• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Mitochondrial Genome of Episesarma lafondii (Brachyura: Sesarmidae) and Comparison with Other Sesarmid Crabs

    2021-12-22 11:43:12ZHANGYingGAOYanGONGLiLUXintingJIANGLihuaLIUBingjianLIULiqinZhenmingandLIPengfei
    Journal of Ocean University of China 2021年6期

    ZHANG Ying, GAO Yan, GONG Li, , *, LU Xinting, JIANG Lihua,LIU Bingjian, LIU Liqin, LüZhenming, and LI Pengfei

    Mitochondrial Genome of(Brachyura: Sesarmidae) and Comparison with Other Sesarmid Crabs

    ZHANG Ying1), 2), GAO Yan1), 2), GONG Li1), 2), 3), *, LU Xinting1), 2), JIANG Lihua1), 2),LIU Bingjian1), 2), LIU Liqin1), 2), LüZhenming1), 2), and LI Pengfei3)

    1),,,316022,2),,316022,3),,530007,

    Complete mitochondrial genomes (mitogenomes) can provide useful information for phylogenetic relationships, gene rearrangement, and molecular evolution. Here, the complete mitogenome of(Brachyura: Grapsoidea: Sesarmidae)was sequenced through next-generation sequencing technique for the first time.The 15640bp mitogenome contains the entire set of 37 genes and an AT-rich region.The rearrangements of two tRNA genes (-and-) are compared with that in the pancrustacean ground pattern, and the tandem duplication/random loss model was selected to explain the observed gene rearrangements. The phylogenetic results showed that all sesarmid crabs belong to the same group, wherein the genusshow- ed the closest relationship with. Furthermore, the monophyly of each family was well supported except for Xanthidae, Gecarcinidae, and Homolidae. The correlation between the phylogeny of Sesarmidae species and the gaps in theregion was analyzed. Evidently, the gaps betweenand(Gap3) and betweenand(Gap4) degenerated with the evolution process. In general, the results will contribute to the in-depth understanding of gene rearrangements in Sesarmidae mitogenomes and provide new insights into the phylogeny of Brachyura.

    mitochondrial DNA; sesarmid crab; gene order; rearrangement mechanism; phylogenetic construction

    1 Introduction

    The mitochondrial genome (mitogenome) of metazoans is generally a closed, circular molecule with a size of 14–20kb.This genome contains 37 encoding genes, including 13 protein-coding genes (PCGs), two ribosomal RNA genes (and), 22 transfer RNA genes (tRNAs), and an AT-rich region (also called control region, CR) (Boore, 1999). The mitogenome is characterized with small genome size, high evolutionary rate, simple structure, and maternal inheritance (Gyllensten., 1991; Sato and Sato, 2013).The complete mitogenome has been widely used in com- parative genomics, adaptive evolution, population genetics, and phylogenetic studies (Plazzi., 2016; Tan., 2018; Tan., 2019; Irisarri., 2020). The mitogenome can also provide direct molecular clues for gene re- arrangement process, which will reveal important informa-tion for phylogenetic analyses (Liu and Cui, 2010; Zhuang and Cheng, 2010; Xin., 2017b; Gong., 2020a). With the rapid advancement of sequencing technologies, next-generation sequencing has become a fast and low-costmethod to provide complete mitogenomes (Gan., 2014; Tan., 2015).

    The gene order was initially considered conserved in vertebrate mitogenomes. However, with more than 11000 complete mitogenomes currently determined, mitogenomic gene rearrangements have been found in several groups, including fishes (Lü., 2019), reptiles (Liu., 2019),birds (Caparroz., 2018), amphibians (Jiang., 2020),insects (Li., 2019a), and crustaceans (Tan., 2019). In general, the frequency of gene rearrangement in vertebrate mitogenomes is relatively lower than that in invertebrate mitogenomes. Thus far, several models have been applied for mitochondrial gene rearrangement.These mo- dels include the tandem duplication/random loss (TDRL) model (Moritz and Brown, 1987), recombination model (Lunt and Hyman, 1997), tRNA mispriming model (Can- tatore., 1987; Jacobs., 1989), tandem duplication/ nonrandom loss model (Lavrov., 2002), and double- replication/random loss model (Shi., 2014). The TDRL model posits that rearrangements occur via tandem dupli- cation followed by the random deletion of redundant genes (Moritz and Brown, 1987).This model has been widely used to explain the translocation of genes encoded on the same strand (Shi., 2015; Tan., 2018; Wang., 2018). Another commonly accepted hypothesis is the recombination model, which is characterized by the breakage and rejoining of the participating DNA strands (Lunt and Hyman, 1997). This model has been applied to explain the gene inversion and other rearrangement events (Kong., 2009; Tan., 2018). Usually the last three mo- dels are seldom used.

    The infraorder Brachyura contains about 7250 described species, and most of them are economically and ecologi- cally prominent (Zhang, 2011; Basso., 2017; Chen.,2018). However, the phylogenetic relationships among members of Brachyura and their evolutionary origin remain debatable due to the extreme morphological and ecologi- cal diversity(Sanchez., 2016; Rocha., 2018; Wang., 2019). Brachyura was initially segmented into three groups: Podotremata, Heterotremata, and Thoracotremata (Spears., 1992). Subsequently, it was clustered intoDromiacea and Eubrachyura,which also include Thoraco- tremata, Raninoida, and Heterotremata) (Martin and Davis,2001). However, the latest classification scheme groups Bra-chyura into Eubrachyura, Dromicea, Raninoida, and Cyclo- dorippoida (Ahyong., 2007; Tsang., 2014). Al- though the phylogenetic relationship within Brachyura is still inconclusive, the current classification system has beensupported by most scholars.

    Among Brachyura, sesarmid crabs are thought to be the key initial processors of leaves of mangrove, which play a crucial role in mangrove ecosystems (Gillikin, 2004; Ra- hayu and Ng, 2010; Tan., 2019). According to WoRMS(http://www.marinespecies.org/), the family Sesarmidae has36 genera and 309 species in total. Recently, studies on the genusde Man, 1895 (Brachyura: Sesarmidae) mainly concentrated on the morphology (Buatip., 2017; Jeyachandran., 2020), whereas studies at the mole- cular level are rare (Fratini., 2005; Schubart., 2009). To date,ten complete mitogenomes of Sesarmidae involving five genera are available from the National Cen- ter for Biotechnology Information (NCBI); however, no stu-dy reported the genus.Hombron & Jacquinot, 1846 (Sesarmidae, Sesarminae), which is a mudflat crab that is often found in the upper in- tertidal zone of mangrove forests in the Ryukyu Archipe- lago (Miyake., 2019). To date, no information is avail-able about its biological and molecular characteristics. Thus, in this study, the complete mitogenome of the genus() was sequenced for the first time. Thecharacteristics of this mitogenome were described and com-pared with those of 10 other sesarmid crabs.Additionally, anoverall phylogenetic analysis of 107 brachyuran species wascarried out based on the nucleotide sequences of 13 PCGs.

    2 Materials and Methods

    2.1 Ethics Statement

    The crab specimens used in the present study were pur- chased from the Lingshui seafood market in Hainan, Chi- na. The species is not included in the endangered list of theInternational Union for Conservation of Nature (https:// www.iucnredlist.org/). Specimen collection and maintenance were performed in strict accordance with the recommen- dations of Animal Care Quality Assurance in China. All ex-perimental protocols were approved by the Institutional Ethics Committee of Zhejiang Ocean University.

    2.2 Sample Collection and DNA Extraction

    An individual specimen ofwas collected from Lingshui seafood market in Hainan Province, China (18?24?39??N, 109?58?20??E). The specimen was immediately preserved in absolute ethanol after collection and then stored at ?20℃. This specimen was identified with a stereo dissecting microscope based on the key morphological features of crabs (Dai and Yang, 1991; Lee., 2015). The SQ Tissue DNA Kit (OMEGA) was used to ex-tract the total genomic DNA following the manufacturer’s instructions.

