• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Mitochondrial Genome of Episesarma lafondii (Brachyura: Sesarmidae) and Comparison with Other Sesarmid Crabs

    2021-12-22 11:43:12ZHANGYingGAOYanGONGLiLUXintingJIANGLihuaLIUBingjianLIULiqinZhenmingandLIPengfei
    Journal of Ocean University of China 2021年6期

    ZHANG Ying, GAO Yan, GONG Li, , *, LU Xinting, JIANG Lihua,LIU Bingjian, LIU Liqin, LüZhenming, and LI Pengfei

    Mitochondrial Genome of(Brachyura: Sesarmidae) and Comparison with Other Sesarmid Crabs

    ZHANG Ying1), 2), GAO Yan1), 2), GONG Li1), 2), 3), *, LU Xinting1), 2), JIANG Lihua1), 2),LIU Bingjian1), 2), LIU Liqin1), 2), LüZhenming1), 2), and LI Pengfei3)

    1),,,316022,2),,316022,3),,530007,

    Complete mitochondrial genomes (mitogenomes) can provide useful information for phylogenetic relationships, gene rearrangement, and molecular evolution. Here, the complete mitogenome of(Brachyura: Grapsoidea: Sesarmidae)was sequenced through next-generation sequencing technique for the first time.The 15640bp mitogenome contains the entire set of 37 genes and an AT-rich region.The rearrangements of two tRNA genes (-and-) are compared with that in the pancrustacean ground pattern, and the tandem duplication/random loss model was selected to explain the observed gene rearrangements. The phylogenetic results showed that all sesarmid crabs belong to the same group, wherein the genusshow- ed the closest relationship with. Furthermore, the monophyly of each family was well supported except for Xanthidae, Gecarcinidae, and Homolidae. The correlation between the phylogeny of Sesarmidae species and the gaps in theregion was analyzed. Evidently, the gaps betweenand(Gap3) and betweenand(Gap4) degenerated with the evolution process. In general, the results will contribute to the in-depth understanding of gene rearrangements in Sesarmidae mitogenomes and provide new insights into the phylogeny of Brachyura.

    mitochondrial DNA; sesarmid crab; gene order; rearrangement mechanism; phylogenetic construction

    1 Introduction

    The mitochondrial genome (mitogenome) of metazoans is generally a closed, circular molecule with a size of 14–20kb.This genome contains 37 encoding genes, including 13 protein-coding genes (PCGs), two ribosomal RNA genes (and), 22 transfer RNA genes (tRNAs), and an AT-rich region (also called control region, CR) (Boore, 1999). The mitogenome is characterized with small genome size, high evolutionary rate, simple structure, and maternal inheritance (Gyllensten., 1991; Sato and Sato, 2013).The complete mitogenome has been widely used in com- parative genomics, adaptive evolution, population genetics, and phylogenetic studies (Plazzi., 2016; Tan., 2018; Tan., 2019; Irisarri., 2020). The mitogenome can also provide direct molecular clues for gene re- arrangement process, which will reveal important informa-tion for phylogenetic analyses (Liu and Cui, 2010; Zhuang and Cheng, 2010; Xin., 2017b; Gong., 2020a). With the rapid advancement of sequencing technologies, next-generation sequencing has become a fast and low-costmethod to provide complete mitogenomes (Gan., 2014; Tan., 2015).

    The gene order was initially considered conserved in vertebrate mitogenomes. However, with more than 11000 complete mitogenomes currently determined, mitogenomic gene rearrangements have been found in several groups, including fishes (Lü., 2019), reptiles (Liu., 2019),birds (Caparroz., 2018), amphibians (Jiang., 2020),insects (Li., 2019a), and crustaceans (Tan., 2019). In general, the frequency of gene rearrangement in vertebrate mitogenomes is relatively lower than that in invertebrate mitogenomes. Thus far, several models have been applied for mitochondrial gene rearrangement.These mo- dels include the tandem duplication/random loss (TDRL) model (Moritz and Brown, 1987), recombination model (Lunt and Hyman, 1997), tRNA mispriming model (Can- tatore., 1987; Jacobs., 1989), tandem duplication/ nonrandom loss model (Lavrov., 2002), and double- replication/random loss model (Shi., 2014). The TDRL model posits that rearrangements occur via tandem dupli- cation followed by the random deletion of redundant genes (Moritz and Brown, 1987).This model has been widely used to explain the translocation of genes encoded on the same strand (Shi., 2015; Tan., 2018; Wang., 2018). Another commonly accepted hypothesis is the recombination model, which is characterized by the breakage and rejoining of the participating DNA strands (Lunt and Hyman, 1997). This model has been applied to explain the gene inversion and other rearrangement events (Kong., 2009; Tan., 2018). Usually the last three mo- dels are seldom used.

    The infraorder Brachyura contains about 7250 described species, and most of them are economically and ecologi- cally prominent (Zhang, 2011; Basso., 2017; Chen.,2018). However, the phylogenetic relationships among members of Brachyura and their evolutionary origin remain debatable due to the extreme morphological and ecologi- cal diversity(Sanchez., 2016; Rocha., 2018; Wang., 2019). Brachyura was initially segmented into three groups: Podotremata, Heterotremata, and Thoracotremata (Spears., 1992). Subsequently, it was clustered intoDromiacea and Eubrachyura,which also include Thoraco- tremata, Raninoida, and Heterotremata) (Martin and Davis,2001). However, the latest classification scheme groups Bra-chyura into Eubrachyura, Dromicea, Raninoida, and Cyclo- dorippoida (Ahyong., 2007; Tsang., 2014). Al- though the phylogenetic relationship within Brachyura is still inconclusive, the current classification system has beensupported by most scholars.

    Among Brachyura, sesarmid crabs are thought to be the key initial processors of leaves of mangrove, which play a crucial role in mangrove ecosystems (Gillikin, 2004; Ra- hayu and Ng, 2010; Tan., 2019). According to WoRMS(http://www.marinespecies.org/), the family Sesarmidae has36 genera and 309 species in total. Recently, studies on the genusde Man, 1895 (Brachyura: Sesarmidae) mainly concentrated on the morphology (Buatip., 2017; Jeyachandran., 2020), whereas studies at the mole- cular level are rare (Fratini., 2005; Schubart., 2009). To date,ten complete mitogenomes of Sesarmidae involving five genera are available from the National Cen- ter for Biotechnology Information (NCBI); however, no stu-dy reported the genus.Hombron & Jacquinot, 1846 (Sesarmidae, Sesarminae), which is a mudflat crab that is often found in the upper in- tertidal zone of mangrove forests in the Ryukyu Archipe- lago (Miyake., 2019). To date, no information is avail-able about its biological and molecular characteristics. Thus, in this study, the complete mitogenome of the genus() was sequenced for the first time. Thecharacteristics of this mitogenome were described and com-pared with those of 10 other sesarmid crabs.Additionally, anoverall phylogenetic analysis of 107 brachyuran species wascarried out based on the nucleotide sequences of 13 PCGs.

    2 Materials and Methods

    2.1 Ethics Statement

    The crab specimens used in the present study were pur- chased from the Lingshui seafood market in Hainan, Chi- na. The species is not included in the endangered list of theInternational Union for Conservation of Nature (https:// www.iucnredlist.org/). Specimen collection and maintenance were performed in strict accordance with the recommen- dations of Animal Care Quality Assurance in China. All ex-perimental protocols were approved by the Institutional Ethics Committee of Zhejiang Ocean University.

    2.2 Sample Collection and DNA Extraction

    An individual specimen ofwas collected from Lingshui seafood market in Hainan Province, China (18?24?39??N, 109?58?20??E). The specimen was immediately preserved in absolute ethanol after collection and then stored at ?20℃. This specimen was identified with a stereo dissecting microscope based on the key morphological features of crabs (Dai and Yang, 1991; Lee., 2015). The SQ Tissue DNA Kit (OMEGA) was used to ex-tract the total genomic DNA following the manufacturer’s instructions.

