李景海,翟國亮,劉清霞,宋 蕾,蔡九茂
基于分形維數(shù)特征的砂濾層適宜粒徑范圍
李景海1,2,翟國亮1,劉清霞2※,宋 蕾1,蔡九茂1
(1. 中國農(nóng)業(yè)科學(xué)院農(nóng)田灌溉研究所/河南省節(jié)水農(nóng)業(yè)重點實驗室,新鄉(xiāng) 453002;2. 安陽工學(xué)院土木與建筑工程學(xué)院,安陽 455000)
為了對砂濾層過濾性能進(jìn)行分析,該研究以粒徑范圍為1.0~1.18、>1.18~1.4和>1.4~1.7 mm的3種砂濾層為研究對象,以黃河泥沙作為原水雜質(zhì)顆粒,采用激光衍射粒度分析儀測量了人民勝利渠泥沙粒度分布,得到了泥沙粒度分布的密度函數(shù),并以蘭考縣黃河泥沙對泥沙粒度分布規(guī)律進(jìn)行了驗證。采用工業(yè)CT對3種砂濾層進(jìn)行掃描,利用計算機(jī)圖像處理技術(shù),采用像素點覆蓋法,自編程序計算了3種砂濾層橫截面特征參數(shù),孔隙率均值分別為0.421、0.431和0.439,計盒分形維數(shù)均值分別為1.695、1.709和1.726,截面最小孔徑與最大孔徑比分別為1/17、1/18和1/21,擬合了孔隙率與計盒分形維數(shù)的相關(guān)關(guān)系,分析了砂濾層分形理論適用性。建立了砂濾層過濾概率分形模型,計算了3種砂濾層孔隙直徑范圍,分別為59.5~1 002、66.9~1 220和72.9~1 503m,計算了原水中100m以上雜質(zhì)顆粒通過砂濾層的概率,對于人民勝利渠泥沙,分別為0.67%、0.81%和0.93%,對于蘭考縣黃河泥沙,分別為0.62%、0.80%和0.91%。從理論上證明了表層過濾的存在性,分析了表層過濾的機(jī)理及其對反沖洗頻率的影響。同時,為了減輕表層過濾,粒徑范圍為>1.4~1.7 mm的濾層更適宜作為砂過濾器的濾料。研究可為砂濾層內(nèi)部結(jié)構(gòu)的研究和濾料選型提供基礎(chǔ)理論與數(shù)據(jù)參考。
泥沙;粒徑;圖像處理;石英砂濾層;表層過濾;過濾性能;計盒維數(shù)
砂過濾器是微灌系統(tǒng)中普遍使用的過濾器之一[1],為了提高砂過濾器的過濾性能,不少學(xué)者進(jìn)行了相關(guān)研究。20世紀(jì)90年代,董文楚[2-3]提出砂濾層主要通過機(jī)械篩濾、沉淀和接觸絮凝作用去除水中的雜質(zhì),為砂濾層機(jī)理研究奠定了基礎(chǔ)。在試驗方面,翟國亮等[4-5]對自制粉煤灰水進(jìn)行過濾和反沖洗試驗,分析了濾后水和反沖洗水濁度和雜質(zhì)顆粒質(zhì)量分?jǐn)?shù)的變化規(guī)律;張杰武等[6]以自制黃河水為原水,對砂濾層過濾性能進(jìn)行了測試。在數(shù)值模擬方面,李景海等[7-9]對濾層反沖洗過程進(jìn)行了動態(tài)模擬,通過對流場分析確定了砂濾層的合理反沖洗速度范圍。在濾料形貌特性方面,劉清霞等[10-11]基于圖像處理技術(shù),計算了砂顆粒等效直徑、簡化延長指數(shù)和布拉斯謝克系數(shù),采用統(tǒng)計分析方法對砂顆粒粗糙度參數(shù)進(jìn)行了分析,為砂濾層細(xì)觀結(jié)構(gòu)分析提供了基礎(chǔ)理論與方法。在過濾效果與過濾介質(zhì)選型方面,Godwin等[12]對用于改善廢水水質(zhì)的砂濾層的最佳床層厚度和有效尺寸進(jìn)行了研究。Wolff等[13]對利用下游砂過濾器去除污水中的微塑料進(jìn)行了研究。Chan等[14]對活性碳法和砂過濾法的水質(zhì)強(qiáng)化效果進(jìn)行了比較。Xia等[15]利用砂壤土和砂土為介質(zhì),對含砂水進(jìn)行過濾,并對過濾效果進(jìn)行了分析。杜加法等[16]對礦山充填尾砂過濾脫水性能進(jìn)行了研究。Ibrahim等[17]將砂濾層中混合其他介質(zhì),研究其過濾性能,并選出最佳濾料組合。Saini等[18]將植物修復(fù)與砂過濾結(jié)合進(jìn)行廢水處理,效果良好。Li等[19]采用砂濾法對煤氣化廢水中細(xì)顆粒污染進(jìn)行去除,去除率95%以上,分離精度0.46m。綜上可知,目前對砂過濾的研究,主要側(cè)重于從宏觀上分析過濾和反沖洗效果,而基于濾層內(nèi)部結(jié)構(gòu)對過濾效果的研究較少。砂濾層內(nèi)部結(jié)構(gòu)決定了濾層孔隙大小及其分布規(guī)律,直接關(guān)系到原水中哪些粒徑的雜質(zhì)能被過濾及其被濾除的比率。對砂濾層細(xì)觀結(jié)構(gòu)特性的研究,為從機(jī)理層面研究砂濾層過濾性能提供了前提條件。
