• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    不同基質(zhì)對(duì)閉鞘姜生長發(fā)育和光合作用的影響

    2021-12-23 16:55:29劉曉榮吳志徐揚(yáng)韓慶斌王代容
    熱帶作物學(xué)報(bào) 2021年11期
    關(guān)鍵詞:椰糠光合特性泥炭

    劉曉榮 吳志 徐揚(yáng) 韓慶斌 王代容

    摘 ?要:采用隨機(jī)區(qū)組設(shè)計(jì),研究不同配比的紅壤、泥炭、椰糠和珍珠巖6種基質(zhì)配方對(duì)閉鞘姜生長的影響。測(cè)定6種基質(zhì)的物理和化學(xué)性質(zhì),觀測(cè)萌芽率、葉片數(shù)、莖粗、株高、株幅、光合日變化、根莖鮮重和根莖干重。結(jié)果顯示,基質(zhì)S4(泥炭+椰糠+珍珠巖=1∶2∶2)的植株凈光合速率(Pn)顯著高于其他基質(zhì)處理。在6種基質(zhì)生長的植株葉片凈光合速率曲線呈單峰或雙峰變化,而蒸騰速率曲線呈單峰變化。最大株高、最大根莖鮮重和根莖干重也出現(xiàn)在基質(zhì)S4種植的植株。從以上結(jié)果可知,基質(zhì)S4比較適合閉鞘姜的生長和根狀莖干物質(zhì)積累。

    關(guān)鍵詞:閉鞘姜;盆栽植物;無土栽培基質(zhì);泥炭;椰糠;光合特性

    中圖分類號(hào):S682.19 ? ? ?文獻(xiàn)標(biāo)識(shí)碼:A

    1 ?Introduction

    Costus speciosus is a rhizomatous perennial herb with pinkish white flowers on reddish bracts. It has increased popularity in recent years due to its medicinal and ornamental properties. Its traditional potting substrate is soil, which is heavy and ine?fficient for transport.

    Substrate is a key factor that affects plant growth in soilless cultivation. In addition to supporting and fixing, substrate is important for transferring adequate oxygen, water, and nutrients from the nutrient solution to plant roots. Peat has been widely used in soilless cultivation over the last century due to its excellent physical and chemical properties, especially at the seedling stage[1-3]. Ho?wever, as a non-renewable resource and increasing price, peat has raised concerns among environmental, scientific, and governmental agencies[4-7], which has resulted in policy changes and governmental regulations of its use in several European countries.

    Coir is now widely used in the soilless cultivation across the world as an environmentally friendly substrate which has abundant resources. It is lightweight, good aeration, and a high water-holding capacity that is more than eight times of its own weight[8]. Previous studies found that coconut coir is a good alternative to peat[9-11]. It is also cost efficient for raising plant growth, which has been widely used for growing various fruits, vegetables, and flowers since the beginning of the century[12-14].

    Although coir has a high water-holding capa?city, it has poor aeration. Mixed and combined with other coarser material could make up this shortcoming. Pan et al[15] demonstrated that Oncidium grew best in a substrate combination of crushed stone, bark, coconut shell and charcoal in a 2∶2∶1∶1 ratio. A hanging ornamental plant was proved that soil mixture (1 part cocopeat:1 part topsoil:1 part sand) was significantly better than cocopeat only[16]. Bhardwaj[17] reported that the medium (coil + vermicompost + sand + pond soil) gave maximum seed germination and seedling growth.

    Although, the effects of different substrate mixtures on flower growth and development have been previously investigated, there were few reports available on C. speciosus growth. The objective of this study was to assess red soil, peat, coir, and perlite in different combinations on C. speciosus growth and development, to develop a labor-effi?cient and cost-saving substrate.

    2 ?Materials and Methods

    2.1 ?Plant and growth conditions

    Rhizomes annually of C. speciosus were wild germplasm obtained from native. One or two buds were divided and individually grown in plastic pots with a diameter of 10 cm and height of 8.0 cm. The experiment was conducted in the greenhouse in En-vironmental Horticulture Institute, Guangdong Aca-demy of Agricultural Sciences, China (113°15 E, 23°08 N) from April, 2018 to October, 2018. The temperature and relative humidity were recorded by ZDR-20 data loggers (Hangzhou Zeda Instruments Co. Ltd., Hangzhou, China). The minimum and ma?ximum average temperature was 24.3 ℃ and 33.9 ℃, respectively. Relative humidity was maintained at the range of 70% to 80%.

    2.2 ?Substrate treatment

    Six substrates consisting of red soil, peat, coir, and perlite in different proportions were used for the experiment. The red soil was the native field soil. Peat, coir and perlite were purchased from a hor?ticultural supplier’s corporation (DGSTAR, Guangzhou, China). The mixtures by volume were as follows: S1 (red soil + perlite; 3∶1); S2 (peat + perlite; 3∶1); S3 (coir + perlite; 3∶1); S4 (peat + coir + perlite; 1∶2∶2); S5 (peat + coir + perlite; 2∶1∶2) and S6 (peat + coir + perlite; 2∶2∶1).

    Coir was supplied in the form of compressed bricks (30 cm × 30 cm × 12 cm), and peat was sup?plied as compressed bails (300 L). Both substrates were hydrated according to the manufacturer’s instructions. Initial substrate samples of each treatment were collected. The potential of hydrogen (pH) and electrical conductivity (EC) of extracted substrate solutions were analyzed using the pour thr?ough method[18]. The bulk density (BD), total po?rosity, and aeration porosity of the media were measured and analyzed[19].

