康 峰,吳瀟逸,王亞雄,鄭永軍,李守根,陳沖沖
·農(nóng)業(yè)裝備工程與機械化·
農(nóng)藥霧滴沉積特性研究進(jìn)展與展望
康 峰1,吳瀟逸1,王亞雄1,鄭永軍2,李守根1,陳沖沖1
(1. 北京林業(yè)大學(xué)工學(xué)院,北京 100083;2. 中國農(nóng)業(yè)大學(xué)工學(xué)院,北京 100083)
農(nóng)藥霧滴在噴施過程中因無法有效潤濕靶標(biāo)而出現(xiàn)反彈、飛濺、聚并滾落等現(xiàn)象,致使周邊環(huán)境受侵害,嚴(yán)重威脅生態(tài)穩(wěn)定及安全。由于霧滴沉積過程較為復(fù)雜,且相關(guān)機理尚不成熟,因此霧滴沉積特性研究是實現(xiàn)藥液有效沉積,推動病蟲害防治技術(shù)快速發(fā)展的關(guān)鍵。該文從單液滴微觀動力學(xué)和霧滴群沉積飄移特性兩個方面對目前研究進(jìn)行總結(jié),主要闡述了單液滴撞壁行為研究方法、影響單液滴界面行為的主要因素及單液滴撞壁理論建模研究;霧滴群分布特性研究方法、沉積量收集及檢測方法以及霧滴群建模研究;并探討了以上兩種主流研究思路對最終沉積量評估的貢獻(xiàn)及目前存在的瓶頸問題,且基于此提出了未來發(fā)展建議,以期為農(nóng)藥沉積特性研究及病蟲害防治技術(shù)提供參考。
農(nóng)藥霧滴;沉積;飄移;單液滴;霧滴群;界面行為
農(nóng)藥作為全球重要農(nóng)業(yè)生產(chǎn)資料,是實現(xiàn)農(nóng)業(yè)增產(chǎn)豐收的重要保障。數(shù)據(jù)顯示,截至2020年底,中國水稻、小麥、玉米三大糧食作物農(nóng)藥利用率為40.6%?,F(xiàn)階段,化學(xué)農(nóng)藥是病蟲害防治的重要手段,但中國仍采用大面積、大流量的施藥方法,大量藥液在噴施過程中產(chǎn)生飄移,作物得不到有效化學(xué)防治,不僅造成了資源浪費,更嚴(yán)重威脅了生態(tài)穩(wěn)定及安全[1-2]。近年來,隨著中國農(nóng)業(yè)機械化的快速發(fā)展,高效植保機械化技術(shù)獲得較好的推廣應(yīng)用。但總體來說,植保機械性能和施藥技術(shù)水平還比較落后,無法滿足當(dāng)今農(nóng)業(yè)生產(chǎn)和環(huán)境保護(hù)的要求[3-6]。2021年中央一號文件強調(diào),十四五期間應(yīng)“持續(xù)推進(jìn)化肥農(nóng)藥減量增效,推廣農(nóng)作物病蟲害綠色防控產(chǎn)品和技術(shù)”,發(fā)展綠色防控科技、大幅降低化學(xué)農(nóng)藥用量是當(dāng)前科研的核心任務(wù)[7]。
農(nóng)藥主要通過莖葉噴霧方式施用,因無法有效潤濕靶標(biāo)表面會出現(xiàn)反彈、飛濺、聚并滾落等現(xiàn)象[8]。基于此,大量學(xué)者開展了液滴微觀動力學(xué)研究,通過建立單液滴撞壁模型對液滴界面行為進(jìn)行預(yù)測。但在實際施藥環(huán)節(jié),液滴間相互作用及冠層結(jié)構(gòu)等因素均對沉積行為產(chǎn)生影響,故從單液滴出發(fā)對沉積量進(jìn)行預(yù)測是遠(yuǎn)遠(yuǎn)不夠的[9-10]。另一方面,研究人員以霧滴群為研究對象,通過實地田間試驗來獲取沉積量與初始可控變量的簡單函數(shù)關(guān)系,在理論建模方面則試圖引入單液滴撞壁模型來進(jìn)一步模擬噴施過程,但由于其中關(guān)鍵參數(shù)難以準(zhǔn)確獲取,模型效果尚不理想[11-13]。本文綜述了單液滴微觀動力學(xué)和霧滴群沉積飄移特性兩種主要研究思路的研究進(jìn)展,介紹了單液滴撞壁動態(tài)行為研究方法、影響單液滴撞壁動態(tài)行為的主要因素及單液滴撞壁理論建模研究;霧滴群分布特性研究方法、沉積量收集及檢測方法以及霧滴群建模研究。明確了目前研究中存在的瓶頸問題,并基于此提出了未來發(fā)展建議,為農(nóng)藥沉積特性研究及病蟲害防治技術(shù)提供參考。
農(nóng)藥噴施過程中,噴霧霧滴以單液滴形式作用于靶標(biāo)葉片,由于單液滴運動及撞擊過程構(gòu)成霧滴群動態(tài)行為,因此建立單液滴撞壁行為模型對群體霧滴撞擊規(guī)律的探究及最終沉積量的評估至關(guān)重要。霧滴撞壁行為在自然界和工業(yè)領(lǐng)域中經(jīng)常出現(xiàn),相關(guān)研究也較早起步于工業(yè)領(lǐng)域,例如涂層、清潔、冷卻,燃燒中噴霧與壁面的相互作用、噴墨打印以及電子產(chǎn)品的焊接和生物技術(shù)中的微陣列[14-16]。
單液滴撞擊靶標(biāo)的微觀動力學(xué)研究從Worthingdon利用電火花設(shè)備觀察牛奶及汞在煙熏前后玻璃板的反彈現(xiàn)象就已開始,盡管有140多年的研究,但其動力學(xué)直到近20多年高速攝影技術(shù)出現(xiàn)后才逐漸開始得到解釋[17-18]。1947年,Bowden等[19]首先利用膠片相機記錄了硝酸甘油撞擊壁面的全過程,研究了撞擊時間和爆炸引發(fā)時間的關(guān)系。Pederson[20]則將膠片相機與遠(yuǎn)距顯微鏡結(jié)合,對單液滴撞擊加熱壁面的運動特性和傳熱特性進(jìn)行了研究,該系統(tǒng)的線性放大倍數(shù)可達(dá)15.5倍。到20世紀(jì)90年代,數(shù)碼相機開始在工業(yè)研究領(lǐng)域投入使用,CCD作為靈敏度高、噪聲小的感光元件廣泛應(yīng)用于研究中[18,21]。Mao等[22]使用快門速度達(dá)到1s的CCD相機對室溫下霧滴撞擊平面的反彈和鋪展現(xiàn)象進(jìn)行了拍攝,并建立了反彈模型。Kim等[23]使用30 fps CCD相機拍攝了100m粒徑霧滴撞擊固體表面的過程,并使用撞擊前霧滴運動參數(shù)估計霧滴鋪展的時間。隨著現(xiàn)代高速數(shù)碼技術(shù)的發(fā)展,研究中相機的拍攝速度越來越快,觀測界面的分辨率和清晰度也得到了進(jìn)一步提升。高速攝像頭結(jié)合等幅波激光儀等其他相關(guān)設(shè)備亦可實現(xiàn)對噴霧撞壁氣液相形態(tài)的精確捕捉[24-25]。相較于其他領(lǐng)域,高速攝影技術(shù)在農(nóng)業(yè)噴霧領(lǐng)域研究中的應(yīng)用起步較晚,研究初期使用的相機拍攝速度和分辨率也較低。1998年,Reichard等[26]利用VC-81D黑白攝像機對液滴撞擊空心菜葉片、小麥葉片、黃豆葉片、狐尾草葉片進(jìn)行了觀測,并發(fā)現(xiàn)霧滴在小麥葉片、空心菜葉片上會發(fā)生反彈現(xiàn)象。賈衛(wèi)東等[27]利用幻影V310s型高速數(shù)碼攝像機,并配合兩組長焦微距鏡頭(焦距分別為222 mm和418 mm),對霧滴撞擊大豆葉片表面過程進(jìn)行拍攝,拍攝速度為11 700 fps,并計算了液滴發(fā)生沉積和回縮現(xiàn)象的臨界值。崔迎濤等[28]使用CP-2200型注射泵產(chǎn)生大小均勻的液滴,利用拍攝速度5 000 fps的GC-PX100BAC型高速攝像機對單液滴撞擊大豆葉片過程進(jìn)行拍攝,測量了液滴在大豆葉片表面的接觸角并對其表面黏附性進(jìn)行了測試。圖1為高速攝影下蒸餾水液滴撞擊大豆葉片的照片。
隨著計算機技術(shù)的飛速發(fā)展,虛擬仿真技術(shù)受到越來越多學(xué)者的青睞。研究人員基于二維或三維模型,通過計算流體力學(xué)(Computational Fluid Dynamics,CFD)來模擬單液滴撞擊靶標(biāo)表面后的行為過程。虛擬仿真技術(shù)通過獲取豐富的界面信息提高了液滴微觀形態(tài)變化的可視性,是研究液滴界面行為的有效手段。1981 年,Hirt和Nichols首先提出VOF(Volume of Fluid)方法[29]。VOF模型是一種固定在歐拉網(wǎng)格下的表面跟蹤方法,其通過定義流場每個網(wǎng)格中目標(biāo)流體體積與網(wǎng)格體積的比值獲得流體體積函數(shù),并將體積函數(shù)引入流體控制方程組中進(jìn)行求解,實現(xiàn)對多相流運動界面的追蹤。董祥[30]采用VOF方法對單滴蒸餾水和非離子表面活性劑溶液撞擊竹蕉、一品紅、天竺葵和玉米植物葉片表面后的動態(tài)鋪展過程進(jìn)行了數(shù)值計算和仿真分析,初步獲得了沉積和反彈過程中霧滴內(nèi)部流場和壓力場的變化情況。Delele等[31]同樣通過VOF方法對水滴撞擊不同植物葉片(蘋果、梨、韭菜和卷心菜)的動態(tài)沖擊行為進(jìn)行了研究。謝亞星等[32]采用Fluent中多相流計算模型VOF對單液滴碰撞枸杞葉片的過程進(jìn)行了數(shù)值模擬,結(jié)果表明仿真結(jié)果與試驗結(jié)果的一致性較高。2018年,Zhu等[33]使用CLSVOF(Couple Level Set & Volume of Fluids)界面追蹤法,評估了3種常用農(nóng)藥(百菌清、樂果和馬拉硫磷)霧滴在茶樹葉片表面的沉積差異。此外,作者還分別研究了農(nóng)藥霧滴在葉片表面橫向和縱向的液相形態(tài)、表面潤濕性、壓力和速度分布,發(fā)現(xiàn)界面追蹤模型計算的預(yù)測結(jié)果與實際結(jié)果具有一致性。這也證明了CLSVOF界面追蹤法在深入研究農(nóng)藥霧滴撞擊葉面動力學(xué)行為方面具有極大的應(yīng)用潛力。但在目前的仿真模擬中,靶標(biāo)葉片的模型構(gòu)建及特征描述尚有欠缺,還需進(jìn)一步完善靶標(biāo)以提高模型準(zhǔn)確性。
隨著觀測技術(shù)的提升,研究人員開始探究液滴撞壁行為的運動機理,試圖對該動態(tài)過程進(jìn)行理論推導(dǎo)。研究發(fā)現(xiàn),液滴的界面動態(tài)變化過程與噴頭霧化特性、藥液性質(zhì)及靶標(biāo)特性密切相關(guān)[34-37]。
1.2.1 霧化特性對液滴撞壁動態(tài)行為的影響
霧化特性參數(shù)包括霧滴粒徑、霧滴速度和霧錐角,其中,霧滴粒徑和速度是影響霧滴沉積和飄移的主要因素[38-39]。在噴施過程中,較大霧滴易沉降,不易隨風(fēng)飄移,但高速時易飛濺,低速時易出現(xiàn)反彈和聚并滾落現(xiàn)象;較小霧滴則易飄散,靶標(biāo)有效覆蓋率較差。研究中人們經(jīng)常使用雷諾數(shù)()和韋伯?dāng)?shù)()對其進(jìn)行描述。Levin等[40]對液滴撞擊干燥與濕潤表面的飛濺現(xiàn)象進(jìn)行觀察后發(fā)現(xiàn),當(dāng)沖擊速度足夠大時,液滴在碰撞點附近將濺射出皇冠形液膜,作者因此將其命名為“冠狀結(jié)構(gòu)”并提出了破碎機制。Yang等[41]在霧滴撞擊草莓表面的試驗中,用微型計量泵和滴管分別從25、50、75、100、125和150 cm的高度釋放出直徑為0.5至4 mm的液滴,結(jié)果表明霧滴直徑和噴霧高度對發(fā)生濺射霧滴的數(shù)量、流量、速度、濺射角和能量影響顯著。其中單液滴運動的初始速度和撞擊后的飛濺角度顯著相關(guān),且霧滴直徑、運動距離、初始速度和動能呈現(xiàn)威布爾累積分布函數(shù)關(guān)系。Usawa等[42]研究了不同半徑液滴撞擊光滑且部分潤濕壁面的飛濺臨界值,發(fā)現(xiàn)半徑越小,飛濺所需的撞擊速度就越大,但當(dāng)≥5時,飛濺將被抑制。張瑜等[43]探究了不同初始速度及不同初始直徑對液滴鋪展的影響,結(jié)果顯示:低速時表面張力阻礙鋪展,液滴回縮反彈,高速時動能克服勢能,液滴發(fā)生破碎;大直徑有利于鋪展破碎,小直徑有利于鋪展反彈。張帆等[44]定性分析了初始液滴直徑()、液滴撞擊速度、濕壁面及傾斜角度對飛濺現(xiàn)象的影響,并對不同角度濕壁面的撞擊情況進(jìn)行了水平拍攝。結(jié)果顯示:高初速度及小直徑易導(dǎo)致飛濺產(chǎn)生。另外,臨界速度和臨界直徑的大小隨傾角增大而增加。圖2為傾斜角度為10°,液滴撞擊速度為2.90 m/s,液滴直徑分別為2.17、2.44、3.27 mm時的飛濺情況。李玉杰等[45]基于相場的混合格子Boltzmann有限差分法,模擬液滴在不同初始狀態(tài)下撞擊不同大小圓柱內(nèi)表面的形態(tài)變化,并分析了液滴密度、黏性等自身物理性質(zhì)對撞擊現(xiàn)象的影響,其發(fā)現(xiàn)高韋伯?dāng)?shù)下液滴會產(chǎn)生分裂現(xiàn)象。以上有關(guān)霧化特性的研究可為噴頭選型提供理論基礎(chǔ),研究人員還可通過不同噴頭與植物的適用性試驗選擇最優(yōu)噴頭以改善沉積效果。