砂濾層內(nèi)部顆粒的排列與孔隙分布具有隨機(jī)性,要從理論上精確描述這種不規(guī)則性和隨機(jī)性,分形理論具有天然的優(yōu)勢。將分形理論應(yīng)用于砂過濾器的研究,可以從細(xì)觀層面研究砂濾層孔隙結(jié)構(gòu)及其分布規(guī)律,從機(jī)理上分析砂濾層過濾性能,這方面的研究目前僅見李景海等[20]采用分形理論建立了砂濾層清潔壓降的分形阻力模型,并探討了濾層最佳過濾速度的計算方法。而在相關(guān)領(lǐng)域,有不少對分形理論的應(yīng)用[21-23],其成果為砂過濾器的研究提供了理論和方法上的借鑒。
筆者在前期的研究中[24-25],以西北地區(qū)普遍采用的粒徑范圍為1.0~1.18、>1.18~1.4和>1.4~1.7 mm的3種砂濾層為研究對象,采用激光衍射粒度分析儀對黃河泥沙粒度特征進(jìn)行測量,確定黃河泥沙粒度分布的密度函數(shù)。采用工業(yè)CT掃描技術(shù)對砂濾層進(jìn)行掃描,利用計算機(jī)圖像處理技術(shù),采用像素點覆蓋法,自編程序計算砂濾層橫截面孔隙率、計盒分形維數(shù)和截面最小孔徑與最大孔徑比值,在此基礎(chǔ)上,擬合孔隙率與計盒分形維數(shù)的相關(guān)關(guān)系,對砂濾層分形理論適用性進(jìn)行分析。建立濾層過濾概率分形模型,對過濾效果進(jìn)行分析,從理論上證明表層過濾的存在性,以期為微灌砂濾層內(nèi)部結(jié)構(gòu)的研究和濾料選型提供基礎(chǔ)理論與方法參考。
為了獲得砂濾層自然堆積狀態(tài)下的橫截面,分別將粒徑范圍為1.0~1.18、>1.18~1.4和>1.4~1.7 mm石英砂濾料盛入容積為600 mL、直徑為95 mm的燒杯中,采用工業(yè)CT掃描設(shè)備(C16M3201,洛陽騰達(dá)檢測服務(wù)有限公司)對濾料樣本進(jìn)行立體掃描,從掃描結(jié)果中截取濾層橫截面(示例如圖1),每種濾層隨機(jī)截取3個橫截面。
由人民勝利渠采集黃河泥沙樣本,樣本數(shù)為7。由蘭考縣黃河段采集黃河泥沙,樣本數(shù)為1。使用激光衍射粒度分析儀(Mastersizer 3000,丹東百特儀器有限公司)采用濕法對所采集的2種黃河泥沙樣本粒度分布進(jìn)行測量,得到不同粒度顆粒的體積占比。
維空間中,由邊長為的小立方體平鋪組成的坐標(biāo)網(wǎng)立方體[26]定義為
[1,(1+1)]×…×[mδ,(m+1)] (1)
式中為坐標(biāo)網(wǎng)立方體邊長;[mδ,(m+1)]為坐標(biāo)網(wǎng)立方體的邊;m(1,2,…,)為整數(shù)。
設(shè)是中的任意一個非空有界子集,用N()表示集合與坐標(biāo)網(wǎng)立方體相交的個數(shù)。則集合的計盒分形維數(shù)dimB為
二維計盒分形維數(shù)用格子邊長為的正方形網(wǎng)格對分形體進(jìn)行覆蓋,得到與分形體相交的非空網(wǎng)格數(shù)N,逐步改變網(wǎng)格的邊長,得到一系列N。二維計盒分形維數(shù)表示為
式中D為二維計盒分形維數(shù),一般介于1~2之間,如果二維計盒分形維數(shù)不在該范圍內(nèi),說明砂濾層橫截面孔隙分布或砂顆粒分布不具有分形特征[27]。
根據(jù)式(3),將每次劃分所得的非空格子數(shù)N與對應(yīng)的網(wǎng)格邊長在雙對數(shù)直線坐標(biāo)下進(jìn)行直線擬合,所得擬合直線斜率的絕對值即為二維計盒分形維數(shù),該方法為像素點覆蓋法[22],計算流程見圖2。