    2.3 ?Experimental design

    Plants were arranged in a randomized complete block design, and each treatment replicated three times, and in each replicate consisted of 10 plants. Plants were fertilized using a 20 N-20 P-20 K com?mercial water-soluble fertilizer (COMPO Expert GmbH, Munster, Germany) and irrigated two or three days with tap water. The EC and the pH value of water are 0.23 mS·cm–1 and 7.4 respectively.

    2.4 ?Data collection

    Data regarding all growth indices were collected in late June before flowering time, including the plant height, plant width, number of leaves, leaf length, and leaf width of the third mature leaf from the top of the plant. Rhizome fresh weight (RFW) and rhizome dry weight (RDW) were measured in October. Leaf gas exchange was measured using a portable photosynthesis measuring system (LI-6400; LICOR, Lincoln, NE, USA). Stomatal conductance, intercellular carbon dioxide (CO2), net photosynthetic rate (Pn), and transpiration rate (Tr) were recorded. Water use efficiency (WUE) was calculated using the following equation: WUE = Pn/Tr.

    Diurnal photosynthetic variations were deter-mined from 8∶30 to 16∶30 in three sunny days using five plants per treatment, and from the top the third leaf per plant was selected. Leaf length, leaf width, chlorophyll content was determined using the same leaves as those used for other growth parameters above. 3 SPAD readings (Minolta Camera Co., Osaka, Japan) were taken on each leaf (inter area).

    2.5 ?Statistical analysis

    The data were analyzed using statistical soft?ware (SAS version 8.1; SAS Institute, Cary, NC). It was used one-way PROC ANOVA to evaluate variance of substrate pH, EC, density, total porosity, aeration porosity, hold-water porosity and gas-water porosity ratio, number of leaves, stem base diameter, plant height, leaf length and width, RFW and RDW, stomatal conductance, intercellular CO2, Pn, Tr and WUE and leaf SPAD. Mean separation used least significant difference (LSD) at P = 0.01 or 0.05.

    3 ?Results

    3.1 ?Substrate physical and chemical proper-ties

    The physical characteristics of the six sub-strates were provided in Tab. 1. S1 and S2 had the lower pH values (5.58 and 4.84, respectively) sig-nificantly different from each other. No significant differences were detected among S3, S4, S5, and S6 with regard to pH values. S1 had the lowest EC value, although there was no significant difference between S1 and S3. There was the highest bulk density (0.972 g·L–1) And lowest water holding capacity (54.82%) in S1. S4 had the greatest total porosity (84.67%) and water holding porosity (76.88%), but had a lower bulk density. No significant differences were detected in the aeration porosity or gas- water porosity ratios among the six media treatments.

    3.2 ?Effects of different substrates on vegeta-tive parameters

    The six substrates did not significantly affect the sprouting rate or leaf length (Tab. 2). The greatest number of leaves was observed in S4 (25.3). Although the greatest stem base diameter was observed in S6, no significant differences were detected among S3, S4, and S6. Plant height was greater in S3 and S4 than in S5. The smallest leaf width was observed in S1 (4.47 cm), but no significant differences were detected among the other five substrates. TheRFW (231.85 g) and RDW (44.80 g) of S4 were greater than those of S1, S2. The lowest RFW (146.03 g) and RDW (20.81 g) were observed in S1.

    3.3 ?Effects of different substrates on photo-synthetic physiological characteristics

    No significant differences were detected in sto-matal conductance and Tr among the six substrates (Tab. 3), but intercellular CO2 concentration, Pn, and WUE were significant. The intercellular CO2 concentration of S1 was greater than S2, and S6. The Pn of S4 was significantly greater than S1, S2, S5, and S6. The WUE of S3 was greater than S1, S5 and S6.

    3.4 ?Diurnal changes of leaf photosynthetic parameters

    The diurnal variation curve of leaf Pn in S1 dis-played two single peaks (Fig. 1). The first peak was appeared at 10:30 (11.48 μmol·m–2s–1), and the second peak was at 14:30 (13.35 μmol·m–2s–1). The diurnal variation curves of leaf Pn in the other five substrates were similar and displayed one peak at 12:30. The average diurnal Pn of the six substrates were 7.77, 8.50, 9.43, 12.16, 9.71 and 9.00 μmol·m–2s–1, respectively.

    The diurnal variation of Tr of all six substrates displayed one peak (Fig. 2), but the times were dif-ferent. The peak in S1 appeared at 12:30, while the peaks in S2, S3, and S4 reached their maximum at 14:30. In S5 and S6, the peak appeared at 10:30. The maximum leaf Tr was observed in S6 (8.17 mmolm–2s–1), while the minimum was observed in S4 (5.22 mmolm-2s-1). The average diurnal Tr of the six substrates were 3.53, 3.28, 3.72, 2.99, 3.50, and 3.70 mmol·m–2s–1, respectively.

