宋少龍,湯智輝,鄭 炫,劉進(jìn)寶,孟祥金,梁宇超
新疆棉田耕后土壤模型離散元參數(shù)標(biāo)定
宋少龍,湯智輝,鄭 炫,劉進(jìn)寶※,孟祥金,梁宇超
(1. 新疆農(nóng)墾科學(xué)院機(jī)械裝備研究所,石河子 832000;2. 農(nóng)業(yè)農(nóng)村部西北農(nóng)業(yè)裝備重點(diǎn)實(shí)驗(yàn)室,石河子 832000)
為提高耕后棉田分層施肥開溝覆土過程離散元仿真模擬的準(zhǔn)確性,采用EDEM離散元軟件對(duì)分層施肥作業(yè)土壤的堆積和滑落過程進(jìn)行仿真模擬,來標(biāo)定土壤接觸參數(shù)。通過通用旋轉(zhuǎn)中心組合試驗(yàn),采用 Design-Expert 軟件對(duì)試驗(yàn)數(shù)據(jù)進(jìn)行回歸分析,以實(shí)測(cè)土壤休止角、土壤與65 Mn鋼滑動(dòng)摩擦角為優(yōu)化目標(biāo),獲得最優(yōu)的離散元接觸參數(shù)組合為:土壤間恢復(fù)系數(shù)0.48、土壤間滾動(dòng)摩擦系數(shù)0.56、土壤間靜摩擦系數(shù)0.24、土壤與65 Mn鋼間恢復(fù)系數(shù)0.5、土壤與65 Mn鋼間滾動(dòng)摩擦系數(shù)0.1、土壤與65 Mn鋼間靜摩擦系數(shù)0.31。為驗(yàn)證標(biāo)定優(yōu)化的離散元模型參數(shù)的準(zhǔn)確性,對(duì)土壤堆積試驗(yàn)和滑落試驗(yàn)進(jìn)行仿真試驗(yàn)與實(shí)際試驗(yàn)對(duì)比,兩者相對(duì)誤差分別為1.7%和2.5%;并在最優(yōu)標(biāo)定參數(shù)組合條件下,采用離散法仿真模擬分層施肥裝置的開溝覆土過程,獲得分層施肥裝置5、6和7 km/h作業(yè)速度下,仿真試驗(yàn)和田間試驗(yàn)的工作阻力相對(duì)誤差分別為10.2%、7.95%、7.04%,誤差在可接受范圍內(nèi)。仿真試驗(yàn)和田間試驗(yàn)開溝覆土效果基本一致,驗(yàn)證了土壤參數(shù)標(biāo)定的準(zhǔn)確可靠,可為后期分層施肥裝置減阻研究提供理論基礎(chǔ)和技術(shù)支持。
土壤;離散元法;開溝覆土;分層施肥;參數(shù)標(biāo)定
精準(zhǔn)對(duì)行分層施肥技術(shù)是針對(duì)棉花、玉米等寬行距作物基肥施用的一項(xiàng)技術(shù)更新[1-3]。在秋季棉田耕整地作業(yè)后,利用分層施肥機(jī)按比例將肥料施于10~15和>15~20 cm的不同土層。春播時(shí),利用導(dǎo)航系統(tǒng)將種子播于肥料上層,實(shí)現(xiàn)了肥料和種子的精準(zhǔn)對(duì)行[4-5]。精準(zhǔn)對(duì)行分層施肥技術(shù)主要特點(diǎn)為:在分層施肥的基礎(chǔ)上保證每層肥料的深度的準(zhǔn)確性、每層施肥量的精準(zhǔn)性和種肥同行的一致性,不僅可以為作物提供不同的生長(zhǎng)階段合理的氮磷鉀配比,還可有效減少肥料的使用量[6-8]。近年來,越來越多研究學(xué)者采用離散元法來研究農(nóng)業(yè)機(jī)械觸土部件與土壤的相互作用[9-12],而離散元法研究結(jié)果的有效性主要取決于土壤參數(shù)的準(zhǔn)確與否,因此系統(tǒng)地研究耕后棉田土壤模型的離散元參數(shù),有助于為基于離散元法分層施肥裝置的優(yōu)化設(shè)計(jì)提供理論依據(jù)。
目前,對(duì)于土壤形狀、密度、泊松比和剪切模量等本征參數(shù),可以通過儀器進(jìn)行測(cè)量或從文獻(xiàn)獲取。土壤的接觸參數(shù)很難進(jìn)行實(shí)際測(cè)量,可借助離散元仿真優(yōu)化標(biāo)定來獲得。對(duì)土壤、種子和肥料等農(nóng)業(yè)物料參數(shù)標(biāo)定方法主要采用堆積試驗(yàn)和滑落試驗(yàn)。戴飛等[13-14]應(yīng)用Hertz-Mindlin無滑動(dòng)接觸模型,對(duì)標(biāo)準(zhǔn)球和非標(biāo)準(zhǔn)球兩種沙土模型,以及全膜雙壟溝覆膜土壤離散元接觸參數(shù)進(jìn)行標(biāo)定。馬帥等[15-16]采用整合延遲彈性模型(Hysteretic Spring Contact Model,HSCM)和線性粘附模型(Liner Cohesion Model,LCM)作為葡萄防寒土接觸模型,對(duì)土壤間、土壤與清土部件間的接觸參數(shù)進(jìn)行了標(biāo)定,該模型適用于具有一定含水率的砂壤土。