對多孔介質(zhì),孔隙分布的概率密度函數(shù)[28]為
式中min為最小孔隙直徑,mm;為孔隙直徑,mm。
顯然,概率密度函數(shù)應(yīng)滿足歸一化條件,如下:
式中max為最大孔隙直徑,mm。
因此,多孔介質(zhì)是否適用分形理論的判斷依據(jù)為
式中為截面孔隙率;d為歐式空間維數(shù),石英砂濾層橫截面為二維空間,因此d取2。
由式(4)知,濾層截面孔徑為的孔隙的分布密度為
則孔徑小于的孔隙的占比為
則濾層截面孔徑大于的孔隙占比為
設(shè)原水中泥沙粒度分布的概率密度函數(shù)為(),則粒徑為的顆粒通過濾層的概率為
式中為泥沙粒徑,m。
根據(jù)多孔介質(zhì)理論,max的表達(dá)式[30]為
式中為砂濾層顆粒最大粒徑,m。
在滴灌帶中,粒徑小于100m的雜質(zhì)顆粒不會引起滴灌帶的堵塞[32]。因此,砂濾層只需要濾除原水中粒徑大于100m的雜質(zhì),則粒徑大于100m的雜質(zhì)顆粒通過砂濾層的概率為
式(10)~式(14)聯(lián)立,得到砂濾層過濾概率分形模型。
從每種濾層中隨機(jī)截取3個橫截面,自編程序?qū)孛鎴D像進(jìn)行處理。首先,對圖像進(jìn)行二值化處理,將圖像中砂顆粒所包含的像素點標(biāo)為0,其余像素點標(biāo)為1。其次,將橫截面用小網(wǎng)格劃分,網(wǎng)格邊長δ分別為1、2、4、8、16個像素,在圖2中對應(yīng)的的預(yù)設(shè)值分別為288、144、72、36、18。數(shù)出網(wǎng)格總數(shù)N,將橫截面周長與周長上像素點個數(shù)相比,可計算單個像素邊長(1.21m),對每種劃分方法,計算網(wǎng)格邊長;數(shù)出含有像素1的網(wǎng)格的數(shù)目N,計算結(jié)果見表1。
表1 濾層截面圖像處理結(jié)果
濾層截面孔隙率為濾層截面孔隙處像素的數(shù)目N與截面網(wǎng)格總數(shù)N的比值,即
由式(15)可得濾層截面孔隙率,結(jié)果見表1。由表1知,粒徑范圍為1.0~1.18 mm的濾層所對應(yīng)的3個截面孔隙率分別為0.419、0.421和0.423,均值為0.421;粒徑范圍為>1.18~1.4 mm的濾層所對應(yīng)的3個截面孔隙率分別為0.428、0.432和0.434,均值為0.431;粒徑范圍為>1.4~1.7 mm的濾層所對應(yīng)的3個截面孔隙率分別為0.436、0.440和0.441,均值為0.439。
根據(jù)圖像計盒分形維數(shù)的像素點覆蓋法,將(δ,N)繪入雙對數(shù)坐標(biāo)系,用最小二乘法擬合得到網(wǎng)格數(shù)目與網(wǎng)格邊長之間的線性關(guān)系曲線,曲線斜率即為濾層截面孔隙的計盒分形維數(shù)。由表1知,粒徑范圍為1.0~1.18 mm的濾層所對應(yīng)的3個截面的計盒分形維數(shù)分別為1.692、1.696和1.697,均值為1.695;粒徑范圍為>1.18~1.4 mm的濾層所對應(yīng)的3個截面的計盒分形維數(shù)分別為1.704、1.710和1.715,均值為1.709;粒徑范圍為>1.4~1.7 mm的濾層所對應(yīng)的3個截面的計盒分形維數(shù)分別為1.723、1.727和1.728,均值為1.726。
繪制濾層截面孔隙率與濾層截面孔隙計盒分形維數(shù)的倒數(shù)1/D之間的散點圖(圖3),擬合得到濾層截面孔隙率與截面孔隙計盒分形維數(shù)D之間的經(jīng)驗關(guān)系,由圖3知,截面孔隙率與截面孔隙計盒分形維數(shù)D之間相關(guān)性較高,決定系數(shù)2為0.980 9。
由式(16)知,截面孔隙率與濾層孔隙計盒分形維數(shù)D具有相同的變化趨勢,孔隙率增加,計盒分形維數(shù)隨之增加;孔隙率減小,計盒分形維數(shù)隨之減小。
