• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Identification and Characterization of Gene SpDMRT99B and Its Sex-Biased Expression Profile in the Mud Crab, Scylla paramamosain

    2021-12-22 11:41:26ZHANGYinFANGShaobinLINFeiLIShengkangZHENGHuaipingZHANGYuelingIKHWANUDDINMhdandMAHongyu
    Journal of Ocean University of China 2021年6期

    ZHANG Yin, FANG Shaobin, LIN Fei, LI Shengkang, ZHENG Huaiping,ZHANG Yueling, IKHWANUDDIN Mhd, and MA Hongyu, 3), *

    Identification and Characterization of Geneand Its Sex-Biased Expression Profile in the Mud Crab,

    ZHANG Yin1), 2), FANG Shaobin1), 2), LIN Fei1), 2), LI Shengkang1), 2), ZHENG Huaiping1), 2),ZHANG Yueling1), 2), IKHWANUDDIN Mhd2), 3), and MA Hongyu1), 2), 3), *

    1),,,515063,2),,515063,3),,

    The() gene family is conserved from invertebrates to humans. The functions of DMRT are mainly involved in sex development and the formation of many tissues and organs. In this study, a DM (Doublesex/Mab-3)-domain gene was identified in the mud crab, and was namedbecause of its many similarities to arthropodand phylogenetically close relationship with arthropod DMRT99B. The cDNA ofgene is 1249bp in length, encoding 224 amino acids.From 254bp to 928bp there isa conserved DM domain.No transmembrane do- main was identified. Through multiple amino acid alignment and phylogenetic tree analysis, the closest gene toisDMRT99B, followed byandDMRT99B. The expressions of the gene were characterized in different tissues of female and male crabs during early development period of crab individuals, as well as in different development periods of gonads. The results showed thatgene is significantly highly expressed in testis than in ovary and other tissues. The expression level ofin testis at different stages is significantly higher than that in ovary,and it is particularly highly expressed in immature testis. In early developmental stages of larvae, the expressions ofre- main at a low level and reach a peak at zoea stage I when thebody segments shape up. It is speculated thatgene might be involved in the gonadal development process and somitogenesis of.

    ; DM domain gene;; sex determination/differentiation; early development stage

    1 Introduction

    Although major differences in the genetic control of sex- ual development occur among animal lineages, the() genesappear to function in all animals as tissue-specific transcrip- tion factors related to sex determination and many other developmental processes (Bellefroid., 2013). Many studies have reported thatgenes are highly conserved in the DM domain with a zinc finger structure bind-ing to specific genomic elements to regulate gene transcrip- tion and play a similar role in animal sex differentiation (Zhang and Zarkower, 2017; Galindo-Torres., 2018). In recent years, the functions ofgenes have been characterized in many animal groups and known to be in- volved in sex determination and/or sex differentiation in nematodes(Raymond., 1998), vertebrates (Kopp, 2012) and insects (Miller., 2003). In vertebrates, orthologs ofgenes, including human,, and, have been identified and they function during se- xual development (Raymond., 1999). Thegenefamily may represent the most conservative genes involved in sex determination and differentiation in the tree of ani- mal life (Rideout., 2010; Murphy., 2015). Other genes of the DM domain gene family are also expressed in other tissues in addition to gonads, such as,,and., 2003; Veith., 2006),ler., 2004),., 2004) and., 2000). In,, which is closely related to, affects mushroom body size in the adult brain (Zwarts., 2015) and is highly expressed in the midline cells of the central nervous system inlarvae (Fontana and Crews, 2012). In addition,gene may be respon- sible for establishing or maintaining the identity of octopaminergic neurons (Henry., 2012).