吳孟宸等[17-18]采用仿真試驗(yàn)與真實(shí)試驗(yàn)相結(jié)合的方法,分別對(duì)花生和玉米接觸參數(shù)進(jìn)行參數(shù)標(biāo)定。向偉等[19]采用EDEM離散元軟件內(nèi)置的 Hertz-Mindlin with JKR 模型作為黏型土壤的接觸模型,利用Plackett-Burman試驗(yàn)和Box-Behnken試驗(yàn)對(duì)土壤仿真物理參數(shù)進(jìn)行標(biāo)定及優(yōu)化。不同的農(nóng)業(yè)物料的接觸參數(shù)存在一定差異,很難通用。上述研究都是針對(duì)種子或耕前土壤的離散元參數(shù)的標(biāo)定研究,由于土壤經(jīng)過耕整地作業(yè),疏松程度發(fā)生變化,上述的研究結(jié)果已經(jīng)不適用于研究棉田耕后分層施肥、播種和移栽等作業(yè)。
因此,為了進(jìn)一步提高離散元法在分層施肥作業(yè)過程研究的準(zhǔn)確性,在參考已有的土壤接觸參數(shù)范圍的基礎(chǔ)上,本文選用Hertz-Mindlin無滑動(dòng)接觸模型作為土壤的接觸模型,采用堆積試驗(yàn)和滑落試驗(yàn)方法,對(duì)土壤間、土壤與分層施肥裝置(65 Mn鋼)間的恢復(fù)系數(shù)、滾動(dòng)摩擦系數(shù)和靜摩擦系數(shù)進(jìn)行優(yōu)化標(biāo)定,在優(yōu)化標(biāo)定后的參數(shù)下建立土壤與分層施肥裝置的仿真模型,通過實(shí)際堆積試驗(yàn)和滑落試驗(yàn)進(jìn)行驗(yàn)證,并采用分層施肥作業(yè)的田間試驗(yàn)與仿真試驗(yàn)對(duì)比,進(jìn)一步驗(yàn)證優(yōu)化標(biāo)定的土壤接觸參數(shù),以期為耕后棉田土壤離散元仿真參數(shù)設(shè)置提供參考。
EDEM軟件中為用戶提供了多種基礎(chǔ)模型,例如Hertz-Mindlin無滑動(dòng)接觸模型、Hertz-Mindlin粘結(jié)接觸模型、線性粘附接觸模型和Hertz-Mindlin with JKR模型等[20-21]。不同的接觸模型可以仿真模擬不同質(zhì)地類型的土壤,本文選用中國北疆地區(qū)耕后棉田土壤為研究對(duì)象,土壤質(zhì)地屬于砂礫。土壤在經(jīng)過秸稈粉碎、犁地和整地等一系列作業(yè),已經(jīng)由板結(jié)狀態(tài)變?yōu)橄鄬?duì)松散狀態(tài),土壤含水率也進(jìn)一步降低,土壤顆粒間的粘附力減小。Hertz-Mindlin無滑動(dòng)接觸模型不考慮顆粒間的相互吸引力,更適合用來研究耕后的土壤條件,其物理概化圖如圖1所示,因此本研究選用Hertz-Mindlin無滑動(dòng)接觸模型作為離散元仿真的接觸力學(xué)模型。
土壤形狀、密度、含水率、休止角、泊松比和剪切模量都是土壤的本征參數(shù),可以通過儀器進(jìn)行測(cè)量或從文獻(xiàn)獲取。土壤的碰撞恢復(fù)系數(shù),靜摩擦系數(shù)和滾動(dòng)摩擦系數(shù)等接觸參數(shù)很難實(shí)際測(cè)量,可以通過離散元仿真參數(shù)優(yōu)化來確定。因此本研究對(duì)土壤間、土壤與分層施肥裝置(65 Mn鋼)間的碰撞恢復(fù)系數(shù)、靜摩擦系數(shù)和滾動(dòng)摩擦系數(shù)進(jìn)行參數(shù)標(biāo)定。通過查閱參考文獻(xiàn),得到土壤-土壤間的靜摩擦系數(shù)、滾動(dòng)摩擦系數(shù)和碰撞恢復(fù)系數(shù)[22-26]分別在0.3~0.7、0.14~0.4和0.2~0.6范圍,土壤-鋼板(65 Mn鋼)間的靜摩擦系數(shù)、滾動(dòng)摩擦系數(shù)和碰撞恢復(fù)系數(shù)[27-29]分別在0.3~0.6、0.04~0.2和0.28~0.6范圍。
物理試驗(yàn)的耕后棉田土壤樣品取于石河子市五工村地塊的田間試驗(yàn)區(qū)域(44°17′34″N,85°58′34″E),采用五點(diǎn)取樣法取分層施肥作業(yè)0~30 cm深度的土壤。將土樣分為3份分別進(jìn)行土壤粒徑、密度測(cè)量和標(biāo)定物理試驗(yàn)。土壤粒徑采用土篩法,測(cè)得石礫(﹥1~2 mm)、砂粒(0.075~1 mm)和粉粒(﹤0.075 mm)占比分別為29.46%、56.31%和14.24%。密度采用五點(diǎn)采樣法,利用環(huán)刀(100 cm3)和電子天平(精度0.01 g)測(cè)得土壤平均密度為1 250 kg/m3,其余參數(shù)查閱參考文獻(xiàn)[1-3],獲得土壤和65 Mn鋼的其他離散元參數(shù)如表1所示。
