed to the protonation (or deprotonation) of the sulfonamide moiety,thereby normally proceeding or blocking the process of ESIPT,as depicted in Scheme 1.Moreover,an apparent hypsochromic shift as large as 68 nm provides high resolution for monitoring pH in complex environment [32].

    Scheme 1.The proposed sensing mechanism of ABTT toward acidic or basic media.

    Fig.1.Fluorescence emission spectra(λex=360 nm)of ABTT(10 μmol/L)in various organic solvents (a) and in acidic (pH 4,red solid line) and basic (pH 9,blue dash line) media (b).Inset:fluorescence images of ABTT in corresponding media under UV light (365 nm).

    To rationalize the pH sensing mechanism,density functional theory (DFT) calculations for ABTT in different forms were conducted at B3LYP/6-31 G(d,p) level (Gaussian 09 W) [39,44].As shown in Fig.2,the HOMO-LUMO gap of deprotonation form(4.08 eV) is smaller than that of normal form (4.14 eV),which is consistent to the red shift observed in the absorbance spectra(Fig.S1).Further,the obvious charge redistribution in the electronic density was observed in deprotonation form,supporting the red-shifted peak was ascribed to the deprotonated sensor in basic media.Moreover,the hypsochromic shift of fluorescence can also be attributed to the variation in the energy gap from 3.23 eV(tautomer form) to 4.08 eV (deprotonation form) [32].To further support the existence of two forms,1H NMR titration experiment was carried out.As shown in Fig.S3 (Supporting information),a single peak corresponding to the sulfonamide proton at 12.13 ppm disappeared upon addition of TEA(1.0 equiv).The above results are consistent with our proposed mechanism that the apparent fluorescence emission depends on whether ESIPT in ABTT proceed well or not,and the large emission shift would happen once tautomer form is forbidden but deprotonation form is allowed,e.g.,the pH is changed.

    Fig.2.Frontier molecular orbitals(a)and HOMO-LUMO energy levels(b)of ABTT-N(normal form),ABTT-T (tautomer form),and ABTT-D (deprotonation form).

    Fig.3.(a)Fluorescence emission spectra of ABTT (10 μmol/L)in aqueous solution(pH 4.0~12.0).(b) Plots of fluorescence intensity ratio (I478/I546) of ABTT (10 μmol/L)versus pH.(c)Change in fluorescence ratio(I478/I546)of ABTT(10 μmol/L)at pH 4.0,and 9.0,respectively.(b)Reversible fluorescence changes of ABTT(10 μmol/L) between pH 4.0 and pH 9.0.λex=360 nm.

    Inspired by the proved feasibility of ABTT,our efforts were then turned into assessing the practical potential in ratiometric detection of pH values.A standard fluorescence pH titration of ABTT was performed in aqueous solution as shown in Fig.3a.With the pH rising from 4.0 to 12.0,the emission of ABTT gradually hypsochromically shifted,behaving as that the intensity of the initial emission (I546) dropped remarkably while the emerging emission (I478) raised a lot.The hypsochromical shift appeared as the distinct fluorescence color changing from yellow to cyan,which can be easily distinguished by bared eye (Fig.S4 in Supporting information).An isoemissive point can be seen at 523 nm,so the detailed fluorescence ratio I478/I546can be measured versus pH.As illustrated in Fig.3b,it was easy to determine the pH value based on the fluorescence ratio,making it applicable for preliminary and wide-range pH fluctuation detection.

    High photostability is a determinant requirement for the practical applications in long-term pH monitoring [45].The photostability of ABTT was evaluated under the excitation of a 150 W xenon lamp,and intensity at 546 and 478 nm in acidic and basic media were collected respectively for 2.5 h.Obviously,the fluorescent intensities and the corresponding ratiometric signals were relatively stable during the scanning period (Fig.S5 in Supporting information and Fig.3c),indicating that ABTT was highly sensitive to pH changes but stable to light,media and air.Moreover,ABTT displayed a good reversibility when the media pH circularly changing between 4.0 and 9.0 forth and back,and still retained high sensitivity toward pH change even after seven recycles (Fig.3d).Then determining interference from other biological molecules was taken account,as shown in Fig.S6(Supporting information),no obvious variation in the fluorescent intensities was triggered by the relevant species.From these results,it can be concluded that ABTT possesses a fast and reversible response to pH changes without interference from the biological substances,and exports a stable ratiometric signal,all are beneficial for the real-time and long-term pH monitoring in complex matrices.