    2.3 Mitogenome Sequencing and Assembly

    The genomic DNA was sent to Shanghai Origingene Biopharm Technology Co., Ltd. for library preparation and high-throughput sequencing. The library was constructed by using the VAHTS Universal Plus DNA Library Prep Kit with an insert size of 400bp. The genome sequencing was conducted on an Illumina NovaSeq 6000 platform, with a strategy of 150 paired-end sequencing.The raw data sets were stored in the Short Read Archive database (https:// www.ncbi.nlm.nih.gov/sra/) with the accession no. SRX7 809611.The NOVOPlasty software (Dierckxsens., 2017) was used for theassembly of clean data without sequencing adapters.In the seed extension algo- rithm achieved by NOVOPlasty, the complete mitogenome of(GenBank accession number: NC_047209) was used as the seed sequence. To assess the single-base accuracy of the assembled genome, we com- pared it with three confirmed sequences by polymerase chain reaction (PCR) and Sanger sequencing methods.Sanger sequencing was conducted using an ABI genetic analyzer (Applied Biosystems, China). The PCR fragmentsand the corresponding primer sequences are as follows:(MW428280; F: TCNACAAAYCATAAAGAYATY GG/R: TANACYTCWGGRTGHCCRAARAAYCA);(MW430771; F: TRTGTGGRTTYCCHTTTHTAGCNGG/ R: GCTAATGCAG GGATACTAAC);(MW430770; F: TGRTTYGGRGCYTGRVTHGGNYT/R: GGDGGHA RNCCHCCWARNGA).

    2.4 Mitogenome Annotation and Sequence Analyses

    The software Sequin (version 15.10, http://www.ncbi. nlm.nih.gov/Sequin/) was used to manually annotate the complete mitogenome.The PCGs were determined by their open reading frame following the invertebrate mtDNA translation table. The boundaries of rRNA and tRNA geneswere determined using NCBI-BLAST (http://blast.ncbi.nlm.nih.gov) and tRNAscan-SE 1.21 (Lowe and Chan, 2016),respectively, comparing with the related species.Based on the secondary structure predicted by tRNAscan-SE 1.21 (Lowe and Chan, 2016) and MITOS Web Server (Bernt., 2013), we manually plotted the transfer RNA genes.The CGView online server V 1.0(Stothard and Wishart, 2005) was used to draw the mitogenome map. The soft- ware MEGA X (Kumar., 2018) was used to analyze the relative synonymous codon usage (RSCU) and nucleo- tide composition. The following formulas were used to cal- culate the strand asymmetries: AT-skew=(A?T)/(A+T); GC-skew=(G?C)/(G+C) (Perna and Kocher, 1995).

    2.5 Phylogenetic Analysis

    A total of 106 complete mitogenome sequences were downloaded from the GenBank database to reconstruct phy- logenetic relationships within Brachyura, adding two ano- muran species to serve as the outgroup (Table 1).Phylo- Suite (Zhang., 2019) was used to extract the nucleo- tide sequences of 13 PCGs for each of the above species from the GenBank files.The MAFFT program (Katoh., 2002) integrated into PhyloSuite was executed to align mul-tiple sequences in normal-alignment mode, and ambigu- ously aligned regions were identified and moved by Gblocks (Talavera and Castresana, 2007). The alignments of indi- vidual genes were then concatenated and used to generate input files (Phylip and Nexus format) for phylogenetic ana- lyses. GTR+F+I+G4 was selected as the best-fit model in accordance with the BIC criterion using ModelFinder (Kalyaanamoorthy., 2017). Phylogenetic trees were built under maximum likelihood (ML) and Bayesian in- ference (BI) methods. The ML analysis was carried out in IQ-TREE (Nguyen., 2015) using an ML+rapid boot- strap (BS) algorithm with 1000 replicates.The BI analysiswas performed in MrBayes 3.2.6 (Ronquist., 2012) with default parameters and 3×106Markov Chain Monte Carlo generations.The trees were sampled every 1000 ge- nerations with a burn-in of 25%. The average standard de- viation of split frequencies below 0.01 was considered to reach convergence.

    Table 1 List of 107 Brachyuran species and two outgroups used in this paper

    3 Results and Discussion

    3.1 Genome Structure and Composition

    The circular duplex molecule mitogenome ofis 15640bp in size (GenBank accession number: MT193721), which is within the length range (15611–15920bp) of other previously sequenced Sesarmidae mitogenomes (Table 1). The mitogenome also contains 13 PCGs (11187bp), two rRNAs (2160bp), 22 tRNAs (1479bp), and a putative CR (663bp) (Fig.1; Table 2). The lengths of PCGs, tRNAs, rRNAs, and CR for this speciesand other published Sesar-midae species were compared. The sizes of PCGs, tRNAs, and rRNAs were relatively conserved, and the maximum length diversification, which is from 528bp to 833bp, was detected in the rapidly evolving CR.

    The nucleotide composition of the whole mitogenome was 37.0% A, 38.9% T, 9.4% G, and 14.7% C (Table 3), which revealed a strong AT bias (75.9%). The skewness me-trics of the mitogenome showed negative AT-skew (?0.025)and negative GC-skew (?0.219), which followed the trendof published Sesarmidae mitogenomes (Table 4) (Xin.,2017a; Wang., 2018; Chen., 2019; Wang., 2019).Inmitogenome, 17 intergenic spacers ranging from 1bp to 38bp were found. The longest one was located betweenand(Table 2).Mean- while, 20bp overlapping sites were identified at eight junc- tions. Three overlaps (4bp betweenand, 1bp betweenand, and 7bp betweenand) were also generally found in other invertebrate species (Ta- ble 2) (Li., 2019b; Wang., 2020b).

    3.2 PCGs and Codon Usage

    The 13 PCGs consist of one cytochrome b (), two ATPases (and), three cytochrome c oxidases (-), and seven NADH dehydrogenases (-and). Four genes (,,, and) are encoded by the L-strand, whereas the remaining nine genes are encoded by the H-strand. The typical ATN co- dons are used as a start codon. The majority of the 13 PCGs terminate with TAA or TAG, whereas three other PCGs (,, and) use a single T as the stop codon (Ta- ble 2). The presence of different stop codons has been pro-ven to be a common phenomenon in metazoan mitoge- nomes (Wu., 2014; Hamasaki., 2017; Gong.,2018). The AT-skew of the 13 PCGs was negative (?0.161), whereas the GC-skew was positive (0.018), demonstrat- ing that Ts were more plentiful than As and Gs were more plentiful than Cs in the entire PCG sequence. Furthermore, four PCGs (,,, and) had positive values, indicating that they are encoded by the L-strand, whereas the remaining nine PCGs had negative values, in- dicating that they are encoded by the H-strand (Table 3).

    Fig.1 Gene map of the E. lafondiimitogenome. Genes outside the circular are encoded by the heavy strand; genes inside the circular are encoded by the light strand.

    Table 2 Features of the mitochondrial genome of E. lafondii

    Table 3 Composition and skewness of E. lafondii mitogenome

    Table 4 Composition and skewness of mitogenomes in 11 Sesarmidae species

    The RSCU and amino acid composition were highly si- milaramong the 11 Sesarmidae mitogenomes. Similar to other reported brachyuran species (Tang., 2018; Lu., 2020; Wang., 2020b), the usage of two- and four- fold degenerate codons in all sesarmid crabs was biased to-ward the use of codons abundant in A or T. The most com-mon amino acids were,,, andin all 11 Sesar- midae mitogenomes. In addition, the codons(CGC) and(UGC) are absent inandmitogenomes, whereas(CGC) is absent in the other five Sesarmidae species,including,,,,and.

    3.3 Transfer RNAs, Ribosomal RNAs, and CR

    A total of 22 tRNAs, ranging in length from 64bp to 73bp, were identified inmitogenome.Fourteen tRNAs are encoded by the H-strand, and the other eight tRNAs are encoded by the L-strand (Fig.1 and Table 2).Except for-(TCT), all tRNAs displayed canoni- cal cloverleaf structures. The loss of the dihydrouridine arm in(TCT) was thought to be a common pheno-menon in metazoan mitogenomes (Gong., 2019, 2020b).Except for the Watson-Crick base pairs (A-T and G-C) andG-U matches, four mismatched base pairs, including oneC-U base pair in, one A-A base pair in,and two U-U base pairs inand(L), were found. Posttranscriptional RNA editing may be involved in the correction of mismatches (Lavrov., 2000; Masta and Boore, 2004). Theandgenes are encoded by the L-strand, which are 1328 and 832bp, respectively. The location ofwas between(L) and, andwas located betweenand CR (Fig.1 and Table 2). The AT content of total rRNA was 81.0% (Table 3), indicating a highly AT preference.