    The DM-domain genes may play a related role in sex determination in crustaceans (Kato., 2008; Zhang and Qiu, 2010; Yu., 2014). However, the study ofgene in crustaceans is relatively limited (Yu., 2015, 2017; Yang., 2018). The first crustacean DM-domain gene was identified in the Chinese mitten crabwith a testis-specific expression pattern (Zhang and Qiu, 2010). Othergenes were subsequently report- ed in various crustacean species. In, the functionalgene,, presents a sexually dimor- phic expression pattern and is responsible for male-speci- fic traits (Kato., 2011; Toyota., 2013). In the Eas- tern spiny lobster,, the first hetero- gametic sex-linkedgene,, was identified(Chandler., 2017). Twogenes,and, were also identified in the giant freshwater prawn(Yu., 2014; Zhong., 2019), which is closely related to the oriental river prawn(Wang., 2019). Member of thegene family has also been identifiedin the Chinese shrimp(Li., 2018). Until now, there is no information on molecular characteristics and function ofgenes in mud crab.

    is an important economic mariculture species and popular seafood in the South-East Asian coun- tries (Le Vay., 2007). The mud crab aquaculture has been conducted for more than 100 years in China and over the past decades throughout the Asia (Williams and Primavera, 2001) and occupied an increasingly momentous role in Chinese crab species farming industry (Li., 2018). The life cycle development consists of four main periods,including embryonic period; a zoea period with 5 different stages; a megalopa period; and crablet after the fixation and metamorphosis of megalopa, whose gonadic development is yet to be studied.males grow faster and reach larger size than females at harvest season. The mechanisms underlying the sexual phenoty- pic differentiation and dimorphic development are still un- clear.Although there have been some studies on the sex differentiation and determination related genes including,and(Jiang, 2020; Lin, 2020; Wang, 2020), whether thefamily genes contribute to the sex development and other functions of the mud crab have not been studied. This is the first study to reportgene in. The cloning of thisgene may provide a useful tool for the studies of male sex determination/differentiation in the crab.

    2 Materials and Methods

    2.1 Crab and Tissue Sampling

    The crabs were purchased from local fishermen in Shan- tou City, China. They were culturedin our laboratory and Raoping West Coast Biotechnology Co., Ltd., Chaozhou, Guangdong Province, China during the breeding season.Crabs were anesthetized with ice before tissues extraction. Five female (body weight 280g±10g) and male crabs (body weight 250g±10g), respectively, were used for gonadal RNA extraction for rapid amplification of cDNA ends (RACE) PCR. Different tissues including ganglion, stomach, heart, intestine, gill, muscle, hepatopancreas and go- nads were collected from five males and females, respectively, for the detection of spatial expression ofge-ne. Different gonadal samples were collected from five fe- male and five male crabs at each developmental stage, re- spectively. The identification of the gonads at different de- velopmental stages was according to the methods of Wu(2020). The different developmental stage including embryo, zoea I-V, megalopa and crablet I-II.

    2.2 Cloning of DMRT Gene

    Total RNA was isolated from the testis (40–60mg) of matureusing RNA isoPlus (TaKaRa, Ja- pan). The quantity and quality of isolated RNAs were de- termined by electrophoresis and spectrophotometry (Nano- drop 2000, Thermo Scientific, USA). Only samples with OD260/280 ration ranging from 1.8 to 2.0 were used for cDNA synthesis. Reverse transcription was conducted us- ing PrimeScript?RT reagent Kit with gDNA Eraser (TaKaRa, Japan).The 3’ and 5’ ends of cDNAs were cloned using the RACE-PCR with the SMART RACE Kit (Clon- tech, USA). The universal amplified primers of crab DMRTwas designed using Primer Premier 5 software. The primers listed in Table 1 are used to amplify the partial sequences. Programs for PCR were as follows: One denaturation cycle at 94℃ for 5min; 30 cycles of amplification and each cycle includes 30s at 95℃, 30s at 57℃ and 1min at 72℃;and a final extension at 72℃for 8min. The PCR products described above were all purified from 2.0% agarose by SanPrep Column DNA Gel Extraction Kit (Sangon, China) and loaded into the pEASY-T1 cloning vector (Transgen biotech, China). Then the positive transformants were se- lected and sequenced (Sangon, China). Genomic DNAs ex- tracted from male and female crabs were used as template to clone the DNA sequence of thegene.