    2.3 Mitogenome Sequencing and Assembly

    The genomic DNA was sent to Shanghai Origingene Biopharm Technology Co., Ltd. for library preparation and high-throughput sequencing. The library was constructed by using the VAHTS Universal Plus DNA Library Prep Kit with an insert size of 400bp. The genome sequencing was conducted on an Illumina NovaSeq 6000 platform, with a strategy of 150 paired-end sequencing.The raw data sets were stored in the Short Read Archive database (https:// www.ncbi.nlm.nih.gov/sra/) with the accession no. SRX7 809611.The NOVOPlasty software (Dierckxsens., 2017) was used for theassembly of clean data without sequencing adapters.In the seed extension algo- rithm achieved by NOVOPlasty, the complete mitogenome of(GenBank accession number: NC_047209) was used as the seed sequence. To assess the single-base accuracy of the assembled genome, we com- pared it with three confirmed sequences by polymerase chain reaction (PCR) and Sanger sequencing methods.Sanger sequencing was conducted using an ABI genetic analyzer (Applied Biosystems, China). The PCR fragmentsand the corresponding primer sequences are as follows:(MW428280; F: TCNACAAAYCATAAAGAYATY GG/R: TANACYTCWGGRTGHCCRAARAAYCA);(MW430771; F: TRTGTGGRTTYCCHTTTHTAGCNGG/ R: GCTAATGCAG GGATACTAAC);(MW430770; F: TGRTTYGGRGCYTGRVTHGGNYT/R: GGDGGHA RNCCHCCWARNGA).

    2.4 Mitogenome Annotation and Sequence Analyses

    The software Sequin (version 15.10, http://www.ncbi. nlm.nih.gov/Sequin/) was used to manually annotate the complete mitogenome.The PCGs were determined by their open reading frame following the invertebrate mtDNA translation table. The boundaries of rRNA and tRNA geneswere determined using NCBI-BLAST (http://blast.ncbi.nlm.nih.gov) and tRNAscan-SE 1.21 (Lowe and Chan, 2016),respectively, comparing with the related species.Based on the secondary structure predicted by tRNAscan-SE 1.21 (Lowe and Chan, 2016) and MITOS Web Server (Bernt., 2013), we manually plotted the transfer RNA genes.The CGView online server V 1.0(Stothard and Wishart, 2005) was used to draw the mitogenome map. The soft- ware MEGA X (Kumar., 2018) was used to analyze the relative synonymous codon usage (RSCU) and nucleo- tide composition. The following formulas were used to cal- culate the strand asymmetries: AT-skew=(A?T)/(A+T); GC-skew=(G?C)/(G+C) (Perna and Kocher, 1995).

    2.5 Phylogenetic Analysis

    A total of 106 complete mitogenome sequences were downloaded from the GenBank database to reconstruct phy- logenetic relationships within Brachyura, adding two ano- muran species to serve as the outgroup (Table 1).Phylo- Suite (Zhang., 2019) was used to extract the nucleo- tide sequences of 13 PCGs for each of the above species from the GenBank files.The MAFFT program (Katoh., 2002) integrated into PhyloSuite was executed to align mul-tiple sequences in normal-alignment mode, and ambigu- ously aligned regions were identified and moved by Gblocks (Talavera and Castresana, 2007). The alignments of indi- vidual genes were then concatenated and used to generate input files (Phylip and Nexus format) for phylogenetic ana- lyses. GTR+F+I+G4 was selected as the best-fit model in accordance with the BIC criterion using ModelFinder (Kalyaanamoorthy., 2017). Phylogenetic trees were built under maximum likelihood (ML) and Bayesian in- ference (BI) methods. The ML analysis was carried out in IQ-TREE (Nguyen., 2015) using an ML+rapid boot- strap (BS) algorithm with 1000 replicates.The BI analysiswas performed in MrBayes 3.2.6 (Ronquist., 2012) with default parameters and 3×106Markov Chain Monte Carlo generations.The trees were sampled every 1000 ge- nerations with a burn-in of 25%. The average standard de- viation of split frequencies below 0.01 was considered to reach convergence.

    Table 1 List of 107 Brachyuran species and two outgroups used in this paper

    3 Results and Discussion

    3.1 Genome Structure and Composition

    The circular duplex molecule mitogenome ofis 15640bp in size (GenBank accession number: MT193721), which is within the length range (15611–15920bp) of other previously sequenced Sesarmidae mitogenomes (Table 1). The mitogenome also contains 13 PCGs (11187bp), two rRNAs (2160bp), 22 tRNAs (1479bp), and a putative CR (663bp) (Fig.1; Table 2). The lengths of PCGs, tRNAs, rRNAs, and CR for this speciesand other published Sesar-midae species were compared. The sizes of PCGs, tRNAs, and rRNAs were relatively conserved, and the maximum length diversification, which is from 528bp to 833bp, was detected in the rapidly evolving CR.

    The nucleotide composition of the whole mitogenome was 37.0% A, 38.9% T, 9.4% G, and 14.7% C (Table 3), which revealed a strong AT bias (75.9%). The skewness me-trics of the mitogenome showed negative AT-skew (?0.025)and negative GC-skew (?0.219), which followed the trendof published Sesarmidae mitogenomes (Table 4) (Xin.,2017a; Wang., 2018; Chen., 2019; Wang., 2019).Inmitogenome, 17 intergenic spacers ranging from 1bp to 38bp were found. The longest one was located betweenand(Table 2).Mean- while, 20bp overlapping sites were identified at eight junc- tions. Three overlaps (4bp betweenand, 1bp betweenand, and 7bp betweenand) were also generally found in other invertebrate species (Ta- ble 2) (Li., 2019b; Wang., 2020b).

    3.2 PCGs and Codon Usage

    The 13 PCGs consist of one cytochrome b (), two ATPases (and), three cytochrome c oxidases (-), and seven NADH dehydrogenases (-and). Four genes (,,, and) are encoded by the L-strand, whereas the remaining nine genes are encoded by the H-strand. The typical ATN co- dons are used as a start codon. The majority of the 13 PCGs terminate with TAA or TAG, whereas three other PCGs (,, and) use a single T as the stop codon (Ta- ble 2). The presence of different stop codons has been pro-ven to be a common phenomenon in metazoan mitoge- nomes (Wu., 2014; Hamasaki., 2017; Gong.,2018). The AT-skew of the 13 PCGs was negative (?0.161), whereas the GC-skew was positive (0.018), demonstrat- ing that Ts were more plentiful than As and Gs were more plentiful than Cs in the entire PCG sequence. Furthermore, four PCGs (,,, and) had positive values, indicating that they are encoded by the L-strand, whereas the remaining nine PCGs had negative values, in- dicating that they are encoded by the H-strand (Table 3).

    Fig.1 Gene map of the E. lafondiimitogenome. Genes outside the circular are encoded by the heavy strand; genes inside the circular are encoded by the light strand.

    Table 2 Features of the mitochondrial genome of E. lafondii

    Table 3 Composition and skewness of E. lafondii mitogenome

    Table 4 Composition and skewness of mitogenomes in 11 Sesarmidae species

    The RSCU and amino acid composition were highly si- milaramong the 11 Sesarmidae mitogenomes. Similar to other reported brachyuran species (Tang., 2018; Lu., 2020; Wang., 2020b), the usage of two- and four- fold degenerate codons in all sesarmid crabs was biased to-ward the use of codons abundant in A or T. The most com-mon amino acids were,,, andin all 11 Sesar- midae mitogenomes. In addition, the codons(CGC) and(UGC) are absent inandmitogenomes, whereas(CGC) is absent in the other five Sesarmidae species,including,,,,and.

    3.3 Transfer RNAs, Ribosomal RNAs, and CR

    A total of 22 tRNAs, ranging in length from 64bp to 73bp, were identified inmitogenome.Fourteen tRNAs are encoded by the H-strand, and the other eight tRNAs are encoded by the L-strand (Fig.1 and Table 2).Except for-(TCT), all tRNAs displayed canoni- cal cloverleaf structures. The loss of the dihydrouridine arm in(TCT) was thought to be a common pheno-menon in metazoan mitogenomes (Gong., 2019, 2020b).Except for the Watson-Crick base pairs (A-T and G-C) andG-U matches, four mismatched base pairs, including oneC-U base pair in, one A-A base pair in,and two U-U base pairs inand(L), were found. Posttranscriptional RNA editing may be involved in the correction of mismatches (Lavrov., 2000; Masta and Boore, 2004). Theandgenes are encoded by the L-strand, which are 1328 and 832bp, respectively. The location ofwas between(L) and, andwas located betweenand CR (Fig.1 and Table 2). The AT content of total rRNA was 81.0% (Table 3), indicating a highly AT preference.