1.2.2 藥液性質(zhì)對液滴撞壁動態(tài)行為的影響
藥液性質(zhì)對單液滴撞壁行為影響較為顯著,有關(guān)生化領(lǐng)域的研究也集中在該層面。霧滴的物理化學(xué)性質(zhì)包括表面張力、黏度及密度等。不同表面張力的霧滴在作物葉片的接觸角不同,從而影響了霧滴的粘附性能。以往研究表明,在農(nóng)藥制劑中添加適宜表面活性劑是提高藥液對靶潤濕沉積的有效方法[46-48]。1991年,Trapag和Szekely發(fā)現(xiàn)表面張力對霧滴形態(tài)變化起到非常重要的作用[49]。1994年,Holloway[50]通過大量試驗證實在農(nóng)藥助劑中加入適宜表面活性劑可提高霧滴在植物靶標(biāo)的粘附性。后期研究表明,表面活性劑分子通過非共價鍵相互作用(洛倫茲-范德華力、疏水相互作用及靜電相互作用等)吸附于氣-液和固-液界面,從而改變靶標(biāo)界面性質(zhì),實現(xiàn)液滴有效潤濕沉積[51-53]。Bergeron等[54]發(fā)現(xiàn)在藥液中加入稀釋的聚合體溶液可有效抑制反彈發(fā)生,且高黏度溶液可以減少液滴反彈。顧中言等[55]研究發(fā)現(xiàn)農(nóng)藥藥液本身均含有表面活性劑,但由于大多數(shù)藥劑推薦濃度的表面張力值大于靶標(biāo)臨界表面張力值,即藥液中的表面活性劑濃度未達(dá)到臨界膠束濃度,導(dǎo)致大多數(shù)藥劑難以在植物表面實現(xiàn)有效潤濕。2007年,顧中言等[56]又對甘藍(lán)葉片表面的鋪展特性進(jìn)行了研究,發(fā)現(xiàn)向水中添加表面活性劑TX-10后,液滴能夠很好地在甘藍(lán)葉表面潤濕鋪展。這是因為TX-10可降低水的表面張力,使得溶液的表面張力小于甘藍(lán)葉片的臨界表面張力,同時又使溶液中表面活性劑濃度達(dá)到或超過臨界膠束濃度。
表面活性劑的分子成分可分為陽離子、陰離子、非離子和兩性基團(tuán)。其中,陽離子表面活性劑對植物具有消泡性和毒性,因此單一陽離子成分表面活性劑不推薦使用。還有研究發(fā)現(xiàn),在相同濃度和結(jié)構(gòu)下,離子表面活性劑在帶電介質(zhì)中具有較高的表面張力,因此在對表面活性劑進(jìn)行選擇前可先對葉片的電荷特性進(jìn)行評估[46,57]。此外,表面活性劑研究中也經(jīng)常涉及到有機硅化合物[58-59]。Wang等[60]探討了不同表面活性劑對緩釋微球阿維菌素-苯甲酸酯(Emamectin-Benzoate,EMB)粒徑和分散性的影響。緩釋制劑允許農(nóng)藥活性成分在較長時間內(nèi)持續(xù)和有效釋放,以減少農(nóng)藥在非目標(biāo)環(huán)境揮發(fā)、降解和損失。該方法是目前提高農(nóng)藥使用率最有效的方法之一。試驗結(jié)果表明,樣品在聚合物穩(wěn)定劑聚乙烯醇(Polyvinyl Alcohol,PVA)和復(fù)合非離子表面活性劑聚氧乙烯蓖麻油(EL-40)的最佳配方混合液中具有良好的分散性,且優(yōu)選的EMB農(nóng)藥緩釋微球具有優(yōu)異的抗光解性能和穩(wěn)定性,可在葉片均勻分布[47, 61]。Ma等[62-63]基于植物葉片表面化學(xué)成分中含有三萜烯類化合物的特性,選擇具有剛性三萜疏水骨架、親水葡萄糖醛以及具有較好表面活性的天然產(chǎn)物甘草酸,制備了新型丁硫克百威乳油制劑,實驗發(fā)現(xiàn)游離在溶液中的甘草酸在一定濃度下可抑制液滴在靶標(biāo)表面彈跳。Zhao等[58]制備了含有三硅氧烷表面活性劑和阿維菌素農(nóng)藥的納米顆粒,發(fā)現(xiàn)隨著三硅氧烷表面活性劑含量的增加,可有效降低該粒子在葉面的接觸角。另外,Song等[51,64]觀察到水稻、小麥、花椰菜、甘藍(lán)等超疏水葉片上有較多條紋和彎曲結(jié)構(gòu),研究發(fā)現(xiàn)該結(jié)構(gòu)可誘發(fā)液滴的各向異性鋪展和反彈,極大增加了農(nóng)藥液滴沉積的難度。針對該問題,其團(tuán)隊將具有顯著拉伸黏度的柔性聚合物PEO與表面活性劑ATO相結(jié)合,通過提高液體黏度使單液滴在撞擊后的反沖階段有較高的拉伸長度,耗散了液滴大部分能量從而抑制破碎現(xiàn)象,同時該過程又確保了液滴內(nèi)表面活性劑分子有足夠的時間移動到接觸界面,以實現(xiàn)較好的潤濕性。圖3及圖4可見該囊泡型表面活性劑抑制液滴在超疏水葉片表面飛濺的優(yōu)勢所在。
1.2.3 靶標(biāo)特性對液滴撞壁動態(tài)行為的影響
植物葉片特性作為固有特性一般只能通過提高認(rèn)識水平來推動后續(xù)研究。植物葉片表面主要為蠟質(zhì)層,其作為靶標(biāo)作物界面最外層結(jié)構(gòu),決定著植物葉片的親/疏水性,使作物免受周圍環(huán)境的影響[65-66]。外蠟質(zhì)層的界面特性包括表面化學(xué)成分、表面拓?fù)湫蚊布氨砻孀杂赡埽涔餐瑳Q定著植物靶標(biāo)的潤濕特性。該潤濕特性通常被劃分為疏水性、超疏水性,親水性和超親水性,其被浸潤的難易程度直接決定了葉片藥液持有量的多少[67]。植物葉片表面蠟質(zhì)層主要由長鏈烷烴、伯醇、醛、酮、脂肪酸及三萜烯類化合物組成,通常利用氣相色譜質(zhì)譜聯(lián)用儀(GC-MS)及液相色譜質(zhì)譜聯(lián)用儀(LC-MS)等方法進(jìn)行定性及定量研究[68]。1974年,Hall和Burke對葉片表面顯微結(jié)構(gòu)進(jìn)行了觀察,認(rèn)為蠟質(zhì)層的厚度和絨毛會影響葉片潤濕性[69]。1993年,Stevens等[70]發(fā)現(xiàn)植物葉片蠟質(zhì)含量的多少對液滴在葉片表面的動態(tài)行為有一定影響,且液滴在蠟質(zhì)含量多的葉片表面容易出現(xiàn)彈跳和滾落現(xiàn)象。Mao等[71]通過研究水稻蠟質(zhì)層的化學(xué)成分認(rèn)為葉片親疏水性與碳鏈長度具有相關(guān)性。水稻葉片外蠟質(zhì)層主要由34.3%的脂肪酸(碳鏈長度集中于C24~C32)、31.2%脂肪醛(碳鏈長度集中于C30~C34)、23.9%伯醇(碳鏈長度集中于C30)以及6.9%的長鏈烷烴等組成,顯示出疏水性。總體來說,親水性靶標(biāo)葉片中伯醇含量占比較高,碳鏈長度集中于C26~C28之間;疏水性靶標(biāo)葉片中烷烴及其衍生物含量占比較高,且碳鏈長度集中于C32~C34之間[36]。蠟質(zhì)層厚度和碳鏈長度通常會隨生長期和濕度的變化而變化[72-75]。Koch等[74]通過試驗發(fā)現(xiàn),與40%~75%的相對濕度條件相比,98%的相對濕度條件下甘藍(lán)、剛尼桉及金蓮花植物葉片的總蠟質(zhì)含量和密度均會下降,葉片表面潤濕性則會顯著提高;而在20%~30%相對濕度條件下,三種植物葉片的總蠟質(zhì)含量增加,潤濕性降低。說明在干旱脅迫下植物葉片為了減少水分蒸發(fā)會自主增加蠟質(zhì)層厚度。
植物葉片表面拓?fù)湫蚊玻ū砻娲植诙龋┌ㄈ~片表面的微觀結(jié)構(gòu)、氣孔和不規(guī)則附著物(毛、刺等)等[64,76-77]。研究人員通常利用掃描電鏡(SEM)和透射電鏡(TEM)進(jìn)行觀測[78-79]。國外學(xué)者Barthlott和Neinhuis最早開始關(guān)注荷葉非光滑表面特性,通過觀察荷葉表面微觀形態(tài)結(jié)構(gòu)發(fā)現(xiàn),荷葉表面具有微米級的乳突結(jié)構(gòu)和蠟質(zhì)物,其共同導(dǎo)致了荷葉的超疏水和自清潔功能[80-83]。同樣具有微米級乳突結(jié)構(gòu)的還有水稻葉片,水稻葉片表面定向排布著亞毫米級的溝槽結(jié)構(gòu),且布滿乳頭狀突起,這種突起包被著蠟質(zhì),水稻葉片因此表現(xiàn)為超疏水性。另外,乳突的排列形式還導(dǎo)致液滴在水稻葉片表面滾動呈各向異性[64,84]。Koch等[85]從不同尺度對植物表面結(jié)構(gòu)進(jìn)行了觀測,其發(fā)現(xiàn)宏觀層面上觀測到的外觀形貌與掃描電鏡下的微結(jié)構(gòu)差異很大,功能也有所不同。此外,掃描電鏡結(jié)果顯示,黃瓜葉片表面光滑,存在具有親水性的長絨毛,表現(xiàn)為親水性表面;棉花葉片表面粗糙度略高于黃瓜,表現(xiàn)為中等親水性表面[61,77]。圖5和圖6分別為荷葉及水稻葉片表面的電鏡掃描圖。表面自由能則是物體表面分子間作用力的體現(xiàn),其由靶標(biāo)表面化學(xué)成分和表面拓?fù)湫蚊补餐绊懀ǔ2捎玫挠嬎惴椒ò∣wens二液法、Zisman法、OWRK法等[86-88]。
式中,w,c分別代表Young方程中的本征接觸角以及Wenzle方程和Cassie-Baxter方程中的表觀接觸角,(°);s和v分別代表表面活性劑液滴在固體和氣體表面的接觸角,(°);代表粗糙度,表示表觀固體接觸面積與本征固體接觸面積之間的比值,≥ 1;s、v分別代表固體接觸面積和氣體接觸面積占總面積的比值,s+v= 1;SV為固-氣界面張力,N?m-1;SL為固-液界面張力,N?m-1;LV為氣-液界面張力,N?m-1。
另外,潤濕狀態(tài)由低黏附性的Cassie-Baxter狀態(tài)轉(zhuǎn)變?yōu)楦唣じ叫缘腤enzel狀態(tài)是實現(xiàn)藥液有效潤濕的關(guān)鍵,如圖8所示。在具體試驗中可通過調(diào)整相關(guān)參數(shù)以實現(xiàn)對接觸角的調(diào)控[91]。
單液滴撞擊固體壁面的動力學(xué)形態(tài)變化較為復(fù)雜。為了明確不同撞擊結(jié)果,2001年Rioboo等[92]將撞擊結(jié)果分為六類(圖9)。研究發(fā)現(xiàn),液滴在撞擊固體干表面時,動能由法線方向轉(zhuǎn)為切向方向,液滴迅速向外擴(kuò)散。當(dāng)撞擊產(chǎn)生的慣性力大于將液滴凝聚在一起的毛細(xì)管力,液滴就會發(fā)生破碎,否則其將繼續(xù)擴(kuò)散,直到動能耗盡。在擴(kuò)散過程中,一部分動能發(fā)生粘性耗散,另一部分轉(zhuǎn)化為表面能。此時,液滴的幾何形狀通常呈現(xiàn)為扁平的圓盤,且周圍有一個較厚的自由圈層邊緣。當(dāng)液滴擴(kuò)散到最大程度時,此時的直徑被稱為最大擴(kuò)展直徑(max)[22]。如果此時液滴的表面能仍然很大,液滴將經(jīng)歷反沖階段,即出現(xiàn)飛濺或反彈現(xiàn)象[14,93-95]。
