• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Micro/mesopore carbon spheres derived from sucrose for use in high performance supercapacitors

    2021-12-29 02:29:24SHIJingTIANXiaodongLIXiaoLIUYequnSUNHaizhen
    新型炭材料 2021年6期

    SHI Jing, TIAN Xiao-dong*, LI Xiao, LIU Ye-qun, SUN Hai-zhen

    (1. Analytical Instrumentation Center, State Key Laboratory of Coal Conversion, Institute of Coal Chemistry,Chinese Academy of Sciences, Taiyuan 030001, China;2. CAS Key Laboratory of Carbon Materials, Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan 030001, China;3. School of Chemistry and Materials Science, Ludong University, Yantai 264025, China)

    Abstract: Micro/mesopore carbon spheres for use as the electrode materials of supercapacitors were prepared by hydrothermal carbonization followed by KOH/NaOH activation using sucrose as the carbon precursor. The effects of the KOH and NaOH activation parameters on the specific surface area, pore size distribution and electrochemical performance of the carbon spheres were investigated. Results indicate that the use of NaOH leads to the development of mesopores while the use of KOH increases the specific surface area and micropore volume. The pore size distribution of carbon spheres could be adjusted by varying the relative amounts of the reagents in the activation. Using a NaOH/KOH mass ratio of 2∶1 and a reagent/carbon sphere mass ratio of 3∶1, a good capacitance and rate performance of the supercapacitor electrode in both a 6 mol L?1 KOH aqueous electrolyte and a 1 mol L?1 MeEt3NBF4/propylene carbonate electrolyte was achieved. The prepared activated carbon gave a capacitance of 235 F g?1 at 0.1 A g?1 and a capacitance retention of 81.5% at 20 A g?1 in the 6 mol L?1 KOH aqueous electrolyte, and in a cell using the 1 mol L?1 MeEt3NBF4/propylene carbonate electrolyte, it gave the highest energy density of 30.4 Wh kg?1 and a power output of 18.5 kW kg?1.

    Key words: Sucrose;Carbon sphere;Hydrothermal carbonization;Mixed alkali activation;Supercapacitor

    1 Introduction

    During the past decades, environmentally friendly energy storage devices, such as secondary batteries, supercapacitors (SCs) and fuel cells have gained intensive attention due to the growing requirement of sustainable energy and abatement of environmental pollution[1–3]. Owing to their high power output, rapid charge/discharge rate and excellent cycle stability, SCs are regarded as the most promising energy storage device for high power applications, such as wind turbines, digital communication devices,laptops and peak power sources[4]. To achieve high energy and high power output, it is curial to have a high specific capacitance even at a high charge/discharge rate.

    Porous carbon materials are envisioned as the promising electrode materials for SCs owing to their adjustable pore size distribution (PSD), large specific surface area, good electrical conductivity and low cost[5]. Various biomass materials as the sustainable precursors, such as neem leaves[6], camellia petals[7],cornstalk[8], willow catkins[9]and prawn shells[10], have been used for the preparation of porous carbons via high temperature carbonization followed by physical/chemical activation[9–12]. As an important component of biomass, sucrose is widely used in most aspects of daily life including food industry, medical care, chemical industry, cosmetics, etc. It is well known that sucrose contains abundant carbon and oxygen, which are conductive to prepare activated carbons with good electrochemical performance[13]. In addition, compared with the direct carbonization method, the hydrothermal carbonization is a facile approach to prepare sphere-shaped carbon materials.Sphere-shaped sucrose-derived porous carbons can be obtained after further activation and annealing. For instance, the hydrothermal carbonized microspheres activated by KOH exhibits a high specific capacitance of 296.1 F g?1owing to its large amount of micropores centered at 0.6?0.8 nm[13], which are suitable for storing charge as revealed by the results from carbide-derived carbon (CDC) materials[14]. Nevertheless, the reported materials suffer from inferior capacitive performance at high current densities. Thus, a further pore texture improvement is required to attain an excellent electrochemical performance of sucrose-derived carbon materials. Fortunately, the researches on hierarchical porous carbons open a new avenue for fabricating high performance SCs[15–17]. By taking the advantages of micropores for charge storage of a high amount and mesopores for fast ion transport in the hierarchical porous carbons, porous carbon electrodes with a high specific capacitance and good rate capability can be obtained.

    It is well demonstrated that micropore-dominated activated carbons can be prepared by KOH activation[18,19]. Although the template methods are usually needed to fabricate mesopore-dominated carbons, they are tedious and toxic[20]. Can a hierarchical porous structure be constructed via a simple method? Since the NaOH activation method can be used to prepared porous carbons with a certain amount of mesopore ranging from 2-5 nm[21], herein, a mixture of KOH and NaOH was adopted as activating agents for increasing the specific surface area and tuning the pore size distribution. The oxygen groups on the surface of the porous carbon spheres generated during the preparation process can improve the overall electrochemical performance by the enhancement of the electrode wettability and the extra pseudo capacitance. The hydrothermal carbonized sucrose was activated by NaOH and KOH activation to prepare spherical activated carbons, which exhibited impressive rate capability in both aqueous and organic electrolytes. This work provides an approach for high value-added use of sucrose.

