• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    再入式飛行器不同繞流狀態(tài)的底部流動特征

    2021-12-23 11:19:42劉麗麗陳培芝朱德華
    關(guān)鍵詞:麗麗中國航天朱德

    劉麗麗,陳培芝,趙 月,朱德華

    (1. 中國運載火箭技術(shù)研究院,北京,100076;2. 中國航天空氣動力技術(shù)研究院,北京,100074)

    0 Introduction

    Re-entry vehicles such as return capsules and warheads have flight stability problems. The stability characteristics of bottom flow are one of the key factors influencing the stable flight of re-entry vehicles, since the instability of bottom flow will generate non-constant oscillation aerodynamic forces, which will cause non-constant vibration of the vehicle.

    Since the numerical simulation of bottom flow of re-entry vehicle faces complex physical phenomena such as separation and rotation, the classical numerical simulation methods often cannot accurately obtain the bottom flow instability characteristics. In the wind tunnel test, the support mechanism is required for the test model, and the model support has a great impact on the bottom flow instability characteristics, which can cause distortion of the bottom flow physical phenomena. Therefore, there has been a lack of theoretical understanding and bias in the observation of bottom flow instability phenomenon and the cognition of instability mechanism.

    In recent years, with the improvement of numerical simulation capability and wind tunnel test technology,people started to explore the characteristics of bottom flow of re-entry vehicles again. In wind tunnel tests, Herrin and Dutton[1]analyzed the complex flow structure in the near wake region of a supersonic bottom flow field with Mach number 2.5; Bourdon and Dutton[2]obtained images of the transient flow in the near wake region of a supersonic bottom flow field using planar laser imaging; Danehy and others used planar laser-induced Danehy[3,4]studied the bottom flow characteristics of the return capsule using the technique of planar laser-induced fluorescence and found that laminar, turning, and turbulent morphological features exist in the shoulder shear layer of the return capsule and have an impact on the bottom flow. Similar experimental studies of bottom flow with blunt body shape have been done by Gregory[5], Nishio[6], etc., whose experimental measurements are aimed at understanding the bottom flow characteristics. In terms of numerical simulation, high-precision numerical simulation methods are the main research tools for bottom flow characterization. Matthew MacLean[7]et al. performed numerical calculations of laminar and turbulent flow states for the return capsule shape, using the DES method in the US3D code, and obtained the model surface pressure and heat flow information for different flow states and compared them with experiments. Shingo Matsuyama, et al.[8]performed numerical simulations using the Large Eddy Simulation (LES) method for the Mars entry module shape, revealing that the bottom flow stability study is affected by the mesh sparsity, calculation method, and flow state; Brock[9]et al. performed numerical simulations of the bottom flow of the high-speed return module using the RANS and RANS/LES methods, and obtained the numerical results of laminar to turbulent flow at the bottom of the return capsule. There are also some representative works for numerical simulation of bottom flow of blunt body shape such as Datta[10], Sandberg[11], Sivasubramanian[12], Simony[13], Zhu De-Hua[14], Xiao Zhi-Xiang[15]and so on. The study of the flow wake region at the bottom of the blunt body bypass is also one of the hot spots, and Tu Jia-Huang et al[16,17]have made some progress in the study of wake disturbance in cylindrical and square column bypasses at low velocity and low Reynolds number scenarios; Gong Sheng and Wu Chui-Jie[18]carried out a large eddy simulation study on the effect of the wake of the Mars entry module on the parachute system.

    In summary, the study of bottom flow stability of re-entry vehicle bypass flow has certain difficulties both in wind tunnel tests and numerical simulations, and the phenomenon of bottom flow instability and the instability mechanism still have theoretical understanding deficiencies and deviations. With the advancement of high-precision numerical simulation methods and the improvement of massively parallel computing capabilities, it has become possible to recognize the bottom flow characteristics of such blunt body bypass flows.

    In this paper, a multi-zone parallel large eddy simulation method will be used to study the bottom flow characteristics of the Shenzhou-like return module shape under low and high Reynolds number re-entry conditions, which will provide some basic theoretical support for the re-entry vehicle shape design, stability control and wake disturbance research.

    1 Control Equations and Numerical Methods

    The control equation is a three-dimensional compressible Navier-Stokes equation in a curved coordinate system[19], which is solved by a high-precision multi-zone parallel implicit large eddy simulation method based on finite differences. For the spatial discretization, the fifth-order WENO format[20]is used for the inviscid term and the sixth-order central difference is used for the viscous term. The third-order TVD Runge-Kutta method[21]was used for the time discretization.