對于液滴撞擊后的擴(kuò)散階段,研究人員通常使用基于能量平衡的簡單半經(jīng)驗分析模型來預(yù)測最大擴(kuò)散因子[96]。相關(guān)試驗表明,的計算值與若干組實驗數(shù)據(jù)相當(dāng)吻合,但該模型假設(shè)了液滴初始動能和表面能除部分耗散外,其余能量均轉(zhuǎn)化為沉積壁面表面能,當(dāng)該假設(shè)不成立時此模型適用性不強[22,97]。Roisman等[98]發(fā)現(xiàn),當(dāng)單液滴擴(kuò)散后出現(xiàn)后撤現(xiàn)象時,壁面上的擴(kuò)散液層因表面張力效應(yīng)而會被自由邊緣包圍,該過程由自由邊緣與內(nèi)部液層的相互作用以及壁面對邊緣施加的力所決定。因此其從自由邊緣的質(zhì)量和動量平衡方程出發(fā),結(jié)合慣性力、黏性力、表面張力以及潤濕性效應(yīng)對該過程進(jìn)行了建模研究,該模型能夠較準(zhǔn)確的預(yù)測自由邊緣的直徑變化。
有關(guān)反彈和破碎階段的建模多采用傳統(tǒng)的能量平衡原則,即在撞擊過程的關(guān)鍵階段強制能量和質(zhì)量守恒,這種能量平衡模型已廣泛用于描述液滴撞擊的簡單計算[22,94,99-100]。目前研究中的撞擊模型多為代數(shù)形式的理想化模型,并最大限度地減少經(jīng)驗擬合,其優(yōu)點在于計算簡便,易于應(yīng)用在新的噴霧場景中[99-100]。也有研究人員通過試驗擬合產(chǎn)生一種預(yù)測附著、反彈和飛濺的概率法[101-103]。對于反沖階段,Xu等采用彈簧-質(zhì)量-阻尼方程來描述該過程,并試圖用實際物理參數(shù)半經(jīng)驗地確定其系數(shù)[104]。Okumura等[105]則通過尺度論證明了液滴在小變形的極限下可表現(xiàn)為彈簧質(zhì)量系統(tǒng)。Kim和Chun[100]在其基礎(chǔ)上補充了能量平衡公式,并將水滴形狀近似為圓柱體,結(jié)果表明其能較好地描述鋪展和液滴后撤行為。
反彈的標(biāo)準(zhǔn)最早由Mao等提出,即判斷撞擊后剩余能量能否使液滴發(fā)生反彈,其通過一系列能量平衡對反彈行為進(jìn)行了預(yù)測。但是,Mao只考慮了液滴從正上方撞擊水平表面的情況[22]。2015年,Dorr等[106]對此模型進(jìn)行了擴(kuò)展,其補充了多角度的撞擊情況,通過計算“剩余能量”(ERE,Excess Rebound Energy)來預(yù)測反彈的發(fā)生,當(dāng)ERE> 0時,反彈發(fā)生。在破碎階段建模中,為了判定液滴動能能否克服毛細(xì)管效應(yīng)而導(dǎo)致液滴破碎,Mundo等[107]提出了判定依據(jù):
式中=/()0.5,=2/,=/,值用于描述與液滴性質(zhì)相關(guān)的因素,crit用于表征撞擊壁面的表面特性,包括粗糙度及潤濕性。當(dāng)滿足>crit時,破碎發(fā)生。當(dāng)≤crit時,液滴將出現(xiàn)粘附或反彈現(xiàn)象,具體行為可結(jié)合Dorr模型中剩余能量公式進(jìn)行進(jìn)一步判別。臨界值crit的取值可根據(jù)以下公式進(jìn)行計算[108]:
式中CA20%acetone和CA50%acetone是濃度為20%的丙酮和50%的丙酮液滴分別在葉片表面產(chǎn)生的靜態(tài)接觸角,臨界值通常取兩者計算得出的平均值[11]。但破碎判別方程只預(yù)測了破碎是否發(fā)生,并未對破碎產(chǎn)生的子液滴進(jìn)行進(jìn)一步分析。子液滴對液量的保留具有顯著影響,因此對該階段進(jìn)行建模也是目前的研究重點。子液滴出現(xiàn)的形式較多,但“快速濺射”和“冠狀濺射”在液滴撞擊干燥壁面中最為常見[92,109]。快速濺射在液滴撞擊壁面后迅速發(fā)生,冠狀濺射則在擴(kuò)散鋪展后期發(fā)生。考慮到破碎時間的差異性,Dorr等引入飛濺擴(kuò)散因子(0<≤1)對破碎時間點進(jìn)行度量。以shatt=max作為破碎時液滴的直徑,max為最大擴(kuò)展直徑[22,106,110]。=1時表示液滴在最大擴(kuò)展直徑時發(fā)生破碎,越小不僅可表明破碎出現(xiàn)的時間較早,也表明在擴(kuò)散過程中液滴消耗動能較少,剩余動能可能導(dǎo)致子液滴產(chǎn)生遠(yuǎn)距離飛濺。另外,液滴發(fā)生飛濺時,通常只有部分子液滴飛離靶標(biāo)表面,剩余部分仍粘附在壁面上,因此還需引入釘扎比例參數(shù)(0 ≤< 1),= 0時表示液滴完全飛濺,> 0時表示部分飛濺。飛濺出去的液體體積為Volsec=(1-)π3/6[11],子液滴(sec)的數(shù)量為[111-112]:
該過程中,子液滴數(shù)量會隨濺出液體體積的減小而減少。由此可見,和同時影響飛濺產(chǎn)生的子液滴數(shù),且子液滴數(shù)與成反比,與成正比。單個子液滴的動能同樣可通過撞擊前、破碎期間和破碎后的能量守恒方式來計算,但其較依賴于和的參數(shù)設(shè)置[11,94]。到目前為止,尚未找到理論推導(dǎo)的方法來確定和的參數(shù)值,這也將是未來研究的重要方向。
除分析建模外,還可采用數(shù)值模擬對撞擊過程進(jìn)行描述。Fukai等[113]基于有限元求解了Navier-Stokes方程,并在運動接觸線處添加無滑移條件以緩解應(yīng)力奇異性。1995年,F(xiàn)ukai通過添加接觸線上前進(jìn)接觸角adv和后退接觸角rec來完善模型,這使預(yù)測結(jié)果準(zhǔn)確地描述了液滴擴(kuò)散和后撤過程動力學(xué)演化過程[114]。Pasandideh-Fard等[97]使用VOF方法描述了黏性液滴在干燥表面和部分可濕表面的擴(kuò)散過程,且對動態(tài)接觸角進(jìn)行了表征,動態(tài)接觸角的應(yīng)用可提高對液滴擴(kuò)散半徑預(yù)測的準(zhǔn)確性。Tanaka等[115]采用格子Boltzmann法(Lattice Boltzmann Method,LBM)模擬了液滴在固體表面上的動力學(xué)變化過程,研究了不同韋伯?dāng)?shù)下動態(tài)接觸角、接觸線速度和潤濕長度的變化,其結(jié)果與實際實驗數(shù)據(jù)吻合較好。張瑩等[116]基于界面追蹤法和廣義滑移邊界構(gòu)建了接觸角模型以探究非均質(zhì)壁面對液滴的俘獲能力,結(jié)果表明液滴沉積于濕潤壁面的能力和數(shù)與數(shù)的大小相關(guān)。韓丁丁等[117]以O(shè)ldroyd-B模型對高分子溶液黏彈性抑制液滴反彈現(xiàn)象進(jìn)行數(shù)值模擬,發(fā)現(xiàn)高分子液滴接觸壁面后液體內(nèi)部會產(chǎn)生向下的作用力,該力可減小回縮速度,抑制液滴反彈。
單液滴撞壁的理論建模研究目前仍存在許多問題,如無法針對具有自由界面的撞擊液滴流體動力學(xué)進(jìn)行精確求解,因為其包含了復(fù)雜的固液相互作用、作為邊界條件之一的動態(tài)接觸角表達(dá)式、邊界不穩(wěn)定性出現(xiàn)的臨界條件、三相線處不可積分的應(yīng)力奇異點等問題。因此還需以基礎(chǔ)理論研究為出發(fā)點,對其進(jìn)行進(jìn)一步探討。
農(nóng)藥噴施過程中,液體以霧滴群的形式彌散在空氣介質(zhì)中,相比單液滴撞擊植物靶標(biāo)研究,對霧滴群的研究需考慮液滴間的相互作用,以及實際霧形和冠層結(jié)構(gòu)對植物體最終沉積量的影響。目前通過群體霧滴研究霧滴沉積和飄移的方法包括兩類:一是通過觀測或仿真技術(shù)對噴霧場中霧滴運動信息進(jìn)行捕捉并描述霧場特征,以此尋找其與沉積量間的關(guān)系[118-120]。二是通過實際試驗或仿真技術(shù)計算最終沉積量,其中包括對葉片表面沉積的直接測量和通過空中及地面飄移量來側(cè)面反映的間接測量[121-125]。
實際噴施過程中壓力變化及不同藥液性質(zhì)等均會導(dǎo)致霧滴粒徑產(chǎn)生變化,這削弱了噴頭廠家提供的原始粒徑數(shù)據(jù)的參考價值,不利于從理論層面對霧化特性與沉積效應(yīng)間的關(guān)系進(jìn)行闡釋。1976年,相位測量球形粒子特性的理論問世,并于1984年運用到實驗室中[126]。相位多普勒技術(shù)利用運動微粒的散射光與照射光之間的頻差獲得速度信息,通過分析穿越激光測量體的球形粒子反射或折射的散射光產(chǎn)生的相位移動來確定粒徑大小。1991年,Hardalupas等[127]利用激光多普勒技術(shù)測量了群體霧滴在碰撞表面附近的粒徑和速度,試驗表明霧滴撞擊壁面的角度直接影響濺射產(chǎn)生的粒徑大小。Kalantari等[128]使用相位多普勒粒子分析儀(PDPA)對霧滴群撞擊剛性壁面進(jìn)行了研究,通過二次霧滴的速度和軌跡以及二次霧滴的質(zhì)量和數(shù)量對噴霧與壁面的相互作用進(jìn)行了表征。Lee等[129]利用相位多普勒粒子分析儀分析了多孔噴嘴的霧化特性,并與單孔噴嘴的霧化特性進(jìn)行了比較。霧滴粒徑信息也可通過激光粒度儀進(jìn)行測量。張慧春等[119,130]利用激光成像系統(tǒng)和激光粒度儀測定了噴霧角和霧滴粒徑,并研究了不同噴嘴的霧化機理。2020年,其團(tuán)隊利用開路式風(fēng)洞和激光粒度儀對農(nóng)藥助劑在空中和地面防治時不同風(fēng)速、噴頭類型、噴頭孔徑、噴施壓力、噴霧介質(zhì)等情況下的霧滴粒徑、分布跨度進(jìn)行研究。分析了農(nóng)藥助劑配比、噴頭結(jié)構(gòu)參數(shù)、施藥技術(shù)因素對霧滴粒徑分布的影響。結(jié)果表明農(nóng)藥助劑與體積中徑、分布跨度顯著相關(guān),圖10為其試驗測試系統(tǒng)。以上基于光散射原理的相關(guān)儀器可較好地實現(xiàn)對霧滴群的運動速度和粒徑的測量,為霧滴間相互作用及多噴嘴重疊區(qū)域霧滴特征研究提供了技術(shù)支撐。
除試驗觀測外,也有學(xué)者通過仿真分析的方法對霧滴群運動展開研究。Dekeyser等[131]通過CFD模擬技術(shù)對幾種常用噴頭的羽流分布和附帶空氣流進(jìn)行研究,證明液體分布與產(chǎn)生的空氣流動直接相關(guān)。張宋超等[132]基于CFD方法采用SST-湍流模型對N-3型農(nóng)用無人直升機作業(yè)過程中旋翼風(fēng)場和農(nóng)藥噴灑的兩相流進(jìn)行了模擬,分析了噴施過程中藥液的飄移情況。試驗結(jié)果表明,該方法可較為準(zhǔn)確且定性地實現(xiàn)對霧滴群飄移情況的模擬。張豪等[133]則在CFD中選擇RNG-湍流模型、多孔介質(zhì)模型和滑移網(wǎng)格技術(shù)構(gòu)建了虛擬果園和自然風(fēng)速下6旋翼植保無人機懸停條件下的復(fù)合旋翼風(fēng)場模型,分析了無人機懸停高度、果樹生長階段和自然風(fēng)速等因素對無人機懸停條件下的旋翼風(fēng)場分布的影響,結(jié)果表明試驗值和模擬值具有較好的一致性。Zhai等[134]通過Fluent軟件對新型雙流體扇形噴嘴的霧化機理進(jìn)行了仿真研究,其采用歐拉-拉格朗日法進(jìn)行建模,并在模型中使用離散相模型(Discrete Phase Model,DPM)跟蹤農(nóng)藥霧滴的軌跡。霧滴群建模研究中,液膜破碎時間計算和粒子軌跡追蹤模型的選擇至關(guān)重要。另外,建模內(nèi)容也可進(jìn)一步擴(kuò)展,使其涵蓋從噴施到沉積的整個過程,該部分內(nèi)容將在2.3節(jié)中進(jìn)行詳細(xì)介紹。