    The CR was located betweenand, with an extremely high AT content (80.5%). This region is 663bp in length and exhibits a positive AT-skew (0.060) and a negative GC-skew (?0.256) (Table 3). The CR was the most variable region because of its rapid evolution rate compared with the other genes. Thus far, limited research has studied the conserved blocks of the CR despite its func- tional importance, especially in invertebrate mitogenomes (Ray and Densmore, 2002; Guo., 2003; Zhao., 2011). Totally 11 Sesarmidae CRs were aligned to explore the sequence conservation. The results revealed nine con- served blocks (Fig.2), and their consensus sequences are as follows:AATGTA,ATATT, TTA,TAT,TTACTAT,ACCTGA ATT,TT, TTAATATATT(the underlined letters represent the fluctuant nucleo- tide among the 11 Sesarmidae species). To our knowledge, this is the first study to report the conserved blocks of the CR in crab mitogenomes.

    3.4 Gene Rearrangement

    Compared with the gene arrangement in ancestral crus- taceans (the pancrustacean ground pattern), the() was rearranged from the downstream of(Fig.3A) to the position between() and(), forming a new gene block (----) inmitogenome (Fig.3B).This translocation was also ob- served in other brachyuran mitogenomes (Chen., 2019; Tan., 2019; Wang., 2020b). However, an addi- tional translocation of() was identified when selecting the ancestral mitochondrial gene order of Bra- chyura as a reference. This translocation moved out from the() and() junction and formed a new gene cluster (---), in accord with otherpublished Sesarmidae mitogenome orders (Fig.3C) (Tan., 2019).

    In accordance with the rearrangement features and prin- ciple of parsimony, the TDRL model was selected as the most suitable model to explain the two rearrangement events in themitogenome. The hypothesized interme- diate steps were as follows, starting with the typical an- cestral order of the Decapoda mitogenome. First, the gene block (--) was tandemly duplicated and generated two sets of the same gene cluster (--)- (--).Given the parsimony of the mitogenome, one of the duplicated genes lost function followed by a random loss of redundant genes, namely,--H-F′-ND5′-′ (the un- derlined letters represent the deleted genes, similarly he- reinafter). Thus, newgene order was formed (Fig.3B). In the second rearrangement event, the gene or- der of the gene cluster (--) was changed to--through the same mechanism. Thus, a dimeric (--)- (--) was formed due to gene duplication. In the fol- lowing step, the duplicated genes were deleted due to func- tional incapacitation (-----). Thus, a new gene order--was formed (Fig.3C).

    Fig.2 Aligned sequences of the CRs in 11 sesarmid crabs. The shaded blocks represent the conserved sequences. Abbreviations of species names are given as follows. C. eul, Chiromentes eulimene; C. neg, Chiromantes neglectum; C. deh, Chiromantes dehaani; C. hae, Chiromantes haematocheir; M. dep, Metopaulias depressus; C. sin, Clistocoeloma sinense; E. laf, Episesarma lafondii; P. tri, Parasesarma tripectinis; P. pic, Parasesarma pictum; P. aff, Parasesarma affine; N. min, Nanosesarma minutum.

    Fig.3 Inferred intermediate steps for the generation of the mitogenome of E. lafondii. A, Ancestral gene arrangement of Decapoda; B, Ancestral gene arrangement of Brachyura; C, Gene arrangement of E. lafondii and ten other Sesarmidae species. The duplicated gene block is underlined, and the lost genes are marked in gray.

    In the above-speculated process, after the two copied gene clusters (--and--) lost their functions (losses 1, 2, 3, 4, and 5 in Fig.3), they would have de- graded to form five pseudogene fragments or short inter- genic spacers (gray boxes in Fig.3). Here, four intergenic spacers (Gaps 1, 2, 3, and 4) were found in themitogenome (the intergenic spacer between CR andde- faults to zero because the boundary of CR is uncertain): loss 1 () corresponds to Gap1 (5bp); loss 2 () to Gap2 (23bp); loss 4 () to Gap3 (38bp); loss 5 () to Gap4 (13bp). In general, given the high degradation rate of non-functional genes, the intergenic spacers caused by a random loss event should vanish rapidly to guarantee the parsimony of the mitogenome. The one-to-one correspon- dence between the loss-of-function fragments and residualintergenic spacers indicate that the novel gene order can be explained by the TDRL model.

    3.5 Phylogenetic Analysis and QIM Spacers in Sesarmidae

    The concatenated set of the nucleotide sequences of 13 PCGs from 107 known brachyuran species and two anomu- ran outgroups (and) were used for the phylogenetic analysis. The phylogenetic trees ob- tained using BI and ML methods resulted in identical topo- logical structures except for supporting values. Here, only one topology (BI) with both support values was presented (Fig.4). The phylogenetic tree showed that all Sesarmidaespecies clustered together as a group, wherein the genusshowed the closest relationship with. Sesarmidae and Gecarcinidae were the most closely related species, forming part of the superfamily Grapsoi- dea.Previous findings and our recent research on Sesarmi- dae species showed that the evolution process of mitoge- nomes could be revealed by the length of gap spacer in therearranged area (McKnight and Shaffer, 1997; Gong., 2020a; Zhang., 2020). Consequently, we analyzed thecorrelation between the phylogeny of Sesarmidae species and the gaps in theregion. The results reconfirmed that the phylogenetic position of each sesarmid crab was significantly correlated with the gaps in the rearrangedregion(Fig.5).In this study, the gap spacer betweenand(Gap3) decreased from 218bp () (Zhang., 2020) to 14bp (). Thespacer betweenand(Gap4) followed the same trend, decreasing from 64bp () to 9bp ().This trend suggests that with the evo- lution of sesarmid crabs, the gap spacers (Gap3 and Gap4) decreased progressively.

    Of the 29 families in our phylogenetic tree, except for Xanthidae, Gecarcinidae, and Homolidae, each family form- ed a monophyletic clade with high nodal support values (Fig.4).Thus it needs further attention with the morpho- logical identification and taxonomic status of their closely related species,.,,,, and. With the exception of Eriphioidea, Ocypodoidea, and Grapsoidea, the monophyly of most superfamilies were well supported, as consistently revealed in previous molecular phyloge- netic analyses (Tan., 2018; Tan., 2019; Lu., 2020; Wang., 2020a). For a long time, the classifica- tion of Grapsoidea and Ocypodoidea has been controver- sial.Previous studies based on morphological features con- sidered them to be monophyletic clades(Martin and Da- vis, 2001; Ng, 2008; Davie., 2015). However, an in- creasing number of molecular studies, including ours, havechallenged the monophyly of these taxa (Chen., 2018; Tan., 2018; Chen., 2019; Lu., 2020).Wang.’s recent molecular study revealed that Ocypodoidea and Grapsoidea are divided into three clades (Wang., 2020a), and similar findings are presented in Tan.’s work (2018, 2019). Although the polyphyly of Grapsoi- dea and Ocypodoidea is well supported,the phylogenetic relationships of these superfamilies need further analysis by integration of additional molecular data.

    Although the main phylogenetic structures of our tree followed those of previous results, several controversial findings were observed.Here,Varunidae and Macrophthal- midae possessing the same gene order were clustered to- gether as sister groups and were distantly related to Mic- tyridae, which is consistent with most molecular viewpo- ints (Gong., 2018; Chen., 2019; Tan., 2019; Wang., 2020a). Meanwhile, in a recent study, the phy- logenetic relationship among the above three families was ((Macrophthalmidae+Mictyridae)+Varunidae) (Tan., 2018). Additionally, no agreement was obtained on the phy- logenetic relationships among Sesarmidae, Gecarcinidae, Dotillidae, and Grapsidae.Here, Sesarmidae and Gecarci- nidae were closely related, and Dotillidae was the sister clade to Grapsidae, supporting Chen.’s viewpoint (Chen., 2019). In the previous findings (Basso., 2017; Tan., 2018), Sesarmidae was clustered with Dotilli- dae as sister groups. Regarding the phylogenetic position ofGecarcinidae and Grapsidae, no consensus has been reach- ed in current studies (Sanchez., 2016; Jia., 2018; Tan., 2019). In general, the placement of multiple sin- gle brachyuran lineages in the tree may produce conflict- ing phylogenetic relationships, possibly affecting the position of other brachyuran clades at a high taxonomic le- vel.In our phylogenetic tree, most of the unstable and con- flicting clades might have resulted from the limited taxon samples.Thereby, more comprehensive taxon samplings andreliable classification markers are necessary for fur- ther understanding the phylogenetic and evolutionary rela- tionships among Brachyura.