    The isothermal no-slip boundary condition is used at the wall, the singularity axis is treated by circumferential averaging and the far field is a reflection-free boundary condition. In addition, for the inviscid term treatment, the singularity axis is downscaled to NND format in the axial direction[14].

    2 Analysis of Calculated Results

    The calculation conditions were chosen with reference to the experimental conditions of Brock[9]et al. The specific computational conditions are (Re with 1 m as the characteristic length):

    The computational model is selected as a scaled-down Shenzhou-like return module with the following dimensions: in Fig.1.

    Fig.1 Dimensional Diagram of the Computational Model(unit mm)

    In this paper, the basic flow pattern of high-speed winding based on the Shenzhou-like shape is initially given to provide some theoretical support for the subsequent numerical simulation study. The basic flow around shape in shown in Fig.2.

    Fig. 2 Basic Flow Around Shape of Return Module Shape

    Based on the above basic flow pattern of high-speed blunt bypass flow, a structural grid is selected to carry out high-precision numerical simulation work. The Shenzhou-like return capsule shape has axisymmetric characteristics, so it is suitable to choose a mixed method of C-grid and H-grid to realize the local encryption of the grid in the complex flow region. In order to ensure the simulation accuracy of the boundary layer, the grid scale of the first layer at the wall is 10 μm, y+wall = 0.8, and the grid volume is about 40 million. The schematic diagram of the Shenzhou-like return module mesh for local grid encryption of the complex flow region is shown in Fig.3.

    Fig. 3 Schematic Diagram of Shenzhou-like Shape Grid

    2.1 Bottom Flow Instability Characteristics under Different Reynolds Number Conditions

    The winding characteristics of the high-speed re-entry vehicle are similar to the typical high-speed blunt body winding characteristics, and the main physical phenomenon appearing in its head region is the debris surge. The Fig. 4 shows the pressure cloud diagram on the surface of the class Shenzhou return capsule shape, and it can be seen that the pressure distribution on the object surface shows an axisymmetric pattern, and the symmetry of the head is maintained well as the calculation time advances. The main physical phenomenon appearing in the bottom region is flow separation, which is essentially structural instability in the Reynolds number range chosen in this paper, and asymmetric structural instability will occur in the presence of perturbations, with periodic as well as non-periodic structural oscillation characteristics. The main physical phenomenon occurring in the shoulder region is the shear layer. The centrosymmetric surface in the figure below is shown using density gradient in order to show the wave system structure and the stability characteristics of the shoulder shear layer in the bottom flow region. The comparison between Fig.4a and Fig.4b shows that the shear layer in the high Reynolds number state is destabilized earlier and the recompression wave intensity in the wake area is stronger. The main physical phenomena occurring in the wake development zone as well as the far wake zone are transitions, turbulence, and Karman-like vortex streets. The vortex structure in the figure below is shown with the second invariant Q value of the velocity gradient. It can be seen that both high and low Reynolds number state trailing areas appear the vortex structure, and the high Reynolds number state trailing vortex structure appears earlier and has obvious oscillation characteristics.

    Fig. 4 The Transient Flow Structure and Monitoring Point Distribution of the Return Module Shape Winding Flow

    In summary, the Shenzhou-like return module bypass flow obtained by numerical simulation is consistent with the basic characteristics of high-speed blunt body bypass flow. The black circles in Fig.4 show the pressure signal monitoring points, which will be used for detailed quantitative analysis of the formation mechanism of the bottom flow characteristics in the following.

    2.1.1 Similarities and Differences in the Instability Characteristics of the Bottom Flow Structure

    The monitoring point 1 in Fig.4a is arranged to analyze the oscillation characteristics of the bottom separation region, and the selected position is near the line between the bottom object surface half-saddle point S' and the re-attached saddle point S on the central symmetry plane, and the monitored pressure signal is the distribution of the dimensionless pressure with the arbitrary dimensionless time (t=ˉt/(L/u∞), whereLis the characteristic length of 1 m) interval as shown in the Fig.5. From Fig.5, it can be seen that the pressure oscillation is obvious in the high Reynolds number state, and its periodic characteristics are disturbed to some extent by the shear layer instability.

    Fig.5 Pressure Distribution in Any Selected Time Interval at Monitoring Point 1

    The spectral characteristics obtained from the Fourier analysis of the pressure signal can quantitatively verify the above oscillation characteristics. The following Fig.6a shows the existence of an oscillation frequency with a dimensionless frequency of about 5.2 (Frequency=1/t).

    Fig.6 Spectral Characteristics based on the Pressure Signal at Monitoring Point 1

    Fig.6b shows the spectral characteristics of the pressure signal at monitoring point 1 in Fig. 4b for the low Reynolds number condition. It can be seen that there is still an oscillation frequency with a dimensionless frequency of about 5.3. It indicates that the structural instability characteristics exist in the bottom flow at different Reynolds number states, and the structural instability mode of the bottom flow remains unchanged under the action of different external environments (disturbance conditions), which only causes a certain difference in the oscillation frequency.