    2 Experimental

    2.1 Synthesis of activated carbons

    The hydrothermal carbonization of 0.1 mol L?1sucrose aqueous solution was carried out in a 100 mL Teflon-sealed autoclave at 180 °C for 24 h. Afterwards, the carbonaceous materials was collected and cleaned with deionized water for several times, ovendried at 80 °C for 12 h to obtain carbonized sample named as HTC. Then, the HTC was activated by KOH and/or NaOH activation in a tube furnace at 800 °C for 2 h under nitrogen atmosphere with a mass ratio of KOH+NaOH to HTC of 3 to yield samples designated as ATCx, wherexreferred to KOH and/or Na-OH. For example, when KOH alone was used, the sample was marked as ATCK.

    2.2 Characterization

    The samples were characterized by scanning electron microscopy (SEM, JEOL 7001F), X-ray diffraction (XRD, Bruker D8 Advance), Raman spectroscopy (Jobin Yvon LabRam HR800, excited by a 632.8 nm He/Ne laser), X-ray photoelectron spectroscopy (XPS, Kratos Axis Ultra DLD) and N2adsorption (BET, Quantachrome Autosorb-iQ2). The surface area (SBET) was calculated according to the Brunauer-Emmett-Teller method and the PSD was calculated from desorption branch isotherms by the density functional theory (DFT) with a slit shaped pore assumption.

    2.3 Electrochemical measurements

    The cyclic voltammetry (CV), galvanostatic charge/discharge (GCD) and electrochemical impedance spectroscopy (EIS) tests were carried out on the CHI 660C workstation. The cycling stability and rate capability were obtained with the LAND 2001B battery test system. The working electrode was prepared by blending the as-obtained samples, polytetrafluoroethylene, and carbon black (80∶10∶10 weight ratios) in 5 mL alcohol, and then the mixture was grinded by a mortar and coated onto a Ti foil current collector and dried at 80 °C overnight. In the three-electrode system, Pt sheet and Hg/HgO electrode were used as the counter electrode and reference electrode,respectively, using a 6 mol L?1KOH aqueous solution as the electrolyte. For the two-electrode configuration, two identical ATCK/Naworking electrodes were separated by a polypropylene film soaked in a 1 mol L?1MeEt3NBF4/propylene carbonate (PC) organic electrolyte. The specific capacitances of the single electrode (Cs, F g?1) and SC device (Ccell, F g?1)were calculated according to the Eq. (1) and (2). The energy density (E, Wh kg?1) and power density (P, W kg?1) of the device were obtained based on the Eq. (3)and Eq. (4):

    whereiand Δtare discharge current (A) and discharge time (s), respectively, ΔVis the potential window after the internal resistance drop (V),mandmtotalrepresent the mass of single electrode materials (g)and the total mass of two electrode materials (g), respectively,Cs,Ccell,EandPrepresent the specific capacitance of single electrode (F g?1), the specific capacitance of a device (F g?1), energy density (Wh kg?1),power density (W kg?1), respectively.

    3 Results and discussion

    Fig. 1 SEM images of the samples using HTC∶KOH∶NaOH in mass ratios of (a) 1∶0∶0 (HTC), (b) 1∶3∶0 (ATCK),(c) 1∶0∶3 (ATCNa), (d) 1∶1∶2 (ATCK/Na).

    SEM images of the samples at different synthetic conditions are given in Fig. 1. It can be seen that after hydrothermal carbonization, sucrose transforms into micrometer size carbon spheres with an average diameter of 5.3 μm (Fig. 1a). After activation, remarkable difference between activated carbons can be easily recognized. As shown in Fig. 1b, the activation of HTC with pure KOH leads to a complete change in morphology and bulk-sheet structure appears. Whereas, the sphere morphology can be maintained when the content of KOH is decreased, revealing that the etching ability of KOH is higher than that of NaOH.

    The XRD patterns of the activated carbons(Fig. 2a) show similar reflections. The broad and low intensity diffraction peaks at 23.4° and 44.0° correspond to the diffraction of (002) and (100) plane of the graphite lattice, respectively, confirming the amorphous feature of the activated carbons[22]. Two obvious peaks at 1 338 cm?1(Dband) and 1 581 cm?1(Gband)can be detected in Raman spectra, which are assigned to defect carbons and sp2carbon in the crystalline graphite lattice, respectively[23]. Generally, the relative intensity ofDband andGband (ID/IG) is proportional to the graphitization degree of carbon materials[24]. TheID/IGvalues of ACTK, ACTNaand ACTK/Nashown in Fig. 2b are determined to be 1.11,1.01 and 1.05, respectively, suggesting that more defects existed in ACTK, which is in good agreement with previous SEM analysis.

    Fig. 2 (a) XRD patterns and (b) Raman spectra of ATCK, ATCNa and ATCK/Na.

    Fig. 3 (a) N2 adsorption isotherms and (b) PSDs of ATCK, ATCNa and ATCK/Na.