    Fig.4.Fluorescent images of ABTT(10 μmol/L)in HepG2 cells clamped at pH 6.0(ad),7.0(e-h),7.4(i-l),8.0(m-p)and 9.0(q-t),respectively.The signals were collected at 450-530 nm (yellow channel,1st row) and 570-610 nm (blue channel,2nd row)upon excitation at 405 nm.The 3rd row exhibited the corresponding merge images and the 4th (ratio channel) were obtained by ImageJ software.Scale bar:50 μm.

    Having demonstrated in vitro ABTT was favorable for the biological pH detection,its capacity for monitoring the intracellular pH changes was accessed.First,the cytotoxicity of ABTT on HepG2 cells were evaluated using CCK8 assay(Fig.S7 in Supporting information).Apparently,ABTT at concentration as large as 20 μmol/L have not exhibited distinct toxicity to the living cells(survival rate > 90%),indicating its low cytotoxicity and excellent biocompatibility.In addition,HepG2 cells incubated with ABTT(10 μmol/L) for 20 min exhibited intensive fluorescent signals in the blue channel and weak signals in the yellow channel(Fig.S8 in Supporting information),confirming the excellent cell membrane permeability of ABTT.Encouraged by the above results,the applicability of ABTT to detect intracellular pH value was taken account.To calibrate the intracellular pH,HepG2 cells were treated with H+/K+ionophore nigericin (10 μmol/L) to homogenizing the pH with different value [32,33].As displayed in Fig.4,the living cells pre-stained with ABTT at pH 6.0 exhibited strong fluorescence in yellow channel and almost no fluorescence in the blue channel.However,the fluorescent intensity in yellow channel declined gradually whereas that in blue channel grew higher when the intracellular pH value elevated from 6 to 9,allowing ratiometric monitoring the pH changes in living cells.Importantly,remarkable pseudocolor variations were observed between pH 7.0 and 8.0,demonstrating the high potential of ABTT in monitoring intracellular pH fluctuations.

    As one of the central chemical reaction,intracellular redox has been reported to involve in pH homeostasis[46].Considering this,the practical capability of ABTT in monitoring slight pH fluctuation in living cells was assessed under the stimulation of various redox substances.In the above anti-interference experiments,the normal redox substances have been validated without interference toward ABTT.First,H2O2and NaClO were applied to ABTTprestained HepG2 cells and then imaged as shown in Fig.5.Compared with untreated cells,a significant increase of fluorescence in yellow channel and slight fall in blue channel was induced by H2O2,indicating the acidification of intracellular cytosol.This may be ascribed to the H2O2-produced hydroxyl radicals which further generates some acidic substances to cause acidification of cells[47].On the contrary,low intracellular pH was not induced by ClO-due to its incapability of elevating the level of intracellular pH,which was in line with the previous reports [32,33].In addition,the reduction of GSH level is reported with capacity to affect the function of the Na+/H+antiporter,herein,N-ethylmaleimide (NEM,a GSH depletor) and N-acetylcysteine (NAC,a GSH precursor) were treated with HepG2 cells,respectively,to regulate the intracellular GSH level [32].As expected,the treatment of NEM triggered the decline of intracellular pH,by contrast,no obvious pH change was reflected in NAC-treated cells,which can be explained by non-influence of elevated GSH level on intracellular acidic substances [32,33].More apparently,the pH fluctuations induced by oxidative stress can be distinguished facilely according to the pseudocolor images.These results suggest the good capability of sensor ABTT to explore the relationship between intracellular pH fluctuations and oxidative stress,and it will be a promising tool for analyzing various pH-dependent biological and pathological processes as well.

    Fig.5.Fluorescent images of ABTT(10 μmol/L)in intact HepG2 cells(a-d)and cells treated with 100 μmol/L H2O2(e-h),100 μmol/L NaClO(i-l),1.0 mmol/L NEM(m-p),and 1.0 mmol/L NAC (q-t).The signals were collected at 450-530 nm (yellow channel,1st row) and 570-610 nm (blue channel,2nd row) upon excitation at 405 nm.The 3rd row exhibited the corresponding merge images,and the 4th (ratio channel) were obtained by ImageJ software.Scale bar:30 μm.