    2.1.2 Similarities and Differences in Flow Instability Characteristics of the Shoulder

    Shoulder shear is a prevalent physical phenomenon in high-speed blunt body bypass flow, and its destabilization characteristics vary significantly at different Reynolds numbers. The locations of monitoring point 2 in Fig.4b were chosen near the respective shear initiation destabilization locations, and the pressure distribution at monitoring point 2 for the high Reynolds number condition with time is shown in Fig.7.

    Fig.7 Pressure Distribution at Monitoring Point 2 for any Selected Time Interval

    The Fourier analysis of this pressure signal is performed to obtain its spectral characteristics, and it can be seen from Fig. 8a that there is a topological oscillation frequency with a dimensionless frequency of about 5.2, which is the overall oscillation frequency of the shear layer affected by the bottom separation, and another dominant frequency of about 14, which is generated by the instability of the shear layer itself and corresponds to the fundamental frequency of the shear layer. The high frequency is less at this time, which also confirms that the shear layer is in the initial destabilization state.

    Fig.8 Spectral Characteristics based on the Pressure Signal of Monitoring Point 2

    Fig.8b shows the spectral characteristics of the pressure signal at monitoring point 2 in the low Reynolds number condition. It can be seen that there is an overall oscillation frequency affected by the bottom separation and a shear layer initiation destabilization frequency, and the other high frequencies are not excited, so it can be assumed that the shear layer is just destabilized at this time. Since the position of monitoring point 2 in Fig.4b is farther back than that of monitoring point 2 in Fig.4a, the shoulder shear instability in the low Reynolds number condition is already very close to the tail mixing region.

    In summary, from the analysis of the stability characteristics of the bottom flow region and the shoulder shear region under different Reynolds number states, it can be seen that both the bottom flow structure instability and the shoulder shear instability have their own characteristics in their respective dominant regions, and act as mutual perturbation sources to drive their respective instability histories, and the lower Reynolds number leads to delayed shear layer instability.

    2.1.3 Similarities and Differences of Coupled Instability Characteristics in the Tailing Area

    In the wake development area, it can be expected that the two destabilization modes will interact in a complex manner, resulting in coupled destabilization, leading to complex physical phenomena such as turning, turbulence, and Karman-like vortex streets in the wake area. The trailing development zone is selected as the pressure signal monitoring point (see Fig.4, monitoring point 3) to analyze its spectral characteristics.

    Fig.9 show the spectral characteristics of the pressure signal at monitoring point 3 in the high and low Reynolds number condition. It can be seen that the similarity between the different Reynolds number states is the presence of the bottom structure instability frequency, and the difference is the shear instability and the broad spectrum characteristics after the action of shear instability and bottom structure instability. In the high Reynolds number state, more high frequency energy is excited.

    The purpose of monitoring point 4 in Fig. 4 is to monitor the physical phenomenon of Karman-like vortex street, and the spectral characteristics of the pressure signal monitoring point in the wake region at high Reynolds number are shown in Fig.10.

    Fig.9 Spectral Characteristics of the Signal Monitoring Point 3

    Fig. 10 Spectral Characteristics of the Signal at Monitoring Point 4 in the High Reynolds Number Condition

    As can be seen in Fig.10, more high frequency energy is excited in the wake region, implying the presence of more small-scale vortices, i.e., turning and turbulent behavior. For a Karman vortex at high Reynolds number, the oscillation frequency equation isf=St?(U∞/D) with a dimensionless parameterSt=0.27,U∞is the incoming velocity andDis the diameter of the winding object, which is estimated asf=0.27×(1.0/0.254)=1.06. This is close to the dominant dimensionless frequency of about 1.1 that appears in the spectral analysis.

    2.2 Effect of Reynolds Number on Re-Entry Vehicle Winding

    In summary, the bottom flow instability of high-speed re-entry vehicles at different Reynolds number states are both mainly dominated by the separation instability mode and the shear instability mode together. The coupling effect of the two instability modes will form a Karman-like vortex flow behavior in the far wake region.

    The Reynolds number has the greatest influence on the shear-layer instability mode, and the size of the bottom separation region also has a significant influence on the wave system structure in the bottom flow region, such as the intensity and angle of the recompression wave, which also has a significant influence on the amplitude of the oscillation of the Karman-like vortex street. These effects need to be focused on in the study of shoulder heat flow, bottom drag, flight vibration, and wake effects of re-entry vehicles.