    Table 1 Nucleotide sequences of the primers for cloning and qPCR of DMRT99B gene

    Note: F and R represent the forward and reverse direction of the primers, respectively.

    2.3 Structure Prediction, Sequence Alignment and Phylogeny

    For deduced amino acid analysis, the calculated mole- cular weight and theoretical isoelectric point were obtain- ed by ProtParam tool (http://web.expasy.org/protparam/). Secondary and tertiary structure predictions were perform- ed using putative amino acid sequences. We submitted all 224 amino acids of the SpDMRT99B as inputs. The secondary structures and tertiary structure were predicted us- ing online resource SOPMA (https://npsa-prabi.ibcp.fr/cgi-bin/npsa_automat.pl?page=npsa_sopma.html) and SMART (http://smart.embl-heidelberg.de/), respectively. The mul-tiple alignments of amino acid sequences were performed using BioEdit software.

    The evolutionary history was inferred by using the Ma- ximum Likelihood method based on the JTT matrix-basedmodel (Jones., 1992). The bootstrap consensus tree in- ferred from 1000 replicates is taken to represent the evolutionary history of the taxa analyzed (Felsenstein, 1985). Branches corresponding to partitions reproduced in less than 25% bootstrap replicates are collapsed. The percen- tage of replicate trees in which the associated taxa clustered together in the bootstrap test (1000 replicates) are shown next to the branches (Felsenstein, 1985). Initial tree (s) for the heuristic search were obtained automatically by applying Neighbor-Joining and BioNJ algorithms to a ma- trix of pairwise distances estimated using a JTT model, and then selecting the topology with superior log likelihood va-lue. The analysis involved 31 amino acid sequences (Table2). All positions with less than 50% site coverage were eli- minated. There are a total of 472 positions in the final da- taset. Evolutionary analyses were conducted in MEGA7.0 (Kumar., 2015).

    Table 2 Amino acid sequences used in the phylogenetic analysis

    2.4 Quantitive Real Time PCR (qPCR)

    Total RNA was extracted using RNAiso Plus (Takara Co.,Ltd., Japan). RNA samples were treated by RQ1 RNase-Free DNase prior to qPCR (Takara Co., Ltd., Japan) to avoid genomic DNA contamination. cDNA was generated from 500ng DNase-treated RNA using Talent qPCR Pre- mix (SYBR Green) kit (TIANGEN Biotech Co., Ltd., Bei- jing) following the manufacturer’s instructions. Primers (Table 2) for qPCR were designed using the Primer 6.0 Software. qPCR was conducted in a Mini Option real-time detector (Roche LightCycle@480). The qPCR re-action solution consisted of 10μL Talent qPCR Premix (2×), 0.6μL PCR forward primer (10μmolL?l), 0.6μL PCR reverse primer (10μmolL?l), 2.0μL RT reaction so- lution (cDNA 20ng), and 6.8μL RNase free water. The reaction conditions were 95℃ for 3min followed by 40 cycles of 95℃ for 5s, 60℃ for 10s and 72℃ for 15s. The florescent flux was then recorded, and the reaction con- tinued at 72℃ for 6s and 95℃ for 5s for melting curve. All amplicons were initially separated by agarose gel elec- trophoresis to ensure their correct sizes. The gene expres- sion levels were normalized towards the reference genes (18S rRNA). Optimized comparative Ct (2?ΔΔCt) value me- thod (Livak and Schmittgen, 2001) was applied to calcu- late gene expression levels.