孔隙率可以通過注水法[25]測出。在孔隙率已知的情況下,由式(16)可計算出截面計盒分形維數(shù),結(jié)果見表2。與像素點覆蓋法相比,粒徑范圍為1.0~1.18、>1.18~1.4和>1.4~1.7 mm的3種砂濾層截面計盒分形維數(shù)計算誤差分別為0.01%、0.21%和0.65%,最大誤差僅0.65%。
表2 計盒分形維數(shù)經(jīng)驗公式法與像素覆蓋法計算結(jié)果對比
根據(jù)激光衍射粒度分析儀測量結(jié)果,得到人民勝利渠與蘭考縣段黃河泥沙粒度頻率分布圖(圖4,其中人民勝利渠泥沙以樣本7示例),并計算樣本粒度均值、標(biāo)準(zhǔn)差、偏度和峰度。其中,樣本偏度為樣本3階標(biāo)準(zhǔn)矩,樣本峰度為樣本4階標(biāo)準(zhǔn)矩[31]減3,黃河泥沙樣本參數(shù)計算結(jié)果見表3。
正態(tài)分布的偏度和峰度均為0,將原水泥沙樣本參數(shù)與正態(tài)分布對比,可以判斷泥沙分布是否為正態(tài)分布。由表3知,人民勝利渠泥沙樣本的偏度最大值0.27,最小值為-0.05,均值為0.12,標(biāo)準(zhǔn)差為0.14,偏度的分值為0.84;樣本峰度最大值0.79,最小值為-1.01,均值為-0.01,標(biāo)準(zhǔn)差為0.56,峰度的分值為0.018。當(dāng)檢驗水平為0.05時,分布檢驗的()為1.96,顯然偏度與峰度的分值均小于(),泥沙樣本分布為正態(tài)分布。蘭考縣黃河泥沙偏度為-0.11,峰度為-0.23,均接近0。由此可知,人民勝利渠與蘭考縣泥沙樣本均來自于正態(tài)分布的總體,泥沙粒度分布的概率密度函數(shù)可表示為
表3 黃河泥沙樣本參數(shù)計算結(jié)果
由式(12)~式(14)和式(17)可計算出3種濾層最大孔徑max、最小孔徑min和粒徑大于100m的雜質(zhì)顆粒通過砂濾層的概率(),見表4。
表4 濾層參數(shù)計算結(jié)果
由表4知,粒徑范圍為1.0~1.18、>1.18~1.4和>1.4~1.7 mm的3種砂濾層孔隙直徑范圍分別為59.5~1 002、66.9~1 220和72.9~1 503m,對于人民勝利渠泥沙,100m以上雜質(zhì)顆粒通過砂濾層的概率分別為0.67%、0.81%和0.93%,對于蘭考縣黃河泥沙,100m以上雜質(zhì)顆粒通過砂濾層的概率分別為0.62%、0.80%和0.91%。結(jié)果表明,砂濾層截面孔徑范圍比較大,但對雜質(zhì)的過濾能力極強(qiáng),100m以上雜質(zhì)顆粒通過的概率不到1%,說明砂過濾器幾乎能夠?qū)ⅫS河泥沙中易于造成堵塞的雜質(zhì)全部濾除。
由圖4知,人民勝利渠泥沙和蘭考縣黃河泥沙中100m以上雜質(zhì)顆粒占比均達(dá)到60%以上,砂濾層截面高效的過濾能力,使原水中的泥沙大部分截留到了濾層表面,當(dāng)大的雜質(zhì)顆粒累積到一定程度,造成濾層表面孔隙直徑的進(jìn)一步減小,從而使小的雜質(zhì)顆粒也在濾層表面迅速累積,導(dǎo)致了嚴(yán)重的表層過濾現(xiàn)象。而表層過濾由于表面顆粒堆積較快,堵塞也加快,影響濾速,同時增加了反沖洗次數(shù),造成反沖洗用水的浪費(fèi)和過濾效率降低。顯然,在3種濾料中,粒徑范圍為>1.4~1.7 mm的濾層表層過濾現(xiàn)象相對輕微,更適宜作為砂過濾器的濾料。
1)采用工業(yè)CT技術(shù),對粒徑范圍為1.0~1.18、>1.18~1.4和>1.4~1.7 mm的3種砂濾層進(jìn)行掃描,得到濾層橫截面圖像。在此基礎(chǔ)上,采用像素點覆蓋法,自編程序計算了濾層截面孔隙率和孔隙計盒分形維數(shù),3種濾層截面孔隙率均值分別為0.421、0.431和0.439,孔隙計盒分形維數(shù)均值分別為1.695、1.709和1.726,并擬合了孔隙率與計盒分形維數(shù)的相關(guān)關(guān)系。根據(jù)截面計盒分形維數(shù)和孔隙率,計算了截面孔徑比,分析了砂濾層分形理論適用性。