    Although this paper has achieved some knowledge on the effect of Reynolds number on the re-entry vehicle winding flow, it should be noted that the implicit large vortex simulation method used in this paper does not include any artificial perturbation information, and for the Shenzhou-like return module shape, its precursor boundary layer attachment area is long, and the turning behavior may occur before the appearance of the shear layer, so it is necessary to consider the introduction of perturbation information in the precursor on the basis of this method, and the subsequent work will be This research work will be carried out in the future.

    3 Conclusion

    In this paper, the flow pattern and stability characteristics of the bottom of the Shenzhou-like return module shape under different Reynolds number conditions were carefully characterized by using large eddy simulation method. The similarities and differences of the bottom flow characteristics of the Shenzhou-like return module under different winding conditions are analyzed from various perspectives, such as shoulder shear instability, bottom separation instability, coupled instability in the tail track development area and far tail track area. The results show that the Shenzhou-like return module shape flow is basically laminar under low Reynolds number conditions, the shoulder shear layer is destabilized late, the bottom separation zone is larger, and the oscillation amplitude of the Karman-like vortex in thewake region is smaller. The low and high Reynolds number conditions have significant effects on the shoulder shear destabilization mode, and have less effect on the bottom flow structure destabilization mode. These research results will provide some basic theoretical support for the research of re-entry vehicle shape design, stability control and wake disturbance.