    N2adsorption isotherms (Fig. 3a) of the obtained porous carbons show apparent distinction, indicating the different pore textures and specific surface areas.The ATCKexhibits a typical I isotherm according to the International Union of Pure and Applied Chemistry (IUPAC) classification, which is related to microporous materials[18]. On the contrary, the ATCNashows an arc at the relative pressure rang of 0.05?0.20, suggesting the coexistence of a large amount of micropores and a small fraction of small size mesopores in ATCNa, which is confirmed by previous reports[25–27]. According to Linares-Solano’work, Na2O may be generated during the activating process[28], which can be transformed into NaCl by HCl washing. As for ATCK/Na, the isotherm displays the features of both ATCKand ATCNa. Over the entire relative pressure region, the more increment in nitrogen adsorption capacity of ATCKimplies more pores and higher specific surface area in this sample, which further demonstrates the higher etching efficiency of KOH in comparison with NaOH. The PSD curves(Fig. 3b) show that ATCKis a typical microporous material with a narrow size range of 0.4?1.6 nm,while the ATCNahas a large fraction of micropores centered at 0.64 nm and a few developed mesopores ranging from 2.0 to 3.7 nm. According to data listed in Table 1, the average pore diameter (Pav) of ATCNais up to 1.95 nm as compared with 1.79 nm of ATCK.Furthermore, the mesopore volumes ranging from 2.0?3.7 nm is 0.06 cm3g?1for ATCNaas compared with 0 of ATCK, revealing that NaOH is favorable to enlarge pore size, which is beneficial for improving rate capability. However, the smaller specific surface area of ATCNalimits its capacitance as compared with ATCK. Herein, a porous carbon (ACTK/Na) with both a high specific surface area and a proper micro/mesoporous structure is constructed by using mixture of KOH and NaOH as the activating agent. As shown in Fig. 3 and Table 1, the specific surface area of ACTK/Nais higher than that of ATCNaand its corresponding PSD is wider than ATCK. The high surface area can provide more active sites for charge storage,and the micro and mesoporous structure is beneficial to achieve a high capacitance with an improved rateperformance.

    Table 1 Results of sorption tests and elemental compositions of activated carbons.

    The activation not only results in developed porosity, but also affects the surface functionality. The XPS results shown in Fig. 4a reveal that oxygen-containing groups exist in all samples and their relative contents are listed in Table 1. The existence of oxygen-containing groups are considered to effectively enhance the hydrophilicity and wettability of the samples in electrolytes as well as to provide extra pseudocapacitance. As depicted in Fig. 4b-d, the chemical states of oxygen groups can be assigned to four peaks at 531.2, 532.3, 533.2, 535.2 eV, attributed by carbonyl/quinone (O I), phenolic/hydroxyl/ether (O II), carboxyl (O III) and chemisorbed oxygen/water (O IV), respectively[29,30]. More adsorbed oxygen/water content (8.3% for ATCKand 7.6% for ATCK/Na, while that of ATCNais 6.6%) can be detected in the KOH-activated sample, which means that a larger specific surface area contributes to more oxygen/water adsorption. These activated carbons were then tested as electrode materials for SCs.

    The activated carbons were firstly tested in a 6 mol L?1KOH electrolyte with a three-electrode configuration. As shown in Fig. 5a, all samples exhibit an ideal rectangular-like shape with a slight hump at low potential region, suggesting the double layer capacitance is dominated with a small contribution of pseudocapacitance[31]. The oxygen-containing groups are commonly formed during activation. These functionalities can not only provide extra capacitance, but also improve the wettability of surface, resulting in good ion diffusion and surface utilization rate in electrolytes[32]. ATCKwith the largest specific surface area displays the largest capacitance. Fig. 5b gives the GCD plots at a low current density of 0.1 A g?1, from which, it can be found that the charge/discharge curves are symmetric, indicating a good electrochemical reversibility.

    Fig. 4 X-ray photoelectron survey scanning spectra of (a) all samples, the deconvoluted O 1s peaks for (b) ATCK, (c) ATCNa and (d) ATCK/Na, respectively.

    Fig. 5 The electrochemical performances of ATCK, ATCNa and ATCK/Na. (a) CV curves at 5 mV s?1, GCD plots at (b) 0.1 A g?1 and (c) 20 A g?1, (d) the IR drop, (e) specific capacitance as a function of current density and (f) Nyquist plots.