群體霧滴的沉積量及飄移預(yù)測試驗在國外較為盛行,研究人員通常將環(huán)境因子、霧化特性、冠層結(jié)構(gòu)等納入考慮之中,通過回收噴霧液滴來對沉積量進(jìn)行評估。試驗一般可分為靶標(biāo)沉積收集和非靶標(biāo)沉積收集。在該過程中,取樣階段至關(guān)重要,其目的是最大限度地獲取具有代表性的樣品,因此在選取取樣器時需要將其量化程度、收集效率、處理難易程度和成本問題綜合考慮[135]。
水敏紙(Water Sensitive Paper,WSP)、聚酯薄膜卡片和濾紙在靶標(biāo)和非靶標(biāo)沉積檢測中均有較多應(yīng)用,特別在靶標(biāo)沉積研究中,以上三種取樣材料可直接固定在植物葉片表面以獲取沉積信息[13,123-124,136-138]。水敏紙呈黃色,表面涂有溴酚藍(lán)指示劑,與水滴接觸后呈現(xiàn)深藍(lán)色,pH值顯色范圍為3.0~4.6,通常用于進(jìn)行覆蓋率分析試驗[139]。Zwertvaegher等[123]在試驗中利用水敏紙對噴霧的均勻性進(jìn)行了分析。Matsukawa等[137]為了評估水稻殺蟲劑的殺蟲效率,將水敏紙分別放置在水稻植株不同高度(底部、中部和頂部),試驗發(fā)現(xiàn)霧滴沉積等級與褐飛虱死亡率呈正相關(guān)。但由于空氣中水蒸氣和露水的存在,水敏紙檢測可能出現(xiàn)偏差。為解決該問題,Menger等[124]采取另外一種研究思路,即將加入熒光染料的藥液噴施于濾紙(FP)上,噴施結(jié)束后進(jìn)行拍照再通過圖像處理進(jìn)行藥液覆蓋率分析。Bueno等[122]對四種類型噴嘴進(jìn)行了實際試驗,建立了巴西氣象條件下適用于大豆噴霧的地面沉積飄移曲線,并與歐洲氣象條件下產(chǎn)生的模型系數(shù)進(jìn)行了比較。圖11為現(xiàn)場試驗示意圖,濾紙安置于下風(fēng)向處,其通過熒光分析法對噴施到濾紙上的熒光劑進(jìn)行了量化處理。同樣,Bolat等[13]在對三種不同噴嘴類型進(jìn)行噴施性能測試時,也選用了濾紙以進(jìn)行沉積量定量分析,并結(jié)合水敏紙進(jìn)行覆蓋率測試。研究發(fā)現(xiàn)紙質(zhì)取樣器具有良好的吸收吸能,可有效地捕獲液滴避免反彈現(xiàn)象,但量化處理較為困難。因此在進(jìn)行沉積量量化試驗時常選取便于清洗的聚酯薄膜卡片作為收集器。Sinha等[136]對葡萄園中兩種常用噴霧系統(tǒng)的農(nóng)藥飄移情況進(jìn)行了測試,其將聚酯薄膜卡片和水敏紙置于樹冠上方和藤行之間的地面,并噴施帶有示蹤劑的溶液,后通過洗滌聚酯薄膜卡片獲取沉積量化信息。
另外,在非靶標(biāo)沉積試驗中還經(jīng)常使用不銹鋼制品、尼龍繩、聚乙烯線或玻璃制品作為取樣器[140-144]。Torrent等[140]對幾類不同結(jié)構(gòu)噴嘴在柑橘園的噴施情況進(jìn)行了測試和評估,其利用尼龍繩對飄移液滴進(jìn)行了收集。噴施結(jié)束后將尼龍繩干燥5 min,后在避光環(huán)境下轉(zhuǎn)移到實驗室進(jìn)行定量分析。Brain等[142]在田間進(jìn)行農(nóng)藥飄移測試時,分別采用不銹鋼圓盤和不銹鋼棒作為地面沉積和空中飄移收集器。國內(nèi)張慧春等[143]以苦苣菜、棉花和稗草作為靶標(biāo)植物,對農(nóng)藥通過空氣運輸并沉積到靶標(biāo)植物表面(葉片或其他部位)、地面(土壤表層)以及大氣(隨風(fēng)飄移)等不同部分的沉積進(jìn)行了研究。其在開路式風(fēng)洞噴施加有熒光示蹤劑的噴霧,通過清洗植物葉片、地面上放置的聚酯薄膜卡和風(fēng)洞中懸掛的聚乙烯線測定熒光劑含量,分析了不同體積中徑、噴霧角、霧滴速度、流量、噴頭高度、風(fēng)速、植物類型、生長階段等因素下農(nóng)藥霧化后的分配過程,定量測試了不同參數(shù)對農(nóng)藥在植物、地面和大氣中沉積比例分配的影響。Qin等[141]在對示蹤劑進(jìn)行評估的試驗中分別利用圓形玻璃器皿、聚酯薄膜卡和濾紙進(jìn)行取樣。試驗表明在光穩(wěn)定的條件下,示蹤劑從玻璃器皿和聚酯薄膜卡的回收效果較好。在樣品提取分析階段,可通過洗脫法將化合物從取樣器上提取出來,繼而選用分光光度法、氣相色譜法或液相色譜法等含量測定方法對提取物進(jìn)行測定。另外,示蹤劑回收率等特性對試驗結(jié)果的準(zhǔn)確性至關(guān)重要,為此,Qin和Nairn通過試驗對幾類示蹤劑的優(yōu)缺點及適用性進(jìn)行了評估[141,145]。
群體霧滴模型通常基于田間實際試驗。霧滴群撞擊壁面建模階段對沉積量影響至關(guān)重要,研究人員則試圖將單液滴撞壁理論引入整體噴施模型以建立單液滴模型與群體霧滴模型間的關(guān)系。但由于液滴撞擊靶標(biāo)過程較為復(fù)雜,且已有霧滴群模型中對液滴間相互作用等因素考慮不足,因此模型預(yù)測效果一般[11,146]。美國農(nóng)業(yè)部(USDA)林業(yè)局開發(fā)了AGDISP?及其修改版本AgDRIFT?模型,其可對噴霧飄移情況進(jìn)行評估[147-148]。Zhu等[149]基于CFD和拉格朗日方法開發(fā)了DRIFTSIM,其擁有CFD模擬數(shù)據(jù)庫以實現(xiàn)對地面飄移的預(yù)測,用戶可通過操作界面來獲取飄移相關(guān)數(shù)據(jù)。Kruckeberg等[150]在2012對DRIFTSIM進(jìn)行了評估,發(fā)現(xiàn)其對近場飄移的預(yù)測更為準(zhǔn)確,原因可能是DRIFTSIM將農(nóng)藥假設(shè)為水滴,因此在遠(yuǎn)場飄移時部分水滴因蒸發(fā)而影響了預(yù)測結(jié)果。2018年,Hong等[151]構(gòu)建了一個綜合計算流體力學(xué)模型,以預(yù)測蘋果園中不同生長期冠層下農(nóng)藥噴霧的沉積與飄移。其利用拉格朗日粒子輸運模型對農(nóng)藥噴施液滴進(jìn)行了跟蹤,并應(yīng)用沉積模型表征進(jìn)入多孔冠層區(qū)的液滴。在驗證階段,作者對同一果園的液滴沉積和飄移進(jìn)行了測量,結(jié)果表明,在三個生長階段下,樹冠層內(nèi)地面沉積和飄移量的預(yù)測與實際情況的總體相對誤差分別為22.1%和40.6%。這是由于CFD模型基于農(nóng)藥液滴的質(zhì)量平衡進(jìn)行預(yù)測,但實際試驗很難測得絕對理想值。同年,Hong等[34]開發(fā)了一款用于預(yù)測果園噴霧器噴霧效率及噴灑飄移的軟件。該軟件由CFD模擬生成的農(nóng)藥噴霧模型、數(shù)據(jù)分析庫和人機交互界面構(gòu)成,旨在初步預(yù)測特定條件下的噴霧效率和飄移程度。該特定條件包括作物類型、生長階段、拖拉機速度、噴嘴類型、環(huán)境風(fēng)速、空氣溫度和相對濕度,系統(tǒng)可結(jié)合以上條件為農(nóng)藥噴施提供決策。Dorr等[11]基于L-studio開發(fā)了整株植物的噴霧沉積模型,該模型綜合考慮了植物葉片潤濕性、撞擊角度、液滴破碎及反彈行為以及產(chǎn)生子液滴的數(shù)量等因素,通過實際試驗驗證發(fā)現(xiàn),其對棉花、小麥、白花藜的軌跡與沉積量預(yù)測結(jié)果較為準(zhǔn)確。但作者指出,在數(shù)學(xué)模型的參數(shù)設(shè)置中,(飛濺擴(kuò)散因子)和(釘扎比例)顯著影響沉積量的預(yù)測值,因此以上參數(shù)計算還需有足夠的理論支撐。2020年,Zabkiewicz等[12]在該模型的基礎(chǔ)上使用了更新版本的軟件,開發(fā)了全新的用戶界面,完善了液滴破碎模型,通過試驗方法表征了和參數(shù)。完善后的模型可實現(xiàn)對單葉、單株和多株植物的噴霧場景模擬及沉積量預(yù)測,實際試驗與預(yù)測結(jié)果也呈現(xiàn)出較好的一致性。
農(nóng)藥霧滴在靶標(biāo)作物葉面的沉積特性是影響農(nóng)藥有效利用的關(guān)鍵,也是關(guān)系生態(tài)環(huán)境安全的重要因素。從上述文獻(xiàn)分析中可以看出,目前有關(guān)單液滴及霧滴群的觀測技術(shù)水平較高,已可實現(xiàn)對噴霧液滴的精確捕捉。但單液滴撞壁模型與霧滴群沉積模型的具體關(guān)系尚不明晰。未來研究還需以基礎(chǔ)理論研究為出發(fā)點,探明霧滴群運動機理,進(jìn)而實現(xiàn)對沉積特性的精確描述。未來主要研究方向如下:
1)單液滴撞壁建模研究中,除了持續(xù)推進(jìn)對關(guān)鍵參數(shù),例如飛濺擴(kuò)散因子和釘扎比例的理論推導(dǎo),也可選取具體作物進(jìn)行等效噴施試驗,利用擬合的方式對參數(shù)進(jìn)行表征。另外,可通過建立三維霧化場將目前較為成熟的單液滴撞壁模型引入霧滴群建模研究中,并以此為基礎(chǔ)繼續(xù)深入研究液滴間的相互作用機理。
2)目前存在的單液滴飛濺閾值等判別公式僅對相應(yīng)撞壁行為發(fā)生與否進(jìn)行了判斷,并未對靶標(biāo)實際沉積量進(jìn)行計算。該部分可引入圖像處理技術(shù)通過識別單液滴撞壁后的液滴輪廓來進(jìn)行液量估算,建立行為判別與實際沉積量之間的關(guān)聯(lián)。
3)在實際噴施過程中,由于農(nóng)藥霧滴在葉片表面累積,葉片表面特性發(fā)生改變,撞擊行為也隨之改變。后期需重點關(guān)注霧滴撞擊液膜的動力學(xué)變化過程,探究霧滴在液膜表面接觸角的變化趨勢以明確液膜對沉積行為的具體影響。
4)冠層結(jié)構(gòu)對沉積量的影響極其顯著,目前在沉積研究中對植株結(jié)構(gòu)建模較少。未來可選取葉密度、植株高度等參數(shù)對不同生長期或冠層高度的植株進(jìn)行表征,通過等效噴施試驗觀察不同參數(shù)下的農(nóng)藥沉積差異,使噴施方案更具現(xiàn)實意義。
[1] 農(nóng)業(yè)農(nóng)村部科技教育司. 我國三大糧食作物化肥農(nóng)藥利用率雙雙超40%[EB/OL]. (2021-01-19)[2021-04-07]. http:// www. kjs. moa. gov. cn/gzdt/202101/t20210119_ 6360102. htm.
[2] 何雄奎. 中國植保機械與施藥技術(shù)研究進(jìn)展[J]. 農(nóng)藥學(xué)學(xué)報,2019,21(Z1):921-930.
He Xiongkui. Research and development of crop protection machinery and chemical application technology in China[J]. Chinese Journal of Pesticide Science, 2019, 21(Z1): 921-930. (in Chinese with English abstract)