    The diurnal variation of WUE in S1, S3, and S6 exhibited a linear rise-fall pattern (Fig. 3). The peaks of S1 and S3 appeared at 10:30 (4.70 μmol CO2mmol–1 H2O) and 12:30 (5.0 μmol CO2mmol–1 H2O) respectively. From 8:30 to 12:30, S6 rose in a straight line, slowly decreased at 14:30, and subsequently rose to 5.22 μmol CO2mmol–1 H2O. In contrast to S1, S2, and S6, the diurnal variation of WUE in S2, S4, and S5 exhibited a linear fall-rise pattern. The S2 exhibited a linear downward trend from 8:30 to 16:30. From 8:30 to 14:30, S4 exhibited a downward trend and rose after 14:30 to 6.52 μmol CO2·mmol–1 H2O. The S5 reached its minimum level (1.57 μmol CO2·mmol–1 H2O) at 10:30, and subsequently increased.

    3.5 ?Effects of different substrates on foliar SPAD readings

    The SPAD readings of S1 were the highest (44.1), while S3 was the lowest (34.7) (Fig. 4). The order of SPAD readings among the six substrates was as follows: S1>S2>S4>S6>S5>S3. No significant differences were detected among S1, S2, and S4. The SPAD readings of S1 was significantly higher than S3 (P<0.05), which was about 1.27 times.

    4 ?Discussion

    Soil and peat were the most commonly used growing substrates in the container production of annual and perennial ornamental plants[20]. However the density of soil was heavy, difficult to move, and contains many potentially harmful micro-organisms. Peat was uneconomical or unrecyclable, making growers look for alternatives.

    In this study, the greatest of S4 over the other combinations probably related to its characteristics including higher total porosity and hold-water porosity. The number of leaves, RFW, and RDW of S4 significantly increased compared with other five substrates. Although sprouting rate and leaf lengths were not significantly different.

    The total porosity and maximum water holding capacity are important factors for plant growth. However, porosity and bulk density are interacted each other. Bulk porosity is low and the air content is reduced. The air porosity of the substrate is large; therefore it is more suitable for plant growth. Middle density was more suitable at the seedling stage; similar findings were also reported by Chen[21].

    The results revealed that the stem base diameter, RFW and RDW were lower in S1 the soil-based substrate potentially due to its large bulk density (0.972 g·L–1), matching the findings that the density range of substrate was 0.19~0.70 g·L–1 for most potting commercial horticultural crops[22].

    Different substrates affected Pn, Tr and pore conductance of two gerbera[23]. This study revealed that the Pn differed among the six substrates and the greatest value observed in S4. Intercellular CO2 and WUE also differed among the six substrates, in the following orders S1>S5>S4>S2>S6>S3 and S3> S2>S4>S6>S5>S1, respectively. However, like Pn, the diurnal variation curves of leaf photosynthesis were similar and exhibited one peak, except S1. Interestingly, the Tr of the six substrates displayed single peak, but the times were different.

    The maximum value of Pn was in S4, which promoted plant leaf growth and increased rhizome accumulation. The results confirmed previously reported findings, in which Pn directly reflected plant light energy and the ability to accumulate photosynthetic products[24].

    SPAD-502 meter has been provided a rapid and nondestructive measurement of leaf chlorophyll content. Several studies demonstrated that SPAD readings were significantly related to extracted chlorophyll[25-28]. In the study, the greenest leaves were observed in S1. Although no significant differences were detected between S1 and S4, the degree of leaf greenness reflected plant growth and physiological health. In future studies if combined with fertilizer management, the leaf chlorophyll content would be improved. Therefore, S4 would be an excellent substrate for C. speciosus growth and development.

    References

    [1] Kaveriappa K M, Phillips L M, Trigiano R N. Micropropa-gation of flowering dogwood (Cornus florida) from seedl-ings[J]. Plant Cell Reports, 1997, 16(7): 485-489.

    [2] Worrall R J. Comparison of composted hardwood and peat-based media for the production of seedlings, foliage and flowering plants[J]. Scientia Horticulturae, 1981, 15(4): 311-319.

    [3] 欒亞寧, 孫向陽, 劉克林, 等. 幾種泥炭基質(zhì)物理性質(zhì)比較研究[J]. 中國農(nóng)學(xué)通報(bào), 2008, 24(9): 137-140.

    Luan Y N, Sun X Y, Liu K L, et al. Comparisons of physical properties of several peats as growing mediums[J]. Chinese Agricultural Science Bulletin, 2008, 24(9): 137-140.

    [4] Barkham J P. For peat’s sake: Conservation or exploita-tion?[J]. Biodiversity and Conservation, 1993, 2(5): 556-566.

    [5] Carlile W R. Growing media and the environmental lobby in the UK. 1997-2001[J]. Acta Horticulturae, 2004, 644: 107-113.

    [6] Defra SP08019: Availability and supply of alternative mate-rials for use in growing media to meet the UKBAP target on reduced peat use in horticulture[Z]. 2009.

    [7] Gruda N. Current and future perspective of growing media in Europe[J]. Acta Horticulturae, 2012, 960: 37-43.

    [8] 蔡?hào)|宏, 韋開蕾. 我國椰子業(yè)現(xiàn)狀發(fā)展前景和對(duì)策[J]. 世界熱帶農(nóng)業(yè)信息, 1999(4): 8-10.

    Cai D H, Wei K L. Prospects and countermeasures of coco-nut industry in China[J]. World Tropical Agriculture Infor-mation, 1999(4): 8-10.

    [9] Alexander P D, Bragg N C, Meade R, et al. Peat in horticul-ture and conservation: the UK response to a changing world[J]. Mires and Peat, 2008, 3(8): 1-10.