    The CR was located betweenand, with an extremely high AT content (80.5%). This region is 663bp in length and exhibits a positive AT-skew (0.060) and a negative GC-skew (?0.256) (Table 3). The CR was the most variable region because of its rapid evolution rate compared with the other genes. Thus far, limited research has studied the conserved blocks of the CR despite its func- tional importance, especially in invertebrate mitogenomes (Ray and Densmore, 2002; Guo., 2003; Zhao., 2011). Totally 11 Sesarmidae CRs were aligned to explore the sequence conservation. The results revealed nine con- served blocks (Fig.2), and their consensus sequences are as follows:AATGTA,ATATT, TTA,TAT,TTACTAT,ACCTGA ATT,TT, TTAATATATT(the underlined letters represent the fluctuant nucleo- tide among the 11 Sesarmidae species). To our knowledge, this is the first study to report the conserved blocks of the CR in crab mitogenomes.

    3.4 Gene Rearrangement

    Compared with the gene arrangement in ancestral crus- taceans (the pancrustacean ground pattern), the() was rearranged from the downstream of(Fig.3A) to the position between() and(), forming a new gene block (----) inmitogenome (Fig.3B).This translocation was also ob- served in other brachyuran mitogenomes (Chen., 2019; Tan., 2019; Wang., 2020b). However, an addi- tional translocation of() was identified when selecting the ancestral mitochondrial gene order of Bra- chyura as a reference. This translocation moved out from the() and() junction and formed a new gene cluster (---), in accord with otherpublished Sesarmidae mitogenome orders (Fig.3C) (Tan., 2019).

    In accordance with the rearrangement features and prin- ciple of parsimony, the TDRL model was selected as the most suitable model to explain the two rearrangement events in themitogenome. The hypothesized interme- diate steps were as follows, starting with the typical an- cestral order of the Decapoda mitogenome. First, the gene block (--) was tandemly duplicated and generated two sets of the same gene cluster (--)- (--).Given the parsimony of the mitogenome, one of the duplicated genes lost function followed by a random loss of redundant genes, namely,--H-F′-ND5′-′ (the un- derlined letters represent the deleted genes, similarly he- reinafter). Thus, newgene order was formed (Fig.3B). In the second rearrangement event, the gene or- der of the gene cluster (--) was changed to--through the same mechanism. Thus, a dimeric (--)- (--) was formed due to gene duplication. In the fol- lowing step, the duplicated genes were deleted due to func- tional incapacitation (-----). Thus, a new gene order--was formed (Fig.3C).

    Fig.2 Aligned sequences of the CRs in 11 sesarmid crabs. The shaded blocks represent the conserved sequences. Abbreviations of species names are given as follows. C. eul, Chiromentes eulimene; C. neg, Chiromantes neglectum; C. deh, Chiromantes dehaani; C. hae, Chiromantes haematocheir; M. dep, Metopaulias depressus; C. sin, Clistocoeloma sinense; E. laf, Episesarma lafondii; P. tri, Parasesarma tripectinis; P. pic, Parasesarma pictum; P. aff, Parasesarma affine; N. min, Nanosesarma minutum.

    Fig.3 Inferred intermediate steps for the generation of the mitogenome of E. lafondii. A, Ancestral gene arrangement of Decapoda; B, Ancestral gene arrangement of Brachyura; C, Gene arrangement of E. lafondii and ten other Sesarmidae species. The duplicated gene block is underlined, and the lost genes are marked in gray.

    In the above-speculated process, after the two copied gene clusters (--and--) lost their functions (losses 1, 2, 3, 4, and 5 in Fig.3), they would have de- graded to form five pseudogene fragments or short inter- genic spacers (gray boxes in Fig.3). Here, four intergenic spacers (Gaps 1, 2, 3, and 4) were found in themitogenome (the intergenic spacer between CR andde- faults to zero because the boundary of CR is uncertain): loss 1 () corresponds to Gap1 (5bp); loss 2 () to Gap2 (23bp); loss 4 () to Gap3 (38bp); loss 5 () to Gap4 (13bp). In general, given the high degradation rate of non-functional genes, the intergenic spacers caused by a random loss event should vanish rapidly to guarantee the parsimony of the mitogenome. The one-to-one correspon- dence between the loss-of-function fragments and residualintergenic spacers indicate that the novel gene order can be explained by the TDRL model.

    3.5 Phylogenetic Analysis and QIM Spacers in Sesarmidae

    The concatenated set of the nucleotide sequences of 13 PCGs from 107 known brachyuran species and two anomu- ran outgroups (and) were used for the phylogenetic analysis. The phylogenetic trees ob- tained using BI and ML methods resulted in identical topo- logical structures except for supporting values. Here, only one topology (BI) with both support values was presented (Fig.4). The phylogenetic tree showed that all Sesarmidaespecies clustered together as a group, wherein the genusshowed the closest relationship with. Sesarmidae and Gecarcinidae were the most closely related species, forming part of the superfamily Grapsoi- dea.Previous findings and our recent research on Sesarmi- dae species showed that the evolution process of mitoge- nomes could be revealed by the length of gap spacer in therearranged area (McKnight and Shaffer, 1997; Gong., 2020a; Zhang., 2020). Consequently, we analyzed thecorrelation between the phylogeny of Sesarmidae species and the gaps in theregion. The results reconfirmed that the phylogenetic position of each sesarmid crab was significantly correlated with the gaps in the rearrangedregion(Fig.5).In this study, the gap spacer betweenand(Gap3) decreased from 218bp () (Zhang., 2020) to 14bp (). Thespacer betweenand(Gap4) followed the same trend, decreasing from 64bp () to 9bp ().This trend suggests that with the evo- lution of sesarmid crabs, the gap spacers (Gap3 and Gap4) decreased progressively.

    Of the 29 families in our phylogenetic tree, except for Xanthidae, Gecarcinidae, and Homolidae, each family form- ed a monophyletic clade with high nodal support values (Fig.4).Thus it needs further attention with the morpho- logical identification and taxonomic status of their closely related species,.,,,, and. With the exception of Eriphioidea, Ocypodoidea, and Grapsoidea, the monophyly of most superfamilies were well supported, as consistently revealed in previous molecular phyloge- netic analyses (Tan., 2018; Tan., 2019; Lu., 2020; Wang., 2020a). For a long time, the classifica- tion of Grapsoidea and Ocypodoidea has been controver- sial.Previous studies based on morphological features con- sidered them to be monophyletic clades(Martin and Da- vis, 2001; Ng, 2008; Davie., 2015). However, an in- creasing number of molecular studies, including ours, havechallenged the monophyly of these taxa (Chen., 2018; Tan., 2018; Chen., 2019; Lu., 2020).Wang.’s recent molecular study revealed that Ocypodoidea and Grapsoidea are divided into three clades (Wang., 2020a), and similar findings are presented in Tan.’s work (2018, 2019). Although the polyphyly of Grapsoi- dea and Ocypodoidea is well supported,the phylogenetic relationships of these superfamilies need further analysis by integration of additional molecular data.

    Although the main phylogenetic structures of our tree followed those of previous results, several controversial findings were observed.Here,Varunidae and Macrophthal- midae possessing the same gene order were clustered to- gether as sister groups and were distantly related to Mic- tyridae, which is consistent with most molecular viewpo- ints (Gong., 2018; Chen., 2019; Tan., 2019; Wang., 2020a). Meanwhile, in a recent study, the phy- logenetic relationship among the above three families was ((Macrophthalmidae+Mictyridae)+Varunidae) (Tan., 2018). Additionally, no agreement was obtained on the phy- logenetic relationships among Sesarmidae, Gecarcinidae, Dotillidae, and Grapsidae.Here, Sesarmidae and Gecarci- nidae were closely related, and Dotillidae was the sister clade to Grapsidae, supporting Chen.’s viewpoint (Chen., 2019). In the previous findings (Basso., 2017; Tan., 2018), Sesarmidae was clustered with Dotilli- dae as sister groups. Regarding the phylogenetic position ofGecarcinidae and Grapsidae, no consensus has been reach- ed in current studies (Sanchez., 2016; Jia., 2018; Tan., 2019). In general, the placement of multiple sin- gle brachyuran lineages in the tree may produce conflict- ing phylogenetic relationships, possibly affecting the position of other brachyuran clades at a high taxonomic le- vel.In our phylogenetic tree, most of the unstable and con- flicting clades might have resulted from the limited taxon samples.Thereby, more comprehensive taxon samplings andreliable classification markers are necessary for fur- ther understanding the phylogenetic and evolutionary rela- tionships among Brachyura.