    3 Results

    3.1 Identification of DMRT

    Based on the EST file of mud crab gonadal transcriptome sequencing (Yang., 2018), a pair of specific pri- mers were designed to verify and amplify the core region ofgene. The 5’ and 3’ ends ofwere amplified using RACE method. As a result, the full length ofcDNA was 1249bp. The analysis of the cDNA sequence showed that it has 5’ untranslate region (UTR) of 253bp; open reading frame (ORF) of 672bp containing an ATG start codon at 254bp and a TAA stop codon at 928bp; and 3’ UTR sequence of 321bp with poly (A) tail but without any polyadenylation signal AATAAA. The ORFofcodes for 224 amino acids (Fig.1) which con-tains a conserved doublesex DNA-binding motif (DM do- main) from 39–92aa. A putative nuclear localization sig- nal (NLS) KGHKR from 74–78aa is also detected, and it locates in the zinc module making of two intertwined Zn2+- binding sites (site I C61/C64/H76/C80 and site II H67/ C85/C87/C90) (Fig.2). The predicted molecular size and theoretical pI of mud crab DMRT are 24254.8 Da and 9.69,respectively. The amino acid contents of Ser, Ala, Leu and Arg are all above 8% of total amino acids. The sequence was deposited in the GenBank database with the acces- sion number MN395823.

    The genomic DNA was used to determine the introns in genomicgene sequence using a pair of spe- cific primers at 5’ and 3’ ends of the cDNA sequence. The sequencing of the PCR products showed no difference be- tween the amplifications from genomic DNA and those from cDNA templates using the same primers. It indicatedthatgene has no intron. Additionally, the ge- nomic sequences of male and femalegene showed no sex dimorphism in the crab genome.

    Fig.1 Full length of SpDMRT99B cDNA sequence. The sequences with gray background show the DM domain region. The amino acids in red box are putative nuclear localization signal.

    3.2 Phylogeny of SpDMRT99B

    According to the amino acid alignment, the DM domain inDMRT99B protein sequence werehighly conserved among DMRT99B and other DMRTsubfamilies with 100% sequence identity toDmrt99B and 99% identity toand(Fig.2). Thus, we named thegene identified in the present study. The DM domain also contains a conserved nuclear localization signal (NLS) and an ordered moiety consisting of invariant cysteine and histidine as shown in Fig.2. In SpDMRT99B, the two intertwined Zn2+-binding sites (site I and site II) were ob- served (Fig.3). Outside the DM domain, little sequence homology can be identified. Moreover, SpDMRT99B lacks the conserved DMA domain which is similar toandbut unlike theandDMRT99B (shown in Fig.4). It indicates that the DMRT99B in mud crab showed a high conservatism dur- ing the evolution.

    To identify the phylogenetic affinities between SpDMRT- 99B and other members of DMRT family, the molecular phylogenetic analysis was performed in an unrooted phylogenetic tree constructed usingORF nucleotide sequences-deduced amino acid sequences (Table 2; Fig.5). SpDMRT99B isthe closest toDMRT99B, sharing a high level of similarity of 74%, followed byDMRT99B in the same branch with insect andDMRT99B. DMRT99B is closely related with mammal and vertebrate DMRT4, DMRT5.

    Fig.2 Amino acid sequence alignment of DM domain from SpDMRT99B and other species. Red and green rectangles indicate residues of the two intertwined zinc binding sites (site I and site II, respectively). Putative nuclear localization signals (NLSs) are underlined.

    Fig.3 3D-structures of SpDMRT99B predicted by SMART. Red and green lines circle out the residues of the two intertwined zinc binding sites (site I and site II, respectively).

    Fig.4 Schematic diagrams of DMRT proteins of different species. Size of each bar is drawn according to the position of amino acids in each protein.

    Fig.5 A comparative phylogenetic tree based on the amino acid sequences of SpDMRT99B and 30 other proteins.