2)采用激光衍射粒度分析儀對人民勝利渠和蘭考縣黃河泥沙樣本進(jìn)行測量,得到黃河泥沙粒度頻率分布,計算得到人民勝利渠黃河泥沙樣本偏度和峰度均值分別為0.12與-0.01,蘭考縣黃河泥沙樣本偏度和峰度分別為-0.11與-0.23,顯著性水平為0.05時,泥沙樣本符合正態(tài)分布,從而得到泥沙粒度分布的概率密度函數(shù)。
3)建立了砂濾層過濾概率分形模型,根據(jù)砂濾層過濾概率分形模型,得到了3種砂濾層孔隙直徑范圍分別為59.5~1 002、66.9~1 220和72.9~1 503m,對于人民勝利渠泥沙,100m以上雜質(zhì)顆粒通過砂濾層的概率分別為0.67%、0.81%和0.93%,對于蘭考縣黃河泥沙,100m以上雜質(zhì)顆粒通過砂濾層的概率分別為0.62%、0.80%和0.91%。結(jié)果表明,原水中的泥沙大部分截留到了濾層表面,導(dǎo)致表層過濾現(xiàn)象嚴(yán)重。為了減輕表層過濾現(xiàn)象,粒徑范圍為>1.4~1.7 mm的濾層更適宜作為砂過濾器的濾料。
砂濾層橫截面孔隙分布具有隨機(jī)性,不同濾層高度的截面,孔隙率和截面分形維數(shù)存在一定差別,本文僅研究了濾層表面的過濾性能,而沒有考慮濾層截面孔隙特征隨濾層高度的變化規(guī)律及過濾效果隨截面位置的變化規(guī)律,因此研究結(jié)論存在一定誤差,未來需進(jìn)一步研究。
[1] Duranros M. Effect of filter, emitter and location on clogging when using effluents[J]. Agricultural Water Management, 2009, 96(1): 67-79.
[2] 董文楚. 微灌用過濾砂料選擇與參數(shù)測定[J]. 噴灌技術(shù),1995(2):42-46.
Dong Wenchu. The material selection and parameter determination of sand filter in micro irrigation[J]. Sprinkler Irrigation Technology, 1995(2): 42-46. (in Chinese with English abstract)
[3] 董文楚. 微灌用砂過濾器堵塞與反沖洗效果研究[J]. 武漢水利電力大學(xué)學(xué)報,1996,29(6):30-34.
Dong Wenchu. Study on the Clogging and backflushing coefficient of the sand filters for micro-irrigation[J]. Journal of Wuhan University of Hydraulic and Electric Engineering, 1996, 29(6): 30-34. (in Chinese with English abstract)
[4] 翟國亮,陳剛,趙紅書,等. 微灌用均質(zhì)砂濾料過濾粉煤灰水時對顆粒質(zhì)量分?jǐn)?shù)與濁度的影響[J]. 農(nóng)業(yè)工程學(xué)報,2010,26(12):13-18.
Zhai Guoliang, Chen Gang, Zhao Hongshu, et al. Effects of filter with uniform sandy filtration medium used in micro-irrigation on mass fraction of particles and turbidity of water with fly ash[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2010, 26(12): 13-18. (in Chinese with English abstract)
[5] 翟國亮,馮俊杰,鄧忠,等. 微灌用砂石過濾器反沖洗參數(shù)試驗[J]. 水資源與水工程學(xué)報,2007,18(1):24-28.