    Fig.4 Phylogenetic tree of brachyuran species inferred from the nucleotide sequences of 13 PCGs based on ML and BI analyses. The node marked with a solid circle indicates 100 ML bootstrap support (BS) and 100% BI posterior probability (PP). The numbers after the species name are the GenBank accession number.

    4 Conclusions

    In this article, the complete mitogenome ofis determined and analyzed for the first time. The molecular features of this newly sequenced mitogenome aremostly consistent with those of 10 other sesarmid crabs. The gene rearrangement events occurring inmitogenome can be explained by the TDRL model. Phylogenetic ana- lyses indicate the close relationship ofandand the non-monophyly of Xanthidae, Gecar- cinidae, and Homolidae.Moreover, the polyphyly of three superfamilies (Ocypodoidea, Eriphioidea, and Grapsoidea)is reconfirmed.In the future studies, more samples fromdifferent taxonomic levels and reliable classification mar- kers will be employed to facilitate the taxonomical and phy- logenetic studies of Brachyura.

    Fig.5 Relationship of Sesarmidae species and gap spacers between tRNA-QIM. Gap3 and Gap4 indicate the intergenic spacer between Q and I, and between I and M, respectively.

    Acknowledgments

    This work was supported by the Natural Science Foun- dation of Zhejiang Province (No. LY21C190007) and the Zhoushan Science and Technology Bureau (No. 2021C21 007). We would like to express our gratitude to Dr. Xu Zhang for helping in species identification and providing critical comments. The valuable remarks of the anonymous reviewers are also acknowledged.

    Ahyong, S. T., Lai, J. C. Y., Sharkey, D., Colgan, D. J., and Ng, P. K. L., 2007. Phylogenetics of the brachyuran crabs (Crustacea: Decapoda): The status of Podotremata based on small subunit nuclear ribosomal RNA., 45 (2): 576-586.

    Basso, A., Babbucci, M., Pauletto, M., Riginella, E., Patarnello, T., and Negrisolo, E., 2017. The highly rearranged mitochon- drial genomes of the crabsand(Majidae) and gene order evolution in Brachyura., 7 (1): 1-17.

    Bernt, M., Donath, A., Jühling, F., Externbrink, F., Florentz, C., Fritzsch, G.,., 2013. MITOS: Improvedmetazoanmitochondrial genome annotation., 69 (2): 313-319.

    Boore, J. L., 1999. Animal mitochondrial genomes., 27 (8): 1767-1780.

    Buatip, S., Thongroy, P., and Yeesin, P., 2017. Burrow morpholo- gical characteristics of(H. Milne Edwards, 1853) (Decapoda, Grapsidae, Sesarminae)., 22 (2): 17-30.

    Cantatore, P., Gadaleta, M., Roberti, M. N., Saccone, C., and Wil- son, A. C., 1987. Duplication and remoulding of tRNA genes during the evolutionary rearrangement of mitochondrial genomes., 329 (6142): 853-855.

    Caparroz, R., Rocha, A. V., Cabanne, G. S., Tubaro, P., Aleixo, A.,Lemmon, E. M.,., 2018. Mitogenomes of two neotropical bird species and the multiple independent origin of mitochon- drial gene orders in Passeriformes.,45 (3): 279-285.

    Chen, J., Xing, Y., Yao, W., Xu, X., Zhang, C., Zhang, Z.,., 2019. Phylomitogenomics reconfirm the phylogenetic positionof the genusinferred from the two grapsid crabs (De-capoda: Brachyura: Grapsoidea)., 14 (1): e0210763.

    Chen, J., Xing, Y., Yao, W., Zhang, C., Zhang, Z., Jiang, G.,.,2018. Characterization of four new mitogenomes from Ocypo-doidea & Grapsoidea, and phylomitogenomic insights into tho- racotreme evolution., 675: 27-35.

    Dai, A. Y., and Yang, S. L., 1991.. Chi- na Ocean Press, Beijing, 482-495.

    Davie, P. J., Guinot, D., and Ng, P. K., 2015.Systematics and clas-sification of Brachyura. In:. Brill, 1049-1130.

    Dierckxsens, N., Mardulyn, P., and Smits, G., 2017. NOVOPlasty:assembly of organelle genomes from whole genome data., 45 (4): e18.

    Fratini, S., Vannini, M., Cannicci, S., and Schubart, C. D., 2005. Tree-climbing mangrove crabs: A case of convergent evolution., 7 (2): 219-233.

    Gan, H. M., Schultz, M. B., and Austin, C. M., 2014. Integrated shotgun sequencing and bioinformatics pipeline allows ultra- fast mitogenome recovery and confirms substantial gene re- arrangements in Australian freshwater crayfishes., 14 (1): 19.

    Gillikin, D. P., 2004. Osmoregulatory ability of(Crosnier, 1965) subjected to dilute and hypersaline sea- water., 77 (1): 67-74.

    Gong, L., Liu, B. J., Liu, L. Q., Guo, B. Y., and Lü, Z. M., 2019. The complete mitochondrial genome of(Cen- trarchiformes: Terapontidae) and comparative analysis of the control region among eight Centrarchiformes species., 45 (2): 137-144.

    Gong, L., Lu, X., Luo, H., Zhang, Y., Shi, W., Liu, L.,., 2020a.Novel gene rearrangement pattern inmitochondrial genome: New gene order in genus(Pleuronectiformes: Cynoglossidae)., 149: 1232-1240.

    Gong, L., Lu, X., Wang, Z., Zhu, K., Liu, L., Jiang, L.,.,2020b. Novel gene rearrangement in the mitochondrial genome of(Anomura: Coenobitidae) and phy- logenetic implications for Anomura., 112 (2): 1804- 1812.

    Gong, L., Lü, Z. M., Guo, B. Y., Ye, Y. Y., and Liu, L. Q., 2018. Characterization of the complete mitochondrial genome of thetidewater goby,(Gobiiformes; Gobii-dae; Gobionellinae) and its phylogenetic implications., 10 (1): 93-97.

    Guo, X., Liu, S., and Liu, Y., 2003. Comparative analysis of the mitochondrial DNA control region in cyprinids with different ploidy level., 224 (1-4): 25-38.

    Gyllensten, U., Wharton, D., Josefsson, A., and Wilson, A. C., 1991. Paternal inheritance of mitochondrial DNA in mice., 352 (6332): 255-257.

    Hamasaki, K., Iizuka, C., Sanda, T., Imai, H., and Kitada, S., 2017.Phylogeny and phylogeography of the land hermit crab(Decapoda: Anomura: Coenobitidae) in the Nor- thwestern Pacific Region., 38 (1): e12369.

    Irisarri, I., Uribe, J. E., Eernisse, D. J., and Zardoya, R., 2020. A mitogenomic phylogeny of chitons (Mollusca: Polyplacopho- ra)., 20 (1): 1-15.

    Jacobs, H. T., Herbert, E. R., and Rankine, J., 1989. Sea urchin egg mitochondrial DNA contains a short displacement loop (D- loop) in the replication origin region., 17 (22): 8949-8965.

    Jeyachandran, S., Park, K., Kwak, I. S., and Baskaralingam, V., 2020. Morphological and functional characterization of circu- lating hemocytes using microscopy techniques., 83 (7): 736-743.

    Jia, X. N., Xu, S. X., Bai, J., Wang, Y. F., Nie, Z. H., Zhu, C. C.,., 2018. The complete mitochondrial genome ofand phylogenetic analysis of Genus(Crustacea: Decapoda: Parathelphusidae)., 13 (2): e0192601.

    Jiang, L., Zhang, M., Deng, L., Xu, Z., Shi, H., Jia, X.,., 2020.Characteristics of the mitochondrial genome ofand related species in Ranidae: Gene rearrangements and phylogenetic relationships., 10 (23): 12817-12837.

    Kalyaanamoorthy, S., Minh, B. Q., Wong, T. K. F., von Haeseler, A., and Jermiin, L. S., 2017. ModelFinder: Fast model selection for accurate phylogenetic estimates., 14 (6): 587-589.

    Katoh, K., Misawa, K., Kuma, K. I., and Miyata, T., 2002. MAFFT: A novel method for rapid multiple sequence alignment based on fast Fourier transform., 30 (14): 3059-3066.