    The symmetrical shape of GCD curves can still be maintained and no obvious IR drops can be observed even when the current density is increased up to 20 A g?1, revealing the good reversibility. As can be seen in Fig. 5d, the IR drops of ATCK, ATCNaand ATCK/Naat 20 A g?1are 64, 55 and 60 mV, which are quite smaller than previous reports[22,33,34]. A lower value of IR drop means a better ion transportation capability and superior reversibility. As depicted in Fig. 5e, although the capacitance decreases gradually with increasing current density, the samples (ATCNaand ATCK/Na) treated with NaOH show enhanced rate capability. For example, a capacitance retention rate of 74.6% is obtained for ATCK, while that of ATCNaand ATCK/Naare 80.1% and 81.5%, demonstrating that a porous carbon electrode with both a high capacitance and good rate performance should be made by adjusting the fraction of micropores and mesopores.Furthermore, the rate capability of ATCK/Nais superior to many activated carbons, such as petroleum cokebased porous carbon (59%, 50 to 1 000 mA g?1)[35],hierarchical porous carbon derived from parasol fluff(36.4%, 0.2 to 10 A g?1)[36], hollow mesoporous carbon spheres (87.2%, 0.5 to 10 A g?1)[37], porous carbon derived from waste plastics (60%, 1 to 20 A g?1).The Nyquist plots in Fig. 5f also verify good ion permeation after PSD is optimized by adjusting the activating agent composition. From the results of the threeelectrode system, it can be seen that ATCK/Nahas the best overall electrochemical performance (comprehensive specific capacitance and rate capability) due to its proper PSD and moderate accessible surface area. By adjusting the micropore and mesopore proportion and size, an optimal pore structure can be obtained to achieve both superior charge storage and better ion transportation or to balance the capacitance and rate performance of the as-obtained samples.

    To investigate its electrochemical properties in real operating conditions, a symmetric SC device assembled from two identical ATCK/Naelectrodes was evaluated. As shown in Fig. 6a, a slight distortion of the rectangular shape can be evidenced upon the increase of the scan rate, indicating the fast ion incorporation. The GCD curves at 2, 5, 10 20 A g?1are nearly linear and symmetrical with small IR drops,suggesting the good capacitive property and electrochemical reversibility. The deviation from linearity can be attributed to pseudo faradic reaction and polarization during charge/discharge. The calculated capacitances of the device at 0.5, 1, 2, 5, 10, 20 A g?1are 30.3, 29.2, 27.9, 27.0, 25.9, 25.4 F g?1, respectively,with a retention rate of 83.8% at 20 A g?1. The capacitances based on single electrode at 0.5, 1, 2, 5, 10,20 A g?1are 121.2, 116.9, 111.7, 108, 103.9 and 101.7 F g?1, respectively. These results suggest that the interconnected micro/mesoporous structure provides efficient pathways for electrolyte ion movement throughout the carbon matrix, which can shorten ion diffusion and transport pathways during charge/discharge.

    Fig. 6 The electrochemical performance of ATCK/Na electrode in organic electrolyte. (a) CV curves at various scan rates, (b) GCD plots and (c) Cs, Ccell at different current densities, (d) Ragone plot and (e) cycling performance at 5 A g-1.

    Ragone plot has also been used to characterize the device. As shown in Fig. 6d, the device can achieve the highest energy density of 30.4 Wh kg?1at 0.8 kW kg?1and still holds on 12.3 Wh kg?1with a power density of 18.5 kW kg?1, which is much higher than those of N-doped electrospun nanofibers[29],chemically reduced graphene[38]and chemically converted graphene sheets[39]. After 15 000 cycles at 5 A g?1, a capacitance retention rate of 73.0% is obtained, indicating a high cycling stability.

    4 Conclusion

    The activated carbon spheres with rich micropores and a small fraction of mesopores were fabricated via hydrothermal carbonization followed by KOH+NaOH activation using sucrose as the precursor. The mixed use of KOH and NaOH plays a vital role in maintaining the sphere shape and adjusting pore size distribution during activation. The electrode based on the activated carbon spheres exhibits intriguing electrochemical performance in terms of capacitive performance, rate performance as well as cycle stability. It can deliver the highest energy density of 30.4 Wh kg?1at 0.8 kW kg?1, which is retained at 12.3 Wh kg?1with a high power density of 18.5 kW kg?1.

    Acknowledgements

    This work was supported by the National Natural Science Foundation of China (51602322, 21878321),Natural Science Foundation of Shanxi Province(201801D221371) and the Outstanding Ph.D. Program of Shanxi Province (SQ2019001).