    Fig.4 Phylogenetic tree of brachyuran species inferred from the nucleotide sequences of 13 PCGs based on ML and BI analyses. The node marked with a solid circle indicates 100 ML bootstrap support (BS) and 100% BI posterior probability (PP). The numbers after the species name are the GenBank accession number.

    4 Conclusions

    In this article, the complete mitogenome ofis determined and analyzed for the first time. The molecular features of this newly sequenced mitogenome aremostly consistent with those of 10 other sesarmid crabs. The gene rearrangement events occurring inmitogenome can be explained by the TDRL model. Phylogenetic ana- lyses indicate the close relationship ofandand the non-monophyly of Xanthidae, Gecar- cinidae, and Homolidae.Moreover, the polyphyly of three superfamilies (Ocypodoidea, Eriphioidea, and Grapsoidea)is reconfirmed.In the future studies, more samples fromdifferent taxonomic levels and reliable classification mar- kers will be employed to facilitate the taxonomical and phy- logenetic studies of Brachyura.

    Fig.5 Relationship of Sesarmidae species and gap spacers between tRNA-QIM. Gap3 and Gap4 indicate the intergenic spacer between Q and I, and between I and M, respectively.

    Acknowledgments

    This work was supported by the Natural Science Foun- dation of Zhejiang Province (No. LY21C190007) and the Zhoushan Science and Technology Bureau (No. 2021C21 007). We would like to express our gratitude to Dr. Xu Zhang for helping in species identification and providing critical comments. The valuable remarks of the anonymous reviewers are also acknowledged.

    Ahyong, S. T., Lai, J. C. Y., Sharkey, D., Colgan, D. J., and Ng, P. K. L., 2007. Phylogenetics of the brachyuran crabs (Crustacea: Decapoda): The status of Podotremata based on small subunit nuclear ribosomal RNA., 45 (2): 576-586.

    Basso, A., Babbucci, M., Pauletto, M., Riginella, E., Patarnello, T., and Negrisolo, E., 2017. The highly rearranged mitochon- drial genomes of the crabsand(Majidae) and gene order evolution in Brachyura., 7 (1): 1-17.

    Bernt, M., Donath, A., Jühling, F., Externbrink, F., Florentz, C., Fritzsch, G.,., 2013. MITOS: Improvedmetazoanmitochondrial genome annotation., 69 (2): 313-319.

    Boore, J. L., 1999. Animal mitochondrial genomes., 27 (8): 1767-1780.

    Buatip, S., Thongroy, P., and Yeesin, P., 2017. Burrow morpholo- gical characteristics of(H. Milne Edwards, 1853) (Decapoda, Grapsidae, Sesarminae)., 22 (2): 17-30.

    Cantatore, P., Gadaleta, M., Roberti, M. N., Saccone, C., and Wil- son, A. C., 1987. Duplication and remoulding of tRNA genes during the evolutionary rearrangement of mitochondrial genomes., 329 (6142): 853-855.

    Caparroz, R., Rocha, A. V., Cabanne, G. S., Tubaro, P., Aleixo, A.,Lemmon, E. M.,., 2018. Mitogenomes of two neotropical bird species and the multiple independent origin of mitochon- drial gene orders in Passeriformes.,45 (3): 279-285.

    Chen, J., Xing, Y., Yao, W., Xu, X., Zhang, C., Zhang, Z.,., 2019. Phylomitogenomics reconfirm the phylogenetic positionof the genusinferred from the two grapsid crabs (De-capoda: Brachyura: Grapsoidea)., 14 (1): e0210763.

    Chen, J., Xing, Y., Yao, W., Zhang, C., Zhang, Z., Jiang, G.,.,2018. Characterization of four new mitogenomes from Ocypo-doidea & Grapsoidea, and phylomitogenomic insights into tho- racotreme evolution., 675: 27-35.

    Dai, A. Y., and Yang, S. L., 1991.. Chi- na Ocean Press, Beijing, 482-495.

    Davie, P. J., Guinot, D., and Ng, P. K., 2015.Systematics and clas-sification of Brachyura. In:. Brill, 1049-1130.

    Dierckxsens, N., Mardulyn, P., and Smits, G., 2017. NOVOPlasty:assembly of organelle genomes from whole genome data., 45 (4): e18.

    Fratini, S., Vannini, M., Cannicci, S., and Schubart, C. D., 2005. Tree-climbing mangrove crabs: A case of convergent evolution., 7 (2): 219-233.

    Gan, H. M., Schultz, M. B., and Austin, C. M., 2014. Integrated shotgun sequencing and bioinformatics pipeline allows ultra- fast mitogenome recovery and confirms substantial gene re- arrangements in Australian freshwater crayfishes., 14 (1): 19.

    Gillikin, D. P., 2004. Osmoregulatory ability of(Crosnier, 1965) subjected to dilute and hypersaline sea- water., 77 (1): 67-74.

    Gong, L., Liu, B. J., Liu, L. Q., Guo, B. Y., and Lü, Z. M., 2019. The complete mitochondrial genome of(Cen- trarchiformes: Terapontidae) and comparative analysis of the control region among eight Centrarchiformes species., 45 (2): 137-144.

    Gong, L., Lu, X., Luo, H., Zhang, Y., Shi, W., Liu, L.,., 2020a.Novel gene rearrangement pattern inmitochondrial genome: New gene order in genus(Pleuronectiformes: Cynoglossidae)., 149: 1232-1240.

    Gong, L., Lu, X., Wang, Z., Zhu, K., Liu, L., Jiang, L.,.,2020b. Novel gene rearrangement in the mitochondrial genome of(Anomura: Coenobitidae) and phy- logenetic implications for Anomura., 112 (2): 1804- 1812.

    Gong, L., Lü, Z. M., Guo, B. Y., Ye, Y. Y., and Liu, L. Q., 2018. Characterization of the complete mitochondrial genome of thetidewater goby,(Gobiiformes; Gobii-dae; Gobionellinae) and its phylogenetic implications., 10 (1): 93-97.

    Guo, X., Liu, S., and Liu, Y., 2003. Comparative analysis of the mitochondrial DNA control region in cyprinids with different ploidy level., 224 (1-4): 25-38.

    Gyllensten, U., Wharton, D., Josefsson, A., and Wilson, A. C., 1991. Paternal inheritance of mitochondrial DNA in mice., 352 (6332): 255-257.

    Hamasaki, K., Iizuka, C., Sanda, T., Imai, H., and Kitada, S., 2017.Phylogeny and phylogeography of the land hermit crab(Decapoda: Anomura: Coenobitidae) in the Nor- thwestern Pacific Region., 38 (1): e12369.

    Irisarri, I., Uribe, J. E., Eernisse, D. J., and Zardoya, R., 2020. A mitogenomic phylogeny of chitons (Mollusca: Polyplacopho- ra)., 20 (1): 1-15.

    Jacobs, H. T., Herbert, E. R., and Rankine, J., 1989. Sea urchin egg mitochondrial DNA contains a short displacement loop (D- loop) in the replication origin region., 17 (22): 8949-8965.

    Jeyachandran, S., Park, K., Kwak, I. S., and Baskaralingam, V., 2020. Morphological and functional characterization of circu- lating hemocytes using microscopy techniques., 83 (7): 736-743.

    Jia, X. N., Xu, S. X., Bai, J., Wang, Y. F., Nie, Z. H., Zhu, C. C.,., 2018. The complete mitochondrial genome ofand phylogenetic analysis of Genus(Crustacea: Decapoda: Parathelphusidae)., 13 (2): e0192601.

    Jiang, L., Zhang, M., Deng, L., Xu, Z., Shi, H., Jia, X.,., 2020.Characteristics of the mitochondrial genome ofand related species in Ranidae: Gene rearrangements and phylogenetic relationships., 10 (23): 12817-12837.

    Kalyaanamoorthy, S., Minh, B. Q., Wong, T. K. F., von Haeseler, A., and Jermiin, L. S., 2017. ModelFinder: Fast model selection for accurate phylogenetic estimates., 14 (6): 587-589.