表1 離散元模型仿真參數(shù)
1)土壤堆積試驗(yàn)
通過EDEM軟件進(jìn)土壤堆積仿真試驗(yàn),接觸模型選用Hertz-Mindlin(on slip),采用顆粒工廠在漏斗上方隨機(jī)生成雙球面、方形四球面和直線型四球面土壤模型,其中組成3種模型的顆粒半徑分別為3、3和2 mm,土壤顆粒生成總質(zhì)量為200 g。等待土壤顆粒運(yùn)動(dòng)到漏斗下方堆積穩(wěn)定后,垂直截屏,通過屏幕角度軟件Screen Protractor V4.0來測(cè)量模擬土壤堆4個(gè)不同方向的休止角。
2)土壤滑落試驗(yàn)
在EDEM軟件中將提前用SolidWorks軟件繪制好的斜面裝置導(dǎo)入,在斜面上方設(shè)置生成土壤顆粒的顆粒工廠。設(shè)置顆粒工廠產(chǎn)生100 g土壤顆粒后,斜面沿轉(zhuǎn)軸轉(zhuǎn)動(dòng)。當(dāng)土壤顆粒剛開始從斜面滑落時(shí),停止仿真,進(jìn)行截屏,通過屏幕角度軟件Screen Protractor V4.0來測(cè)量此時(shí)斜面的角度。土壤滑落仿真試驗(yàn)如圖2所示。
根據(jù)文獻(xiàn)[22-26]選取土壤間的恢復(fù)系數(shù)1(0.2~0.6)、滾動(dòng)摩擦系數(shù)2(0.14~0.4)、靜摩擦系數(shù)3(0.3~0.7),土壤與鋼板(65 Mn)間的恢復(fù)系數(shù)4(0.28~0.6)、滾動(dòng)摩擦系數(shù)5(0.04~0.2)、靜摩擦系數(shù)6(0.3~0.6)為試驗(yàn)影響因素[27-29],以土壤-土壤休止角1、土壤-鋼板(65 Mn)滑動(dòng)摩擦角2為評(píng)價(jià)指標(biāo),根據(jù)試驗(yàn)設(shè)計(jì)原則[13-15],確定編碼系數(shù)分別為1.682和1.316,仿真試驗(yàn)因素水平編碼如表2所示。
表2 仿真試驗(yàn)因素水平編碼表
采用二次回歸正交旋轉(zhuǎn)中心組合優(yōu)化試驗(yàn)方法,應(yīng)用Design-Expert10.0.4.0進(jìn)行試驗(yàn)數(shù)據(jù)處理分析,土壤堆積和滑落仿真試驗(yàn)結(jié)果分別如表3、表4所示。
表3 土壤堆積仿真試驗(yàn)設(shè)計(jì)及結(jié)果
應(yīng)用Design-Expert10.0.4.0軟件對(duì)土壤堆積仿真試驗(yàn)數(shù)據(jù)進(jìn)行方差分析和多元回歸擬合,土壤休止角1、滑動(dòng)摩擦角2的方差分析表分別如表5所示。建立土壤休止角和滑動(dòng)摩擦角的多元回歸方程,并檢驗(yàn)顯著性。
表4 土壤滑落仿真試驗(yàn)設(shè)計(jì)及結(jié)果
由表5可知,響應(yīng)面回歸模型中的土壤休止角和滑動(dòng)摩擦角模型<0.01,表示回歸模型極顯著;失擬項(xiàng)值均大于0.05,表明兩個(gè)模型的失擬不顯著。兩個(gè)試驗(yàn)的變異系數(shù)CV為11.4%和5.1%,表明兩個(gè)試驗(yàn)的可靠性良好;兩個(gè)模型的決定系數(shù)2為0.95和0.92,利用Design-Expert軟件計(jì)算兩個(gè)模型的校正決定系數(shù)2Adj為0.91和0.86,都接近于1,表明兩個(gè)回歸方程可信度高。精確度分別為16.70和12.94,均大于4,說明兩個(gè)回歸模型精度良好??筛鶕?jù)回歸模型分別對(duì)土壤休止角和滑動(dòng)摩擦角進(jìn)行預(yù)測(cè)?;貧w項(xiàng)2、3、32影響極顯著,1、22影響顯著;5、6、62影響極顯著,46影響顯著。由回歸方程系數(shù)的絕對(duì)值大小,得到各個(gè)因素對(duì)土壤休止角和滑動(dòng)摩擦角模型影響的顯著性順序分別為:3>2>1、6>5>4。
式中1、2和3分別為土壤-土壤恢復(fù)系數(shù)、滾動(dòng)摩擦系數(shù)和靜摩擦系數(shù)的水平編碼;4、5和6分別為土壤顆粒-鋼板(65 Mn鋼)恢復(fù)系數(shù)、滾動(dòng)摩擦系數(shù)和靜摩擦系數(shù)的水平編碼;1為土壤-土壤的休止角,(°);2為土壤-鋼板(65 Mn鋼)的滑動(dòng)摩擦角,(°)。
表5 土壤休止角、滑動(dòng)摩擦角回歸模型的方差分析
注:**表示極顯著(<0.01);*表示顯著(<0.05)。
Note: ** means extremely significant (<0.01); * means significant (<0.05).