[3] 鄭加強,徐幼林. 環(huán)境友好型農(nóng)藥噴施機械研究進(jìn)展與展望[J]. 農(nóng)業(yè)機械學(xué)報,2021,52(3):1-16.
Zheng Jiaqiang, Xu Youlin. Development and prospect in Environment-Friendly pesticide sprayers[J]. Transactions of the Chinese Society for Agricultural Machinery, 2021, 52(3): 1-16. (in Chinese with English abstract)
[4] 何勇,肖舒裴,方慧,等. 植保無人機施藥噴嘴的發(fā)展現(xiàn)狀及其施藥決策[J]. 農(nóng)業(yè)工程學(xué)報,2018,34(13):113-124.
He Yong, Xiao Shupei, Fang Hui, et al. Development situation and spraying decision of spray nozzle for plant protection UAV[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2018, 34(13): 113-124. (in Chinese with English abstract)
[5] 周良富,薛新宇,周立新,等. 果園變量噴霧技術(shù)研究現(xiàn)狀與前景分析[J]. 農(nóng)業(yè)工程學(xué)報,2017,33(23):80-92.
Zhou Liangfu, Xue Xinyu, Zhou Lixin, et al. Research situation and progress analysis on orchard variable rate spraying technology[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2017, 33(23): 80-92. (in Chinese with English abstract)
[6] 鄭永軍,陳炳太,呂昊暾,等. 中國果園植保機械化技術(shù)與裝備研究進(jìn)展[J]. 農(nóng)業(yè)工程學(xué)報,2020,36(20):110-124.
Zheng Yongjun, Chen Bingtai, Lyu Haotun, et al. Research progress of orchard plant protection mechanization technology and equipment in China[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2020, 36(20): 110-124. (in Chinese with English abstract)
[7] 中華人民共和國國務(wù)院新聞辦公室. 中共中央國務(wù)院關(guān)于全面推進(jìn)鄉(xiāng)村振興加快農(nóng)業(yè)農(nóng)村現(xiàn)代化的意見[R]. (2021-01-04)[2021-04-07]. 2021. http: //wwngw. gov. cn/zhengce/2021-02/21/content_5588098. htm.
[8] Xu M, Li X, Riseman A, et al. Quantifying the effect of extensional rheology on the retention of agricultural sprays[J]. Physics of Fluids, 2021, 33(3): 032107.
[9] C G, Fonte A, R S, et al. Dose expression for pesticide application in citrus: Influence of canopy size and sprayer[J]. Agronomy, 2020, 10(12): 1887.
[10] Liu X, Liu X, Li Y, et al. Estimation model of canopy stratification porosity based on morphological characteristics: A case study of cotton[J]. Biosystems Engineering, 2020, 193: 174-186.
[11] Dorr G J, Forster W A, Mayo L C, et al. Spray retention on whole plants: Modelling, simulations and experiments[J]. Crop Protection, 2016, 88: 118-130.
[12] Zabkiewicz J A, Pethiyagoda R, Forster W A, et al. Simulating spray droplet impaction outcomes: Comparison with experimental data[J]. Pest Management Science, 2020, 76(10): 3469-3476.
[13] Bolat A, ?zlüoymak ? B. Evaluation of performances of different types of spray nozzles in site-specific pesticide spraying[J]. Semina Ciências Agrárias, 2020, 41(4): 1199-1212.
[14] Josserand C, Thoroddsen S T. Drop impact on a solid surface[J]. Annual Review of Fluid Mechanics, 2016, 48(1): 365-391.
[15] Madden L V, Bucker Moraes W, Hughes G, et al. A meta-analytical assessment of the aggregation parameter of the binary power law for characterizing spatial heterogeneity of plant disease incidence[J]. Phytopathology, 2021. doi: 10.1094/PHYTO-02-21-0056-R.
[16] Chen H, Liu W, Zheng Z, et al. Impact dynamics of wet agglomerates onto rigid surfaces[J]. Powder Technology, 2021, 379: 296-306.
[17] Worthington A M. A second paper on the forms assumed by drops of liquids falling vertically on a horizontal plate[J]. Proceedings of the Royal Society of London, 1876, 25: 498-503.
[18] Thoroddsen S T, Etoh T G, Takehara K. High-speed imaging of drops and bubbles[J]. Annual Review of Fluid Mechanics, 2008, 40(1): 257-285.
[19] Bowden F P, Mulcahy M F R, Vines R G, et al. The period of impact, the time of initiation and the rate of growth of the explosion of nitroglycerine[J]. Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences, 1947, 188(1014): 311-329.
[20] Pedersen C O. An experimental study of the dynamic behavior and heat transfer characteristics of water droplets impinging upon a heated surface[J]. International Journal of Heat & Mass Transfer, 1970, 13(2): 369-381.
[21] Yarin A L, Weiss D A. Impact of drops on solid surfaces: Self-similar capillary waves, and splashing as a new type of kinematic discontinuity[J]. Journal of Fluid Mechanics, 1995, 283: 141-173.
[22] Mao T, Kuhn D C S, Tran H. Spread and rebound of liquid droplets upon impact on flat surfaces[J]. Aiche Journal, 1997, 43(9): 2169-2179.
[23] Kim H Y, Park S Y, Min K. Imaging the high-speed impact of microdrop on solid surface[J]. Review of Scientific Instruments, 2003, 74(11): 4930-4937.
[24] Safavi M, Nourazar S. Droplet capture with a wetted fiber[J]. Theoretical and Computational Fluid Dynamics, 2021. doi: https: //doi. org/10. 1007/s00162-021-00561-3.
[25] Si Z, Shimasaki N, Nishida K, et al. Experimental study on impingement spray and near-field spray characteristics under high-pressure cross-flow conditions[J]. Fuel, 2018, 218: 12-22.
[26] Reichard D L, Cooper J A, Bukovac M J, et al. Using a videographic system to assess spray droplet impaction and reflection from leaf and artificial surfaces[J]. Pesticide Science, 1998, 53(4): 291-299.