    Katoh, K., Misawa, K., Kuma, K. I., and Miyata, T., 2002. MAFFT: A novel method for rapid multiple sequence alignment based on fast Fourier transform., 30 (14): 3059-3066.

    Kong, X., Dong, X., Zhang, Y., Shi, W., Wang, Z., and Yu, Z., 2009. A novel rearrangement in the mitochondrial genome of tongue sole,: Control region transloca- tion and a tRNA gene inversion., 52 (12): 975-984.

    Kumar, S., Stecher, G., Li, M., Knyaz, C., and Tamura, K., 2018. MEGA X: Molecular evolutionary genetics analysis across com- puting platforms., 35 (6): 1547-1549.

    Lavrov, D. V., Boore, J. L., and Brown, W. M., 2002. Complete mtDNA sequences of two millipedes suggest a new model for mitochondrial gene rearrangements: Duplication and nonran- dom loss., 19 (2): 163-169.

    Lavrov, D. V., Brown, W. M., and Boore, J. L., 2000. A novel typeof RNA editing occurs in the mitochondrial tRNAs of the cen- tipede.s, 97 (25): 13738-13742.

    Lee, B. Y., Ng, N. K., and Ng, P. K., 2015. The taxonomy of five species ofDe Man, 1895, in Singapore (Crustacea: Decapoda: Brachyura: Sesarmidae)., 31 (Supplement): 199-215.

    Li, N., Hu, G. L., and Hua, B. Z., 2019a. Complete mitochondrial genomes ofandand geno- mic comparisons of Mecoptera., 140: 672-681.

    Li, W., Cheng, J., Hui, M., and Sha, Z., 2019b. Molecular phy- logeny of the genus(Decapoda: Anomura: Dio- genidae) based on mitochondrial and nuclear DNA sequences., 37 (5): 1686-1697.

    Liu, J., Yu, J., Zhou, M., and Yang, J., 2019. Complete mitochon- drial genome of: Deep insights into the phy- logeny and gene rearrangements of Agamidae species., 125: 423-431.

    Liu, Y., and Cui, Z., 2010. Complete mitochondrial genome of the Asian paddle crab(Crustacea: Decapo- da: Portunidae): Gene rearrangement of the marine brachyu- rans and phylogenetic considerations of the decapods., 37 (5): 2559-2569.

    Lowe, T. M., and Chan, P. P., 2016. tRNAscan-SE On-line: Inte- grating search and context for analysis of transfer RNA genes., 44 (W1): W54-W57.

    Lu, X., Gong, L., Zhang, Y., Chen, J., Liu, L., Jiang, L.,., 2020.The complete mitochondrial genome of: The first representative from the family Calappidae and its phylo- genetic position within Brachyura., 112 (3): 2516- 2523.

    Lunt, D. H., and Hyman, B. C., 1997. Animal mitochondrial DNA recombination., 387 (6630): 247-247.

    Lü, Z., Zhu, K., Jiang, H., Lu, X., Liu, B., Ye, Y.,., 2019. Complete mitochondrial genome ofreveals novel gene order and phylogenetic relationships of Anguilliformes., 135: 609-618.

    Martin, J. W., and Davis, G. E., 2001.. Natural History Museum of Los An- geles County, Science Series, 39: 1-124.

    Masta, S. E., and Boore, J. L., 2004. The complete mitochon- drial genome sequence of the spiderreveals rearranged and extremely truncated tRNAs., 21 (5): 893-902.

    McKnight, M. L., and Shaffer, H. B., 1997. Large, rapidly evolv- ing intergenic spacers in the mitochondrial DNA of the sala- mander family Ambystomatidae (Amphibia: Caudata)., 14 (11): 1167-1176.

    Miyake, T., Aihara, N., Maeda, K., Shinzato, C., Koyanagi, R., Kobayashi, H.,., 2019. Bloodmeal host identification with inferences to feeding habits of a fish-fed mosquito,., 9 (1): 1-8.

    Moritz, C., and Brown, W. M., 1987. Tandem duplications in ani- mal mitochondrial DNAs: Variation in incidence and gene con- tent among lizards., 84 (20): 7183-7187.

    Ng, P., 2008. Systema Brachyurorum, Part I. An annotated check- list of extant brachyuran crabs of the world., 17: 1-286.

    Nguyen, L. T., Schmidt, H. A., Von Haeseler, A., and Minh, B. Q., 2015. IQ-TREE: A fast and effective stochastic algorithm for estimating maximum-likelihood phylogenies., 32 (1): 268-274.

    Perna, N. T., and Kocher, T. D., 1995. Patterns of nucleotide com- position at fourfold degenerate sites of animal mitochondrial genomes., 41 (3): 353-358.

    Plazzi, F., Puccio, G., and Passamonti, M., 2016. Comparative large-scale mitogenomics evidences clade-specific evolution- ary trends in mitochondrial DNAs of Bivalvia., 8 (8): 2544-2564.

    Rahayu, D. L., and Ng, P. K. L., 2010. Revision of the(Latreille, 1803) species-group (Crustacea: Decapoda: Brachyura: Sesarmidae)., 2327 (1): 1-22.

    Ray, D. A., and Densmore, L., 2002. The crocodilian mitochon- drial control region: General structure, conserved sequences, and evolutionary implications., 294 (4): 334-345.

    Rocha, C. T., Regina, W. M., Mantelatto, F. L., Christopher, T., and José, Z. F., 2018. Ultrastructure of spermatozoa of mem- bers of Calappidae, Aethridae and Menippidae and discussion of their phylogenetic placement., 101 (1): 89- 100.

    Ronquist, F., Teslenko, M., van der Mark, P., Ayres, D. L., Darling, A., Hohna, S.,., 2012. MrBayes 3.2: Efficient Ba-yesian phylogenetic inference and model choice across a large model space., 61 (3): 539-542.

    Sanchez, G., Tomano, S., Yamashiro, C., Fujita, R., Wakabaya- shi, T., Sakai, M.,., 2016. Population genetics of the jum- bo squid(Cephalopoda: Ommastrephidae) in the northern Humboldt Current system based on mitochondrial and microsatellite DNA markers., 175: 1- 9.

    Sato, M., and Sato, K., 2013. Maternal inheritance of mitochon- drial DNA by diverse mechanisms to eliminate paternal mito- chondrial DNA.–, 1833 (8): 1979-1984.

    Schubart, C. D., Liu, H. C., and Ng, P. K. L., 2009. Revision ofSerène & Soh, 1970 (Crustacea: Brachyura: Sesarmi- dae), with description of a new genus and two new species., 2154 (1): 1-29.

    Shi, W., Gong, L., Wang, S. Y., Miao, X. G., and Kong, X. Y., 2015.Tandem duplication and random loss for mitogenome rear- rangement in(Teleost: Pleuronectiformes)., 16 (1): 355.

    Shi, W., Miao, X. G., and Kong, X. Y., 2014. A novel model of double replications and random loss accounts for rearrangements in the mitogenome of(Teleostei: Pleu- ronectiformes)., 15 (1): 352.

    Spears, T., Abele, L. G., and Kim, W., 1992. The monophyly of Brachyuran crabs: A phylogenetic study based on 18s rRN?., 41 (4): 446-461.

    Stothard, P., and Wishart, D. S., 2005. Circular genome visuali- zation and exploration using CGView., 21 (4): 537-539.

    Talavera, G., and Castresana, J., 2007. Improvement of phyloge- nies after removing divergent and ambiguously aligned blocks from protein sequence alignments., 56 (4): 564-577.

    Tan, M. H., Gan, H. M., Lee, Y. P., Bracken-Grissom, H., Chan, T. Y., Miller, A. D.,., 2019. Comparative mitogenomics of the Decapoda reveals evolutionary heterogeneity in architecture and composition., 9 (1): 1-16.

    Tan, M. H., Gan, H. M., Lee, Y. P., Linton, S., Grandjean, F.,Bartholomei-Santos, M. L.,., 2018. ORDER within thechaos: Insights into phylogenetic relationships within the Ano- mura (Crustacea: Decapoda) from mitochondrial sequences and gene order rearrangements., 127: 320-331.

    Tan, M. H., Gan, H. M., Schultz, M. B., and Austin, C. M., 2015. MitoPhAST, a new automated mitogenomic phylogeny tool in the post-genomic era with a case study of 89 decapod mito- genomes including eight new freshwater crayfish mitogeno- mes., 85: 180-188.