1)土壤休止角測(cè)定
土壤休止角通過土壤堆積試驗(yàn)進(jìn)行測(cè)定,試驗(yàn)裝置主要由漏斗、臺(tái)架和傾角儀(分辨率:0.05°,精度:±0.2°)3部分組成。將田間試驗(yàn)區(qū)域的土壤樣品200 g置于漏斗內(nèi),打開漏斗底部的小口,讓土壤顆粒從漏斗內(nèi)自由下落,在臺(tái)架底部上會(huì)形成小型土壤堆,利用傾角儀從4個(gè)不同方向?qū)ν寥蓝训男葜菇沁M(jìn)行測(cè)量,每個(gè)方向之間呈90°,如圖3所示,土壤休止角取4個(gè)方向的平均值,試驗(yàn)結(jié)果如表6所示。
2)土壤滑動(dòng)摩擦角測(cè)定
土壤滑動(dòng)摩擦角是通過土壤斜面滑落試驗(yàn)進(jìn)行測(cè)定,主要測(cè)定土壤與65 Mn鋼之間的滑動(dòng)摩擦角,為標(biāo)定土壤顆粒與65 Mn鋼之間的接觸參數(shù)提供參考。試驗(yàn)裝置主要有自制的斜面裝置和傾角儀(分辨率:0.05°,精度:±0.2°)兩部分組成,其中斜面材料為65 Mn鋼。將田間試驗(yàn)區(qū)域的土壤樣品置于斜面上,通過調(diào)整推進(jìn)軸螺桿改變斜面傾斜角度,當(dāng)達(dá)到一定角度時(shí),斜面上的土壤開始從斜面滑落,停止調(diào)整推進(jìn)軸螺桿,并讀出此時(shí)斜面傾角值,此時(shí)的角度值為土壤與65 Mn鋼之間的滑動(dòng)摩擦角,如圖4所示。將試驗(yàn)反復(fù)重復(fù)5次,取平均值作為土壤與65 Mn鋼之間的滑動(dòng)摩擦角,其試驗(yàn)結(jié)果如表7所示。
1.數(shù)字傾角儀 2.漏斗 3.臺(tái)架
表6 土壤休止角物理試驗(yàn)結(jié)果
表7 土壤滑動(dòng)摩擦角物理試驗(yàn)結(jié)果
將實(shí)測(cè)的土壤休止角和滑動(dòng)摩擦角結(jié)果分別代入式(1)~(2),得到多組優(yōu)化解,選取仿真試驗(yàn)土壤休止角和滑動(dòng)摩擦角與物理實(shí)測(cè)最接近的一組土壤接觸參數(shù)。因此分層施肥仿真試驗(yàn)中所需的土壤模型參數(shù)如表8所示。
表8 土壤參數(shù)標(biāo)定結(jié)果
為驗(yàn)證土壤接觸參數(shù)標(biāo)定的合理性,將試驗(yàn)標(biāo)定后的土壤接觸參數(shù)值在EDEM軟件進(jìn)行設(shè)置,對(duì)土壤堆積試驗(yàn)和滑落試驗(yàn)進(jìn)行模擬,測(cè)量土壤的休止角和土壤滑動(dòng)摩擦角,并與土壤堆積和滑落物理試驗(yàn)測(cè)量的土壤休止角和土壤滑動(dòng)摩擦角進(jìn)行對(duì)比,如表9所示。
表9 試驗(yàn)結(jié)果對(duì)比
由表9可知,土壤接觸參數(shù)標(biāo)定后的土壤休止角和土壤滑動(dòng)摩擦角與實(shí)際物理試驗(yàn)的誤差分別為1.7%和2.5%,并且仿真土壤堆的錐形(圖5a)與物理試驗(yàn)錐形(圖5b)非常相似,優(yōu)化標(biāo)定后的土壤模型的堆積形狀更加接近實(shí)際土壤堆積形狀。
3.3.1 仿真試驗(yàn)驗(yàn)證
為了進(jìn)一步驗(yàn)證土壤接觸參數(shù)優(yōu)化標(biāo)定后的準(zhǔn)確性,采用EDEM軟件對(duì)分層施肥裝置開溝作業(yè)過程進(jìn)行仿真模擬。通過EDEM顆粒庫中自帶的三種顆粒形狀中的雙球面(Dual Surface)、方形四球面(Square Four)和直線型四球面(Straight Four)來代表土壤顆粒中常見的3種土壤顆粒形狀[30]。為降低計(jì)算機(jī)的計(jì)算量,對(duì)前期測(cè)量的土壤粒徑進(jìn)行了相應(yīng)的放大,雙球面顆粒模型分別由兩個(gè)半徑為3 mm的球形顆粒組成,方形四球面模型分別由4個(gè)半徑為3 mm的球形顆粒組成,直線型四球面分別由4個(gè)半徑為2 mm的球形顆粒沿直線組成。其中土壤-土壤、土壤-65 Mn鋼間的接觸模型選用Hertz-Mindlin(no-slip),仿真其他參數(shù)如表1和表8所示。利用EDEM的Geometries模塊創(chuàng)建1 500 mm×500 mm×300 mm土槽模型,分層施肥裝置仿真模型采用SolidWorks軟件創(chuàng)建的.x_t文件直接導(dǎo)入,設(shè)置入土深度為30 cm,分層施肥裝置的作業(yè)速度分別為5、6和7 km/h。仿真時(shí)間步長(zhǎng)5.936×10-6s,瑞利時(shí)間步長(zhǎng)為25%,仿真時(shí)間7 s。最優(yōu)標(biāo)定參數(shù)組合下的分層施肥裝置開溝作業(yè)過程如圖6所示(以6 km/h作業(yè)速度為例)。