Zhai Guoliang, Feng Junjie, Deng Zhong, et al. Parameters experiment of backwashing on sandy filter in micro-irrigation[J]. Journal of Water Resources & Water Engineering, 2007, 18(1): 24-28. (in Chinese with English abstract)
[6] 張杰武,馮吉,徐飛鵬,等. 引黃滴灌砂石過濾器濾料過濾性能[J]. 排灌機(jī)械工程學(xué)報,2016,34(4):357-361.
Zhang Jiewu, Feng Ji, Xu Feipeng, et al. Sand filter performance on drip irrigation with the Yellow River[J]. Journal of drainage and irrigation machinery engineering, 2016, 34(4): 357-361. (in Chinese with English abstract)
[7] 李景海,翟國亮,黃修橋,等. 微灌石英砂過濾器反沖洗數(shù)值模擬與流場分析[J]. 農(nóng)業(yè)工程學(xué)報,2016,32(9):74-82.
Li Jinghai, Zhai Guoliang, Huang Xiuqiao, et al. Numerical simulation and flow field analysis of backwashing of Quartz sand filter in micro irrigation[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2016, 32(9): 74-82. (in Chinese with English abstract)
[8] 李景海,蔡九茂,翟國亮,等. 基于砂濾層內(nèi)水體積分?jǐn)?shù)瞬態(tài)模擬的反沖洗速度優(yōu)選[J]. 農(nóng)業(yè)工程學(xué)報,2018,34(2):83-89.
Li Jinghai, Cai Jiumao, Zhai Guoliang, et al. Optimization of backwashing speed based on transient simulation of the volume fraction of water in the sand filter layer[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2018, 34(2): 83-89. (in Chinese with English abstract)
[9] 李景海,劉清霞,翟國亮,等. 基于顆粒流理論的微灌砂濾層反沖洗過程砂粒速度場模擬[J]. 農(nóng)業(yè)工程學(xué)報,2018,34(22):78-83.
Li Jinghai, Liu Qingxia, Zhai Guoliang, et al. Numerical simulation of velocity field of sand grains in backwashing process of sand filter layer in micro-irrigation based on granular flows theory[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2018, 34(22): 78-83. (in Chinese with English abstract)
[10] 劉清霞,李國強(qiáng),李景海,等. 基于圖像處理技術(shù)的微灌砂顆粒形狀參數(shù)分析[J]. 節(jié)水灌溉,2019(11):66-70.
Liu Qingxia, Li Guoqiang, Li Jinghai, et al. Analysis of shape parameters of sand particles in micro-irrigation based on image processing technology[J]. Water Saving Irrigation, 2019(11): 66-70. (in Chinese with English abstract)
[11] 劉清霞,李國強(qiáng),李景海,等. 微灌砂過濾器石英砂濾料顆粒粗糙度參數(shù)測算與分析[J]. 中國農(nóng)村水利水電,2020(1):1-6.
Liu Qingxia, Li Guoqiang, Li Jinghai, et al. Measurement and analysis of roughness parameters of quartz sand particles for sand filters in micro-irrigation[J]. China Rural Water and Hydropower, 2020(1): 1-6. (in Chinese with English abstract)
[12] Godwin K N, Peace K A, Samuel A, et al. Optimal bed thickness and effective size for improving wastewater quality for irrigation[J]. International Journal of Energy and Environmental Engineering, 2020(11): 1-16.
[13] Wolff S, Weber F, Kerpen J, et al. Elimination of microplastics by downstream sand filters in wastewater treatment[J]. Water, 2020, 13(1): 33-39.
[14] Chan M R A A, Kasmuri N, Ahmad R, et al. Comparison between activated carbon and sand filtration method for water quality enhancement: A case study [J]. IOP Conference Series: Earth and Environmental Science, 2021, 646(1): 1-7.
[15] Xia T, Tian J C, Fei W P. Experimental study on the performance of a sand filtration method and device by using natural soils and subsurface PVC drainage pipes[J]. Journal of Irrigation and Drainage Engineering, 2021, 147(4): 1-7.
[16] 杜加法,宋澤普. 礦山充填尾砂過濾脫水性能試驗研究[J]. 有色金屬,2021,73(3):6-9. Du Jiafa, Song Zepu. Experimental research on filtration dewatering performance of backfilling tailings in mine[J]. Nonferrous Metals, 2021, 73(3): 6-9. (in Chinese with English abstract)
[17] Ibrahim K A I, Sabry T I M, El G A S, et al. The efficiency of the sand filtration unit mixed with different packing materials in drain water treatment in Egypt[J]. Applied Water Science, 2021, 11(6): 23-28.