    In summary,a novel ratiometric pH fluorescent sensor ABTT was synthesized via a condensation of 2-(2'-amino-4'-chlorophenyl)benzothiazole with tosyl group.Upon appending of tosyl group,amino-type ESIPT process was thermodynamically allowed,endowing ABTTa long-wavelength emission with large Stokes shift in acidic media.On the contrary,the deprotonation in sulfonamide moiety blocked the ESIPT process partly or overwhelmingly in basic condition,giving the hypsochromically shifted emission.The significant color change from yellow to cyan allowed less spectral overlap and higher spatial resolution for pH detection.Moreover,the excellent photostability and reversibility,high quantum yield,and favorable anti-interference allowed its application in imaging pH changes in living cells and monitoring pH fluctuations under oxidative stress.These results elucidates that the sensor may potentially be used in understanding pH-dependent biological and pathological processes.

    Declaration of competing interest

    The authors report no declarations of interest.

    Acknowledgments

    We are grateful for the financial supports from National Natural Science Foundation of China (Nos.81971678 and 81671756) and the Innovation Fund for Postgraduate Students of Central South University (No.2019zzts1019).

    Appendix A.Supplementary data

    Supplementary material related to this article can be found,in the online version,at doi:https://doi.org/10.1016/j.cclet.2021.03.074.