圖7為分層施肥裝置在作業(yè)速度為5、6和7 km/h時(shí)土壤擾動(dòng)情況。土壤顆粒的擾動(dòng)速度是反映土壤擾動(dòng)一項(xiàng)指標(biāo),土壤擾動(dòng)越大,則土壤擾動(dòng)速度越大,反之越小。從圖中可以看出,土壤擾動(dòng)區(qū)域主要集中在分層施肥裝置前刃前方的破土區(qū)域和分層施肥裝置作業(yè)后方的回土區(qū)域,前刃周圍土壤擾動(dòng)最大,分層施肥裝置兩側(cè)土壤擾動(dòng)最小。隨著分層施肥裝置速度增大,不僅分層施肥裝置前方紅色區(qū)域面積變大,其后方的紅色區(qū)域也變長(zhǎng),說明作業(yè)速度越大,土壤的擾動(dòng)越大。在不同作業(yè)速度情況下,分層施肥裝置周圍土壤擾動(dòng)情況與田間土壤擾動(dòng)一致,說明參數(shù)優(yōu)化標(biāo)定合理。
3.3.2 田間試驗(yàn)驗(yàn)證
田間試驗(yàn)所用主要設(shè)備如下:雷沃歐豹M904拖拉機(jī)、精準(zhǔn)對(duì)行分層施肥機(jī)(圖8)、遙測(cè)儀(Autobona,黑龍江省農(nóng)業(yè)機(jī)械工程科學(xué)研究院),直尺、卷尺、秒表等。田間試驗(yàn)的試驗(yàn)地點(diǎn)為:石河子市五工村地塊(44°17′34″N,85°58′34″E),土壤堅(jiān)實(shí)度63.43 kPa,土壤含水率10.46%,作業(yè)深度30 cm。利用遙測(cè)儀的拉力傳感器來測(cè)量分層施肥裝置的工作阻力,可將分層施肥裝置的實(shí)時(shí)受力情況回傳電腦存儲(chǔ)。將100 m測(cè)試區(qū)域劃分為15 m的加速區(qū)、15 m的減速區(qū)和70 m的穩(wěn)定區(qū),并對(duì)穩(wěn)定區(qū)的試驗(yàn)結(jié)果取平均值,見表10。
表10 模型驗(yàn)證結(jié)果
通過試驗(yàn)結(jié)果表10可知,分層施肥裝置隨著作業(yè)速度的增加,仿真試驗(yàn)結(jié)果和田間試驗(yàn)結(jié)果都有略微的增加,而且變化趨勢(shì)也大致相同。在田間試驗(yàn)過程中,由于土壤中有棉桿和地膜等雜質(zhì)的存在,土壤條件比較復(fù)雜,因此田間試驗(yàn)結(jié)果比仿真試驗(yàn)結(jié)果略大一些,但仿真試驗(yàn)相對(duì)于田間試驗(yàn)的試驗(yàn)誤差在可接受的15%范圍內(nèi),仿真試驗(yàn)的溝深和溝寬(圖9a)與田間試驗(yàn)(圖9b)一致,證明土壤接觸參數(shù)的優(yōu)化標(biāo)定可靠有效。
1)利用EDEM軟件進(jìn)行土壤堆積仿真模擬,以土壤顆粒間恢復(fù)系數(shù)、滾動(dòng)摩擦系數(shù)和靜摩擦系數(shù)為試驗(yàn)因素,土壤休止角為試驗(yàn)指標(biāo),通過通用旋轉(zhuǎn)中心組合試驗(yàn),得出滾動(dòng)摩擦系數(shù)和靜摩擦系數(shù)對(duì)土壤休止角影響非常顯著,恢復(fù)系數(shù)對(duì)土壤休止角影響顯著;利用響應(yīng)面優(yōu)化方法獲得土壤間接觸參數(shù)的最優(yōu)組合:恢復(fù)系數(shù)0.48、滾動(dòng)摩擦系數(shù)0.56、靜摩擦系數(shù)0.24。
2)采用滑落實(shí)試驗(yàn)對(duì)土壤與65 Mn鋼間的接觸參數(shù)進(jìn)行優(yōu)化標(biāo)定,以土壤與65 Mn鋼間恢復(fù)系數(shù)、滾動(dòng)摩擦系數(shù)和靜摩擦系數(shù)為試驗(yàn)因素,土壤滑動(dòng)摩擦角為試驗(yàn)指標(biāo),通過通用旋轉(zhuǎn)中心組合試驗(yàn),表明只有土壤間恢復(fù)系數(shù)對(duì)土壤滑動(dòng)摩擦角無影響,其他接觸參數(shù)均有顯著影響;獲得土壤間接觸參數(shù)的最優(yōu)組合:恢復(fù)系數(shù)0.5、滾動(dòng)摩擦系數(shù)0.1、靜摩擦系數(shù)0.31。
3)為驗(yàn)證所標(biāo)定優(yōu)化的離散元模型參數(shù)的準(zhǔn)確性,對(duì)模擬仿真與實(shí)際試驗(yàn)的土壤休止角、土壤與65 Mn鋼滑動(dòng)摩擦角進(jìn)行了對(duì)比,兩者相對(duì)誤差分別為1.7%和2.5%,在最優(yōu)標(biāo)定參數(shù)組合條件下,采用離散法仿真模擬分層施肥裝置的開溝覆土過程,獲得分層施肥裝置5、6和7 km/h作業(yè)速度下,仿真試驗(yàn)和田間試驗(yàn)的工作阻力相對(duì)誤差分別為10.2%、7.95%和7.04%,誤差在可接受范圍內(nèi)。仿真試驗(yàn)和田間試驗(yàn)開溝覆土效果基本一致,驗(yàn)證了土壤參數(shù)標(biāo)定的準(zhǔn)確可靠,可為后期分層施肥裝置減阻研究提供理論基礎(chǔ)和技術(shù)支持。
[1] 趙巖,陳學(xué)庚,鄭炫,等. 精準(zhǔn)對(duì)行分層施肥技術(shù)研究[J]. 綠洲農(nóng)業(yè)科學(xué)與工程,2016,3:25-29.