    [10] Evans M R, Stamps R H. Growth of bedding plants in sphagnum peat and coir dust-based substrates[J]. Journal of Environmental Horticulture, 1996, 14(4): 187-190.

    [11] Meerow A W. Coir dust, a viable alternative to peat moss[J]. Greenhouse Product News, 1997, 1: 17-21.

    [12] Xiong J, Tian Y Q, Wang J G, et al. Comparison of coconut coir, rockwool, and peat cultivations for tomato production: nutrient balance, plant growth and fruit quality[J]. Frontiers in Plant Science, 2017, 8(2): 1327.

    [13] Khayyat M, Nazari F, Salehi H. Effects of different pot mixtures on pothos (Epipremnum aureum Lindl. and Andre ‘Golden Pothos’) growth and development[J]. Ameri-can-Eurasian Journal of Agricultural and Environmental Science, 2007, 57(4): 492-493.

    [14] Usman M, Shah M, Badar A, et al. Media steaming and coco-coir enhance growth of rough lemon (Citrus Jambhiri L.) stock[J]. Pakistan Journal of Agricultural Sciences, 2014, 51(3): 617-625.

    [15] 潘英文, 林明光, 陳施明. 文心蘭切花產(chǎn)業(yè)化栽培基質(zhì)的篩選研究[J]. 熱帶農(nóng)業(yè)科學(xué), 2009, 29(7): 32-35.

    Pan Y W, Lin M G, Chen S M. Screening of substrates for commercial culture of cut-flower Oncidium orchid[J]. Chi-nese Journal of Tropical Agriculture, 2009, 29(7): 32-35

    [16] Khelikuzzaman M H. Effect of different potting media on growth of a hanging ornamental plant (Tradescantiasp)[J]. Journal of Tropical Agriculture and Food Science, 2007, 35(1): 41–48

    [17] Bhardwaj R L. Effect of growing media on seed germination and seedling growth of papaya cv. ‘Red lady’[J]. African Journal of Plant Science, 2014, 8(4): 178-184.

    [18] Wright R D. The pour-through nutrient extraction proce-dure[J]. Hortscience, 1986, 21: 227-229.

    [19] Niedziela C E, Nelson P V. A rapid method for determining physical properties of undisturbed substrate[J]. Hortscience, 1992, 27(12): 1279-1280.

    [20] Baiyeri K P, Mbah B N. Effects of soilless and soil-based nursery media on seedling emergence, growth and response to water stress of African breadfruit (Treculia africana Decne)[J]. African Journal of Biotechnology, 2006, 5(15): 1405-1410.

    [21] 陳鳳真. 不同基質(zhì)對(duì)小青菜穴盤苗生長和光合特性的影響[J]. 中國土壤與肥料, 2014(1): 75-78, 100.

    Chen F Z. Effects on growth and photosynthetic characteristics of greengrocery (Brassica chinensis L.) in plugs under different substrate[J]. Journal of Soil and fertilizer sciences in china, 2014(1): 75-78, 100.

    [22] Bilderback T E, Warren S L, Owen Jr J S, et al. Healthy substrates need physicals too[J]. Hort Technology, 2005, 15: 747-751.

    [23] Issa M, Ouzounidou G, Maloupa H, et al. Seasonal and diurnal photosynthetic responses of two gerbera cultivars to different substrates and heating systems[J]. Scientia Horticulturae, 2001, 88(3): 215-234.

    [24] Lincoln Taiz, Eduardo Zeiger. Plant physiology-fifth edi-tion[M]. Sinauer Associates, Inc., Publishers, 2015: 92-212.

    [25] Azia F, Stewart K A. Relationships between extractable chlorophyll and spad values in muskmelon leave[J]. Journal of Plant Nutrition, 2001, 24(6): 961-966.

    [26] Ruiz-Espinoza F, Fenech-Larios L, Beltran-Morales A, et al. Field evaluation of the relationship between chlorophyll content in basil leaves and a portable chlorophyll meter (spad-502) readings[J]. Journal of Plant Nutrition, 2010, 33(3): 423-438.

    [27] Wang Q B, Chen J J, Stamps R H, et al. Correlation of visual quality grading and SPAD reading of green-leaved foliage plants[J]. Journal of Plant Nutrition, 2005, 28(7): 1215-1225.

    [28] Yamamoto A, Nakamura T, Adu-Gyamfi J J, et al. Rela-tionship between chlorophyll content in leaves of sorghum and pigeonpea determined by extraction method and by chlorophyll meter (SPAD-502)[J]. Journal of Plant Nutri-tion, 2002, 25(10): 2295-2301.