    日本欧美视频一区| 国产成人精品无人区| 午夜av观看不卡| av网站在线播放免费| 精品少妇内射三级| 国产在线一区二区三区精| 18禁国产床啪视频网站| 久久免费观看电影| 国产精品三级大全| 亚洲国产色片| 精品一品国产午夜福利视频| 纵有疾风起免费观看全集完整版| 国产一区亚洲一区在线观看| 国产精品亚洲av一区麻豆 | 国产日韩一区二区三区精品不卡| 久久人人爽人人片av| 精品一区二区三卡| 日本-黄色视频高清免费观看| 搡女人真爽免费视频火全软件| 久久人人爽av亚洲精品天堂| 建设人人有责人人尽责人人享有的| 男人添女人高潮全过程视频| 欧美精品人与动牲交sv欧美| 欧美少妇被猛烈插入视频| 老司机影院成人| 精品亚洲乱码少妇综合久久| 国产有黄有色有爽视频| 在线观看三级黄色| 亚洲色图综合在线观看| 午夜激情av网站| 天天影视国产精品| 中文天堂在线官网| 中国三级夫妇交换| 五月天丁香电影| 高清在线视频一区二区三区| 中文字幕人妻丝袜制服| 中文字幕色久视频| 下体分泌物呈黄色| 国产又爽黄色视频| 90打野战视频偷拍视频| 桃花免费在线播放| 免费日韩欧美在线观看| 成年动漫av网址| 亚洲欧美一区二区三区黑人 | 欧美97在线视频| 国产熟女欧美一区二区| 一本—道久久a久久精品蜜桃钙片| 久久韩国三级中文字幕| 日韩 亚洲 欧美在线| 美女午夜性视频免费| 欧美激情高清一区二区三区 | 国产精品久久久久久av不卡| 十八禁高潮呻吟视频| 成人亚洲精品一区在线观看| 七月丁香在线播放| 色婷婷久久久亚洲欧美| 欧美av亚洲av综合av国产av | 十分钟在线观看高清视频www| 国产成人a∨麻豆精品| 纯流量卡能插随身wifi吗| 不卡视频在线观看欧美| 成人黄色视频免费在线看| 制服人妻中文乱码| 黄色 视频免费看| 高清视频免费观看一区二区| 26uuu在线亚洲综合色| 免费观看性生交大片5| 另类精品久久| 久久久久久久久久久免费av| 色吧在线观看| 热99国产精品久久久久久7| tube8黄色片| 熟女电影av网| 国产成人免费观看mmmm| 久久久久精品性色| 18禁国产床啪视频网站| 国产精品偷伦视频观看了| 成人影院久久| 免费看av在线观看网站| 欧美最新免费一区二区三区| 精品一区二区免费观看| 老司机亚洲免费影院| 一级爰片在线观看| 久久免费观看电影| 久久精品久久精品一区二区三区| av线在线观看网站| 永久网站在线| 亚洲精品国产一区二区精华液| 成年人午夜在线观看视频| 男女无遮挡免费网站观看| 欧美精品一区二区大全| 亚洲国产精品一区三区| 天天躁夜夜躁狠狠躁躁| 中文字幕另类日韩欧美亚洲嫩草| 国产男女内射视频| 久久久久国产精品人妻一区二区| 国产av一区二区精品久久| 麻豆av在线久日| 男女高潮啪啪啪动态图| 国产精品蜜桃在线观看| 国产av码专区亚洲av| 少妇人妻久久综合中文| 亚洲欧美中文字幕日韩二区| 欧美老熟妇乱子伦牲交| 国产极品粉嫩免费观看在线| 一本大道久久a久久精品| 国产精品麻豆人妻色哟哟久久| 男女免费视频国产| 国产亚洲午夜精品一区二区久久| 在线观看www视频免费| 人妻一区二区av| 欧美精品一区二区免费开放| 丰满少妇做爰视频| 久久久欧美国产精品| 麻豆av在线久日| 两个人看的免费小视频| 亚洲国产精品国产精品| 久久久久久久久久久久大奶| av一本久久久久| 久久久精品区二区三区| 色94色欧美一区二区| 久久久久久伊人网av| 午夜福利影视在线免费观看| 少妇的逼水好多| av在线观看视频网站免费| 国产综合精华液| 国产精品久久久久久久久免| 香蕉丝袜av| 成人国语在线视频| 韩国av在线不卡| 在线精品无人区一区二区三| 亚洲av.av天堂| 在现免费观看毛片| 免费在线观看完整版高清| 五月伊人婷婷丁香| 99久国产av精品国产电影| 日韩精品免费视频一区二区三区| 日本午夜av视频| 精品少妇内射三级| 两个人免费观看高清视频| 最新的欧美精品一区二区| 黄片播放在线免费| tube8黄色片| 日韩一本色道免费dvd| 91久久精品国产一区二区三区| 热re99久久精品国产66热6| 性高湖久久久久久久久免费观看| 国产激情久久老熟女| 亚洲欧美精品综合一区二区三区 | 亚洲成国产人片在线观看| 欧美日韩av久久| 欧美老熟妇乱子伦牲交| 精品国产一区二区久久| 国产精品久久久久久精品电影小说| 蜜桃在线观看..