    Tang, B. P., Liu, Y., Xin, Z. Z., Zhang, D. Z., Wang, Z. F., Zhu, X. Y.,., 2017. Characterisation of the complete mitochon- drial genome of(Grapsoidea: Varunidae) and comparison with other Brachyuran crabs., 110 (4): 221-230.

    Tsang, L. M., Schubart, C. D., Ahyong, S. T., Lai, J. C. Y., Au, E. Y. C., Chan, T. Y.,., 2014. Evolutionary history of true crabs (Crustacea: Decapoda: Brachyura) and the origin of fresh-water crabs., 31 (5): 1173- 1187.

    Wang, Q., Tang, D., Guo, H., Wang, J., Xu, X., and Wang, Z., 2020a. Comparative mitochondrial genomic analysis ofand insights into the phylogeny of the Ocypodoidea & Grapsoidea., 112 (1): 82-91.

    Wang, Z., Shi, X., Guo, H., Tang, D., Bai, Y., and Wang, Z., 2020b.Characterization of the complete mitochondrial genome ofand comparison with other Brachyuran crabs., 112 (1): 10-19.

    Wang, Z., Shi, X., Tao, Y., Wu, Q., Bai, Y., Guo, H.,., 2019. The complete mitochondrial genome of(Brachyura: Grapsoidea: Sesarmidae) and comparison with other Brachyuran crabs., 111 (4): 799-807.

    Wang, Z., Wang, Z., Shi, X., Wu, Q., Tao, Y., Guo, H.,., 2018. Complete mitochondrial genome of(Brachyura: Sesarmidae): Gene rearrangements in Sesarmidaeand phylogenetic analysis of the Brachyura., 118: 31-40.

    Wu, X., Xiao, S., Li, X., Li, L., Shi, W., and Yu, Z., 2014. Evo- lution of the tRNA gene family in mitochondrial genomes of fiveclams (Bivalvia, Veneridae)., 533 (1): 439- 446.

    Xin, Z. Z., Liu, Y., Zhang, D. Z., Chai, X. Y., Wang, Z. F., Zhang, H. B.,., 2017a. Complete mitochondrial genome of(Brachyura: Grapsoidea): Gene rearrange- ments and higher-level phylogeny of the Brachyura., 7 (1): 1-10.

    Xin, Z. Z., Yu, L., Zhang, D. Z., Wang, Z. F., Zhang, H. B., Tang, B. P.,., 2017b. Mitochondrial genome of(Brachyura: Grapsoidea: Varunidae): Gene rearrange- ments and higher-level phylogeny of the Brachyura., 627: 307-314.

    Zhang, D., Gao, F., Jakovlic, I., Zou, H., Zhang, J., Li, W. X.,.,2019. PhyloSuite: An integrated and scalable desktop platformfor streamlined molecular sequence data management and evo-lutionary phylogenetics studies., 20 (1): 348-355.

    Zhang, Y., Gong, L., Lu, X., Jiang, L., Liu, B., Liu, L.,., 2020.Gene rearrangements in the mitochondrial genome of(Brachyura: Sesarmidae) and phylogenetic im-plications for Brachyura., 162: 704-714.

    Zhang, Z. Q., 2011..,3148 (Special issue): 1-237.

    Zhao, L., Zheng, Z. M., Huang, Y., Zhou, Z., and Wang, L., 2011.Comparative analysis of the mitochondrial control region in Orthoptera., 50 (3): 385-393.

    Zhuang, X., and Cheng, C. H. C., 2010. ND6 gene ‘lost’ and found:Evolution of mitochondrial gene rearrangement in Antarctic no- tothenioids., 27 (6): 1391- 1403.

    September 25, 2020;

    December 1, 2020;

    April 27, 2021

    ? Ocean University of China, Science Press and Springer-Verlag GmbH Germany 2021

    .E-mail: gongli1027@163.com

    (Edited by Qiu Yantao)