Zhao Yan, Chen Xuegeng, Zheng Xuan, et al. Research on accurate layered fertilization technology[J]. Oasis Agriculture Science and Engineering, 2016, 3: 25-29. (in Chinese with English abstract)
[2] 宋少龍,張東超,湯智輝,等. 基于離散元法的分層施肥靴參數(shù)優(yōu)化與試驗(yàn)[J]. 中國農(nóng)業(yè)大學(xué)學(xué)報(bào),2020,25(10):125-136.
Song Shaolong, Zhang Dongchao, Tang Zhihui, et al. Parameter optimization and test of layered fertilization boot based on discrete element method[J]. Journal of China Agricultural University, 2020, 25(10): 125-136. (in Chinese with English abstract)
[3] 劉進(jìn)寶,湯智輝,鄭炫,等. 對(duì)行開溝分層深施肥鏟的設(shè)計(jì)與試驗(yàn)[J]. 甘肅農(nóng)業(yè)大學(xué)學(xué)報(bào),2021,56(2):169-176,186.
Liu Jinbao, Tang Zhihui, Zheng Xuan, et al. Design and experiment of deep fertilizing shovel for furrow and layering[J]. Journal of Gansu Agricultural University, 2021, 56(2): 169-176, 186. (in Chinese with English abstract)
[4] Singh D, Ramteke R, Khan I R. Yield enhancement through fertilizer placement by machine below the seed in rain-fed soybean crop under vertisols[J]. Agricultural Research, 2016, 5(1): 104-108.
[5] Nkebiwe P M, Weinmann M, Bar-Tal A, et al. Fertilizer placement to improve crop nutrient acquisition and yield: a review and meta-analysis[J]. Field Crops Research, 2016, 196: 389-401.
[6] Ning C C, Gao P D, Wang B Q, et al. Impacts of chemical fertilizer reduction and organic amendments supplementation on soil nutrient, enzyme activity and heavy metal content[J]. Journal of Integrative Agriculture, 2017, 16(8): 1819-1831.
[7] 張圣光. 北斗衛(wèi)星導(dǎo)航系統(tǒng)在農(nóng)業(yè)機(jī)械化中的應(yīng)用與發(fā)展前景[J]. 現(xiàn)代農(nóng)業(yè)科技,2014(4):184-189.
Zhang Shengguang. Application and development of Beidou navigation system in mechanised agriculture[J]. Modern Agricultural Science and technology, 2014(4): 184-189. (in Chinese with English abstract)
[8] 吳海玲,高麗峰,汪陶勝,等. 北斗衛(wèi)星導(dǎo)航系統(tǒng)發(fā)展與應(yīng)用[J]. 導(dǎo)航定位學(xué)報(bào),2015,3(2):1-6.
Wu Hailing, Gao Lifeng, Wang Taosheng, et al. Development and application of Beidou satellite navigation system[J]. Journal of Navigation and Positioning, 2015, 3(2): 1-6. (in Chinese with English abstract)
[9] 張銳,李建橋,李因武. 離散單元法在土壤機(jī)械特性動(dòng)態(tài)仿真中的應(yīng)用進(jìn)展[J]. 農(nóng)業(yè)工程學(xué)報(bào),2003,19(1):16-19.
Zhang Rui, Li Jianqiao, Ji Yinwu. Development of simulation on mechanical dynamic behavior of soil by distinct element method[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2003, 19(1): 16-19. (in Chinese with English abstract)
[10] 馬躍進(jìn),王安,趙建國,等. 基于離散元法的凸圓刃式深松鏟減阻效果仿真分析與試驗(yàn)[J]. 農(nóng)業(yè)工程學(xué)報(bào),2019,35(3):16-23.
Ma Yuejin, Wang An, Zhao Jianguo, et al. Simulation analysis and experiment of drag reduction effect of convex blade subsoiler based on discrete element method[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2019, 35(3): 16-23. (in Chinese with English abstract)
[11] 方會(huì)敏,姬長(zhǎng)英,F(xiàn)arman Ali Chandio,等. 基于離散元法的旋耕過程土壤運(yùn)動(dòng)行為分析[J]. 農(nóng)業(yè)機(jī)械學(xué)報(bào),2016,47(3):22-28.
Fang Huimin, Ji Changying, Farman Ali Chandio, et al. Analysis of soil dynamic behavior during rotary tillage based on distinct element method[J]. Transactions of the Chinese Society for Agricultural Machinery, 2016, 47(3): 22-28. (in Chinese with English abstract)
[12] 頓國強(qiáng),陳海濤,李興東,等. 基于EDEM的輕型鑿式深松鏟土壤耕作載荷仿真分析[J]. 農(nóng)機(jī)化研究,2018,40(3):8-12.
Dun Guoqiang, Chen Hailu, Li Xingdong, et al. Simulation analysis of light chisel-type subsoiler soil tillage load based on EDEM[J]. Journal of Agricultural Mechanization Research, 2018, 40(3): 8-12. (in Chinese with English abstract)
[13] 戴飛,宋學(xué)鋒,趙武云,等. 全膜雙壟溝覆膜土壤離散元接觸參數(shù)仿真標(biāo)定[J]. 農(nóng)業(yè)機(jī)械學(xué)報(bào),2019,50(2):49-56.