    責(zé)任編輯:謝龍蓮

    猜你喜歡
    椰糠光合特性泥炭
    椰糠-黏土植生基材崩解特性試驗(yàn)1)
    污泥炭的制備及其在典型行業(yè)廢水處理中的應(yīng)用
    云南化工(2020年11期)2021-01-14 00:50:40
    浸泡時(shí)長對(duì)椰糠基質(zhì)理化性狀的影響
    泥炭產(chǎn)業(yè)發(fā)展的觀察與思考
    溫室禮品西瓜椰糠無土栽培試驗(yàn)總結(jié)
    5個(gè)引種美國紅楓品種的光合特性比較
    4種砧木對(duì)甜櫻桃葉片光合特性的影響
    不同水分條件下硫肥對(duì)玉米幼苗葉片光合特性的影響
    安圖縣水稻高光效新型栽培技術(shù)示范推廣總結(jié)
    主流媒體聚焦泥炭產(chǎn)業(yè)發(fā)展
    腐植酸(2015年4期)2015-12-26 06:43:51
    日日爽夜夜爽网站| 国产免费现黄频在线看| 国产精品九九99| 国产成人精品在线电影| 久久精品国产亚洲av高清一级| 又大又爽又粗| 69精品国产乱码久久久| 国产国语露脸激情在线看| 又黄又粗又硬又大视频| 午夜福利影视在线免费观看| 五月天丁香电影| 一级a爱视频在线免费观看| 久久久精品区二区三区| 久久久久久人人人人人| 久久人人97超碰香蕉20202| 老汉色∧v一级毛片| 亚洲中文字幕日韩| 少妇粗大呻吟视频| 成年av动漫网址| 美女午夜性视频免费| 欧美变态另类bdsm刘玥| 久久亚洲国产成人精品v| 久久av网站| 岛国毛片在线播放| 老司机影院毛片| 在线看a的网站| 麻豆国产av国片精品| 最新在线观看一区二区三区 | 一级,二级,三级黄色视频| 一级,二级,三级黄色视频| 最新的欧美精品一区二区| 久9热在线精品视频| 亚洲欧美成人综合另类久久久| 十分钟在线观看高清视频www| 各种免费的搞黄视频| 国产精品 欧美亚洲| 一区二区三区四区激情视频| 91精品伊人久久大香线蕉| 丰满少妇做爰视频| 精品福利观看| 国产成人欧美| 精品亚洲成国产av| 日韩精品免费视频一区二区三区| 日韩一本色道免费dvd| 精品国产一区二区久久| 18禁裸乳无遮挡动漫免费视频| 亚洲伊人久久精品综合| 亚洲欧美成人综合另类久久久| av网站在线播放免费| 黑人猛操日本美女一级片| 久久综合国产亚洲精品| 日韩免费高清中文字幕av| 国产日韩欧美视频二区| 丝袜脚勾引网站| 嫩草影视91久久| 久久亚洲精品不卡| 日韩熟女老妇一区二区性免费视频| 亚洲欧美精品自产自拍| 18禁裸乳无遮挡动漫免费视频| 又黄又粗又硬又大视频| 亚洲欧美色中文字幕在线| 丝袜美腿诱惑在线| 欧美黄色淫秽网站| 午夜激情av网站| 精品视频人人做人人爽| 十八禁人妻一区二区| 久久ye,这里只有精品| 又黄又粗又硬又大视频| 久久久久久免费高清国产稀缺| 乱人伦中国视频| 80岁老熟妇乱子伦牲交| 亚洲精品美女久久av网站| 香蕉丝袜av| 性高湖久久久久久久久免费观看| 伊人亚洲综合成人网| 如日韩欧美国产精品一区二区三区| 午夜老司机福利片| 青春草亚洲视频在线观看| 91九色精品人成在线观看| 女性被躁到高潮视频| 亚洲国产精品成人久久小说| 亚洲成人免费电影在线观看 | 麻豆国产av国片精品| xxx大片免费视频| 人人妻人人添人人爽欧美一区卜| 亚洲专区中文字幕在线| 日本a在线网址| 91麻豆av在线| 久久精品久久久久久久性| 精品少妇黑人巨大在线播放| 少妇人妻久久综合中文| 国产精品久久久久成人av| 日韩 欧美 亚洲 中文字幕| 高清黄色对白视频在线免费看| 亚洲综合色网址| 国产精品久久久久久精品电影小说| 青春草视频在线免费观看| 亚洲av欧美aⅴ国产| 国产亚洲午夜精品一区二区久久| 免费看av在线观看网站| 夫妻性生交免费视频一级片| 亚洲国产精品一区二区三区在线| 亚洲国产精品999| 久久av网站| 亚洲人成77777在线视频| 久久精品久久久久久噜噜老黄| 亚洲国产中文字幕在线视频| 美国免费a级毛片| 亚洲五月色婷婷综合| 欧美av亚洲av综合av国产av| 岛国毛片在线播放| 一级片免费观看大全| 亚洲av国产av综合av卡| 亚洲色图 男人天堂 中文字幕| 一级毛片 在线播放| 欧美精品av麻豆av| 欧美精品啪啪一区二区三区 | avwww免费| a级毛片在线看网站| 国产野战对白在线观看| 久久精品国产亚洲av涩爱| 欧美成狂野欧美在线观看| 亚洲欧美日韩高清在线视频 | 亚洲精品在线美女| 最近中文字幕2019免费版| xxx大片免费视频| 狂野欧美激情性bbbbbb| 