    Kong, X., Dong, X., Zhang, Y., Shi, W., Wang, Z., and Yu, Z., 2009. A novel rearrangement in the mitochondrial genome of tongue sole,: Control region transloca- tion and a tRNA gene inversion., 52 (12): 975-984.

    Kumar, S., Stecher, G., Li, M., Knyaz, C., and Tamura, K., 2018. MEGA X: Molecular evolutionary genetics analysis across com- puting platforms., 35 (6): 1547-1549.

    Lavrov, D. V., Boore, J. L., and Brown, W. M., 2002. Complete mtDNA sequences of two millipedes suggest a new model for mitochondrial gene rearrangements: Duplication and nonran- dom loss., 19 (2): 163-169.

    Lavrov, D. V., Brown, W. M., and Boore, J. L., 2000. A novel typeof RNA editing occurs in the mitochondrial tRNAs of the cen- tipede.s, 97 (25): 13738-13742.

    Lee, B. Y., Ng, N. K., and Ng, P. K., 2015. The taxonomy of five species ofDe Man, 1895, in Singapore (Crustacea: Decapoda: Brachyura: Sesarmidae)., 31 (Supplement): 199-215.

    Li, N., Hu, G. L., and Hua, B. Z., 2019a. Complete mitochondrial genomes ofandand geno- mic comparisons of Mecoptera., 140: 672-681.

    Li, W., Cheng, J., Hui, M., and Sha, Z., 2019b. Molecular phy- logeny of the genus(Decapoda: Anomura: Dio- genidae) based on mitochondrial and nuclear DNA sequences., 37 (5): 1686-1697.

    Liu, J., Yu, J., Zhou, M., and Yang, J., 2019. Complete mitochon- drial genome of: Deep insights into the phy- logeny and gene rearrangements of Agamidae species., 125: 423-431.

    Liu, Y., and Cui, Z., 2010. Complete mitochondrial genome of the Asian paddle crab(Crustacea: Decapo- da: Portunidae): Gene rearrangement of the marine brachyu- rans and phylogenetic considerations of the decapods., 37 (5): 2559-2569.

    Lowe, T. M., and Chan, P. P., 2016. tRNAscan-SE On-line: Inte- grating search and context for analysis of transfer RNA genes., 44 (W1): W54-W57.

    Lu, X., Gong, L., Zhang, Y., Chen, J., Liu, L., Jiang, L.,., 2020.The complete mitochondrial genome of: The first representative from the family Calappidae and its phylo- genetic position within Brachyura., 112 (3): 2516- 2523.

    Lunt, D. H., and Hyman, B. C., 1997. Animal mitochondrial DNA recombination., 387 (6630): 247-247.

    Lü, Z., Zhu, K., Jiang, H., Lu, X., Liu, B., Ye, Y.,., 2019. Complete mitochondrial genome ofreveals novel gene order and phylogenetic relationships of Anguilliformes., 135: 609-618.

    Martin, J. W., and Davis, G. E., 2001.. Natural History Museum of Los An- geles County, Science Series, 39: 1-124.

    Masta, S. E., and Boore, J. L., 2004. The complete mitochon- drial genome sequence of the spiderreveals rearranged and extremely truncated tRNAs., 21 (5): 893-902.

    McKnight, M. L., and Shaffer, H. B., 1997. Large, rapidly evolv- ing intergenic spacers in the mitochondrial DNA of the sala- mander family Ambystomatidae (Amphibia: Caudata)., 14 (11): 1167-1176.

    Miyake, T., Aihara, N., Maeda, K., Shinzato, C., Koyanagi, R., Kobayashi, H.,., 2019. Bloodmeal host identification with inferences to feeding habits of a fish-fed mosquito,., 9 (1): 1-8.

    Moritz, C., and Brown, W. M., 1987. Tandem duplications in ani- mal mitochondrial DNAs: Variation in incidence and gene con- tent among lizards., 84 (20): 7183-7187.

    Ng, P., 2008. Systema Brachyurorum, Part I. An annotated check- list of extant brachyuran crabs of the world., 17: 1-286.

    Nguyen, L. T., Schmidt, H. A., Von Haeseler, A., and Minh, B. Q., 2015. IQ-TREE: A fast and effective stochastic algorithm for estimating maximum-likelihood phylogenies., 32 (1): 268-274.

    Perna, N. T., and Kocher, T. D., 1995. Patterns of nucleotide com- position at fourfold degenerate sites of animal mitochondrial genomes., 41 (3): 353-358.

    Plazzi, F., Puccio, G., and Passamonti, M., 2016. Comparative large-scale mitogenomics evidences clade-specific evolution- ary trends in mitochondrial DNAs of Bivalvia., 8 (8): 2544-2564.

    Rahayu, D. L., and Ng, P. K. L., 2010. Revision of the(Latreille, 1803) species-group (Crustacea: Decapoda: Brachyura: Sesarmidae)., 2327 (1): 1-22.

    Ray, D. A., and Densmore, L., 2002. The crocodilian mitochon- drial control region: General structure, conserved sequences, and evolutionary implications., 294 (4): 334-345.

    Rocha, C. T., Regina, W. M., Mantelatto, F. L., Christopher, T., and José, Z. F., 2018. Ultrastructure of spermatozoa of mem- bers of Calappidae, Aethridae and Menippidae and discussion of their phylogenetic placement., 101 (1): 89- 100.

    Ronquist, F., Teslenko, M., van der Mark, P., Ayres, D. L., Darling, A., Hohna, S.,., 2012. MrBayes 3.2: Efficient Ba-yesian phylogenetic inference and model choice across a large model space., 61 (3): 539-542.

    Sanchez, G., Tomano, S., Yamashiro, C., Fujita, R., Wakabaya- shi, T., Sakai, M.,., 2016. Population genetics of the jum- bo squid(Cephalopoda: Ommastrephidae) in the northern Humboldt Current system based on mitochondrial and microsatellite DNA markers., 175: 1- 9.

    Sato, M., and Sato, K., 2013. Maternal inheritance of mitochon- drial DNA by diverse mechanisms to eliminate paternal mito- chondrial DNA.–, 1833 (8): 1979-1984.

    Schubart, C. D., Liu, H. C., and Ng, P. K. L., 2009. Revision ofSerène & Soh, 1970 (Crustacea: Brachyura: Sesarmi- dae), with description of a new genus and two new species., 2154 (1): 1-29.

    Shi, W., Gong, L., Wang, S. Y., Miao, X. G., and Kong, X. Y., 2015.Tandem duplication and random loss for mitogenome rear- rangement in(Teleost: Pleuronectiformes)., 16 (1): 355.

    Shi, W., Miao, X. G., and Kong, X. Y., 2014. A novel model of double replications and random loss accounts for rearrangements in the mitogenome of(Teleostei: Pleu- ronectiformes)., 15 (1): 352.

    Spears, T., Abele, L. G., and Kim, W., 1992. The monophyly of Brachyuran crabs: A phylogenetic study based on 18s rRN?., 41 (4): 446-461.

    Stothard, P., and Wishart, D. S., 2005. Circular genome visuali- zation and exploration using CGView., 21 (4): 537-539.

    Talavera, G., and Castresana, J., 2007. Improvement of phyloge- nies after removing divergent and ambiguously aligned blocks from protein sequence alignments., 56 (4): 564-577.

    Tan, M. H., Gan, H. M., Lee, Y. P., Bracken-Grissom, H., Chan, T. Y., Miller, A. D.,., 2019. Comparative mitogenomics of the Decapoda reveals evolutionary heterogeneity in architecture and composition., 9 (1): 1-16.

    Tan, M. H., Gan, H. M., Lee, Y. P., Linton, S., Grandjean, F.,Bartholomei-Santos, M. L.,., 2018. ORDER within thechaos: Insights into phylogenetic relationships within the Ano- mura (Crustacea: Decapoda) from mitochondrial sequences and gene order rearrangements., 127: 320-331.

    Tan, M. H., Gan, H. M., Schultz, M. B., and Austin, C. M., 2015. MitoPhAST, a new automated mitogenomic phylogeny tool in the post-genomic era with a case study of 89 decapod mito- genomes including eight new freshwater crayfish mitogeno- mes., 85: 180-188.

    Tang, B. P., Liu, Y., Xin, Z. Z., Zhang, D. Z., Wang, Z. F., Zhu, X. Y.,., 2017. Characterisation of the complete mitochon- drial genome of(Grapsoidea: Varunidae) and comparison with other Brachyuran crabs., 110 (4): 221-230.