[27] 賈衛(wèi)東,朱和平,董祥,等. 噴霧液滴撞擊大豆葉片表面研究[J]. 農(nóng)業(yè)機械學(xué)報,2013,44(12):87-93.
Jia Weidong, Zhu Heping, Dong Xiang, et al. Impact of spray droplet on soybean leaf surface[J]. Transactions of the Chinese Society for Agricultural Machinery, 2013, 44(12): 87-93. (in Chinese with English abstract)
[28] 崔迎濤,秦超彬,張志,等. 液滴撞擊大豆葉片表面研究[J]. 大豆科學(xué),2018,37(6):961-968.
Cui Yingtao, Qin Chaobin, Zhang Zhi, et al. Experimental study on the impact of droplets on the surface of soybean leaves[J]. Soybean Science, 2018, 37(6): 961-968. (in Chinese with English abstract)
[29] Hirt C W, Nichols B D. A computational method for free surface hydrodynamics[J]. Journal of Pressure Vessel Technology, 1981, 103(2): 136-141.
[30] 董祥. 植保機械噴頭霧滴撞擊植物葉面過程試驗測試及仿真研究[D]. 北京:中國農(nóng)業(yè)機械化科學(xué)研究院,2013.
Dong Xiang. Systematic Investigation of 3-dimentional Spray Droplet Impaction on Leaf Surfaces[D]. Beijing: China Academy of Agricultural Mechanization, 2013. (in Chinese with English abstract)
[31] Delele M A, Nuyttens D, Duga A T, et al. Predicting the dynamic impact behaviour of spray droplets on flat plant surfaces[J]. Soft Matter, 2016, 12(34): 7195-7211.
[32] 謝亞星,慕松,陳星名,等. 液滴撞擊枸杞葉片鋪展特性實驗研究與仿真分析[J]. 中國農(nóng)機化學(xué)報,2017,38(9):70-74.
Xie Yaxing, Mu Song, Chen Xingming, et al. Experiment research and simulated analysison spreading characteristics of droplet impacting wolfberry leaf[J]. Journal of Chinese Agricultural Mechanization, 2017, 38(9): 70-74. (in Chinese with English abstract)
[33] Zhu L, Ge J, Qi Y, et al. Droplet impingement behavior analysis on the leaf surface of Shu-ChaZao under different pesticide formulations[J]. Computers and Electronics in Agriculture, 2018, 144: 16-25.
[34] Hong S W, Zhao L, Zhu H. SAAS, a computer program for estimating pesticide spray efficiency and drift of air-assisted pesticide applications[J]. Computers and Electronics in Agriculture, 2018, 155: 58-68.
[35] Tang C, Qin M, Weng X, et al. Dynamics of droplet impact on solid surface with different roughness[J]. International Journal of Multiphase Flow, 2017, 96: 56-69.
[36] 張晨輝,馬悅,杜鳳沛. 表面活性劑調(diào)控農(nóng)藥藥液對靶潤濕沉積研究進(jìn)展[J]. 農(nóng)藥學(xué)學(xué)報,2019,21(Z1):883-894.
Zhang Chenhui, Ma Yue, Du Fengpei. Research progress on the wetting and deposition behaviors of pesticide droplet on target surfaces with the addition of surfactants[J]. Chinese Journal of Pesticide Science, 2019, 21(Z1): 883-894. (in Chinese with English abstract)
[37] 丁素明,薛新宇,董祥,等. 噴霧參數(shù)對霧滴沉積性能影響研究[J]. 農(nóng)業(yè)機械學(xué)報,2020,51(S2):308-315.
Ding Suming, Xue Xinyu, Dong Xiang, et al. Effects of spraying parameters on droplet deposition performance[J]. Transactions of the Chinese Society for Agricultural Machinery, 2020, 51(S2): 308-315. (in Chinese with English abstract)
[38] 張瑞瑞,李龍龍,付旺,等. 脈寬調(diào)制變量控制噴頭霧化性能及風(fēng)洞環(huán)境霧滴沉積特性[J]. 農(nóng)業(yè)工程學(xué)報,2019,35(3):42-51.
Zhang Ruirui, Li Longlong, Fu Wang, et al. Spraying atomization performance by pulse width modulated variable and droplet deposition characteristics in wind tunnel[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2019, 35(3): 42-51. (in Chinese with English abstract)
[39] 周晴晴,薛新宇,周良富,等. 施藥噴嘴分級可行性及方法研究[J]. 農(nóng)業(yè)工程學(xué)報,2019,35(9):66-72.
Zhou Qingqing, Xue Xinyu, Zhou Liangfu, et al. Feasibility and method of classification of spraying nozzle[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2019, 35(9): 66-72. (in Chinese with English abstract)
[40] Levin Z, Hobbs P V. Splashing of water drops on solid and wetted surfaces: Hydrodynamics and charge separation[J]. Philosophical Transactions of the Royal Society of London, 1971, 269(1200): 555-585.
[41] Yang X, Madden L V, Reichard D L, et al. Motion analysis of drop impaction on a strawberry surface[J]. Agricultural and Forest Meteorology, 1991, 56(1-2): 67-92.
[42] Usawa M, Fujita Y, Tagawa Y, et al. Large impact velocities suppress the splashing of micron-sized droplets[J]. Physical Review Fluids, 2021, 6(2): 23605.
[43] 張瑜,寧智,呂明,等. 液滴撞擊高溫壁面的運動特性[J]. 燃燒科學(xué)與技術(shù),2017,23(5):451-457.
Zhang Yu, Ning Zhi, Lü Ming, et al. Dynamics of droplet impacting onto heated surface[J]. Journal of Combustion Science and Technology, 2017, 23(5): 451-457. (in Chinese with English abstract)
[44] 張帆,李建新,劉潛峰,等. 液滴撞擊濕壁面實驗研究[J]. 原子能科學(xué)技術(shù),2018,52(9):1582-1589.
Zhang Fan, Li Jianxin, Liu Qianfeng, et al. Experiment study of droplet impacting on wetted surface[J]. Atomic Energy Science and Technology, 2018, 52(9): 1582-1589. (in Chinese with English abstract)
[45] 李玉杰,黃軍杰,肖旭斌. 液滴撞擊圓柱內(nèi)表面的數(shù)值研究[J]. 物理學(xué)報,2018,67(18):186-199.
Li Yujie, Huang Junjie, Xiao Xubin. Numerical study of droplet impact on the inner surface of a cylinder[J]. Acta Physica Sinica, 2018, 67(18): 186-199. (in Chinese with English abstract)
[46] Appah S, Jia W, Ou M, et al. Analysis of potential impaction and phytotoxicity of surfactant-plant surface interaction in pesticide application[J]. Crop Protection, 2020, 127: 104961.
[47] Zhang Y, Liu B, Huang K, et al. Eco-friendly castor oil-based delivery system with sustained pesticide release and enhanced retention[J]. ACS Applied Materials & Interfaces, 2020, 12(33): 37607-37618.
[48] Huet O D, Massinon M, De Cock N, et al. Image analysis of shatter and pinning events on hard-to-wet leaf surfaces by drops containing surfactant[J]. Pest Management Science, 2020, 76(10): 3477-3486.
[49] Trapaga G, Szekely J. Mathematical modeling of the isothermal impingement of liquid droplets in spraying processes[J]. Metallurgical Transactions B, 1991, 22(6): 901-914.
[50] Holloway P J. Physicochemical Factors Influencing the Adjuvant-enhanced Spray Deposition and Coverage of Foliage-applied Agrochemicals[M]. Berlin: Springer, 1994: 83-106.
[51] Song M, Ju J, Luo S, et al. Controlling liquid splash on superhydrophobic surfaces by a vesicle surfactant[J]. Science Advances, 2017, 3(3): e1602188.
[52] Li Z, Ma Y, Zhao K, et al. Regulating droplet impact and wetting behaviors on hydrophobic weed leaves by a double-chain cationic surfactant[J]. ACS Sustainable Chemistry & Engineering, 2021, 9(7): 2891-2901.
[53] Ma Y, Gao Y, Zhao K, et al. Simple, effective, and ecofriendly strategy to inhibit droplet bouncing on hydrophobic weed leaves[J]. ACS Applied Materials & Interfaces, 2020, 12(44): 50126-50134.
[54] Bergeron V, Bonn D, Martin J Y, et al. Controlling droplet deposition with polymer additives[J]. Nature, 2000, 405(6788): 772.
[55] 顧中言,許小龍,韓麗娟. 一些藥液難在水稻、小麥和甘藍(lán)表面潤濕展布的原因分析[J]. 農(nóng)藥學(xué)學(xué)報,2002(2):75-80.
Gu Zhongyan, Xu Xiaolong, Han Lijuan. The cause of the difficulty in wet-spreading of some insecticides on rice, wheat and wild cabbage Leaves[J]. Chinese Journal of Pesticide Science, 2002(2): 75-80. (in Chinese with English abstract)
[56] 顧中言,陳明亮,許小龍,等. 液體在結(jié)球甘藍(lán)葉面上的行為趨勢分析[J]. 江蘇農(nóng)業(yè)學(xué)報,2007(6):568-572.
Gu Zhongyan, Chen Mingliang, Xu Xiaolong, et al. Analysis of liquid action on cabbage leaf[J]. Jiangsu Journal of Agricultural Sciences, 2007(6): 568-572. (in Chinese with English abstract)
[57] Castro M J L, Ojeda C, Cirelli A F. Advances in surfactants for agrochemicals[J]. Environmental Chemistry Letters, 2014, 12(1): 85-95.
[58] Zhao M, Zhou H, Chen L, et al. Carboxymethyl chitosan grafted trisiloxane surfactant nanoparticles with pH sensitivity for sustained release of pesticide[J]. Carbohydrate Polymers, 2020, 243: 116433.
[59] Jibrin M O, Liu Q, Jones J B, et al. Surfactants in plant disease management: A brief review and case studies[J]. Plant Pathology, 2020, 70(3): 495-510.
[60] Wang Y, Wang A, Wang C, et al. Synthesis and characterization of emamectin-benzoate slow-release microspheres with different surfactants[J]. Scientific Reports, 2017, 7(1): 12761.
[61] Cao L, Zhang H, Cao C, et al. Quaternized chitosan-capped mesoporous silica nanoparticles as nanocarriers for controlled pesticide release[J]. Nanomaterials, 2016, 6(7): 126.
[62] Ma Y, Gao Y, Zhao X, et al. A natural triterpene saponin-based pickering emulsion[J]. Chemistry-A European Journal, 2018, 24(45): 11703-11710.
[63] Ma Y, Hao J, Zhao K, et al. Biobased polymeric surfactant: Natural glycyrrhizic acid-appended homopolymer with multiple pH-responsiveness[J]. Journal of Colloid and Interface Science, 2019, 541: 93-100.
[64] Song M, Hu D, Zheng X, et al. Enhancing droplet deposition on wired and curved superhydrophobic leaves[J]. ACS Nano, 2019, 13(7): 7966-7974.
[65] Da Silva B O, Victório C P, Arruda R D C D. Anatomical and micromorphological traits in leaf blade of halophytes from a brazilian sandy coastal plain[M]//Grigore M. Handbook of Halophytes: From Molecules to Ecosystems towards Biosaline Agriculture. Cham: Springer International Publishing, 2021: 933-962.
[66] Tian L, Yin S, Ma Y, et al. Impact factor assessment of the uptake and accumulation of polycyclic aromatic hydrocarbons by plant leaves: Morphological characteristics have the greatest impact[J]. Science of the Total Environment, 2019, 652: 1149-1155.
[67] Li Xuemei, Reinhoudt D, Crego-Calama M. What do we need for a superhydrophobic surface? A review on the recent progress in the preparation of superhydrophobic surfaces[J]. Chemical Society Reviews, 2007, 36(8): 1350-1368.