成年人免费黄色播放视频| 女警被强在线播放| 男人爽女人下面视频在线观看| 久久天堂一区二区三区四区| 人人妻人人澡人人看| 亚洲欧美一区二区三区久久| 考比视频在线观看| 人人妻人人澡人人看| 中文字幕精品免费在线观看视频| 午夜福利乱码中文字幕| 亚洲色图 男人天堂 中文字幕| 中文字幕高清在线视频| 男女无遮挡免费网站观看| 男女边摸边吃奶| 国产精品一区二区免费欧美 | 午夜福利免费观看在线| 婷婷丁香在线五月| 免费看av在线观看网站| 精品免费久久久久久久清纯 | 成人免费观看视频高清| 久久久久视频综合| 久热爱精品视频在线9| 99国产精品免费福利视频| 午夜老司机福利片| 亚洲五月色婷婷综合| 欧美激情极品国产一区二区三区| 18禁裸乳无遮挡动漫免费视频| 日韩 亚洲 欧美在线| 免费在线观看完整版高清| 国产极品粉嫩免费观看在线| 老司机在亚洲福利影院| 久久精品国产亚洲av涩爱| 色婷婷av一区二区三区视频| 99热全是精品| 99精国产麻豆久久婷婷| 国产精品 欧美亚洲| 丝袜在线中文字幕| 老司机影院毛片| 日本猛色少妇xxxxx猛交久久| 一区二区三区激情视频| 国产亚洲精品久久久久5区| 男女边吃奶边做爰视频| 国产高清视频在线播放一区 | 一本色道久久久久久精品综合| 精品福利观看| 国产高清不卡午夜福利| 欧美久久黑人一区二区| 老熟女久久久| 日韩av不卡免费在线播放| 一级毛片女人18水好多 | 欧美精品av麻豆av| 一个人免费看片子| 1024视频免费在线观看| 国产免费一区二区三区四区乱码| h视频一区二区三区| 两性夫妻黄色片| 国语对白做爰xxxⅹ性视频网站| avwww免费| 婷婷色综合大香蕉| 亚洲精品日本国产第一区| 亚洲av美国av| 自拍欧美九色日韩亚洲蝌蚪91| 久久人人爽人人片av| 成人免费观看视频高清| 国产男女内射视频| 新久久久久国产一级毛片| 中国美女看黄片| 亚洲成人手机| 欧美激情 高清一区二区三区| 日本wwww免费看| 下体分泌物呈黄色| 国产亚洲欧美在线一区二区| 国产男女内射视频| 丁香六月天网| 亚洲人成电影观看| 亚洲午夜精品一区,二区,三区| 欧美日本中文国产一区发布| 少妇的丰满在线观看| 日韩一区二区三区影片| 精品免费久久久久久久清纯 | 免费女性裸体啪啪无遮挡网站| 欧美精品av麻豆av| 欧美97在线视频| 久9热在线精品视频| 热99国产精品久久久久久7| 深夜精品福利| 成人国语在线视频| 久久久久久久国产电影| 日韩大码丰满熟妇| 国产成人精品久久二区二区免费| 免费在线观看完整版高清| 在线av久久热| 美女视频免费永久观看网站| 老鸭窝网址在线观看| 高清不卡的av网站| 午夜福利,免费看| 亚洲成国产人片在线观看| 亚洲欧美激情在线| 久久99一区二区三区| 亚洲欧美日韩高清在线视频 | 亚洲av在线观看美女高潮| 大型av网站在线播放| 国精品久久久久久国模美| 国产免费又黄又爽又色| av福利片在线| 国产精品免费视频内射| 中文字幕人妻丝袜制服| 亚洲情色 制服丝袜| 欧美精品高潮呻吟av久久| 成人手机av| 2021少妇久久久久久久久久久| 深夜精品福利| 久久ye,这里只有精品| 91成人精品电影| 欧美亚洲 丝袜 人妻 在线| 一本综合久久免费| 大香蕉久久网| 久久久久精品国产欧美久久久 | 久热这里只有精品99| 国产一区二区在线观看av| 亚洲精品成人av观看孕妇| 国产熟女欧美一区二区| 黄色毛片三级朝国网站| 亚洲人成网站在线观看播放| 女人精品久久久久毛片| 中文字幕制服av| 欧美精品一区二区大全| 国产免费一区二区三区四区乱码| 久久亚洲国产成人精品v| 可以免费在线观看a视频的电影网站| 国产无遮挡羞羞视频在线观看| 精品免费久久久久久久清纯 | 交换朋友夫妻互换小说| 国语对白做爰xxxⅹ性视频网站| 深夜精品福利| 欧美另类一区| 国产精品一区二区免费欧美 | 日韩av不卡免费在线播放| 亚洲国产最新在线播放| 国产精品九九99| av天堂久久9| 日本欧美视频一区| 亚洲色图 男人天堂 中文字幕| 一本大道久久a久久精品| 欧美日本中文国产一区发布| 人人澡人人妻人| 日韩视频在线欧美| 各种免费的搞黄视频| 侵犯人妻中文字幕一二三四区| 九草在线视频观看| 99热网站在线观看| 中文字幕高清在线视频| 涩涩av久久男人的天堂| 亚洲成色77777| 一级毛片 在线播放| 我要看黄色一级片免费的| 午夜福利视频在线观看免费| 亚洲精品日韩在线中文字幕| 国产男人的电影天堂91| 九色亚洲精品在线播放| 高清视频免费观看一区二区| 成年人黄色毛片网站| 看免费av毛片| 久久久国产欧美日韩av| 精品福利永久在线观看| 