    猜你喜歡
    麗麗中國航天朱德
    快點 快點
    不必要花的錢
    有一種浪漫叫中國航天
    賣夢店
    如果讓我許一個愿望
    畫一畫
    I love my family
    賴麗麗
    中國篆刻(2016年3期)2016-09-26 12:19:28
    “中國航天日”來了
    太空探索(2016年5期)2016-07-12 15:17:57
    中國航天
    太空探索(2016年5期)2016-07-12 15:17:55
    亚洲人成网站在线播放欧美日韩| 可以在线观看的亚洲视频| 亚洲精品久久国产高清桃花| 人妻久久中文字幕网| 亚洲精品av麻豆狂野| 国产黄片美女视频| 久久精品aⅴ一区二区三区四区| 99国产综合亚洲精品| 国产真实乱freesex| 中文在线观看免费www的网站 | 他把我摸到了高潮在线观看| 国产精品 国内视频| 婷婷丁香在线五月| 国产乱人伦免费视频| 欧美av亚洲av综合av国产av| 成在线人永久免费视频| e午夜精品久久久久久久| 窝窝影院91人妻| 久久久久久免费高清国产稀缺| 他把我摸到了高潮在线观看| 黄片大片在线免费观看| 精品国产乱子伦一区二区三区| 全区人妻精品视频| 国产高清视频在线观看网站| 国产av又大| 久久久久久久久免费视频了| 老司机靠b影院| 亚洲av美国av| 久久香蕉激情| 欧美高清成人免费视频www| 成人av一区二区三区在线看| 国产亚洲欧美在线一区二区| 亚洲成a人片在线一区二区| 男男h啪啪无遮挡| 国产高清视频在线播放一区| 九色成人免费人妻av| 香蕉国产在线看| 日韩欧美国产在线观看| 国产午夜福利久久久久久| 美女黄网站色视频| 精品熟女少妇八av免费久了| 成人欧美大片| 2021天堂中文幕一二区在线观| 露出奶头的视频| 三级毛片av免费| 亚洲欧美日韩高清在线视频| 日韩中文字幕欧美一区二区| 黄色视频不卡| 国内精品久久久久久久电影| 欧美绝顶高潮抽搐喷水| 亚洲精品久久成人aⅴ小说| 国产成人精品无人区| 婷婷丁香在线五月| 熟女电影av网| 床上黄色一级片| 国产欧美日韩一区二区精品| 成人精品一区二区免费| 99国产极品粉嫩在线观看| 亚洲无线在线观看| 亚洲色图 男人天堂 中文字幕| 黑人欧美特级aaaaaa片| 亚洲 国产 在线| 琪琪午夜伦伦电影理论片6080| 日韩有码中文字幕| 亚洲成av人片在线播放无| 精品人妻1区二区| 露出奶头的视频| av片东京热男人的天堂| 国产精品一区二区三区四区免费观看 | 99riav亚洲国产免费| 亚洲成a人片在线一区二区| 91九色精品人成在线观看| 免费看a级黄色片| 叶爱在线成人免费视频播放| 精品久久蜜臀av无| 亚洲人成网站在线播放欧美日韩| 19禁男女啪啪无遮挡网站| 免费在线观看黄色视频的| 成人精品一区二区免费| 美女大奶头视频| 亚洲欧美一区二区三区黑人| 国产精品永久免费网站| 麻豆久久精品国产亚洲av| 日韩三级视频一区二区三区| 非洲黑人性xxxx精品又粗又长| 久久久久久久久中文| 男女午夜视频在线观看| 国产精品 国内视频| 一本精品99久久精品77| 日本免费一区二区三区高清不卡| 久久人妻福利社区极品人妻图片| 日韩欧美在线二视频| 国产精品免费视频内射| 宅男免费午夜| 国产成人一区二区三区免费视频网站| 岛国在线观看网站| 在线观看免费日韩欧美大片| 中文字幕久久专区| 久久久国产欧美日韩av| 日本a在线网址| 精品午夜福利视频在线观看一区| 亚洲成人免费电影在线观看| 午夜福利免费观看在线| 一卡2卡三卡四卡精品乱码亚洲| 777久久人妻少妇嫩草av网站| 国产精品久久久久久精品电影| 在线观看免费日韩欧美大片| 成人欧美大片| 精华霜和精华液先用哪个| cao死你这个sao货| 国产人伦9x9x在线观看| 18禁观看日本| 在线观看美女被高潮喷水网站 | 午夜福利高清视频| 两个人视频免费观看高清| 亚洲avbb在线观看| 999久久久精品免费观看国产| 国产av不卡久久| 亚洲人与动物交配视频| 天天一区二区日本电影三级| 1024香蕉在线观看| 国产成人aa在线观看| 亚洲午夜理论影院| 婷婷六月久久综合丁香| 操出白浆在线播放| 亚洲自偷自拍图片 自拍| 日韩精品免费视频一区二区三区| 禁无遮挡网站| 亚洲一区二区三区不卡视频| 两个人免费观看高清视频| 91国产中文字幕| 国产精品野战在线观看| 一级a爱片免费观看的视频| 国产精品久久视频播放| 人人妻人人看人人澡| 美女大奶头视频| 麻豆av在线久日| 国产成人av激情在线播放| 午夜视频精品福利| 