    日韩av不卡免费在线播放| 99热网站在线观看| av国产免费在线观看| freevideosex欧美| 免费观看在线日韩| 永久网站在线| 夜夜看夜夜爽夜夜摸| 久久久久久久久久久免费av| 亚洲色图av天堂| 99re6热这里在线精品视频| 麻豆精品久久久久久蜜桃| 精品人妻熟女av久视频| 国产精品久久久久久精品电影小说 | 国内精品美女久久久久久| 国产精品一区二区三区四区免费观看| 色综合色国产| 亚洲av二区三区四区| 国产成人freesex在线| 亚洲欧美日韩东京热| 日韩国内少妇激情av| 97超碰精品成人国产| 人妻一区二区av| 少妇高潮的动态图| 国产黄片美女视频| 亚洲av日韩在线播放| 一区二区三区精品91| 久久久久久九九精品二区国产| 欧美精品人与动牲交sv欧美| 国产极品天堂在线| 亚洲天堂av无毛| 国产精品av视频在线免费观看| 亚洲av.av天堂| 国产男人的电影天堂91| 观看美女的网站| 国产成人a∨麻豆精品| 大香蕉97超碰在线| 国产人妻一区二区三区在| 国产精品麻豆人妻色哟哟久久| 亚洲四区av| 人妻少妇偷人精品九色| 亚洲欧美日韩另类电影网站 | 久久精品久久精品一区二区三区| 免费观看无遮挡的男女| 久久人人爽av亚洲精品天堂 | 亚洲国产精品成人综合色| 久久久久九九精品影院| 最近的中文字幕免费完整| 在线亚洲精品国产二区图片欧美 | 搞女人的毛片| av天堂中文字幕网| 中文天堂在线官网| 日产精品乱码卡一卡2卡三| 精品国产乱码久久久久久小说| av免费在线看不卡| 中国国产av一级| 男男h啪啪无遮挡| 亚洲综合精品二区| 国产 精品1| 极品教师在线视频| videos熟女内射| 亚洲在久久综合| 三级国产精品欧美在线观看| 亚洲欧美精品专区久久| 中文精品一卡2卡3卡4更新| 99九九线精品视频在线观看视频| 我要看日韩黄色一级片| 男男h啪啪无遮挡| 久久久久精品性色| 熟女人妻精品中文字幕| 国产亚洲av片在线观看秒播厂| 国产精品人妻久久久久久| 波野结衣二区三区在线| 波野结衣二区三区在线| 91午夜精品亚洲一区二区三区| 91aial.com中文字幕在线观看| 亚洲欧洲国产日韩| 中国国产av一级| 一区二区三区乱码不卡18| 国产69精品久久久久777片| 涩涩av久久男人的天堂| 人人妻人人看人人澡| 亚洲欧美日韩东京热| 我的老师免费观看完整版| 黄片无遮挡物在线观看| 又大又黄又爽视频免费| 亚洲国产欧美人成| 亚洲婷婷狠狠爱综合网| 在线免费十八禁| 亚洲精品456在线播放app| 蜜桃久久精品国产亚洲av| 成人毛片a级毛片在线播放| 精品人妻偷拍中文字幕| 亚洲自拍偷在线| 亚洲av福利一区| 女人十人毛片免费观看3o分钟| 国产片特级美女逼逼视频| 色视频www国产| 伊人久久国产一区二区| 人妻 亚洲 视频| 国产白丝娇喘喷水9色精品| 国产爱豆传媒在线观看| 亚洲国产av新网站| 舔av片在线| 一区二区三区免费毛片| 午夜爱爱视频在线播放| 久久久久久久大尺度免费视频| 黄色欧美视频在线观看| 国产成人freesex在线| 两个人的视频大全免费| 国内揄拍国产精品人妻在线| 欧美另类一区| 一个人观看的视频www高清免费观看| 欧美xxxx黑人xx丫x性爽| 99热这里只有是精品在线观看| 涩涩av久久男人的天堂| av在线亚洲专区| 男人舔奶头视频| 一本—道久久a久久精品蜜桃钙片 精品乱码久久久久久99久播 | 久久人人爽av亚洲精品天堂 | 91久久精品国产一区二区成人| 一本一本综合久久| 麻豆精品久久久久久蜜桃| 国产高清三级在线| 高清视频免费观看一区二区| 亚洲第一区二区三区不卡| 亚洲欧美精品专区久久| 国产男人的电影天堂91| 亚洲国产精品成人综合色| 少妇人妻精品综合一区二区| 亚洲久久久久久中文字幕| 午夜视频国产福利| 人体艺术视频欧美日本| 国产精品福利在线免费观看| 26uuu在线亚洲综合色| 亚洲最大成人av| 毛片女人毛片| 欧美 日韩 精品 国产| 亚洲人成网站在线观看播放| 精品国产一区二区三区久久久樱花 | 99热6这里只有精品| 熟妇人妻不卡中文字幕| 男人添女人高潮全过程视频| 人妻一区二区av| 身体一侧抽搐| 最新中文字幕久久久久| 精品久久国产蜜桃| 性插视频无遮挡在线免费观看| 亚洲成人久久爱视频| 国产欧美日韩一区二区三区在线 | 人人妻人人看人人澡| 日本免费在线观看一区| 