我的亚洲天堂| 午夜福利视频在线观看免费| 亚洲精品日韩在线中文字幕| 色播在线永久视频| 久久精品熟女亚洲av麻豆精品| 两性夫妻黄色片| 亚洲欧美清纯卡通| 午夜福利在线免费观看网站| 黄色毛片三级朝国网站| 亚洲,欧美,日韩| 男女高潮啪啪啪动态图| 国产午夜精品一二区理论片| 亚洲国产欧美在线一区| 精品亚洲成国产av| 午夜老司机福利片| 欧美日韩av久久| 亚洲成av片中文字幕在线观看| 国产欧美日韩综合在线一区二区| 99久久99久久久精品蜜桃| 咕卡用的链子| 精品亚洲成国产av| 最近最新中文字幕大全免费视频 | 欧美97在线视频| 久久99精品国语久久久| 日日爽夜夜爽网站| 亚洲成人免费av在线播放| 国产伦人伦偷精品视频| 男女高潮啪啪啪动态图| 亚洲成人免费电影在线观看 | 一区二区三区乱码不卡18| 一区福利在线观看| 亚洲美女黄色视频免费看| 咕卡用的链子| 久久天堂一区二区三区四区| 国产麻豆69| 一边摸一边做爽爽视频免费| 90打野战视频偷拍视频| 男女边吃奶边做爰视频| 欧美 日韩 精品 国产| 美女大奶头黄色视频| 午夜福利影视在线免费观看| 免费女性裸体啪啪无遮挡网站| 亚洲欧美一区二区三区久久| 国产熟女欧美一区二区| 欧美人与性动交α欧美软件| 亚洲欧美精品自产自拍| 日韩免费高清中文字幕av| 夫妻性生交免费视频一级片| 女人爽到高潮嗷嗷叫在线视频| 色94色欧美一区二区| 久久精品久久精品一区二区三区| 国产精品九九99| 国产99久久九九免费精品| 久久av网站| 国产日韩一区二区三区精品不卡| 男女床上黄色一级片免费看| 91老司机精品| 十八禁网站网址无遮挡| 啦啦啦视频在线资源免费观看| 99re6热这里在线精品视频| 精品第一国产精品| 精品少妇黑人巨大在线播放| 丁香六月欧美| 国产精品一区二区在线观看99| 亚洲 欧美一区二区三区| 捣出白浆h1v1| 亚洲精品av麻豆狂野| 成年人免费黄色播放视频| 久久久久久久精品精品| 欧美激情极品国产一区二区三区| 99久久综合免费| 国产精品一区二区在线观看99| 美女福利国产在线| 色网站视频免费| 丰满少妇做爰视频| 国产成人精品久久久久久| 2021少妇久久久久久久久久久| 天堂中文最新版在线下载| 超碰成人久久| 美女大奶头黄色视频| 欧美日韩精品网址| 日韩av在线免费看完整版不卡| 狂野欧美激情性bbbbbb| 大香蕉久久成人网| 悠悠久久av| 观看av在线不卡| 婷婷成人精品国产| 国产成人一区二区三区免费视频网站 | 男人爽女人下面视频在线观看| 最近最新中文字幕大全免费视频 | 午夜av观看不卡| 热re99久久精品国产66热6| 久久精品亚洲av国产电影网| 飞空精品影院首页| 日韩制服骚丝袜av| 天天影视国产精品| www.熟女人妻精品国产| 中文字幕人妻丝袜一区二区| 美女福利国产在线| 免费观看人在逋| 一本久久精品| 男的添女的下面高潮视频| 美女国产高潮福利片在线看| 亚洲精品日韩在线中文字幕| 欧美亚洲日本最大视频资源| 久久这里只有精品19| 女人高潮潮喷娇喘18禁视频| 亚洲综合色网址| 国产主播在线观看一区二区 | 亚洲av日韩精品久久久久久密 | 99国产精品免费福利视频| 脱女人内裤的视频| 成人亚洲精品一区在线观看| 免费在线观看视频国产中文字幕亚洲 | 麻豆av在线久日| 久久国产精品影院| 久9热在线精品视频| 久久人人97超碰香蕉20202| 极品人妻少妇av视频| av线在线观看网站| 麻豆国产av国片精品| 欧美精品亚洲一区二区| 肉色欧美久久久久久久蜜桃| 看免费av毛片| 欧美97在线视频| 亚洲欧洲国产日韩| 激情视频va一区二区三区| 精品福利永久在线观看| 亚洲欧美一区二区三区久久| 一二三四社区在线视频社区8| 一级毛片电影观看| 国产在线观看jvid| 18禁黄网站禁片午夜丰满| 久久精品久久久久久久性| 久久久久久久久久久久大奶| 超碰成人久久| 一区二区三区精品91| 亚洲欧美清纯卡通| 亚洲av日韩精品久久久久久密 | 美女视频免费永久观看网站| 欧美日韩成人在线一区二区| 亚洲欧美精品综合一区二区三区| 日本a在线网址| 在线观看免费高清a一片| 一本一本久久a久久精品综合妖精| 成年女人毛片免费观看观看9 | 老司机靠b影院| 日韩人妻精品一区2区三区| 91九色精品人成在线观看| www.av在线官网国产| 久久综合国产亚洲精品| 80岁老熟妇乱子伦牲交| xxx大片免费视频| 亚洲少妇的诱惑av| 欧美日韩福利视频一区二区| 国产日韩欧美视频二区| 男的添女的下面高潮视频| av不卡在线播放| 欧美日韩综合久久久久久| 啦啦啦视频在线资源免费观看| 在线精品无人区一区二区三| 