| 婷婷色综合大香蕉| 亚洲av免费高清在线观看| 久久精品aⅴ一区二区三区四区 | 一边摸一边做爽爽视频免费| 亚洲成色77777| 成年女人毛片免费观看观看9 | 中文天堂在线官网| 日韩成人av中文字幕在线观看| 久久久久久人人人人人| 在线看a的网站| 亚洲欧美成人综合另类久久久| 看免费av毛片| 亚洲国产看品久久| 成人手机av| 精品少妇内射三级| 亚洲欧美成人精品一区二区| 亚洲av男天堂| 婷婷色av中文字幕| 亚洲精品aⅴ在线观看| 丰满迷人的少妇在线观看| 免费黄网站久久成人精品| 国产高清不卡午夜福利| 不卡视频在线观看欧美| 国产精品熟女久久久久浪| 亚洲精品在线美女| 国产日韩欧美在线精品| 久久女婷五月综合色啪小说| 国产女主播在线喷水免费视频网站| 日本av免费视频播放| 国产片内射在线| 飞空精品影院首页| 亚洲精品自拍成人| 热re99久久国产66热| 在线观看免费视频网站a站| 日本av免费视频播放| 美国免费a级毛片| kizo精华| 777米奇影视久久| 国产精品久久久久久精品古装| 一级毛片黄色毛片免费观看视频| 高清av免费在线| 天天躁日日躁夜夜躁夜夜| 最黄视频免费看| 交换朋友夫妻互换小说| 波多野结衣一区麻豆| 亚洲av福利一区| 有码 亚洲区| 久久久久久免费高清国产稀缺| 欧美日韩综合久久久久久| √禁漫天堂资源中文www| 女的被弄到高潮叫床怎么办| av网站免费在线观看视频| av在线播放精品| 亚洲国产看品久久| 欧美人与性动交α欧美精品济南到 | 国产在视频线精品| 中文字幕人妻丝袜一区二区 | 亚洲精品国产av成人精品| 国产精品不卡视频一区二区| 亚洲综合色网址| 久热久热在线精品观看| 久久精品国产亚洲av高清一级| 综合色丁香网| 午夜免费男女啪啪视频观看| 极品人妻少妇av视频| 少妇熟女欧美另类| 亚洲国产精品一区二区三区在线| 大片免费播放器 马上看| 久久毛片免费看一区二区三区| 极品人妻少妇av视频| 少妇熟女欧美另类| 午夜福利网站1000一区二区三区| 王馨瑶露胸无遮挡在线观看| 人妻一区二区av| 精品久久蜜臀av无| www.自偷自拍.com| 国产熟女午夜一区二区三区| 丰满少妇做爰视频| 精品视频人人做人人爽| 一区二区三区精品91| 男女高潮啪啪啪动态图| 999精品在线视频| 伦精品一区二区三区| 在线观看免费日韩欧美大片| 免费观看性生交大片5| 婷婷色av中文字幕| 波野结衣二区三区在线| 精品一区二区三区四区五区乱码 | 免费在线观看完整版高清| 麻豆av在线久日| 男女高潮啪啪啪动态图| 亚洲精品在线美女| videosex国产| 日韩中文字幕视频在线看片| 国产在视频线精品| 久热这里只有精品99| 大陆偷拍与自拍| 精品福利永久在线观看| 免费看不卡的av| 美女国产高潮福利片在线看| 国产精品蜜桃在线观看| 80岁老熟妇乱子伦牲交| 你懂的网址亚洲精品在线观看| 久久99精品国语久久久| 日韩中文字幕视频在线看片| 亚洲精品第二区| 91精品三级在线观看| 哪个播放器可以免费观看大片| 国产成人免费无遮挡视频| 国产精品久久久久久久久免| 免费看不卡的av| 亚洲美女视频黄频| 在线 av 中文字幕| 99久久人妻综合| 国产有黄有色有爽视频| av片东京热男人的天堂| 久久午夜福利片| 国产日韩欧美亚洲二区| 国产av码专区亚洲av| 自拍欧美九色日韩亚洲蝌蚪91| 久久久久精品性色| 18+在线观看网站| 欧美精品一区二区免费开放| 日日摸夜夜添夜夜爱| 亚洲图色成人| 免费观看在线日韩| 国产激情久久老熟女| 少妇人妻精品综合一区二区| 欧美人与善性xxx| 视频区图区小说| 99久久精品国产国产毛片| 精品一区二区三卡| 国产一区二区在线观看av| 精品国产超薄肉色丝袜足j| 人成视频在线观看免费观看| 午夜日韩欧美国产| 成年人免费黄色播放视频| √禁漫天堂资源中文www| 女人高潮潮喷娇喘18禁视频| 69精品国产乱码久久久| 亚洲精品中文字幕在线视频| 国产黄色免费在线视频| 狂野欧美激情性bbbbbb| 成年女人毛片免费观看观看9 | 亚洲av国产av综合av卡| 人妻少妇偷人精品九色| 满18在线观看网站| 欧美日韩国产mv在线观看视频| 91精品三级在线观看| 欧美另类一区| 久久久久久久亚洲中文字幕| 成人国语在线视频| 免费黄频网站在线观看国产| 日本vs欧美在线观看视频| 蜜桃国产av成人99| 一区二区三区精品91| 97人妻天天添夜夜摸| 免费观看在线日韩| 亚洲 欧美一区二区三区| 久久久欧美国产精品| 午夜激情久久久久久久| 久久国产精品男人的天堂亚洲| 亚洲国产av新网站| www.