Dai Fei, Song Xuefeng, Zhao Wuyun, et al. Simulative calibration on contact parameters of discrete elements for covering soil on whole plastic film mulching on double ridges[J]. Transactions of the Chinese Society for Agricultural Machinery, 2019, 50(2): 49-56. (in Chinese with English abstract)
[14] 張銳,韓佃雷,吉巧麗,等. 離散元模擬中沙土參數(shù)標(biāo)定方法研究[J]. 農(nóng)業(yè)機(jī)械學(xué)報(bào),2017,48(3):49-56.
Zhang Rui, Han Dianlei, Ji Qiaoli, et al. Calibration methods of sandy soil parameters in simulation of discrete element method[J]. Transactions of the Chinese Society for Agricultural Machinery, 2017, 48(3): 49-56. (in Chinese with English abstract)
[15] 馬帥,徐麗明,袁全春,等. 葡萄藤防寒土與清土部件相互作用的離散元仿真參數(shù)標(biāo)定[J]. 農(nóng)業(yè)工程學(xué)報(bào),2020,36(1):40-49.
Ma Shuai, Xu Liming, Yuan Quanchun, et al. Calibration of discrete element simulation parameters of grapevine antifreezing soil and its interaction with soil-cleaning components[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2020, 36(1): 40-49. (in Chinese with English abstract)
[16] 王憲良,胡紅,王慶杰,等. 基于離散元的土壤模型參數(shù)標(biāo)定方法[J]. 農(nóng)業(yè)機(jī)械學(xué)報(bào),2017,48(12):78-85.
Wang Xianliang, Hu Hong, Wang Qingjie, et al. Calibration method of soil contact characteristic parameters based on DEM theory[J]. Transactions of the Chinese Society for Agricultural Machinery, 2017, 48(12): 78-85. (in Chinese with English abstract)
[17] 吳孟宸,叢錦玲,閆琴,等. 花生種子顆粒離散元仿真參數(shù)標(biāo)定與試驗(yàn)[J]. 農(nóng)業(yè)工程學(xué)報(bào),2020,36(23):30-38.
Wu Mengchen, Cong Jinling, Yan Qin, et al. Calibration and experiments for discrete element simulation parameters of peanut seed particles[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2020, 36(23): 30-38. (in Chinese with English abstract)
[18] 王云霞,梁志杰,張東興,等. 基于離散元的玉米種子顆粒模型種間接觸參數(shù)標(biāo)定[J]. 農(nóng)業(yè)工程學(xué)報(bào),2016,32(22):36-42.
Wang Yunxia, Liang Zhijie, Zhang Dongxing, et al. Calibration method of contact characteristic parameters for corn seeds based on EDEM[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2016, 32(22): 36-42. (in Chinese with English abstract)
[19] 向偉,吳明亮,呂江南,等. 基于堆積試驗(yàn)的黏壤土仿真物理參數(shù)標(biāo)定[J]. 農(nóng)業(yè)工程學(xué)報(bào),2019,35(12):116-123.
Xiang Wei, Wu Mingliang, Lyu Jiangnan, et al. Calibration of simulation physical parameters of clay loam based on soil accumulation test[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2019, 35(12): 116-123. (in Chinese with English abstract)
[20] 王國強(qiáng),郝萬軍,王繼新. 離散單元法及其在EDEM上的實(shí)踐[M]. 西安:西北工業(yè)大學(xué)出版社,2010:1-3.
[21] 胡國明. 顆粒系統(tǒng)的離散元素法分析仿真:離散元素法的工業(yè)應(yīng)用與EDEM軟件簡(jiǎn)介[M]. 武漢:武漢理工大學(xué)出版社,2010:1-2.
[22] 金麗麗,姬長(zhǎng)英,方會(huì)敏,等. 變量施肥機(jī)連續(xù)混合裝置中肥料顆粒運(yùn)動(dòng)的數(shù)值分析[J]. 浙江農(nóng)業(yè)學(xué)報(bào),2015,27(2):261-265.
Jin Lili, Ji Changying, Fang Huimin, et al. Numerical simulation of mixing process of fertilizer in continuous mixer of variable rate fertilizer applicator[J]. Acta Agriculturae Zhejiangensis, 2015, 27(2): 261-265. (in Chinese with English abstract)
[23] González-Montellano C, Ramírez á., Gallego E, et al. Validation and experimental calibration of 3D discrete element models for the simulation of the discharge flow in silos[J]. Chemical Engineering Science, 2011, 66(21): 5116-5126.
[24] Yu Y, Henrik S. Discrete element method simulation of properties of a 3D conical hopper with mono-sized spheres[J]. Advanced Powder Technology, 2011, 22(3): 324-331.
[25] 苑進(jìn),劉勤華,劉雪美,等. 多肥料變比變量施肥過程模擬與排落肥結(jié)構(gòu)優(yōu)化[J]. 農(nóng)業(yè)機(jī)械學(xué)報(bào),2014,45(11):81-87.
Yuan Jin, Liu Qinhua, Liu Xuemei, et al. Granular multi-flows fertilization process simulation and tube structure optimization in nutrient proportion of variable rate fertilization[J]. Transactions of the Chinese Society for Agricultural Machinery, 2014, 45(11): 81-87. (in Chinese with English abstract)
[26] Toschkoff G, Just S, Funke A, et al. Spray models for discrete element simulations of particle coating processes[J]. Chemical Engineering Science, 2013, 101: 603-614.