亚洲黑人精品在线| 亚洲精品av麻豆狂野| 欧美日本亚洲视频在线播放| 十八禁人妻一区二区| 在线播放国产精品三级| 高潮久久久久久久久久久不卡| 亚洲人成77777在线视频| 男女之事视频高清在线观看| 1024手机看黄色片| 制服人妻中文乱码| 欧美日韩精品网址| 村上凉子中文字幕在线| 亚洲精品美女久久av网站| 91国产中文字幕| 最新美女视频免费是黄的| 久热爱精品视频在线9| 99re在线观看精品视频| av在线天堂中文字幕| 国产精品美女特级片免费视频播放器 | 欧美成人一区二区免费高清观看 | svipshipincom国产片| www日本在线高清视频| 搡老岳熟女国产| 欧美午夜高清在线| 黄色视频,在线免费观看| 亚洲精华国产精华精| 亚洲欧美精品综合久久99| 精品国内亚洲2022精品成人| 又黄又粗又硬又大视频| 精品少妇一区二区三区视频日本电影| 五月伊人婷婷丁香| 最近视频中文字幕2019在线8| 日韩有码中文字幕| 国产久久久一区二区三区| 婷婷亚洲欧美| 国产真人三级小视频在线观看| 欧美在线一区亚洲| 欧美黄色淫秽网站| 国产激情偷乱视频一区二区| 免费无遮挡裸体视频| 亚洲真实伦在线观看| 亚洲精品粉嫩美女一区| 日韩高清综合在线| 中出人妻视频一区二区| 国产午夜精品论理片| 午夜福利高清视频| 精品乱码久久久久久99久播| 啪啪无遮挡十八禁网站| 女人被狂操c到高潮| 黑人操中国人逼视频| 日韩欧美国产一区二区入口| 天堂动漫精品| 黄片大片在线免费观看| 色尼玛亚洲综合影院| 亚洲av五月六月丁香网| 村上凉子中文字幕在线| 色综合站精品国产| 免费在线观看亚洲国产| 国产成+人综合+亚洲专区| 亚洲激情在线av| 美女 人体艺术 gogo| 搡老熟女国产l中国老女人| 国产精品98久久久久久宅男小说| 国产成人精品无人区| 给我免费播放毛片高清在线观看| 夜夜躁狠狠躁天天躁| 三级国产精品欧美在线观看 | 日本黄色视频三级网站网址| 色综合亚洲欧美另类图片| 又大又爽又粗| 国产高清videossex| 婷婷精品国产亚洲av| 日韩精品免费视频一区二区三区| 成人午夜高清在线视频| 欧美成人免费av一区二区三区| 国产精品国产高清国产av| 国产主播在线观看一区二区| 日韩高清综合在线| 高清在线国产一区| 女同久久另类99精品国产91| 丁香欧美五月| 日本精品一区二区三区蜜桃| 99久久无色码亚洲精品果冻| 国产亚洲av高清不卡| 在线观看一区二区三区| 黄频高清免费视频| aaaaa片日本免费| 亚洲av片天天在线观看| 999久久久国产精品视频| 老汉色av国产亚洲站长工具| 久久香蕉激情| 亚洲av中文字字幕乱码综合| 成人国产一区最新在线观看| 欧美日韩中文字幕国产精品一区二区三区| 精品熟女少妇八av免费久了| 国产1区2区3区精品| 神马国产精品三级电影在线观看 | 超碰成人久久| 国产av不卡久久| 亚洲男人的天堂狠狠| 18禁观看日本| 后天国语完整版免费观看| 色老头精品视频在线观看| 国产精品九九99| 法律面前人人平等表现在哪些方面| 天天躁夜夜躁狠狠躁躁| 两性夫妻黄色片| 久久久久国产精品人妻aⅴ院| 琪琪午夜伦伦电影理论片6080| 黄色丝袜av网址大全| 久久人人精品亚洲av| 久久午夜亚洲精品久久| 国产精品99久久99久久久不卡| 天天添夜夜摸| 麻豆一二三区av精品| 国产精品久久久人人做人人爽| 久久久久性生活片| 国产爱豆传媒在线观看 | ponron亚洲| 亚洲国产欧美一区二区综合| 欧美日韩瑟瑟在线播放| 欧美日韩亚洲综合一区二区三区_| 久久久久久久久免费视频了| 亚洲激情在线av| 狂野欧美激情性xxxx| 国内少妇人妻偷人精品xxx网站 | 精品国产乱子伦一区二区三区| avwww免费| 久久久久性生活片| 成人国产一区最新在线观看| 操出白浆在线播放| 悠悠久久av| 久久精品91无色码中文字幕| 午夜激情av网站| 日韩欧美免费精品| 国产亚洲精品综合一区在线观看 | 91九色精品人成在线观看| 波多野结衣高清作品| 午夜成年电影在线免费观看| 美女午夜性视频免费| 免费在线观看亚洲国产| 免费在线观看影片大全网站| 午夜福利视频1000在线观看| 一边摸一边做爽爽视频免费| 男女视频在线观看网站免费 | 日韩大码丰满熟妇| 欧美日韩精品网址| cao死你这个sao货| 色老头精品视频在线观看| 国产精品自产拍在线观看55亚洲| 精品久久久久久久人妻蜜臀av| 国产91精品成人一区二区三区| 特大巨黑吊av在线直播| 亚洲国产精品999在线| 无人区码免费观看不卡| 天天躁夜夜躁狠狠躁躁| 久99久视频精品免费| 国产亚洲精品久久久久久毛片| 69av精品久久久久久| 欧美乱码精品一区二区三区| 国产黄a三级三级三级人| 天堂影院成人在线观看| 亚洲激情在线av| 熟女少妇亚洲综合色aaa.