    Tsang, L. M., Schubart, C. D., Ahyong, S. T., Lai, J. C. Y., Au, E. Y. C., Chan, T. Y.,., 2014. Evolutionary history of true crabs (Crustacea: Decapoda: Brachyura) and the origin of fresh-water crabs., 31 (5): 1173- 1187.

    Wang, Q., Tang, D., Guo, H., Wang, J., Xu, X., and Wang, Z., 2020a. Comparative mitochondrial genomic analysis ofand insights into the phylogeny of the Ocypodoidea & Grapsoidea., 112 (1): 82-91.

    Wang, Z., Shi, X., Guo, H., Tang, D., Bai, Y., and Wang, Z., 2020b.Characterization of the complete mitochondrial genome ofand comparison with other Brachyuran crabs., 112 (1): 10-19.

    Wang, Z., Shi, X., Tao, Y., Wu, Q., Bai, Y., Guo, H.,., 2019. The complete mitochondrial genome of(Brachyura: Grapsoidea: Sesarmidae) and comparison with other Brachyuran crabs., 111 (4): 799-807.

    Wang, Z., Wang, Z., Shi, X., Wu, Q., Tao, Y., Guo, H.,., 2018. Complete mitochondrial genome of(Brachyura: Sesarmidae): Gene rearrangements in Sesarmidaeand phylogenetic analysis of the Brachyura., 118: 31-40.

    Wu, X., Xiao, S., Li, X., Li, L., Shi, W., and Yu, Z., 2014. Evo- lution of the tRNA gene family in mitochondrial genomes of fiveclams (Bivalvia, Veneridae)., 533 (1): 439- 446.

    Xin, Z. Z., Liu, Y., Zhang, D. Z., Chai, X. Y., Wang, Z. F., Zhang, H. B.,., 2017a. Complete mitochondrial genome of(Brachyura: Grapsoidea): Gene rearrange- ments and higher-level phylogeny of the Brachyura., 7 (1): 1-10.

    Xin, Z. Z., Yu, L., Zhang, D. Z., Wang, Z. F., Zhang, H. B., Tang, B. P.,., 2017b. Mitochondrial genome of(Brachyura: Grapsoidea: Varunidae): Gene rearrange- ments and higher-level phylogeny of the Brachyura., 627: 307-314.

    Zhang, D., Gao, F., Jakovlic, I., Zou, H., Zhang, J., Li, W. X.,.,2019. PhyloSuite: An integrated and scalable desktop platformfor streamlined molecular sequence data management and evo-lutionary phylogenetics studies., 20 (1): 348-355.

    Zhang, Y., Gong, L., Lu, X., Jiang, L., Liu, B., Liu, L.,., 2020.Gene rearrangements in the mitochondrial genome of(Brachyura: Sesarmidae) and phylogenetic im-plications for Brachyura., 162: 704-714.

    Zhang, Z. Q., 2011..,3148 (Special issue): 1-237.

    Zhao, L., Zheng, Z. M., Huang, Y., Zhou, Z., and Wang, L., 2011.Comparative analysis of the mitochondrial control region in Orthoptera., 50 (3): 385-393.

    Zhuang, X., and Cheng, C. H. C., 2010. ND6 gene ‘lost’ and found:Evolution of mitochondrial gene rearrangement in Antarctic no- tothenioids., 27 (6): 1391- 1403.

    September 25, 2020;

    December 1, 2020;

    April 27, 2021

    ? Ocean University of China, Science Press and Springer-Verlag GmbH Germany 2021

    .E-mail: gongli1027@163.com

    (Edited by Qiu Yantao)