[18] Saini G, Kalra S, Kaur U. The purification of wastewater on a small scale by using plants and sand filter[J]. Applied Water Science, 2021, 11(4): 45-52.
[19] Li D, Hualin W. Removal of Solid Impurities from Coal Gasification Wastewater by Sand Filtration[J]. E3S Web of Conferences, 2021, 241: 1001-1011.
[20] 李景海,劉清霞,黃修橋,等. 微灌石英砂濾層流態(tài)特性與分形阻力模型參數(shù)確定[J]. 農(nóng)業(yè)工程學(xué)報,2015,31(13):113-119.
Li Jinghai, Liu Qingxia, Huang Xiuqiao, et al. Flow state characteristics and fractal model parameters determination of quartz sand filter layer used in micro-irrigation[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2015, 31(13): 113-119. (in Chinese with English abstract)
[21] 崔建江,賈旭,劉晶,等. 基于計盒維數(shù)和多小波的靜脈圖像特征提取[J]. 東北大學(xué)學(xué)報:自然科學(xué)版,2010,31(10):1397-1400.
Cui Jianjiang, Jia Xu, Liu Jing. Vein image feature extraction based on box counting dimension and multiple wavelets[J]. Journal of Northeastern University: Natural Science, 2010, 31(10): 1397-1400. (in Chinese with English abstract)
[22] 馮志剛,周宏偉. 圖像的分形維數(shù)計算方法及其應(yīng)用[J]. 江蘇理工大學(xué)學(xué)報,2001,22(6):92-95.
Feng Zhigang, Zhou Hongwei. Computing method of fractal dimension of image and its application[J]. Journal of Jiangsu University of Science and Technology, 2001, 22(6): 92-95. (in Chinese with English abstract)
[23] 田玉強(qiáng),李新,江明喜. 后河自然保護(hù)區(qū)珍稀瀕危植物種群分布格局的分形特征:計盒維數(shù)[J]. 應(yīng)用生態(tài)學(xué)報,2003,14(5):681-684.
Tian Yuqiang, Li Xin, Jiang Mingxi. Fractal properties of the spatial pattern of rare and endangered plant populations in Houhe Nature Reserve in Hubei: Box-counting dimension[J]. Chinese Journal of Applied Ecology, 2003, 14(5): 681-684. (in Chinese with English abstract)
[24] 李景海. 微灌石英砂濾層清潔壓降分形阻力模型與反沖洗數(shù)值模擬[D]. 北京:中國農(nóng)業(yè)科學(xué)院,2016.
Li Jinghai. Fractal Resistance Model of Clean Pressure Drop and Numerical Simulation of Backwashing Process of Quartz Sand Filter Layer in Micro-Irrigation[D]. Beijing: Chinese Academy of Agricultural Sciences, 2016. (in Chinese with English abstract)
[25] 李景海,翟國亮,劉清霞,等. 基于Ergun方程的微灌砂顆粒形狀系數(shù)測定方法研究[J]. 節(jié)水灌溉,2020(12):1-5.
Li Jinghai, Zhai Guoliang, Liu Qingxia, et al. Study on the method of determination of the shape coefficient of sand particle in micro-irrigation based on Ergun equation[J]. Water Saving Irrigation, 2020(12): 1-5. (in Chinese with English abstract)
[26] 法爾科內(nèi). 分形幾何:數(shù)學(xué)基礎(chǔ)及其應(yīng)用(曾文曲譯)[M].北京:人民郵電出版社,2007,39-41.
[27] 郁伯銘. 多孔介質(zhì)輸運(yùn)性質(zhì)的分形分析研究進(jìn)展[J]. 力學(xué)進(jìn)展,2003,33(3):333-346.
Yu Boming. Advances of fractal analysis of transport properties for porous media[J]. Advances in Mechanics, 2003, 33(3): 333-346. (in Chinese with English abstract)
[28] Chen Y P, Shi M H. Determintion of effective thermalconductivity for real porous media using fractal theory [J]. Thermal Science, 1999, 8(2): 102-107.
[29] Yu B M, Li J H. Some fractal characters of porous media[J]. Fractals, 2001, 9(3): 365-372.
[30] Wu J S, Yu B M. A fractal resistance model for flow through porous media[J]. International Journal Heat and Transfer, 2007, 50(6): 3925-3932.
[31] 田禹. 基于偏度和峰度的正態(tài)性檢驗[D]. 上海:上海交通大學(xué),2012.