| 最好的美女福利视频网| 久久久久性生活片| 日本五十路高清| 久9热在线精品视频| 日本成人三级电影网站| 麻豆av在线久日| 国产精品一区二区三区四区免费观看 | 老汉色∧v一级毛片| 亚洲精华国产精华精| 天天一区二区日本电影三级| 久久精品国产亚洲av高清一级| 99久久99久久久精品蜜桃| 国产一区二区在线av高清观看| 99热这里只有是精品50| 亚洲精品色激情综合| 日本在线视频免费播放| 两个人免费观看高清视频| 精品日产1卡2卡| 天天躁狠狠躁夜夜躁狠狠躁| 久久久国产成人精品二区| 大型黄色视频在线免费观看| 美女 人体艺术 gogo| 欧美一区二区精品小视频在线| 欧美乱妇无乱码| 麻豆成人av在线观看| 久久亚洲真实| 欧美日韩精品网址| 久久精品91无色码中文字幕| 国产视频一区二区在线看| 日韩av在线大香蕉| av免费在线观看网站| 久久精品国产亚洲av高清一级| 成人永久免费在线观看视频| 性色av乱码一区二区三区2| 亚洲国产日韩欧美精品在线观看 | 美女黄网站色视频| 亚洲av成人精品一区久久| 亚洲激情在线av| 国产av一区在线观看免费| 在线观看一区二区三区| 久久伊人香网站| 色噜噜av男人的天堂激情| 免费在线观看亚洲国产| 精品国产超薄肉色丝袜足j| av视频在线观看入口| 色综合婷婷激情| 亚洲,欧美精品.| 欧美极品一区二区三区四区| 又粗又爽又猛毛片免费看| 男插女下体视频免费在线播放| 女人爽到高潮嗷嗷叫在线视频| 国产av不卡久久| 国产片内射在线| 此物有八面人人有两片| 俺也久久电影网| 久久久久国产精品人妻aⅴ院| 国产三级黄色录像| 亚洲av成人精品一区久久| 男女下面进入的视频免费午夜| 久久久久性生活片| 人妻夜夜爽99麻豆av| 少妇裸体淫交视频免费看高清 | 日韩免费av在线播放| 男人的好看免费观看在线视频 | 亚洲av第一区精品v没综合| 精品高清国产在线一区| 黄片小视频在线播放| 国产激情久久老熟女| 伊人久久大香线蕉亚洲五| 黄片大片在线免费观看| www日本在线高清视频| 九九热线精品视视频播放| 高清在线国产一区| 亚洲精品一区av在线观看| 久久精品91无色码中文字幕| 亚洲成人久久性| 久久精品国产亚洲av高清一级| 免费在线观看日本一区| 丁香欧美五月| 1024手机看黄色片| www日本在线高清视频| 99在线人妻在线中文字幕| 亚洲精品国产一区二区精华液| 久久精品人妻少妇| 日韩大码丰满熟妇| 一本大道久久a久久精品| 亚洲熟妇中文字幕五十中出| 人妻久久中文字幕网| 午夜福利高清视频| 在线观看午夜福利视频| 中文字幕高清在线视频| 久久精品夜夜夜夜夜久久蜜豆 | 天堂av国产一区二区熟女人妻 | 欧美色视频一区免费| 欧美不卡视频在线免费观看 | 在线观看舔阴道视频| 亚洲18禁久久av| 级片在线观看| 久久精品aⅴ一区二区三区四区| 欧美中文综合在线视频| 黄片小视频在线播放| 午夜精品一区二区三区免费看| 床上黄色一级片| 精品久久久久久久人妻蜜臀av| a级毛片a级免费在线| 搡老熟女国产l中国老女人| 国产黄色小视频在线观看| 岛国在线观看网站| 俺也久久电影网| 日本黄大片高清| 精品熟女少妇八av免费久了| 最好的美女福利视频网| 一卡2卡三卡四卡精品乱码亚洲| 久久久国产欧美日韩av| 无人区码免费观看不卡| 成人av一区二区三区在线看| 嫩草影视91久久| 亚洲精品中文字幕在线视频| 国产精华一区二区三区| 欧美日韩精品网址| 亚洲精品中文字幕一二三四区| 中文资源天堂在线| 久久久水蜜桃国产精品网| 午夜久久久久精精品| 国产精品久久久人人做人人爽| 精品午夜福利视频在线观看一区| 国产亚洲精品第一综合不卡| 国产成人aa在线观看| 全区人妻精品视频| 一级片免费观看大全| 欧美精品啪啪一区二区三区| 久久久国产精品麻豆| 观看免费一级毛片| 一区福利在线观看| 首页视频小说图片口味搜索| 一进一出抽搐gif免费好疼| 桃红色精品国产亚洲av| 在线观看舔阴道视频| 国产午夜精品久久久久久| 久久久久久久久免费视频了| 国产一区在线观看成人免费| 国产熟女午夜一区二区三区| 麻豆成人av在线观看| 日本a在线网址| 99久久99久久久精品蜜桃| 免费高清视频大片| 国产又黄又爽又无遮挡在线| 搡老岳熟女国产| 人妻久久中文字幕网| 97碰自拍视频| 嫁个100分男人电影在线观看| 国产精品98久久久久久宅男小说| 一边摸一边抽搐一进一小说| 日韩免费av在线播放| 亚洲免费av在线视频| 色噜噜av男人的天堂激情| 国产aⅴ精品一区二区三区波| 国产av不卡久久| 欧美乱码精品一区二区三区| 亚洲五月天丁香| 国产一级毛片七仙女欲春2| 非洲黑人性xxxx精品又粗又长| 亚洲成人中文字幕在线播放| 久久热在线av| 91成年电影在线观看| 搞女人的毛片| 桃红色精品国产亚洲av| 国产精品久久久久久亚洲av鲁大| 亚洲av电影不卡..