    中文字幕人妻熟女乱码| 欧美日本中文国产一区发布| 天天影视国产精品| 日韩欧美国产一区二区入口| av线在线观看网站| av在线app专区| 欧美亚洲日本最大视频资源| 另类精品久久| 黑人巨大精品欧美一区二区蜜桃| 新久久久久国产一级毛片| 他把我摸到了高潮在线观看 | 1024视频免费在线观看| 国产成人啪精品午夜网站| 老司机深夜福利视频在线观看 | 成人国产av品久久久| 9热在线视频观看99| 欧美精品高潮呻吟av久久| 日韩视频一区二区在线观看| 菩萨蛮人人尽说江南好唐韦庄| 看免费av毛片| 久久久久久久大尺度免费视频| 国产伦理片在线播放av一区| tocl精华| 真人做人爱边吃奶动态| 精品亚洲乱码少妇综合久久| 肉色欧美久久久久久久蜜桃| 国产精品亚洲av一区麻豆| netflix在线观看网站| 18禁观看日本| 国产一区二区三区在线臀色熟女 | 少妇精品久久久久久久| 亚洲国产精品一区二区三区在线| 欧美中文综合在线视频| 下体分泌物呈黄色| 黄片小视频在线播放| 久久天躁狠狠躁夜夜2o2o| 国产亚洲欧美精品永久| 一级a爱视频在线免费观看| 日韩电影二区| 男女下面插进去视频免费观看| 爱豆传媒免费全集在线观看| 欧美 亚洲 国产 日韩一| 女人高潮潮喷娇喘18禁视频| 日本a在线网址| 狂野欧美激情性xxxx| av电影中文网址| 日韩欧美国产一区二区入口| 精品免费久久久久久久清纯 | 99热国产这里只有精品6| 高潮久久久久久久久久久不卡| 久久久精品区二区三区| 成人免费观看视频高清| 女人精品久久久久毛片| 色老头精品视频在线观看| 久久国产精品男人的天堂亚洲| 日韩欧美免费精品| 欧美中文综合在线视频| 精品国产超薄肉色丝袜足j| 宅男免费午夜| 精品福利永久在线观看| 久久久久精品国产欧美久久久 | 51午夜福利影视在线观看| 十分钟在线观看高清视频www| 女人爽到高潮嗷嗷叫在线视频| 日本五十路高清| 一个人免费在线观看的高清视频 | 国产精品久久久久久精品古装| 亚洲,欧美精品.| 免费高清在线观看视频在线观看| 欧美国产精品一级二级三级| 日日摸夜夜添夜夜添小说| netflix在线观看网站| 免费日韩欧美在线观看| 又黄又粗又硬又大视频| 国产精品99久久99久久久不卡| 又紧又爽又黄一区二区| 男人舔女人的私密视频| 日韩 欧美 亚洲 中文字幕| 国产免费av片在线观看野外av| 国产亚洲欧美在线一区二区| 亚洲七黄色美女视频| 国产黄色免费在线视频| 欧美日韩一级在线毛片| 精品欧美一区二区三区在线| 黑人欧美特级aaaaaa片| 亚洲欧美清纯卡通| 激情视频va一区二区三区| 久久九九热精品免费| 如日韩欧美国产精品一区二区三区| 国产欧美日韩一区二区精品| 日韩大码丰满熟妇| 国产av国产精品国产| 乱人伦中国视频| 中文字幕人妻丝袜制服| 999精品在线视频| 亚洲免费av在线视频| 亚洲av日韩精品久久久久久密| 老司机在亚洲福利影院| 精品欧美一区二区三区在线| 99精品欧美一区二区三区四区| 欧美日韩av久久| 国产麻豆69| 人妻一区二区av| 亚洲精品成人av观看孕妇| 爱豆传媒免费全集在线观看| 国产av精品麻豆| 亚洲三区欧美一区| 久久国产精品人妻蜜桃| 老鸭窝网址在线观看| 动漫黄色视频在线观看| 国产一区二区 视频在线| 国产精品 国内视频| 日韩 欧美 亚洲 中文字幕| 亚洲精品av麻豆狂野| 永久免费av网站大全| 日韩 欧美 亚洲 中文字幕| av电影中文网址| 十分钟在线观看高清视频www| 日本黄色日本黄色录像| 丝袜在线中文字幕| 91老司机精品| 一区在线观看完整版| 1024香蕉在线观看| 国产亚洲一区二区精品| 青青草视频在线视频观看| 如日韩欧美国产精品一区二区三区| 国产伦理片在线播放av一区| 亚洲精品中文字幕在线视频| 中文字幕av电影在线播放| 操出白浆在线播放| 国产一区二区激情短视频 | 91成人精品电影| 国产av国产精品国产| 亚洲五月婷婷丁香| 80岁老熟妇乱子伦牲交| 99九九在线精品视频| 成人国语在线视频| 视频区欧美日本亚洲| 亚洲精品在线美女| 久久久久久久久免费视频了| 国产亚洲精品久久久久5区| 十八禁高潮呻吟视频| 亚洲精品久久午夜乱码| 中文欧美无线码| 国产精品香港三级国产av潘金莲| 亚洲国产精品成人久久小说| 可以免费在线观看a视频的电影网站| 久久国产精品大桥未久av| 激情视频va一区二区三区| 亚洲精品国产一区二区精华液| 国产伦人伦偷精品视频| 免费高清在线观看日韩| 黄网站色视频无遮挡免费观看| 黑人欧美特级aaaaaa片| 91国产中文字幕| 亚洲视频免费观看视频| 国产在线视频一区二区| 亚洲黑人精品在线| 国产av又大| 首页视频小说图片口味搜索| 久久ye,这里只有精品| 国产亚洲精品一区二区www | 日本a在线网址| 国产一区二区三区av在线| 女人精品久久久久毛片| 国产人伦9x9x在线观看| 99国产精品99久久久久| 久热爱精品视频在线9| 亚洲国产成人一精品久久久| 亚洲欧美色中文字幕在线| 美女高潮喷水抽搐中文字幕| 最近最新中文字幕大全免费视频| 中文欧美无线码| 各种免费的搞黄视频| 高潮久久久久久久久久久不卡| 一本久久精品| 热re99久久精品国产66热6| 99国产极品粉嫩在线观看| 国产免费av片在线观看野外av| 国产亚洲精品久久久久5区| 狠狠狠狠99中文字幕| 香蕉国产在线看| 国产成人免费观看mmmm| 免费av中文字幕在线| 久久精品国产综合久久久| 麻豆乱淫一区二区| 丁香六月天网| 久久av网站| 叶爱在线成人免费视频播放| 亚洲精品久久久久久婷婷小说| 国产成人免费观看mmmm| 日日夜夜操网爽| 亚洲成人免费电影在线观看| 新久久久久国产一级毛片| 亚洲国产精品999| 中文字幕另类日韩欧美亚洲嫩草| 黄片大片在线免费观看| 可以免费在线观看a视频的电影网站| 啦啦啦在线免费观看视频4| 国产一级毛片在线| 亚洲精品美女久久av网站| 国产亚洲一区二区精品| 黑人巨大精品欧美一区二区蜜桃| 国产伦理片在线播放av一区| 免费人妻精品一区二区三区视频| 大码成人一级视频| 超碰成人久久| 男女午夜视频在线观看| 久久国产精品男人的天堂亚洲| 窝窝影院91人妻| 91九色精品人成在线观看| 亚洲精品第二区| av线在线观看网站| 久久精品国产亚洲av香蕉五月 | 国产精品亚洲av一区麻豆| 人人澡人人妻人| www日本在线高清视频| 中文字幕制服av| 日韩欧美一区二区三区在线观看 | 成人黄色视频免费在线看| 久久久国产一区二区| 日日爽夜夜爽网站| 精品少妇一区二区三区视频日本电影| 亚洲伊人色综图| 高清视频免费观看一区二区| 满18在线观看网站| 99久久精品国产亚洲精品| 黄色怎么调成土黄色| 97人妻天天添夜夜摸| 亚洲少妇的诱惑av| 亚洲精品美女久久av网站| 久久久久久久久久久久大奶| 老司机午夜福利在线观看视频 | 日韩大码丰满熟妇| 亚洲国产欧美在线一区| 在线观看舔阴道视频| 久久久久久久国产电影| 亚洲成av片中文字幕在线观看| 老鸭窝网址在线观看| 国产成人欧美在线观看 | 黄色视频,在线免费观看| 免费人妻精品一区二区三区视频| 精品久久蜜臀av无| 中文字幕高清在线视频| 老司机靠b影院| 午夜免费观看性视频| 国产有黄有色有爽视频| 视频区图区小说| 淫妇啪啪啪对白视频 | 精品国产一区二区三区四区第35| 精品国产一区二区三区久久久樱花| tocl精华| 欧美久久黑人一区二区| 日韩一区二区三区影片| 国产淫语在线视频| 少妇裸体淫交视频免费看高清 | 精品福利观看| 少妇精品久久久久久久| 性高湖久久久久久久久免费观看| 国产黄频视频在线观看| 中文字幕最新亚洲高清| 国产视频一区二区在线看| 国产精品国产av在线观看| 天天操日日干夜夜撸| 熟女少妇亚洲综合色aaa.