[68] Klein B, Thewes F R, Rogério De Oliveira A, et al. Development of dispersive solvent extraction method to determine the chemical composition of apple peel wax[J]. Food Research International, 2019, 116: 611-619.
[69] Hall D M, Burke W. Wettability of leaves of a selection of New Zealand plants[J]. New Zealand Journal of Botany, 1974, 12(3): 283-298.
[70] Stevens P J G, Kimberley M O, Murphy D S, et al. Adhesion of spray droplets to foliage: The role of dynamic surface tension and advantages of organosilicone surfactants[J]. Pesticide Science, 1993, 38(2/3): 237-245.
[71] Mao B, Cheng Z, Lei C, et al. Wax crystal-sparse leaf2, a rice homologue of WAX2/GL1, is involved in synthesis of leaf cuticular wax[J]. Planta, 2012, 235(1): 39-52.
[72] Kim K S, Park S H, Jenks M A. Changes in leaf cuticular waxes of sesame (.) plants exposed to water deficit[J]. Journal of Plant Physiology, 2007, 164(9): 1134-1143.
[73] Wang Y, Wang J, Chai G, et al. Developmental changes in composition and morphology of cuticular waxes on leaves and spikes of glossy and glaucous wheat () [J]. Plos One, 2015, 10(10): e141239.
[74] Koch K, Hartmann K D, Schreiber L, et al. Influences of air humidity during the cultivation of plants on wax chemical composition, morphology and leaf surface wettability[J]. Environmental and Experimental Botany, 2006, 56(1): 1-9.
[75] Jenks M A, Gaston C H, Goodwin M S, et al. Seasonal variation in cuticular waxes on Hosta genotypes differing in leaf surface glaucousness[J]. HortScience, 2002, 37(4): 673-677.
[76] Shao F, Wang L, Sun F, et al. Study on different particulate matter retention capacities of the leaf surfaces of eight common garden plants in Hangzhou, China[J]. Science of the Total Environment, 2019, 652: 939-951.
[77] Devi M J, Reddy V R. Transpiration response of cotton to vapor pressure deficit and its relationship with stomatal traits[J]. Frontiers in Plant Science, 2018, 9: 1572.
[78] Sajeevan R S, Nataraja K N, Shivashankara K S, et al. Expression of arabidopsis SHN1 in indian mulberry (.) increases leaf surface wax content and reduces post-harvest water loss[J]. Frontiers in Plant Science, 2017, 8: 418.
[79] Bi H, Shi J, Kovalchuk N, et al. Overexpression of the TaSHN1 transcription factor in bread wheat leads to leaf surface modifications, improved drought tolerance, and no yield penalty under controlled growth conditions[J]. Plant, Cell & Environment, 2018, 41(11): 2549-2566.
[80] Feng X, Guan H, Wang Z, et al. Biomimetic slippery PDMS film with papillae-like microstructures for antifogging and self-cleaning[J]. Coatings, 2021, 11(2): 238.
[81] Neinhuis C, Barthlott W. Characterization and distribution of water-repellent, self-cleaning plant surfaces[J]. Annals of Botany, 1997, 79(6): 667-677.
[82] Barthlott W, Neinhuis C. Purity of the sacred lotus, or escape from contamination in biological surfaces[J]. Planta, 1997, 202(1): 1-8.
[83] Zorba V, Stratakis E, Barberoglou M, et al. Biomimetic artificial surfaces quantitatively reproduce the water repellency of a lotus leaf[J]. Advanced Materials, 2008, 20: 4049-4054.
[84] 徐廣春,顧中言,徐德進(jìn),等. 稻葉表面特性及霧滴在傾角稻葉上的沉積行為[J]. 中國農(nóng)業(yè)科學(xué),2014,47(21):4280-4290.
Xu Guangchun, Gu Zhongyan, Xu Dejin, et al. Characteristics of rice leaf surface and droplets deposition behavior on rice leaf surface with different inclination angles[J]. Scientia Agricultura Sinica, 2014, 47(21): 4280-4290. (in Chinese with English abstract)
[85] Koch K, Bhushan B, Barthlott W. Multifunctional surface structures of plants: An inspiration for biomimetics[J]. Progress in Materials Science, 2009, 54(2): 137-178.
[86] Owens D K, Wendt R C. Estimation of the surface free energy of polymers[J]. Journal of Applied Polymer Science, 1969, 13(8): 1741-1747.
[87] Feng X, Liu T, Wang L, et al. Investigation on JKR surface energy of high-humidity maize grains[J]. Powder Technology, 2021, 382: 406-419.
[88] Shen Q. New insight on critical Hamaker constant of solid materials[J]. Materials Research Bulletin, 2021, 133: 111082.
[89] Young T. III. An essay on the cohesion of fluids[J]. Philosophical Transactions of the Royal Society of London, 1805, 95: 65-87.
[90] 馬學(xué)虎,蘭忠,王凱,等. 舞動的液滴:界面現(xiàn)象與過程調(diào)控[J]. 化工學(xué)報,2018,69(1):9-43.
Ma Xuehu, Lan Zhong, Wang Kai, et al. Dancing droplet: Interface phenomena and process regulation[J]. CIESC J, 2018, 69(1): 9-43. (in Chinese with English abstract)
[91] Boukhalfa H H, Massinon M, Belhamra M, et al. Contribution of spray droplet pinning fragmentation to canopy retention[J]. Crop Protection, 2014, 56: 91-97.
[92] Rioboo R, Marengo M, Tropea C. Outcomes from a drop impact on solid surfaces[J]. Atomization and Sprays, 2001, 11(2): 155-166.
[93] Marengo M, Antonini C, Roisman I V, et al. Drop collisions with simple and complex surfaces[J]. Current Opinion in Colloid & Interface Science, 2011, 16(4): 292-302.
[94] Yoon S S, DesJardin P E. Modelling spray impingement using linear stability theories for droplet shattering[J]. International Journal for Numerical Methods in Fluids, 2006, 50(4): 469-489.
[95] Rein M. Phenomena of liquid drop impact on solid and liquid surfaces[J]. Fluid Dynamics Research, 1993, 12(2): 61-93.
[96] Chandra S, Avedisian C T. On the collision of a droplet with a solid surface[J]. Proceedings of the Royal Society of London. Series A: Mathematical and Physical Sciences, 1991, 432(1884): 13-41.
[97] Pasandideh-Fard M, Qiao Y M, Chandra S, et al. Capillary effects during droplet impact on a solid surface[J]. Physics of Fluids, 1996, 8(3): 650-659.
[98] Roisman I V, Rioboo R, Tropea C. Normal impact of a liquid drop on a dry surface: Model for spreading and receding[J]. Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences, 2002, 458(2022): 1411-1430.
[99] Attane P, Girard F, Morin V. An energy balance approach of the dynamics of drop impact on a solid surface[J]. Physics of Fluids, 2007, 19(1): 61.
[100] Kim H Y, Chun J H. The recoiling of liquid droplets upon collision with solid surfaces[J]. Physics of Fluids, 2001, 13(3): 643-659.
[101] Massinon M, Frédéric L. Experimental method for the assessment of agricultural spray retention based on high-speed imaging of drop impact on a synthetic superhydrophobic surface[J]. Biosystems Engineering, 2012, 112(1): 56-64.
[102] Massinon M, Boukhalfa H, Lebeau F. The effect of surface orientation on spray retention[J]. Precision Agriculture, 2014, 15(3): 241-254.
[103] Zwertvaegher I K, Verhaeghe M, Brusselman E, et al. The impact and retention of spray droplets on a horizontal hydrophobic surface[J]. Biosystems Engineering, 2014, 126: 82-91.
[104] Xu H, Liu Y, He P, et al. The TAR model for calculation of droplet/wall impingement[J]. Journal of Fluids Engineering, 1998, 120(3): 593-597.
[105] Okumura K, Chevy F, Richard D, et al. Water spring: A model for bouncing drops[J]. Europhysics Letters, 2003, 62(2): 237-243.
[106] Dorr G J, Wang S, Mayo L C, et al. Impaction of spray droplets on leaves: Influence of formulation and leaf character on shatter, bounce and adhesion[J]. Experiments in Fluids, 2015, 56(7): 1-17.
[107] Mundo C, Sommerfeld M, Tropea C. Droplet-wall collisions-experimental studies of the deformation and break-up process[J]. International Journal of Multiphase Flow, 1995, 21(2): 151-173.
[108] Forster W A, Mercer G N, Schou W C. Process-driven models for spray droplet shatter, adhesion or bounce[C]//Proceedings of the 9th International Symposium on Adjuvants for Agrochemicals. Freising, Germany: Technical University of Munich, 2010, 16: 20.
[109] Xu L. Liquid drop splashing on smooth, rough, and textured surfaces[J]. Physical Review E, 2007, 75(5): 56316.
[110] Dorr G J, Kempthorne D M, Mayo L C, et al. Towards a model of spray-canopy interactions: Interception, shatter, bounce and retention of droplets on horizontal leaves[J]. Ecological Modelling, 2014, 290: 94-101.
[111] Aziz S D, Chandra S. Impact, recoil and splashing of molten metal droplets[J]. International Journal of Heat and Mass Transfer, 2000, 43(16): 2841-2857.
[112] Allen R F. The role of surface tension in splashing[J]. Journal of Colloid & Interface Science, 1975, 51(2): 350-351.
[113] Fukai J, Zhao Z, Poulikakos D, et al. Modeling of the deformation of a liquid droplet impinging upon a flat surface[J]. Physics of Fluids A: Fluid Dynamics, 1993, 5(11): 2588-2599.
[114] Fukai J, Shiiba Y, Yamamoto T, et al. Wetting effects on the spreading of a liquid droplet colliding with a flat surface: Experiment and modeling[J]. Physics of Fluids, 1995, 7(2): 236-247.
[115] Tanaka Y, Washio Y, Yoshino M, et al. Numerical simulation of dynamic behavior of droplet on solid surface by the two-phase lattice Boltzmann method[J]. Computers & Fluids, 2011, 40(1): 68-78.
[116] 張瑩,盧敏,李培生,等. 非均質(zhì)壁面對液滴俘獲能力的數(shù)值模擬研究[J]. 北京航空航天大學(xué)學(xué)報,2018,44(10):2021-2027.
Zhang Ying, Lu Min, Li Peisheng, et al. Numerical simulation of drop capturing capabilities on heterogeneous walls[J]. Journal of Beijing University of Aeronautics and Astronautics, 2018, 44(10): 2021-2027. (in Chinese with English abstract)
[117] 韓丁丁,劉浩然,劉難生,等. 黏彈性液滴撞擊疏水壁面的動力學(xué)研究[J]. 中國科學(xué):物理學(xué)力學(xué)天文學(xué),2018,48(9):250-257.
Han Dingding, Liu Haoran, Liu Nansheng, et al. Dynamics of viscoelastic drops impacting onto a hydrophobic solid substrate[J]. Scientia Sinica Physica, Mechanica & Astronomica, 2018, 48(9): 250-257. (in Chinese with English abstract)
[118] Bhise D K, Patil B T, Shaikh V A. Air assisted atomization characterization of biodegradable fluid using microlubrication technique[J]. Materials Science Forum, 2021, 1019: 211-217.
[119] 張慧春,周宏平,鄭加強,等. 噴頭霧化性能及霧滴沉積可視化模型研究[J]. 林業(yè)工程學(xué)報,2016,1(3):91-96.