在线观看| 亚洲,欧美精品.| 成人精品一区二区免费| 日韩av在线大香蕉| 人妻夜夜爽99麻豆av| 两人在一起打扑克的视频| 色噜噜av男人的天堂激情| 黑人欧美特级aaaaaa片| 亚洲,欧美精品.| 黄色a级毛片大全视频| 亚洲av美国av| 99热6这里只有精品| 波多野结衣巨乳人妻| 亚洲精品美女久久av网站| 成年免费大片在线观看| 久久精品人妻少妇| 18禁黄网站禁片午夜丰满| 亚洲中文字幕日韩| 日韩欧美免费精品| 国产午夜精品论理片| 亚洲av第一区精品v没综合| 欧美 亚洲 国产 日韩一| 久久中文字幕人妻熟女| 男女那种视频在线观看| 岛国视频午夜一区免费看| 亚洲欧美日韩高清在线视频| АⅤ资源中文在线天堂| 国产av麻豆久久久久久久| 一a级毛片在线观看| www.精华液| 欧美黑人精品巨大| 精品午夜福利视频在线观看一区| av在线播放免费不卡| 国产69精品久久久久777片 | 精品少妇一区二区三区视频日本电影| 18禁裸乳无遮挡免费网站照片| 精品福利观看| 欧美黑人巨大hd| 曰老女人黄片| 免费人成视频x8x8入口观看| 国产熟女xx| 亚洲无线在线观看| 久久久精品大字幕| 亚洲国产欧洲综合997久久,| 搡老熟女国产l中国老女人| 久久久精品大字幕| 国产真人三级小视频在线观看| 欧美中文日本在线观看视频| 日韩成人在线观看一区二区三区| 成年免费大片在线观看| 欧美av亚洲av综合av国产av| 狂野欧美激情性xxxx| 美女午夜性视频免费| 精品午夜福利视频在线观看一区| 五月伊人婷婷丁香| 法律面前人人平等表现在哪些方面| 久久99热这里只有精品18| 中文字幕最新亚洲高清| 国产熟女xx| 日本 欧美在线| 好男人电影高清在线观看| 熟女少妇亚洲综合色aaa.| 变态另类丝袜制服| 激情在线观看视频在线高清| 99精品久久久久人妻精品| 美女午夜性视频免费| 亚洲 欧美一区二区三区| 搡老妇女老女人老熟妇| 身体一侧抽搐| 中出人妻视频一区二区| АⅤ资源中文在线天堂| 老熟妇乱子伦视频在线观看| 99久久国产精品久久久| 国产免费av片在线观看野外av| 国产1区2区3区精品| 午夜亚洲福利在线播放| 老司机在亚洲福利影院| 丝袜人妻中文字幕| 999精品在线视频| 午夜福利18| 亚洲一区高清亚洲精品| 欧美日本亚洲视频在线播放| 日韩欧美在线二视频| 国产高清视频在线观看网站| 亚洲av成人一区二区三| 久久婷婷成人综合色麻豆| 亚洲成人久久爱视频| 99久久久亚洲精品蜜臀av| 亚洲人成电影免费在线| 国产av在哪里看| 亚洲欧美激情综合另类| 少妇人妻一区二区三区视频| 亚洲男人的天堂狠狠| 国产精品一及| 免费在线观看日本一区| 国产精品av久久久久免费| 亚洲午夜精品一区,二区,三区| 在线观看免费日韩欧美大片| 神马国产精品三级电影在线观看 | 欧美精品亚洲一区二区| 亚洲五月婷婷丁香| 每晚都被弄得嗷嗷叫到高潮| 少妇的丰满在线观看| 亚洲激情在线av| 国产激情欧美一区二区| 国产伦人伦偷精品视频| 中文亚洲av片在线观看爽| 热99re8久久精品国产| 18禁黄网站禁片免费观看直播| 黑人欧美特级aaaaaa片| 久久久精品欧美日韩精品| 欧美日韩精品网址| tocl精华| 久久久国产欧美日韩av| 级片在线观看| 国产一区二区激情短视频| 天天一区二区日本电影三级| 这个男人来自地球电影免费观看| 精品电影一区二区在线| 精品午夜福利视频在线观看一区| 在线免费观看的www视频| 真人做人爱边吃奶动态| 欧美成人性av电影在线观看| 亚洲 欧美 日韩 在线 免费| aaaaa片日本免费| 国产精品久久久久久精品电影| 麻豆一二三区av精品| 99国产精品一区二区蜜桃av| 一区二区三区激情视频| 青草久久国产| 91字幕亚洲| 一卡2卡三卡四卡精品乱码亚洲| 免费在线观看完整版高清| 国产亚洲精品综合一区在线观看 | av福利片在线观看| 操出白浆在线播放| 巨乳人妻的诱惑在线观看| 午夜久久久久精精品| 午夜福利免费观看在线| 精品福利观看| 别揉我奶头~嗯~啊~动态视频| 欧美在线黄色| 啦啦啦观看免费观看视频高清| 日本免费a在线|