Tian Yu. Tests for Normality Based on Skewness and Kurtosis[D]. Shanghai: Shanghai Jiao Tong University, 2012. (in Chinese with English abstract)
[32] 趙紅書,微灌用石英砂濾料的過濾與反沖洗性能研究[D]. 北京:中國農(nóng)業(yè)科學(xué)研究院,2010.
Zhao Hongshu. Performance of Filtration and Flushing of Quartz Sand Media for Micro-Irrigation[D]. Beijing: Chinese Academy of Agricultural Sciences, 2010. (in Chinese with English abstract)
Suitable particle size range of sand filter layers based on fractal dimension characteristics
Li Jinghai1,2, Zhai Guoliang1, Liu Qingxia2※, Song Lei1, Cai Jiumao1
(1.,-,453002,; 2.,,455000,)
This study aims to evaluate the filtration performance of sand filters using fractal dimensions. Three kinds of sand filters were also selected with particle size in the range of 1.0-1.18, >1.18-1.4, and >1.4-1.7 mm. The Yellow River sediment in the people's Victory Canal was collected as impurity particles in the raw water. The distribution of particle size in the Yellow River sediment was measured using a laser diffraction particle size analyzer (Mastersizer 3000, Dandong Baite Instrument Co., Ltd). It was found that the calculated mean values of skewness and kurtosis were 0.12 and -0.01, respectively, for the samples from the Yellow River sediment, indicating an outstanding normal distribution. Additionally, the samples were also collected from the Yellow River sediment in Lankao County, thereby verifying the distribution of particle size. It was found that the skewness and kurtosis values of the sediment sample in Lankao County were -0.11 and -0.23, respectively, where the frequency distribution of particle size also conformed to the normal distribution. An industrial CT scanner (C16M3201, Luoyang Tengda Testing Service Co., Ltd) was used to map the filter layer. The image processing and pixel coverage were utilized to calculate the porosity of cross section, the box-counting fractal dimension, and the ratio of the minimum to the maximum aperture (aperture ratio) in the three kinds of sand filter layers. The results showed that the porosities were 0.421, 0.431, and 0.439, respectively, while the box-counting fractal dimensions were 1.695, 1.709 and 1.726, respectively, and the aperture ratio was 1/17, 1/18, and 1/21, respectively, for the three types of layers. Then, the applicability of fractal theory was also evaluated for the quartz sand filters. Subsequently, a fractal model of filtration probability was established for the sand filters. The ranges of pore diameter in the three kinds of sand filters were 59.5-1 002, 66.9-1 220, and 72.9-1 503m, respectively. In the sediment of the Yellow River from the people's Victory Canal, the probabilities of impurity particles above 100 um passing through the sand filter were 0.67%, 0.81%, and 0.93%, respectively. In the Yellow River Sediment from Lankao County, the probabilities of impurity particles above 100m passing through the sand filter were 0.62%, 0.80%, and 0.91%, respectively. It inferred that the presence of surface filtration was proved theoretically. A systematic investigation was also made on the influence of surface filtration on Backwash frequency. Consequently, an optimal filter layer was achieved to reduce the surface filtration, particularly with the particle size in the range of >1.4-1.7 mm suitable for sand filters. The finding can provide strong support to explore the internal structure of sand filters and the selection of filter material.
sediments; particle size; image processing; quartz sand filter; box-counting fractal dimension; surface filtration; filtration performance; image processing
李景海,翟國亮,劉清霞,等. 基于分形維數(shù)特征的砂濾層適宜粒徑范圍[J]. 農(nóng)業(yè)工程學(xué)報,2021,37(20):162-168.doi:10.11975/j.issn.1002-6819.2021.20.018 http://www.tcsae.org
Li Jinghai, Zhai Guoliang, Liu Qingxia, et al. Suitable particle size range of sand filter layers based on fractal dimension characteristics[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2021, 37(20): 162-168. (in Chinese with English abstract) doi:10.11975/j.issn.1002-6819.2021.20.018 http://www.tcsae.org
2021-07-09
2021-10-12
中國農(nóng)業(yè)科學(xué)院農(nóng)田灌溉研究所實驗室開放基金項目(FIRI2021020101);安陽工學(xué)院博士科研啟動基金(BSJ20190015);安陽科技計劃(2020-199)
李景海,博士,正高級工程師,研究方向為微灌過濾器及水資源配置。Email:649923670@qq.com
劉清霞,講師,研究方向為建筑材料與水處理。Email:13837246449@163.com
10.11975/j.issn.1002-6819.2021.20.018
S275.6
A
1002-6819(2021)-20-0162-07