Zhang Huichun, Zhou Hongping, Zheng Jiaqiang, et al. A study of spray nozzle atomization performance and droplet deposition visual model[J]. Journal of Forestry Engineering, 2016, 1(3): 91-96. (in Chinese with English abstract)
[120] 王志翀,何雄奎,李天,等. 基于激光成像技術(shù)的農(nóng)藥霧滴飄移評價方法研究[J]. 農(nóng)業(yè)工程學(xué)報,2019,35(9):73-79. Wang Zhichong, He Xiongkui, Li Tian, et al. Evaluation method of pesticide droplet drift based on laser imaging[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2019, 35(9): 73-79. (in Chinese with English abstract)
[121] 王昌陵,何雄奎,曾愛軍,等. 基于仿真果園試驗臺的植保無人機施藥霧滴飄移測試方法與試驗[J]. 農(nóng)業(yè)工程學(xué)報,2020,36(13):56-66. Wang Changling, He Xiongkui, Zeng Aijun, et al. Measuring method and experiment on spray drift of chemicals applied by UAV sprayer based on an artificial orchard test bench[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2020, 36(13): 56-66. (in Chinese with English abstract)
[122] Bueno M R, Cunha J P A R, de Santana D G. Assessment of spray drift from pesticide applications in soybean crops[J]. Biosystems Engineering, 2017, 154: 35-45.
[123] Zwertvaegher I K, Van Daele I, Verheesen P, et al. Development and implementation of a laboratory spray device and rainfall simulator for retention research using small amounts of agroformulations[J]. Pest Management Science, 2017, 73(1): 123-129.
[124] Menger R F, Bontha M, Beveridge J R, et al. Fluorescent dye paper-based method for assessment of pesticide coverage on leaves and trees: A citrus grove case study[J]. Journal of Agricultural and Food Chemistry, 2020, 68(47): 14009-14014.
[125] 田志偉,薛新宇,崔龍飛,等. 植保無人機晝夜作業(yè)的霧滴沉積特性及棉蚜防效對比[J]. 農(nóng)業(yè)工程學(xué)報,2020,36(5):69-77.
Tian Zhiwei, Xue Xinyu, Cui Longfei, et al. Comparison of droplet deposition characteristics and cotton aphid control effect of plant protection UAV working during the day and night[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2020, 36(5): 69-77. (in Chinese with English abstract)
[126] W. D B, M. J H. Phase/doppler spray analyzer for simultaneous measurements of drop size and velocity distributions[J]. Optical Engineering, 1984, 23(5): 583-590.
[127] Hardalupas Y, Okamoto S, et al. Application of a phase Doppler anemometer to a spray impinging on a disc[C]//Proceedings of the 6th International Symposium on the Applications of laser techniques to fluid mechanics, Lisbon, Portugal. 1992: 490-506.
[128] Kalantari D, Tropea C. Spray impact onto flat and rigid walls: Empirical characterization and modelling[J]. International Journal of Multiphase Flow, 2007, 33(5): 525-544.
[129] Lee S, Park S. Spray atomization characteristics of a GDI injector equipped with a group-hole nozzle[J]. Fuel, 2014, 137: 50-59.
[130] 張慧春,周宏平,鄭加強,等. 農(nóng)藥助劑對空中和地面防控林業(yè)有害生物的霧滴粒徑影響[J]. 林業(yè)科學(xué),2020,56(5):118-129.
Zhang Huichun, Zhou Hongping, Zheng Jiaqiang, et al. Adjuvant’ s influence to droplet size based on forestry pests’ prevention with ground and air chemical application[J]. Scientia Silvae Sinicae, 2020, 56(5): 118-129. (in Chinese with English abstract)
[131] Dekeyser D, Duga A T, Verboven P, et al. Assessment of orchard sprayers using laboratory experiments and computational fluid dynamics modelling[J]. Biosystems Engineering, 2013, 114(2): 157-169.
[132] 張宋超,薛新宇,秦維彩,等. N-3型農(nóng)用無人直升機航空施藥飄移模擬與試驗[J]. 農(nóng)業(yè)工程學(xué)報,2015,31(3):87-93.
Zhang Songchao, Xue Xinyu, Qin Weicai, et al. Simulation and experimental verification of aerial spraying drift on N-3 unmanned spraying helicopter[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2015, 31(3): 87-93. (in Chinese with English abstract)
[133] 張豪,祁力鈞,吳亞壘,等. 無人機果樹施藥旋翼下洗氣流場分布特征研究[J]. 農(nóng)業(yè)工程學(xué)報,2019,35(18):44-54.
Zhang Hao, Qi Lijun, Wu Yalei, et al. Distribution characteristics of rotor downwash airflow field under spraying on orchard using unmanned aerial vehicle[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2019, 35(18): 44-54. (in Chinese with English abstract)
[134] Zhai E, Zheng J, Ru Y, et al. Atomization mechanism and numerical simulation of external mixing two-fluid fan nozzle[J]. Ekoloji, 2019, 28(107): 4277-4288.
[135] Munjanja B K, Naudé Y, Forbes P. A review of sampling approaches to off-target pesticide deposition[J]. Trends in Environmental Analytical Chemistry, 2020, 25: e00075.
[136] Sinha R, Ranjan R, Khot L R, et al. Drift potential from a solid set canopy delivery system and an axial-fan air-assisted sprayer during applications in grapevines[J]. Biosystems Engineering, 2019, 188: 207-216.
[137] Matsukawa-Nakata M, Nguyen H T, Bui T T B, et al. Spatial evaluation of the pesticide application method by farmers in a paddy field in the northern part of Vietnam[J]. Applied Entomology and Zoology, 2019, 54(4): 451-457.
[138] Xiao L, Zhu H, Wallhead M, et al. Characterization of biological pesticide deliveries through hydraulic nozzles[J]. Transactions of the ASABE, 2018, 61(3): 897-908.
[139] Turner C R, Huntington K A. The use of a water sensitive dye for the detection and assessment of small spray droplets[J]. Journal of Agricultural Engineering Research, 1970, 15(4): 385-387.
[140] Torrent X, Garcerá C, Moltó E, et al. Comparison between standard and drift reducing nozzles for pesticide application in citrus: Part I. Effects on wind tunnel and field spray drift[J]. Crop Protection, 2017, 96: 130-143.
[141] Qin W, Xue X, Zhou Q, et al. Use of RhB and BSF as fluorescent tracers for determining pesticide spray distribution[J]. Analytical Methods, 2018, 10(33): 4073-4078.
[142] Brain R, Goodwin G, Abi-Akar F, et al. Winds of change, developing a non-target plant bioassay employing field-based pesticide drift exposure: A case study with atrazine[J]. Science of the Total Environment, 2019, 678: 239-252.
[143] 張慧春,鄭加強,周宏平,等. 農(nóng)藥噴施過程中霧滴沉積分布與脫靶飄移研究[J]. 農(nóng)業(yè)機械學(xué)報,2017,48(8):114-122.
Zhang Huichun, Zheng Jiaqiang, Zhou Hongping, et al. Droplet deposition distribution and off-target drift during pesticide spraying operation[J]. Transactions of the Chinese Society for Agricultural Machinery, 2017, 48(8): 114-122. (in Chinese with English abstract)
[144] Córdoba Gamboa L, Solano Diaz K, Ruepert C, et al. Passive monitoring techniques to evaluate environmental pesticide exposure: Results from the infant's environmental health study (ISA)[J]. Environmental Research, 2020, 184: 109243.
[145] Nairn J J, Forster W A. Due diligence required to quantify and visualise agrichemical spray deposits using dye tracers[J]. Crop Protection, 2019, 115: 92-98.
[146] 張海艷,蘭玉彬,文晟,等. 植保無人機旋翼風(fēng)場模型與霧滴運動機理研究進(jìn)展[J]. 農(nóng)業(yè)工程學(xué)報,2020,36(22):1-12.
Zhang Haiyan, Lan Yubin, Wen Sheng, et al. Research progress in rotor airflow model of plant protection UAV and
droplet motion mechanism[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2020, 36(22): 1-12. (in Chinese with English abstract)
[147] Bilanin A J, Teske M E, Barry J W, et al. AGDISP: The aircraft spray dispersion model, code development and experimental validation[J]. Transactions of the ASAE, 1989, 32(1): 327-334.
[148] Teske M E, Bird S L, Esterly D M, et al. AgDrift?: A model for estimating near-field spray drift from aerial applications[J]. Environmental Toxicology and Chemistry: An International Journal, 2002, 21(3): 659-671.
[149] Zhu H, Reichard D L, Fox R D, et al. DRIFTSIM, A program to estimate drift distances of spray droplets[J]. Applied Engineering in Agriculture, 1995, 11(3): 365-369.
[150] Kruckeberg J P, Hanna H M, Steward B L, et al. The relative accuracy of DRIFTSIM when used as a real-time spray drift predictor[J]. Transactions of the Asabe, 2012, 55(4): 1159-1165.
[151] Hong S, Zhao L, Zhu H. CFD simulation of pesticide spray from air-assisted sprayers in an apple orchard: Tree deposition and off-target losses[J]. Atmospheric Environment, 2018, 175: 109-119.
Research progress and prospect of pesticide droplet deposition characteristics
Kang Feng1, Wu Xiaoyi1, Wang Yaxiong1, Zheng Yongjun2, Li Shougen1, Chen Chongchong1
(1.,,100083,; 2.,,100083,)
Pesticide droplets can rebound, splash, and roll off the target surface during spraying, due mainly to insufficient wettability. The resulting environmental pollution has seriously threatened ecological stability and safety. However, the correlative mechanism of droplet deposition is still under exploration at present. It is necessary to explore the characteristics of effective droplet deposition for pest control. This study aims to review current researches on droplet deposition ranging from microdynamics of a single droplet and drift characteristics of the droplet group. The final deposition assessment and the bottleneck were also addressed, in order to clarify the research perspective of pesticide deposition. A single droplet model was essential to the impact mechanism of the droplet group because the pesticide droplets hit the target surface in the form of a single droplet during spraying. The previous reports on the deposition of the single droplet mainly contributed to the observation technologies, the influencing factors at the interface behavior of the single droplet, and the modeling of the single droplet hitting the target surface. However, the deposition behavior in the actual work depended mainly on the droplet distribution and canopy structure. There were two approaches to explore the deposition and drift characteristics in the spray field through the droplet group at present. One approach was that the observation and simulation were utilized to determine the movement of droplets in the spray field, thereby establishing the relationship between deposition behavior and amount. Another was to calculate the final deposition through actual experiments or simulation techniques, including the direct measurement of deposition on the surface of leaves, and the indirect measurement represented by the amount of drift in the air or on the ground. The research of droplet group was introduced to the distribution characteristics, deposition collection, and detection, as well as droplet group modeling. More importantly, a further combined modeling was necessary to accurately estimate the deposition behavior and the volume of deposited pesticides. The following suggestions can be drawn: 1) To establish the relationship between the single droplet and the droplet group modeling through the three-dimensional atomization field; 2) To estimate the amount of adhesion liquid after a single droplet hits the wall through image processing; 3) To explore the influence of wetted surfaces on deposition behavior; 4) To establish plant models in different growth periods. The finding can be widely expected to provide a strong reference for the research of pesticide deposition and pest control technologies.
pesticide droplets; deposition; drift; single droplet; droplet group; interface behavior
康峰,吳瀟逸,王亞雄,等. 農(nóng)藥霧滴沉積特性研究進(jìn)展與展望[J]. 農(nóng)業(yè)工程學(xué)報,2021,37(20):1-14.doi:10.11975/j.issn.1002-6819.2021.20.001 http://www.tcsae.org
Kang Feng, Wu Xiaoyi, Wang Yaxiong, et al. Research progress and prospect of pesticide droplet deposition characteristics[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2021, 37(20): 1-14. (in Chinese with English abstract) doi:10.11975/j.issn.1002-6819.2021.20.001 http://www.tcsae.org
2021-06-16
2021-09-15
國家重點研發(fā)計劃項目(2018YFD0700603)
康峰,教授,博士生導(dǎo)師,研究方向為經(jīng)濟(jì)林果園裝備自動化。Email:kangfeng98@bjfu.edu.cn
10.11975/j.issn.1002-6819.2021.20.001
S-1
A
1002-6819(2021)-20-0001-14