自偷自拍.com| 日韩不卡一区二区三区视频在线| 18禁动态无遮挡网站| 成人手机av| 在线免费观看不下载黄p国产| 午夜福利在线观看免费完整高清在| 精品少妇内射三级| 国产精品一区二区在线观看99| 久久精品久久精品一区二区三区| 国产在线视频一区二区| 久久青草综合色| a级片在线免费高清观看视频| 久久久国产一区二区| 免费黄频网站在线观看国产| 一本色道久久久久久精品综合| 久久久久久人妻| 免费观看a级毛片全部| 一区二区三区激情视频| 只有这里有精品99| 青春草国产在线视频| 男的添女的下面高潮视频| 亚洲四区av| 熟女电影av网| 一本大道久久a久久精品| 国产男女超爽视频在线观看| 一二三四中文在线观看免费高清| 在线天堂中文资源库| 综合色丁香网| 人妻一区二区av| 久久久国产一区二区| 亚洲av综合色区一区| 叶爱在线成人免费视频播放| 国产成人精品婷婷| 婷婷色av中文字幕| 肉色欧美久久久久久久蜜桃| 日本猛色少妇xxxxx猛交久久| 最近2019中文字幕mv第一页| 91精品三级在线观看| 久久久精品国产亚洲av高清涩受| 亚洲一区中文字幕在线| 亚洲第一青青草原| 99热网站在线观看| 亚洲精品成人av观看孕妇| 国产探花极品一区二区| 十分钟在线观看高清视频www| 亚洲欧美中文字幕日韩二区| 高清视频免费观看一区二区| 日韩大片免费观看网站| 免费黄色在线免费观看| 岛国毛片在线播放| 国产激情久久老熟女| 超碰97精品在线观看| 99国产综合亚洲精品| 有码 亚洲区| 国产精品久久久久久精品古装| 精品国产一区二区三区久久久樱花| 高清不卡的av网站| 国产在线视频一区二区| 精品第一国产精品| 蜜桃在线观看..| 免费久久久久久久精品成人欧美视频| 国产免费又黄又爽又色| 亚洲国产欧美在线一区| 亚洲欧美色中文字幕在线| 国产成人91sexporn| 精品99又大又爽又粗少妇毛片| 亚洲av国产av综合av卡| 97精品久久久久久久久久精品| 免费观看av网站的网址| 亚洲四区av| 丝袜美腿诱惑在线| 午夜福利影视在线免费观看| 国产成人精品无人区| 欧美日韩av久久| 天天躁夜夜躁狠狠久久av| 久久精品夜色国产| 在线观看免费日韩欧美大片| 亚洲欧洲日产国产| 国产亚洲av片在线观看秒播厂| 精品久久久久久电影网| 久久久久久久亚洲中文字幕| √禁漫天堂资源中文www| 国产午夜精品一二区理论片| 在线观看国产h片| 久久亚洲国产成人精品v| 久久人人爽av亚洲精品天堂| 黄色一级大片看看| 亚洲成人手机| 日本免费在线观看一区| 97人妻天天添夜夜摸| 亚洲av国产av综合av卡| 丝袜在线中文字幕| 亚洲伊人久久精品综合| 亚洲欧美色中文字幕在线| 2018国产大陆天天弄谢| 午夜免费男女啪啪视频观看| 日韩成人av中文字幕在线观看| 黄色配什么色好看| av电影中文网址| 久久99一区二区三区| 亚洲欧美一区二区三区国产| 91国产中文字幕| 晚上一个人看的免费电影| 少妇人妻 视频| 国产日韩欧美亚洲二区| 免费久久久久久久精品成人欧美视频| 国产精品不卡视频一区二区| 免费观看无遮挡的男女| 中文字幕另类日韩欧美亚洲嫩草| a 毛片基地| 丝袜人妻中文字幕| 在线亚洲精品国产二区图片欧美| 色吧在线观看| 成人午夜精彩视频在线观看| 黑人欧美特级aaaaaa片| 成人亚洲精品一区在线观看| 99久国产av精品国产电影| 精品人妻偷拍中文字幕| 婷婷成人精品国产| 精品一区二区免费观看| 国产淫语在线视频| 美女xxoo啪啪120秒动态图| 国产探花极品一区二区| 丰满少妇做爰视频| 老鸭窝网址在线观看| 韩国高清视频一区二区三区| 亚洲欧美成人综合另类久久久| 久久久国产欧美日韩av| 欧美中文综合在线视频| 麻豆精品久久久久久蜜桃| 久久精品国产亚洲av涩爱| 国产精品一区二区在线不卡| 国产成人精品福利久久| 中文字幕精品免费在线观看视频| 91午夜精品亚洲一区二区三区| 久久精品久久久久久久性| 99香蕉大伊视频| 国产亚洲精品第一综合不卡| 国产精品 欧美亚洲| 春色校园在线视频观看| 欧美日韩综合久久久久久| 国产片特级美女逼逼视频| 青青草视频在线视频观看| 久久毛片免费看一区二区三区| 高清av免费在线| 妹子高潮喷水视频| 亚洲人成77777在线视频| 国产激情久久老熟女| tube8黄色片| 午夜av观看不卡| 一级a爱视频在线免费观看| 看十八女毛片水多多多| 国产精品女同一区二区软件| 日韩一区二区视频免费看| 日韩大片免费观看网站| 妹子高潮喷水视频| 国产精品国产三级专区第一集| 9热在线视频观看99| 日本-黄色视频高清免费观看| 欧美日韩国产mv在线观看视频| 蜜桃在线观看..