亚洲成人精品中文字幕电影| 久久久久久国产a免费观看| 国产免费一区二区三区四区乱码| 人妻系列 视频| 日韩视频在线欧美| 在线精品无人区一区二区三 | 蜜臀久久99精品久久宅男| 啦啦啦在线观看免费高清www| 一区二区三区免费毛片| 亚洲精品456在线播放app| 少妇的逼水好多| 国产有黄有色有爽视频| 美女主播在线视频| a级毛片免费高清观看在线播放| 国模一区二区三区四区视频| 超碰97精品在线观看| 国产淫语在线视频| 看十八女毛片水多多多| 亚洲精品,欧美精品| 精品久久国产蜜桃| 日本一二三区视频观看| 男人狂女人下面高潮的视频| 人妻 亚洲 视频| 国产午夜福利久久久久久| 亚洲美女视频黄频| 最近中文字幕高清免费大全6| 少妇人妻精品综合一区二区| 久久久久久久亚洲中文字幕| 成年版毛片免费区| 国产精品无大码| 黑人高潮一二区| 18禁裸乳无遮挡免费网站照片| 热re99久久精品国产66热6| 亚洲美女搞黄在线观看| 精品亚洲乱码少妇综合久久| 美女被艹到高潮喷水动态| 亚洲人成网站在线观看播放| 国产成人精品久久久久久| 免费播放大片免费观看视频在线观看| 青春草亚洲视频在线观看| 黄色视频在线播放观看不卡| 涩涩av久久男人的天堂| 欧美日韩综合久久久久久| 国内揄拍国产精品人妻在线| 偷拍熟女少妇极品色| 亚洲人与动物交配视频| 欧美97在线视频| 99精国产麻豆久久婷婷| 97人妻精品一区二区三区麻豆| 熟女人妻精品中文字幕| av在线app专区| 日韩在线高清观看一区二区三区| 久久热精品热| xxx大片免费视频| 天天躁日日操中文字幕| 特大巨黑吊av在线直播| 亚洲性久久影院| 日韩av不卡免费在线播放| 18禁裸乳无遮挡动漫免费视频 | 色网站视频免费| 婷婷色av中文字幕| 波多野结衣巨乳人妻| 国产免费一级a男人的天堂| 免费电影在线观看免费观看| 国产免费视频播放在线视频| 性色av一级| 国产精品不卡视频一区二区| 日韩一本色道免费dvd| 日本猛色少妇xxxxx猛交久久| 男插女下体视频免费在线播放| 久久精品国产鲁丝片午夜精品| 久久久久久久久久人人人人人人| 国内揄拍国产精品人妻在线| 亚洲,一卡二卡三卡| 麻豆精品久久久久久蜜桃| 看黄色毛片网站| 久久精品人妻少妇| 九色成人免费人妻av| 国语对白做爰xxxⅹ性视频网站| 亚洲国产成人一精品久久久| 免费看光身美女| 欧美日韩在线观看h| 久久综合国产亚洲精品| 在线免费观看不下载黄p国产| 午夜视频国产福利| 欧美精品人与动牲交sv欧美| 欧美精品国产亚洲| 婷婷色综合www| 极品少妇高潮喷水抽搐| 白带黄色成豆腐渣| 黄片无遮挡物在线观看| 搡老乐熟女国产| 国产 精品1| 久久久欧美国产精品| 午夜日本视频在线| 久久久久久久午夜电影| 久久精品夜色国产| 看黄色毛片网站| 日本与韩国留学比较| 欧美一区二区亚洲| a级毛色黄片| 国产午夜精品一二区理论片| 国产高潮美女av| 一边亲一边摸免费视频| 最近手机中文字幕大全| 国产精品久久久久久精品古装| 成人高潮视频无遮挡免费网站| 亚洲熟女精品中文字幕| 黄色怎么调成土黄色| 男人狂女人下面高潮的视频| 不卡视频在线观看欧美| 国产一区二区三区av在线| 91在线精品国自产拍蜜月| 国产精品久久久久久精品古装| 一个人看视频在线观看www免费| 亚洲成人精品中文字幕电影| 校园人妻丝袜中文字幕| 欧美成人精品欧美一级黄| 亚洲欧美日韩东京热| 看非洲黑人一级黄片| 一个人观看的视频www高清免费观看| 亚洲av不卡在线观看| 人妻制服诱惑在线中文字幕| 亚洲成人中文字幕在线播放| 青青草视频在线视频观看| 18禁动态无遮挡网站| 成人亚洲欧美一区二区av| 国内揄拍国产精品人妻在线| 六月丁香七月| 国产日韩欧美亚洲二区| 国产免费福利视频在线观看| 亚洲av福利一区| 日韩亚洲欧美综合| 男女无遮挡免费网站观看| 91午夜精品亚洲一区二区三区| 国产精品三级大全| 人妻少妇偷人精品九色| 国产在线男女| 自拍偷自拍亚洲精品老妇| 久久久久久久精品精品| 蜜桃亚洲精品一区二区三区| 黄色配什么色好看| 亚洲精品成人久久久久久| 一个人观看的视频www高清免费观看| 日日啪夜夜爽| 国产午夜福利久久久久久| 国产av不卡久久| 狂野欧美激情性bbbbbb| av在线亚洲专区| 日韩中字成人| 国产成人免费无遮挡视频| av在线app专区| 精品人妻偷拍中文字幕| 