    日日啪夜夜撸| 国产精品一及| 国产黄片美女视频| 十八禁国产超污无遮挡网站| 日韩欧美精品免费久久| 国产av不卡久久| 波多野结衣高清无吗| 悠悠久久av| 亚洲色图av天堂| 大又大粗又爽又黄少妇毛片口| 午夜激情福利司机影院| 久久精品综合一区二区三区| 免费av毛片视频| 亚洲av中文av极速乱| 成年版毛片免费区| 亚洲国产精品国产精品| 久久天躁狠狠躁夜夜2o2o| 国产亚洲91精品色在线| 色综合亚洲欧美另类图片| 神马国产精品三级电影在线观看| 看免费成人av毛片| 成人永久免费在线观看视频| 蜜桃久久精品国产亚洲av| 天堂动漫精品| 黄色欧美视频在线观看| 联通29元200g的流量卡| 日本黄色片子视频| av女优亚洲男人天堂| 性插视频无遮挡在线免费观看| 最近视频中文字幕2019在线8| 精品午夜福利在线看| 亚洲精品亚洲一区二区| 免费看光身美女| 国产又黄又爽又无遮挡在线| 亚洲国产精品成人久久小说 | 中文字幕av成人在线电影| 国产免费男女视频| 精品久久久久久久久久久久久| 一本一本综合久久| 免费大片18禁| 菩萨蛮人人尽说江南好唐韦庄 | av免费在线看不卡| 老熟妇仑乱视频hdxx| 国产精品乱码一区二三区的特点| 人妻丰满熟妇av一区二区三区| 国产v大片淫在线免费观看| 日本一二三区视频观看| 99热网站在线观看| 亚洲国产精品国产精品| 最近的中文字幕免费完整| 女人十人毛片免费观看3o分钟| 亚洲av.av天堂| 午夜福利在线在线| 欧美最新免费一区二区三区| 看片在线看免费视频| 老司机福利观看| 国产片特级美女逼逼视频| 校园人妻丝袜中文字幕| 国产精品国产三级国产av玫瑰| 国产av在哪里看| 国产不卡一卡二| 热99在线观看视频| 国产精品一及| 久久人人精品亚洲av| 又粗又爽又猛毛片免费看| 高清午夜精品一区二区三区 | 国产 一区 欧美 日韩| 精品人妻一区二区三区麻豆 | 天天躁夜夜躁狠狠久久av| 国产在线精品亚洲第一网站| 久久精品91蜜桃| 精品无人区乱码1区二区| 精品人妻偷拍中文字幕| 特级一级黄色大片| 乱人视频在线观看| 日韩精品有码人妻一区| .国产精品久久| 免费观看精品视频网站| 天天一区二区日本电影三级| 久久久久性生活片| 色吧在线观看| 99久久精品热视频| 国产精品不卡视频一区二区| 国产片特级美女逼逼视频| 国产男人的电影天堂91| 色哟哟哟哟哟哟| 熟妇人妻久久中文字幕3abv| 久久久a久久爽久久v久久| 别揉我奶头~嗯~啊~动态视频| 99国产精品一区二区蜜桃av| 久久精品国产清高在天天线| 亚洲av中文av极速乱| 亚洲精品456在线播放app| 欧美一区二区精品小视频在线| 亚洲无线观看免费| 99国产极品粉嫩在线观看| 狂野欧美激情性xxxx在线观看| 可以在线观看的亚洲视频| 免费观看精品视频网站| 国产三级在线视频| 99国产精品一区二区蜜桃av| av在线播放精品| 午夜亚洲福利在线播放| 性色avwww在线观看| 国产精品一区二区三区四区久久| 最新中文字幕久久久久| 又粗又爽又猛毛片免费看| 免费无遮挡裸体视频| 中文字幕久久专区| 最近在线观看免费完整版| 午夜福利在线观看吧| 中文字幕熟女人妻在线| 国产亚洲91精品色在线| 国产精品国产三级国产av玫瑰| 我的女老师完整版在线观看| a级毛片免费高清观看在线播放| а√天堂www在线а√下载| 亚洲最大成人手机在线| 亚洲国产精品成人久久小说 | 欧美日韩精品成人综合77777| 免费看日本二区| 欧美在线一区亚洲| 欧美成人一区二区免费高清观看| 春色校园在线视频观看| 麻豆av噜噜一区二区三区| 真实男女啪啪啪动态图| 色5月婷婷丁香| 内射极品少妇av片p| 老熟妇仑乱视频hdxx| 最好的美女福利视频网| av免费在线看不卡| 听说在线观看完整版免费高清| 午夜福利视频1000在线观看| 成人二区视频| 国产白丝娇喘喷水9色精品| 午夜福利成人在线免费观看| 啦啦啦观看免费观看视频高清| 在线播放无遮挡| 午夜福利在线观看免费完整高清在 | 免费大片18禁| 夜夜爽天天搞| 欧美xxxx性猛交bbbb| 欧美色欧美亚洲另类二区| 又爽又黄a免费视频| 赤兔流量卡办理| 婷婷亚洲欧美| 日本五十路高清| 变态另类丝袜制服| 老司机影院成人| 国产精品一区二区免费欧美| 女同久久另类99精品国产91| 亚洲精品日韩av片在线观看| 国产一区二区三区在线臀色熟女| 国产黄色视频一区二区在线观看 | 女人十人毛片免费观看3o分钟| 久久6这里有精品| 性色avwww在线观看| 国产精品美女特级片免费视频播放器| 国产中年淑女户外野战色| 不卡一级毛片| 午夜精品在线福利| 啦啦啦啦在线视频资源| 欧美高清性xxxxhd video| 国产精品日韩av在线免费观看| 日韩欧美三级三区| 久久久久久久午夜电影| 日本爱情动作片www.在线观看 | 亚洲高清免费不卡视频| 日韩欧美三级三区| 超碰av人人做人人爽久久| 毛片女人毛片| 国产精品久久久久久久久免| 国产又黄又爽又无遮挡在线| 久久草成人影院| 丝袜美腿在线中文| 国产成年人精品一区二区| 亚洲高清免费不卡视频| 美女 人体艺术 gogo| 又黄又爽又刺激的免费视频.| 免费看av在线观看网站| 国产精品一区二区免费欧美| 国产午夜精品论理片| 欧美激情国产日韩精品一区| 日本-黄色视频高清免费观看| 国产女主播在线喷水免费视频网站 | 欧美不卡视频在线免费观看| 亚洲专区国产一区二区| 亚洲美女黄片视频| АⅤ资源中文在线天堂| 午夜免费激情av| 精品久久久久久成人av| 日韩国内少妇激情av| 国产男靠女视频免费网站| 久久久久久久久久久丰满| 国内久久婷婷六月综合欲色啪| 国国产精品蜜臀av免费| 岛国在线免费视频观看| 51国产日韩欧美| 美女cb高潮喷水在线观看| 国产一区亚洲一区在线观看| 99久久精品热视频| 床上黄色一级片| 免费高清视频大片| 亚洲最大成人av| 日日摸夜夜添夜夜爱| 久久精品夜色国产| 91精品国产九色| 黄色欧美视频在线观看| 天天一区二区日本电影三级| 亚洲中文字幕日韩| 婷婷精品国产亚洲av在线| 亚洲国产精品sss在线观看| 深夜精品福利| 超碰av人人做人人爽久久| 国产精华一区二区三区| 中出人妻视频一区二区| 大又大粗又爽又黄少妇毛片口| 日日摸夜夜添夜夜添av毛片| 少妇高潮的动态图| 亚洲乱码一区二区免费版| 此物有八面人人有两片| 国产一区二区激情短视频| 成人无遮挡网站| 精品99又大又爽又粗少妇毛片| 亚洲成av人片在线播放无| 久久久久久久久久成人| 国产白丝娇喘喷水9色精品| 国产亚洲精品综合一区在线观看| 日韩欧美精品v在线| 综合色av麻豆| 免费观看人在逋| 春色校园在线视频观看| 中出人妻视频一区二区| 日韩,欧美,国产一区二区三区 | av.在线天堂| 全区人妻精品视频| 成人三级黄色视频| 国国产精品蜜臀av免费| 国产精品久久久久久av不卡| 最近的中文字幕免费完整| 亚洲在线自拍视频| 国产亚洲精品综合一区在线观看| 日日啪夜夜撸| 天堂动漫精品| 一本一本综合久久| 日韩大尺度精品在线看网址| 99视频精品全部免费 在线| 自拍偷自拍亚洲精品老妇| 国产精品久久久久久精品电影| www.色视频.com| 亚洲性夜色夜夜综合| 午夜亚洲福利在线播放| 国产精品一二三区在线看| 青春草视频在线免费观看| 午夜日韩欧美国产| 夜夜看夜夜爽夜夜摸| 中文字幕久久专区| www日本黄色视频网| 亚洲真实伦在线观看| 亚洲性夜色夜夜综合| 午夜福利成人在线免费观看| 色哟哟哟哟哟哟| 日韩欧美免费精品| 精品人妻一区二区三区麻豆 | 白带黄色成豆腐渣| 91麻豆精品激情在线观看国产| 毛片女人毛片| 中文在线观看免费www的网站| 国产激情偷乱视频一区二区| 国产亚洲欧美98| 中文字幕av在线有码专区| 国产免费男女视频| 成熟少妇高潮喷水视频| 美女高潮的动态| 成人综合一区亚洲| 99精品在免费线老司机午夜| 婷婷亚洲欧美| 日产精品乱码卡一卡2卡三| 我的女老师完整版在线观看| 成人漫画全彩无遮挡| 亚洲成a人片在线一区二区| 国产成人aa在线观看| 啦啦啦观看免费观看视频高清| 色综合色国产| 国产高潮美女av| 国产精品久久久久久精品电影| 天美传媒精品一区二区| 久久亚洲精品不卡| 69人妻影院| 性色avwww在线观看| 男女那种视频在线观看| 国产熟女欧美一区二区| 精品午夜福利在线看| 毛片一级片免费看久久久久| 女人被狂操c到高潮| 日日摸夜夜添夜夜添小说| 亚洲一区二区三区色噜噜| 一进一出抽搐gif免费好疼| 国产精品一及| 成人性生交大片免费视频hd| 18+在线观看网站| 亚洲乱码一区二区免费版| 国产精品一区www在线观看| av.