| 国产激情久久老熟女| 精品人妻一区二区三区麻豆| 久久99精品国语久久久| 久久精品夜色国产| 国产成人精品久久二区二区91 | 免费观看a级毛片全部| 韩国高清视频一区二区三区| 亚洲激情五月婷婷啪啪| av女优亚洲男人天堂| 满18在线观看网站| 日韩免费高清中文字幕av| 国产男女超爽视频在线观看| 美女福利国产在线| 高清视频免费观看一区二区| 国产人伦9x9x在线观看 | 大码成人一级视频| 极品少妇高潮喷水抽搐| 最新中文字幕久久久久| 国产一级毛片在线| 国产精品无大码| 另类精品久久| 美女国产视频在线观看| av视频免费观看在线观看| 久久97久久精品| 久久精品国产亚洲av高清一级| 亚洲三区欧美一区| 国产麻豆69| 一区二区日韩欧美中文字幕| 日日摸夜夜添夜夜爱| 亚洲av日韩在线播放| 另类精品久久| 亚洲精品乱久久久久久| 国产成人一区二区在线| 午夜老司机福利剧场| 麻豆av在线久日| 亚洲美女搞黄在线观看| 欧美另类一区| 国产成人精品在线电影| 最近2019中文字幕mv第一页| 人人妻人人澡人人看| 日韩精品免费视频一区二区三区| 国产av国产精品国产| 高清黄色对白视频在线免费看| 婷婷成人精品国产| 亚洲国产欧美在线一区| 国产在线视频一区二区| 五月天丁香电影| 日本午夜av视频| 美女午夜性视频免费| 久久99热这里只频精品6学生| 天堂中文最新版在线下载| 亚洲精品在线美女| av又黄又爽大尺度在线免费看| 国产精品二区激情视频| 欧美国产精品va在线观看不卡| 超色免费av| 涩涩av久久男人的天堂| 久久人人爽av亚洲精品天堂| 日本-黄色视频高清免费观看| 免费看av在线观看网站| 久久久久国产一级毛片高清牌| 亚洲久久久国产精品| 亚洲四区av| 免费观看a级毛片全部| 亚洲三级黄色毛片| 日日摸夜夜添夜夜爱| 老鸭窝网址在线观看| www.自偷自拍.com| 国产视频首页在线观看| 精品国产露脸久久av麻豆| 少妇熟女欧美另类| 十分钟在线观看高清视频www| 亚洲第一青青草原| 免费在线观看视频国产中文字幕亚洲 | 一二三四中文在线观看免费高清| av网站免费在线观看视频| 久久久久久人妻| 男女高潮啪啪啪动态图| 精品国产一区二区三区久久久樱花| 亚洲三区欧美一区| 中文字幕色久视频| 国产欧美亚洲国产| 国产精品免费视频内射| 亚洲国产av影院在线观看| 久久久欧美国产精品| 丰满少妇做爰视频| 如日韩欧美国产精品一区二区三区| 久久国产精品男人的天堂亚洲| 亚洲色图综合在线观看| a级毛片在线看网站| 日日啪夜夜爽| 黄片播放在线免费| 成人毛片60女人毛片免费| 熟妇人妻不卡中文字幕| 久久ye,这里只有精品| 老司机影院毛片| 久久精品久久久久久久性| xxx大片免费视频| 国产成人精品福利久久| 亚洲精品第二区| av免费在线看不卡| 欧美人与善性xxx| a级毛片黄视频| 亚洲美女视频黄频| 尾随美女入室| 五月天丁香电影| 少妇人妻 视频| 熟女av电影| 五月天丁香电影| 人人妻人人澡人人看| 欧美老熟妇乱子伦牲交| 欧美国产精品va在线观看不卡| 99热国产这里只有精品6| 热99久久久久精品小说推荐| 春色校园在线视频观看| 日韩中字成人| 少妇的逼水好多| 又黄又粗又硬又大视频| 免费在线观看黄色视频的| 另类亚洲欧美激情| 欧美 亚洲 国产 日韩一| 婷婷色综合大香蕉| 赤兔流量卡办理| 99久久精品国产国产毛片| 精品国产乱码久久久久久小说| 赤兔流量卡办理| 欧美人与性动交α欧美软件| 欧美bdsm另类| 国产不卡av网站在线观看| 日本欧美国产在线视频| 日韩不卡一区二区三区视频在线| 国产伦理片在线播放av一区| 女性被躁到高潮视频| 亚洲伊人久久精品综合| 不卡视频在线观看欧美| 免费黄色在线免费观看|