精品少妇久久久久久888优播| 丝瓜视频免费看黄片| 成年女人看的毛片在线观看| 国产精品爽爽va在线观看网站| 一级av片app| 最近中文字幕2019免费版| 亚洲内射少妇av| 一级黄片播放器| 久久久久久久久久久免费av| 亚州av有码| 午夜爱爱视频在线播放| 国产精品不卡视频一区二区| 精品久久久久久久久亚洲| av卡一久久| 高清日韩中文字幕在线| 激情五月婷婷亚洲| 欧美丝袜亚洲另类| 亚洲无线观看免费| 久久精品久久久久久噜噜老黄| 日韩免费高清中文字幕av| 久久精品熟女亚洲av麻豆精品| 免费看a级黄色片| 精品久久久久久久末码| 黄色欧美视频在线观看| 日本与韩国留学比较| 国产精品久久久久久av不卡| 日本一本二区三区精品| 国产乱人视频| 嫩草影院新地址| 中文字幕人妻熟人妻熟丝袜美| 国产精品一区二区性色av| 一级二级三级毛片免费看| 欧美日韩亚洲高清精品| 人体艺术视频欧美日本| 激情五月婷婷亚洲| 久久久久久久国产电影| 肉色欧美久久久久久久蜜桃 | 乱码一卡2卡4卡精品| 精品人妻偷拍中文字幕| 综合色丁香网| 老师上课跳d突然被开到最大视频| 永久网站在线| 欧美少妇被猛烈插入视频| 欧美极品一区二区三区四区| 制服丝袜香蕉在线| 美女xxoo啪啪120秒动态图| 亚洲美女搞黄在线观看| 亚洲欧美精品自产自拍| 一级二级三级毛片免费看| 伊人久久国产一区二区| 日日啪夜夜撸| 一二三四中文在线观看免费高清| 丝袜喷水一区| av在线观看视频网站免费| 成人无遮挡网站| 久久久精品免费免费高清| 国产精品av视频在线免费观看| 国产片特级美女逼逼视频| 人人妻人人看人人澡| 欧美bdsm另类| 亚洲综合精品二区| 亚洲精华国产精华液的使用体验| 亚洲熟女精品中文字幕| 国产精品嫩草影院av在线观看| 国产精品99久久久久久久久| 精品久久久久久电影网| 禁无遮挡网站| 亚洲欧美成人精品一区二区| 国产精品无大码| 国模一区二区三区四区视频| 中文字幕久久专区| 日本与韩国留学比较| 久久韩国三级中文字幕| 国产淫语在线视频| 亚洲熟女精品中文字幕| 一级毛片我不卡| 亚洲三级黄色毛片| 五月伊人婷婷丁香| 免费观看的影片在线观看| 国产一区有黄有色的免费视频| 亚洲av国产av综合av卡| 国产精品久久久久久av不卡| 中文字幕久久专区| 日韩一本色道免费dvd| 日日摸夜夜添夜夜爱| 精品久久久噜噜| 男女边摸边吃奶| 啦啦啦中文免费视频观看日本| av在线app专区| 2021天堂中文幕一二区在线观| 亚洲高清免费不卡视频| 青春草视频在线免费观看| av在线观看视频网站免费| 亚洲欧美清纯卡通| 欧美97在线视频| 国产精品成人在线| 久久99热这里只频精品6学生| 亚洲国产精品国产精品| 日韩av不卡免费在线播放| 少妇猛男粗大的猛烈进出视频 | 亚洲成人精品中文字幕电影| 国产免费一区二区三区四区乱码| 少妇的逼水好多| 久久久久久久久大av| 好男人在线观看高清免费视频| 十八禁网站网址无遮挡 | 晚上一个人看的免费电影| 国产精品久久久久久久电影| 青春草亚洲视频在线观看| 高清在线视频一区二区三区| 日本午夜av视频| 国产片特级美女逼逼视频| 大香蕉久久网| 777米奇影视久久| 成年免费大片在线观看| 永久免费av网站大全| 王馨瑶露胸无遮挡在线观看| 国产欧美日韩精品一区二区| 日韩伦理黄色片| 亚洲国产色片| 三级男女做爰猛烈吃奶摸视频| 久久影院123| 日本一本二区三区精品| 免费播放大片免费观看视频在线观看| 男人和女人高潮做爰伦理| 看免费成人av毛片| 欧美另类一区| 久久精品国产鲁丝片午夜精品| 在线看a的网站| 国产精品久久久久久av不卡| 另类亚洲欧美激情| 国产精品国产三级国产av玫瑰| 国产69精品久久久久777片| 亚洲欧美一区二区三区黑人 | 欧美3d第一页| 夫妻性生交免费视频一级片| av在线播放精品| 日韩在线高清观看一区二区三区| 最近最新中文字幕免费大全7| 国产精品久久久久久久久免| 高清午夜精品一区二区三区| 视频中文字幕在线观看| 久热这里只有精品99| 亚洲av免费在线观看| 久久精品国产a三级三级三级| 国产真实伦视频高清在线观看| 国产精品一区www在线观看| 国产精品久久久久久久电影| 在线观看美女被高潮喷水网站| 精品一区二区三卡| 天天躁日日操中文字幕| 在线观看免费高清a一片| 欧美高清成人免费视频www| 亚洲av福利一区| 