在线天堂| 18禁在线无遮挡免费观看视频 | 国产精品三级大全| 久久久久久久亚洲中文字幕| 91av网一区二区| 亚洲国产精品成人久久小说 | 亚洲av免费在线观看| 女的被弄到高潮叫床怎么办| 男人舔奶头视频| 亚洲欧美清纯卡通| 国产精品国产高清国产av| 免费观看人在逋| 免费av观看视频| 久久久久久久久久黄片| 欧洲精品卡2卡3卡4卡5卡区| 不卡一级毛片| 午夜免费激情av| 免费av不卡在线播放| 日本爱情动作片www.在线观看 | 18禁裸乳无遮挡免费网站照片| 国产精品一区二区三区四区免费观看 | 成人亚洲精品av一区二区| 午夜福利在线在线| 欧美xxxx性猛交bbbb| 人妻夜夜爽99麻豆av| 嫩草影院入口| 亚洲欧美日韩东京热| 嫩草影院精品99| 国产欧美日韩精品一区二区| 波多野结衣高清作品| 丝袜喷水一区| 久久精品国产亚洲av香蕉五月| 亚洲精品456在线播放app| 亚洲精品一区av在线观看| 熟女人妻精品中文字幕| 免费在线观看影片大全网站| 午夜精品一区二区三区免费看| 国产成人a区在线观看| 精品久久久久久久久亚洲| 男人狂女人下面高潮的视频| 欧美日本亚洲视频在线播放| 欧美色欧美亚洲另类二区| 波多野结衣高清无吗| 欧美xxxx性猛交bbbb| 久久久久久九九精品二区国产| 1024手机看黄色片| 国内精品美女久久久久久| 18禁裸乳无遮挡免费网站照片| 国产精品1区2区在线观看.| 少妇猛男粗大的猛烈进出视频 | 亚洲乱码一区二区免费版| aaaaa片日本免费| 日韩人妻高清精品专区| 亚洲国产色片| 国内精品美女久久久久久| 亚洲av免费高清在线观看| 亚洲专区国产一区二区| 国产精品久久视频播放| 欧美最新免费一区二区三区| 亚洲高清免费不卡视频| 国产精品1区2区在线观看.| 欧美成人a在线观看| 国产黄片美女视频| 丝袜美腿在线中文| 色综合色国产| 国产成人a∨麻豆精品| 精品福利观看| 亚洲aⅴ乱码一区二区在线播放| 欧美绝顶高潮抽搐喷水| 美女xxoo啪啪120秒动态图| 啦啦啦韩国在线观看视频| 美女黄网站色视频| 久久久久久久亚洲中文字幕| 日本精品一区二区三区蜜桃| 午夜精品一区二区三区免费看| 欧美精品国产亚洲| 啦啦啦韩国在线观看视频| 有码 亚洲区| 亚洲av中文字字幕乱码综合| 变态另类丝袜制服| 精品人妻一区二区三区麻豆 | 欧美成人精品欧美一级黄| 五月伊人婷婷丁香| 校园春色视频在线观看| 欧美bdsm另类| 国内精品宾馆在线| 国产精品永久免费网站| 国产伦精品一区二区三区视频9| 别揉我奶头 嗯啊视频| 成人国产麻豆网| 欧美高清性xxxxhd video| 22中文网久久字幕| 国产真实乱freesex| 久久久久久九九精品二区国产| 一进一出抽搐动态| 久久热精品热| 久久久久性生活片| 国产一区二区三区av在线 | 国产精品人妻久久久久久| 黄色视频,在线免费观看| 97超碰精品成人国产| 免费大片18禁| 少妇熟女aⅴ在线视频| 成人午夜高清在线视频| 黄色一级大片看看| 亚洲精品影视一区二区三区av| 亚洲av二区三区四区| 超碰av人人做人人爽久久| 国产伦精品一区二区三区四那| 亚洲成人久久性| 欧美一区二区精品小视频在线| a级毛片免费高清观看在线播放| 真实男女啪啪啪动态图| 神马国产精品三级电影在线观看| 十八禁网站免费在线| 别揉我奶头~嗯~啊~动态视频| 在线观看66精品国产| 18禁在线播放成人免费| 99精品在免费线老司机午夜| 亚洲av.av天堂| 欧美成人免费av一区二区三区| 嫩草影视91久久| 国产亚洲av嫩草精品影院| 欧美不卡视频在线免费观看| 舔av片在线| 久久久久久久亚洲中文字幕| 婷婷六月久久综合丁香| 成人鲁丝片一二三区免费| 日韩av不卡免费在线播放| 男插女下体视频免费在线播放| 亚洲av五月六月丁香网| 免费看美女性在线毛片视频| 99精品在免费线老司机午夜| 久久久精品欧美日韩精品| 精品少妇黑人巨大在线播放 | www.色视频.com| 国国产精品蜜臀av免费| 国产精品永久免费网站| 国产真实伦视频高清在线观看| 麻豆成人午夜福利视频| 在线观看免费视频日本深夜| 亚洲七黄色美女视频| 97超碰精品成人国产| 少妇的逼好多水| 国产在线精品亚洲第一网站| 在线观看一区二区三区| 欧美色欧美亚洲另类二区| 国产成人福利小说| 成人精品一区二区免费| 日本免费a在线| 99久久九九国产精品国产免费| 18禁在线无遮挡免费观看视频 | 可以在线观看的亚洲视频| 欧美日本亚洲视频在线播放| 欧洲精品卡2卡3卡4卡5卡区| 久久精品影院6| 久久久久免费精品人妻一区二区| 亚洲五月天丁香| 插逼视频在线观看| 一进一出抽搐动态| 看非洲黑人一级黄片| 精品久久久久久久久久久久久| 久久99热6这里只有精品| 免费观看精品视频网站| 免费大片18禁| 在线a可以看的网站| 国产淫片久久久久久久久| 亚洲精品亚洲一区二区| 精品午夜福利视频在线观看一区| 香蕉av资源在线| av专区在线播放| 激情 狠狠 欧美| 大香蕉久久网| 麻豆国产av国片精品| 神马国产精品三级电影在线观看| 精品久久久久久成人av| 亚洲熟妇熟女久久| 国产午夜精品论理片| 亚洲高清免费不卡视频| 天天躁夜夜躁狠狠久久av| 晚上一个人看的免费电影| 亚洲一级一片aⅴ在线观看| 中文字幕av在线有码专区| 成人午夜高清在线视频| 人妻夜夜爽99麻豆av| 最新在线观看一区二区三区| 婷婷六月久久综合丁香| av专区在线播放| 日本a在线网址| 亚洲国产高清在线一区二区三| 熟女人妻精品中文字幕| 男女下面进入的视频免费午夜| 午夜精品一区二区三区免费看| 18禁在线播放成人免费| 熟女电影av网| 国产精品一二三区在线看| 久久久成人免费电影| a级一级毛片免费在线观看| а√天堂www在线а√下载| 久久精品91蜜桃| 久久99热6这里只有精品| 久久精品国产亚洲av香蕉五月| 可以在线观看毛片的网站| 亚洲av一区综合| h日本视频在线播放| 成人性生交大片免费视频hd| 亚洲成人中文字幕在线播放| 丝袜喷水一区| 超碰av人人做人人爽久久| 亚洲人成网站在线播放欧美日韩| 久久精品国产亚洲网站| 亚洲美女视频黄频| 波多野结衣巨乳人妻| 国产精品女同一区二区软件| 国产精品久久久久久久电影| 简卡轻食公司| 久久精品夜夜夜夜夜久久蜜豆| 久久久精品大字幕| 一夜夜www| 全区人妻精品视频| 在线看三级毛片| 丰满的人妻完整版| 91在线观看av| 在线观看午夜福利视频| 中文字幕av成人在线电影| 成人亚洲精品av一区二区| 变态另类丝袜制服| 亚洲av五月六月丁香网| 狂野欧美白嫩少妇大欣赏| 最新中文字幕久久久久| 麻豆一二三区av精品| 免费大片18禁| 日本黄色视频三级网站网址| 一级av片app| 精品午夜福利在线看| 亚洲av熟女| 白带黄色成豆腐渣| 国产黄色视频一区二区在线观看 | 一进一出抽搐gif免费好疼| 一级av片app| 黑人高潮一二区| 特级一级黄色大片| 午夜精品在线福利| 欧美又色又爽又黄视频| 亚洲天堂国产精品一区在线| 免费大片18禁| 亚洲中文字幕日韩| 啦啦啦啦在线视频资源| 精品乱码久久久久久99久播| 成人永久免费在线观看视频| 高清毛片免费观看视频网站| 国产av在哪里看| 别揉我奶头 嗯啊视频| 日韩强制内射视频| 大香蕉久久网| 精品一区二区三区视频在线| 日韩精品有码人妻一区| 99久久精品一区二区三区| 91在线精品国自产拍蜜月| 亚洲第一区二区三区不卡| 91精品国产九色| 久久人人爽人人爽人人片va| 久久久久国产网址| 别揉我奶头~嗯~啊~动态视频| 欧美bdsm另类| 亚洲丝袜综合中文字幕| 嫩草影院入口| 日本与韩国留学比较| 天堂网av新在线| 日本a在线网址| 22中文网久久字幕| 亚洲美女搞黄在线观看 | 两个人视频免费观看高清| 日本-黄色视频高清免费观看| 欧美3d第一页| 欧美精品国产亚洲| 日韩,欧美,国产一区二区三区 | 亚洲四区av| 此物有八面人人有两片| 久久人妻av系列| 超碰av人人做人人爽久久| 国产免费一级a男人的天堂| 欧洲精品卡2卡3卡4卡5卡区| 欧美性猛交╳xxx乱大交人| 夜夜看夜夜爽夜夜摸| 精品日产1卡2卡| 精品久久国产蜜桃| 女同久久另类99精品国产91| 老司机午夜福利在线观看视频| 亚洲真实伦在线观看| 高清毛片免费观看视频网站| 亚洲精品成人久久久久久| 青春草视频在线免费观看| 嫩草影院入口| 亚洲自拍偷在线| 成人欧美大片| 国产精品久久视频播放| 亚洲成人精品中文字幕电影| 欧美最黄视频在线播放免费| 夜夜爽天天搞| 久久人人精品亚洲av| 成人一区二区视频在线观看| 在线观看午夜福利视频| 美女免费视频网站| 亚洲中文日韩欧美视频| 亚洲四区av| 国产高清激情床上av| 亚洲,欧美,日韩| 国产淫片久久久久久久久| 丰满的人妻完整版| 少妇熟女aⅴ在线视频| 非洲黑人性xxxx精品又粗又长|