[27] Wu S, Kou M, Jian X, et al. DEM simulation of particle size segregation behavior during charging into and discharging from a Paul-Wurth type hopper[J]. Chemical Engineering Science, 2013, 99(32): 314-323.
[28] 周韋,王金峰,王金武,等. 基于EDEM的水田深施肥機(jī)構(gòu)螺旋鋼絲的數(shù)值模擬與分析[J]. 農(nóng)機(jī)化研究,2015,37(1):27-30. Zhou Wei, Wang Jingfeng, Wang Jingwu, et al. Numerical simulation and analysis of a fertilizer can on fertilizer spreader based on EDEM[J]. Journal of Agricultural Mechanization Research, 2015, 37(1): 27-30. (in Chinese with English abstract)
[29] Yu Y, Henrik S. Experimental and DEM study of segregation of ternary size particles in a blast furnace top bunker model[J]. Chemical Engineering Science, 2010, 65(18): 5237-5250.
[30] 王燕. 基于離散元法的深松鏟結(jié)構(gòu)與松土效果研究[D]. 長(zhǎng)春:吉林農(nóng)業(yè)大學(xué),2014. Wang Yan. Simulation Analysis of Structure and Effect of the Subsoiler Based on EDEM[D]. Changchun: Jilin Agricultural University, 2014. (in Chinese with English abstract)
Calibration of the discrete element parameters for the soil model of cotton field after plowing in Xinjiang of China
Song Shaolong, Tang Zhihui, Zheng Xuan, Liu Jinbao※, Meng Xiangjin, Liang Yuchao
(1.,,832000,; 2.,,832000,)
A multi-layer fertilization has been considered as an efficient way to meet the needs of fertilizers at different growth stages of crops. A layered fertilization device is usually used for the process of ditching and covering soil after ploughing. In this case, the movement of soil particles is very complicated. In this study, an EDEM discrete element software was used to simulate the process of soil accumulation and sliding in the layered fertilization area, in order to calibrate soil contact parameters. A Hertz-Mindlin non-slip model was selected to simulate the contact surface of soil-soil and soil-layered fertilization device (65 Mn steel), according to the soil characteristics of cotton fields after ploughing. Three common shapes of soil particles were represented by dual surface, square four, and straight four. The calibration parameters were also selected to determine the ranges. Specifically, the static friction coefficient, rolling friction coefficient, and collision recovery coefficient between soil-soil and soil-65 Mn steel were used as test factors, while the soil angle of repose, and sliding friction angle of soil-Mn steel were used as evaluation indicators. The universal rotation center combination test was conducted to verify the model. The Design-Expert software was then utilized to perform the regression on the test data. The results showed that the coefficient of recovery from the collision of soil-soil and soil-65 Mn steel presented no significant effect on the angle of repose and sliding friction of soil. Taking the measured soil angle of repose and the sliding friction angle between the soil and 65 Mn steel as the optimization objectives, an optimal combination of discrete element contact parameters was obtained: the coefficient of restoration between soils was 0.48, the coefficient of rolling friction between soils was 0.56, the coefficient of static friction between soils was 0.24, the coefficient of restitution between the soil and 65 Mn steel was 0.5, the coefficient of rolling friction between soil and 65 Mn steel was 0.1, and the coefficient of static friction between soil and 65 Mn steel was 0.31. A soil accumulation test and the sliding test were also compared with the actual test, in order to verify the accuracy of the optimized parameters. The relative errors of the two tests were 1.7% and 2.5%, respectively, under the optimal combination of calibration parameters. Consequently, the discrete elements can be expected to simulate the ditching and soil covering process of the layered fertilization device. The relative errors of simulation and field test were 10.2%, and 7.95%, respectively, at the operating speed of 5, 6, and 7 km/h of layered fertilization device. Among them, the error of 7.04% was within the acceptable range. Consequently, the simulation and field test presented basically the same effect of ditching and covering soil, indicating the high accuracy and reliability for the calibration of soil contact parameters. The finding can provide strong theoretical and technical support for the later research on drag reduction of layered fertilization devices.
soils; discrete element method; trenching and mulching; stratified fertilization; parameter calibration
宋少龍,湯智輝,鄭炫,等. 新疆棉田耕后土壤模型離散元參數(shù)標(biāo)定[J]. 農(nóng)業(yè)工程學(xué)報(bào),2021,37(20):63-70.doi:10.11975/j.issn.1002-6819.2021.20.007 http://www.tcsae.org
Song Shaolong, Tang Zhihui, Zheng Xuan, et al. Calibration of the discrete element parameters for the soil model of cotton field after plowing in Xinjiang of China[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2021, 37(20): 63-70. (in Chinese with English abstract) doi:10.11975/j.issn.1002-6819.2021.20.007 http://www.tcsae.org
2021-06-21
2021-10-02
國家重點(diǎn)研發(fā)計(jì)劃課題(2016YFD0200604);新疆農(nóng)墾科學(xué)院院級(jí)科技計(jì)劃項(xiàng)目(2020YJ012)
宋少龍,研究方向?yàn)榫珳?zhǔn)施肥技術(shù)與裝備。Email:ssl4407@163.com
劉進(jìn)寶,副研究員,研究方向?yàn)楦叨宿r(nóng)機(jī)裝備與先進(jìn)制造技術(shù)。Email:jinbao1226@126.com
10.11975/j.issn.1002-6819.2021.20.007
S152.9;S22
A
1002-6819(2021)-20-0063-08