| 下体分泌物呈黄色| 亚洲国产看品久久| 国产成人精品无人区| 桃花免费在线播放| 又黄又粗又硬又大视频| 日本91视频免费播放| 中文字幕人妻丝袜制服| 色婷婷av一区二区三区视频| 女人爽到高潮嗷嗷叫在线视频| 亚洲少妇的诱惑av| 香蕉丝袜av| 亚洲免费av在线视频| 又黄又粗又硬又大视频| 在线观看一区二区三区激情| 天堂中文最新版在线下载| 各种免费的搞黄视频| www日本在线高清视频| 日韩精品免费视频一区二区三区| 国产成人精品久久二区二区91| 成人三级做爰电影| 欧美精品啪啪一区二区三区 | 麻豆av在线久日| 自拍欧美九色日韩亚洲蝌蚪91| 一本综合久久免费| 91成人精品电影| 久久女婷五月综合色啪小说| 久久久精品国产亚洲av高清涩受| 亚洲精品av麻豆狂野| 乱人伦中国视频| 天堂中文最新版在线下载| 亚洲avbb在线观看| 欧美性长视频在线观看| 久久狼人影院| 亚洲一区二区三区欧美精品| 两个人看的免费小视频| 18禁观看日本| 大陆偷拍与自拍| 狂野欧美激情性xxxx| 97精品久久久久久久久久精品| 久久久欧美国产精品| 波多野结衣一区麻豆| 中文字幕av电影在线播放| 午夜免费成人在线视频| 亚洲av日韩在线播放| 老司机福利观看| 国产日韩欧美视频二区| 精品少妇黑人巨大在线播放| 黄色片一级片一级黄色片| 免费在线观看视频国产中文字幕亚洲 | 欧美成人午夜精品| 精品人妻熟女毛片av久久网站| 18禁黄网站禁片午夜丰满| 国产av国产精品国产| 我要看黄色一级片免费的| 中文字幕av电影在线播放| 汤姆久久久久久久影院中文字幕| 国产在线观看jvid| 国产日韩一区二区三区精品不卡| 视频在线观看一区二区三区| 欧美成狂野欧美在线观看| 欧美大码av| 欧美 日韩 精品 国产| 亚洲av电影在线进入| 狂野欧美激情性xxxx| 亚洲自偷自拍图片 自拍| 国产淫语在线视频| 天天操日日干夜夜撸| 久久综合国产亚洲精品| 丝袜在线中文字幕| 人人妻人人澡人人爽人人夜夜| 18禁裸乳无遮挡动漫免费视频| 曰老女人黄片| 91麻豆精品激情在线观看国产 | 日韩制服骚丝袜av| 丰满少妇做爰视频| 亚洲欧美色中文字幕在线| 这个男人来自地球电影免费观看| 免费在线观看日本一区| 精品人妻一区二区三区麻豆| 天天操日日干夜夜撸| 国产高清videossex| 不卡一级毛片| 欧美日韩中文字幕国产精品一区二区三区 | 久久久久久久精品精品| 亚洲av成人不卡在线观看播放网 | 夜夜骑夜夜射夜夜干| 80岁老熟妇乱子伦牲交| 中文欧美无线码| 一级毛片女人18水好多| 新久久久久国产一级毛片| 人成视频在线观看免费观看| 两个人看的免费小视频| 丝袜在线中文字幕| 成在线人永久免费视频| 欧美一级毛片孕妇| 建设人人有责人人尽责人人享有的| 国产一卡二卡三卡精品| 99香蕉大伊视频| 亚洲va日本ⅴa欧美va伊人久久 | 国产精品成人在线| 精品卡一卡二卡四卡免费| 久久精品aⅴ一区二区三区四区| 久久久久国内视频| 美女福利国产在线| 日韩精品免费视频一区二区三区| 欧美成狂野欧美在线观看| 亚洲专区字幕在线| 久久av网站| e午夜精品久久久久久久| 亚洲精品一卡2卡三卡4卡5卡 | 免费高清在线观看日韩| 亚洲国产av新网站| 老司机影院成人| 国产精品久久久人人做人人爽| 中文字幕人妻熟女乱码| 国产老妇伦熟女老妇高清| 亚洲国产精品999| 一本—道久久a久久精品蜜桃钙片| 色老头精品视频在线观看| 十八禁网站免费在线| 国产成人欧美在线观看 | 午夜精品久久久久久毛片777| 人妻人人澡人人爽人人| 欧美激情 高清一区二区三区| 少妇人妻久久综合中文| 下体分泌物呈黄色| 亚洲中文av在线| 欧美少妇被猛烈插入视频| 久久久久久人人人人人| 久久免费观看电影| 色播在线永久视频| 91麻豆精品激情在线观看国产 | 精品少妇内射三级| 在线观看免费视频网站a站| 亚洲欧美成人综合另类久久久| 午夜激情av网站| 日韩熟女老妇一区二区性免费视频| 免费久久久久久久精品成人欧美视频| 蜜桃国产av成人99| 人成视频在线观看免费观看| 日日摸夜夜添夜夜添小说| 久久精品国产亚洲av香蕉五月 | 成年动漫av网址| av福利片在线| 久热爱精品视频在线9| 99国产精品免费福利视频| 一级片'在线观看视频| 成人av一区二区三区在线看 | 曰老女人黄片| 老司机影院毛片| 我的亚洲天堂| 国产精品香港三级国产av潘金莲| 午夜老司机福利片| 美女视频免费永久观看网站| 亚洲精品自拍成人| 又黄又粗又硬又大视频| 在线精品无人区一区二区三| www.精华液| 国产xxxxx性猛交| 日韩一卡2卡3卡4卡2021年| 欧美亚洲日本最大视频资源| 精品福利永久在线观看| 啦啦啦视频在线资源免费观看| 精品人妻在线不人妻| 女人精品久久久久毛片| 性色av一级| 交换朋友夫妻互换小说| 99国产精品99久久久久| 国产又色又爽无遮挡免| 99热网站在线观看| 免费在线观看影片大全网站| 日韩人妻精品一区2区三区| 色播在线永久视频| 美女高潮喷水抽搐中文字幕| 亚洲欧洲日产国产| 无遮挡黄片免费观看| 99国产精品免费福利视频| 午夜免费观看性视频| 操美女的视频在线观看| 久久久精品区二区三区| 免费观看av网站的网址| 啦啦啦视频在线资源免费观看| 91麻豆精品激情在线观看国产 | 青青草视频在线视频观看| h视频一区二区三区| 日韩制服骚丝袜av| 妹子高潮喷水视频| 亚洲av国产av综合av卡| 老司机深夜福利视频在线观看 | 美女福利国产在线| 人妻一区二区av| 欧美中文综合在线视频| 精品亚洲成a人片在线观看| 午夜精品久久久久久毛片777| 国产精品国产三级国产专区5o| 啪啪无遮挡十八禁网站| 亚洲精品国产av成人精品| 国产三级黄色录像| 人人澡人人妻人| 少妇被粗大的猛进出69影院| av又黄又爽大尺度在线免费看| 99久久人妻综合| 亚洲五月婷婷丁香| 侵犯人妻中文字幕一二三四区| 亚洲一码二码三码区别大吗| 亚洲欧美一区二区三区久久| 欧美激情极品国产一区二区三区| 亚洲av电影在线观看一区二区三区| 国产日韩欧美在线精品| 午夜老司机福利片| 亚洲国产成人一精品久久久| 嫁个100分男人电影在线观看| 黄色视频在线播放观看不卡| 叶爱在线成人免费视频播放| 啦啦啦视频在线资源免费观看| 亚洲成av片中文字幕在线观看| 中文字幕最新亚洲高清| h视频一区二区三区| 亚洲成国产人片在线观看| 亚洲少妇的诱惑av| 亚洲国产av影院在线观看| 12—13女人毛片做爰片一| 国产精品成人在线| 亚洲欧美激情在线| 麻豆av在线久日| 国产精品免费视频内射| 在线看a的网站| 老司机亚洲免费影院| 久久中文字幕一级| 丰满少妇做爰视频| 久久女婷五月综合色啪小说| 国产成人免费无遮挡视频| 在线精品无人区一区二区三| svipshipincom国产片| avwww免费| av片东京热男人的天堂| 久久精品国产a三级三级三级| 99热国产这里只有精品6| 女人被躁到高潮嗷嗷叫费观| 亚洲色图 男人天堂 中文字幕| 黑人巨大精品欧美一区二区mp4| 美女大奶头黄色视频| 国产精品久久久久久精品电影小说| 久久国产精品人妻蜜桃| 伊人久久大香线蕉亚洲五| 久久久国产成人免费| 亚洲专区国产一区二区| 亚洲中文av在线| 亚洲欧洲精品一区二区精品久久久| h视频一区二区三区| 欧美日韩一级在线毛片| 女性被躁到高潮视频| 性色av乱码一区二区三区2| 女人爽到高潮嗷嗷叫在线视频| 国产精品一区二区在线观看99| 国产1区2区3区精品| 亚洲av美国av| 成人影院久久| 国产91精品成人一区二区三区 | 男女国产视频网站| 美女中出高潮动态图| 一级片'在线观看视频| 亚洲国产毛片av蜜桃av| 女人精品久久久久毛片| av在线app专区| 一本—道久久a久久精品蜜桃钙片| 91成人精品电影| 国产97色在线日韩免费| 久久人人97超碰香蕉20202| 久久久精品国产亚洲av高清涩受| 成人国产一区最新在线观看| 人人妻人人澡人人看| 99久久人妻综合| 午夜老司机福利片| 午夜免费成人在线视频| 99久久精品国产亚洲精品| 丁香六月天网| 99久久精品国产亚洲精品| 男人舔女人的私密视频| 午夜老司机福利片| 人人妻,人人澡人人爽秒播| 亚洲国产av影院在线观看| 精品亚洲成a人片在线观看| 成人国产av品久久久| 人人妻,人人澡人人爽秒播| 最新在线观看一区二区三区| 久久人人97超碰香蕉20202| 精品一区二区三区四区五区乱码| tube8黄色片| 老司机福利观看| 两个人免费观看高清视频| 免费av中文字幕在线| 亚洲视频免费观看视频| 国产人伦9x9x在线观看| 午夜福利一区二区在线看| 久久久久精品国产欧美久久久 | 在线观看免费日韩欧美大片| 亚洲精品成人av观看孕妇| 桃红色精品国产亚洲av| 性色av一级| 久久久国产成人免费| 三上悠亚av全集在线观看| 99久久国产精品久久久| 女人高潮潮喷娇喘18禁视频| 十分钟在线观看高清视频www| 精品一区二区三卡| 高清av免费在线| 久久天堂一区二区三区四区| 丰满迷人的少妇在线观看| 精品人妻熟女毛片av久久网站| 丁香六月欧美| 久久精品人人爽人人爽视色| 咕卡用的链子| 人成视频在线观看免费观看| 9热在线视频观看99| a级毛片在线看网站| 99热全是精品| 国产熟女午夜一区二区三区| 韩国精品一区二区三区| 两人在一起打扑克的视频| 巨乳人妻的诱惑在线观看| √禁漫天堂资源中文www| 国产精品国产av在线观看| 天堂8中文在线网| 久久精品人人爽人人爽视色| 一本大道久久a久久精品| 99国产精品一区二区蜜桃av | 国产极品粉嫩免费观看在线| 精品人妻一区二区三区麻豆| 首页视频小说图片口味搜索| 国产淫语在线视频| 91精品三级在线观看| 亚洲性夜色夜夜综合| 欧美精品啪啪一区二区三区 | 精品国产一区二区久久| av在线老鸭窝| 国产精品 欧美亚洲| 少妇被粗大的猛进出69影院| 我的亚洲天堂| 成人亚洲精品一区在线观看| 一本大道久久a久久精品| 久久免费观看电影| 亚洲精品中文字幕在线视频| 精品久久久久久电影网| 巨乳人妻的诱惑在线观看| 国产人伦9x9x在线观看| 日韩,欧美,国产一区二区三区| 大片免费播放器 马上看| 亚洲欧美一区二区三区黑人| 亚洲精品第二区|