乱码一卡2卡4卡精品| 久久精品久久久久久噜噜老黄| 色视频www国产| 男女啪啪激烈高潮av片| 91精品伊人久久大香线蕉| 特级一级黄色大片| 亚洲精品国产成人久久av| 成年女人在线观看亚洲视频 | 久久久久久久国产电影| 国产极品天堂在线| 日本欧美国产在线视频| 亚洲最大成人中文| 国产亚洲午夜精品一区二区久久 | 国产 一区精品| 简卡轻食公司| 亚洲第一区二区三区不卡| 国产成人免费无遮挡视频| a级一级毛片免费在线观看| 色吧在线观看| 99久久人妻综合| 亚洲天堂av无毛| 精品人妻熟女av久视频| 在线天堂最新版资源| 观看美女的网站| kizo精华| 国产精品一及| 亚洲国产成人一精品久久久| 中文欧美无线码| 51国产日韩欧美| 1000部很黄的大片| 99久久精品国产国产毛片| 波野结衣二区三区在线| 亚洲aⅴ乱码一区二区在线播放| 日韩在线高清观看一区二区三区| 日韩av免费高清视频| 成人美女网站在线观看视频| 一级毛片 在线播放| 精品人妻一区二区三区麻豆| 亚洲精品成人久久久久久| 女人被狂操c到高潮| 日韩人妻高清精品专区| 精品一区二区三区视频在线| 精品国产一区二区三区久久久樱花 | 国产淫语在线视频| 亚洲av男天堂| 女的被弄到高潮叫床怎么办| 哪个播放器可以免费观看大片| 久久人人爽人人片av| 男人舔奶头视频| 97精品久久久久久久久久精品| 精品人妻偷拍中文字幕| 水蜜桃什么品种好| 国产高潮美女av| 久久久久网色| 免费观看av网站的网址| 日韩免费高清中文字幕av| 亚洲国产高清在线一区二区三| 国产av国产精品国产| 岛国毛片在线播放| 国产综合精华液| 中文资源天堂在线| 久久久久久伊人网av| 久久精品国产鲁丝片午夜精品| 男女下面进入的视频免费午夜| 中文字幕制服av| 亚洲欧美成人综合另类久久久| 日本黄色片子视频| 黄片无遮挡物在线观看| 在线免费十八禁| 国产高潮美女av| 一本一本综合久久| 永久免费av网站大全| 国产美女午夜福利| 亚洲精品视频女| 午夜激情福利司机影院| 亚洲精品自拍成人| 久久精品夜色国产| 午夜日本视频在线| 麻豆精品久久久久久蜜桃| 国产精品国产三级专区第一集| 国产精品国产三级国产专区5o| 国产黄频视频在线观看| 亚洲四区av| 永久网站在线| 91精品伊人久久大香线蕉| 女人久久www免费人成看片| 亚洲精品影视一区二区三区av| 亚洲色图av天堂| 大片免费播放器 马上看| 看免费成人av毛片| 国产精品久久久久久av不卡| 欧美最新免费一区二区三区| 午夜老司机福利剧场| 大话2 男鬼变身卡| 国产 精品1| 日本与韩国留学比较| 嘟嘟电影网在线观看| 日韩精品有码人妻一区| 国产在线一区二区三区精| 一本—道久久a久久精品蜜桃钙片 精品乱码久久久久久99久播 | 人妻一区二区av| 69人妻影院| 亚洲色图av天堂| 日韩欧美精品免费久久| 永久网站在线| 国产 精品1| 国产精品成人在线| 晚上一个人看的免费电影| 久久精品久久久久久噜噜老黄| 直男gayav资源| 一本色道久久久久久精品综合| 男女那种视频在线观看| 五月玫瑰六月丁香| 日韩一区二区视频免费看| 一级二级三级毛片免费看| 日韩国内少妇激情av| 天天躁日日操中文字幕| 国产熟女欧美一区二区| 日本欧美国产在线视频| 精品人妻偷拍中文字幕| 美女高潮的动态| 国内揄拍国产精品人妻在线| 中文字幕人妻熟人妻熟丝袜美| 免费不卡的大黄色大毛片视频在线观看| 午夜精品一区二区三区免费看| 麻豆国产97在线/欧美| 亚洲人成网站在线观看播放| 欧美日韩视频高清一区二区三区二| 亚洲性久久影院| 日本爱情动作片www.在线观看| 免费av不卡在线播放| 搞女人的毛片| a级毛片免费高清观看在线播放| 日韩在线高清观看一区二区三区| 亚洲色图综合在线观看| 亚洲成人av在线免费| 久久久色成人| av网站免费在线观看视频| 日本黄色片子视频| 少妇被粗大猛烈的视频| 亚洲图色成人| 免费不卡的大黄色大毛片视频在线观看| 日本一本二区三区精品| 欧美国产精品一级二级三级 | 毛片女人毛片| 日韩一本色道免费dvd| 99热6这里只有精品| 日韩av不卡免费在线播放| 又爽又黄无遮挡网站| 亚洲国产av新网站| 成人综合一区亚洲| 一级毛片电影观看| 亚洲国产日韩一区二区| 亚洲综合精品二区| 欧美精品人与动牲交sv欧美| 国产69精品久久久久777片| 搡女人真爽免费视频火全软件|