中文字幕亚洲精品专区| 久9热在线精品视频| 日本五十路高清| 成人三级做爰电影| 亚洲男人天堂网一区| 真人做人爱边吃奶动态| 久久99一区二区三区| 下体分泌物呈黄色| 后天国语完整版免费观看| 国产爽快片一区二区三区| 欧美黄色淫秽网站| 国产又色又爽无遮挡免| 亚洲精品久久午夜乱码| 欧美日韩亚洲综合一区二区三区_| 丝袜脚勾引网站| 欧美精品一区二区免费开放| av在线app专区| 色综合欧美亚洲国产小说| 18禁国产床啪视频网站| 热re99久久国产66热| 满18在线观看网站| 建设人人有责人人尽责人人享有的| 视频区图区小说| 久久国产精品男人的天堂亚洲| 久久ye,这里只有精品| 国产欧美亚洲国产| 中文字幕精品免费在线观看视频| 麻豆av在线久日| 久久久久久久大尺度免费视频| 欧美黄色淫秽网站| 欧美老熟妇乱子伦牲交| 美女福利国产在线| 欧美精品人与动牲交sv欧美| 欧美日韩亚洲高清精品| 一本—道久久a久久精品蜜桃钙片| 国产精品久久久人人做人人爽| 高潮久久久久久久久久久不卡| 亚洲成色77777| 亚洲欧美中文字幕日韩二区| 久9热在线精品视频| 无遮挡黄片免费观看| av一本久久久久| av有码第一页| 下体分泌物呈黄色| 最黄视频免费看| 欧美精品高潮呻吟av久久| 在线观看国产h片| 国产成人精品在线电影| 亚洲精品一卡2卡三卡4卡5卡 | 中文字幕色久视频| 亚洲男人天堂网一区| 亚洲国产最新在线播放| 丝袜人妻中文字幕| 人人妻,人人澡人人爽秒播 | 国产真人三级小视频在线观看| 国产高清videossex| 视频区欧美日本亚洲| 亚洲欧美中文字幕日韩二区| 精品熟女少妇八av免费久了| 精品视频人人做人人爽| 日日摸夜夜添夜夜爱| 亚洲一码二码三码区别大吗| 每晚都被弄得嗷嗷叫到高潮| 色综合欧美亚洲国产小说| 在线精品无人区一区二区三| 老司机深夜福利视频在线观看 | 黄色怎么调成土黄色| 大陆偷拍与自拍| 久久人人爽人人片av| 精品久久久久久电影网| 精品亚洲成国产av| 久久久久国产一级毛片高清牌| 一区福利在线观看| av天堂久久9| 老汉色av国产亚洲站长工具| 一区二区三区四区激情视频| 黄色一级大片看看| 免费一级毛片在线播放高清视频 | 男女边吃奶边做爰视频| 久久久欧美国产精品| 国产人伦9x9x在线观看| 欧美老熟妇乱子伦牲交| 国产成人av激情在线播放| 成年人免费黄色播放视频| 国产1区2区3区精品| 国产一区二区三区综合在线观看| 亚洲色图综合在线观看| 看十八女毛片水多多多| 欧美日韩国产mv在线观看视频| 狠狠婷婷综合久久久久久88av| 一本久久精品| 香蕉丝袜av| 免费日韩欧美在线观看| 国产女主播在线喷水免费视频网站| 国产精品免费视频内射| 欧美成狂野欧美在线观看| 午夜精品国产一区二区电影| 日韩伦理黄色片| 99久久人妻综合| 在线av久久热| 欧美在线黄色| 国产成人啪精品午夜网站| 久久久精品免费免费高清| 国产高清国产精品国产三级| 久久精品国产亚洲av涩爱| 男男h啪啪无遮挡| 免费观看人在逋| 黄色视频在线播放观看不卡| 免费人妻精品一区二区三区视频| 国产一级毛片在线| 亚洲欧洲国产日韩| tube8黄色片| 亚洲欧洲日产国产| 午夜福利,免费看| 国产1区2区3区精品| 国产亚洲精品久久久久5区| 欧美日韩av久久| 91国产中文字幕| 成人国产一区最新在线观看 | 在线观看人妻少妇| 久久久国产一区二区| 1024香蕉在线观看| 免费在线观看视频国产中文字幕亚洲 | 18禁黄网站禁片午夜丰满| 午夜福利一区二区在线看| 欧美日韩国产mv在线观看视频| 国产精品偷伦视频观看了| 日本欧美视频一区| 国产免费视频播放在线视频| 18在线观看网站| 国产野战对白在线观看| 久久久久久久精品精品| 电影成人av| 精品人妻1区二区| 欧美日韩视频高清一区二区三区二| 成年美女黄网站色视频大全免费| 欧美 日韩 精品 国产| 免费av中文字幕在线| 久久人妻福利社区极品人妻图片 | xxx大片免费视频| 国产精品.久久久| 亚洲熟女毛片儿| 啦啦啦在线观看免费高清www| videosex国产| 精品国产超薄肉色丝袜足j| av又黄又爽大尺度在线免费看| 亚洲中文av在线| 黄网站色视频无遮挡免费观看| 午夜激情久久久久久久| 性高湖久久久久久久久免费观看| 亚洲中文字幕日韩| 又粗又硬又长又爽又黄的视频| 久久女婷五月综合色啪小说| 久久久久久免费高清国产稀缺| 国产男女内射视频| 美女脱内裤让男人舔精品视频| 飞空精品影院首页| 国产人伦9x9x在线观看| 亚洲av日韩在线播放| av天堂在线播放| 免费在线观看日本一区| 日韩av不卡免费在线播放|