    3.3 Sex-Biased Expression Profile of SpDMRT99B

    The expression levels were analyzed in adult mud crab tissues by qPCR, and results showed thatmRNA was distributed in all tissues. The expression ofgene shows different patterns in different sexes of crab.is expressed more highly in the male tissuesthan in the female, including ganglion, heart, intes- tine, muscle and hepatopancreas. However, the levels of ex- pression in the stomach and gill are the opposite. It is main- ly expressed in testis, significantly higher (over 10 times higher) than in ovary and other tissues (Fig.6). Consider- ing its dominant expression in testis, SpDMRT99B might play critical role in the male gonad development of mud crab. Thus, we detected the expressions ofat different developmental stages of gonads, namely ovary I–V and testis I–III (Fig.7). It showed that the expressions ofin testis were significantly higher than that in ovaryno matter at which stages, which is accordance with the expression detection in different tissues. Among the different developmental stages of testis, the peak oc- curs in the stage II of testis, and the expression is signifi- cantly higher in this stage than those in stagesI and III. Thusmight be related to the development of testis development. During different stages of early de- velopment in mud crab, the expressions ofgenediffer obviously. Thegene is significantly ex- pressed at the stage of zoea I mud crab (Fig.8). The expres- sions at other developmental stages change without sig- nificances.

    Fig.6 Quantitative real-time PCR validation of SpDMRT99Bexpressions in different tissues.

    Fig.7 Quantitative real-time PCR validation of SpDMRT99B expressions at different developmental stages of gonads. O-I, ovary stage I; O-II, ovary stage II; O-III, ovary stage III; O-IV, ovary stage IV; O-V, ovary stage V; T-I, testis stage I; T-II, testis stage II; T-III, testis stage III.

    Fig.8 Quantitative real-time PCR validation of SpDMRT99B expressions at the early developmental stages of Scylla paramamosain. E, embryonic stage; Z-I, zoea stage I; Z-II, zoea stage II; Z-III, zoea stage III; Z-IV, zoea stage IV; Z-V, zoea stage V; M, megalopa; C-I, crablet stage I; C-II, crablet stage II.

    4 Discussion

    Despitegenes have been cloned in several in- vertebrates, limited genomic information made it difficult to annotate and determinegenes in different in- vertebrate groups (Bellefroid., 2013; Wexler., 2014). In the current study, we report the molecular characterization ofgene, which is the first complete sequence of a DM factor identified in the. The full-length cDNA ofgene is 1249bp, coding 224 amino acids with 24kDa predicted mole- cular mass, which is similar with thein the length of the cDNA and protein (Zhang and Qiu, 2010). The deduced serine- and proline-rich amino acid sequence presents a well-conserved DM domain characteristic among all DMRT subfamilies. The DM domain has 100% high identity with that ofandDMRT99B. The DM motif is a cysteine-rich DNA- binding domain that contains two intertwined Zn2+-bind- ing sites (site I, C61/C64/H76/C80 and site II, H67/C85/ C87/C90) which are necessary for DNA binding (Zhu., 2000), and a putative NLS consisting of KGHKR (Fig.3). Unlike the insect andDMRT99Bs, SpDMR99B lacks a conserved DMA domain, which is similar withandDMRT99B (Zhang and Qiu,2010; Yu., 2014). The presence of DMA which is spe- cific to DMRT99B and DMRT3-5 (Fig.4) is patrimonial. The loss of DMA domains here may contribute to the evolution of novel roles, as DMRT1 lacks DMA domain func- tioning in mammalian sexual differentiation (Raymond., 2000; Brunner., 2001; Volff., 2003). Phylogenetic analysis indicates that theDMRT99B protein clustered with the DMRT99B sequences of other species, which implied that SpDMRT99B might have si- milar function with DMRT99B in other species.

    is also predominantly expressed in testis, approximately a hundred times higher than that in ovary. In,is also prominent in the testis,and much lower in the ovary (Yu., 2014). During the different developmental stages of the gonads,was significantly highly expressed in testis stage II which is in an immature status (Fig.6).genes are also expressed in immature testes inand(Zhang and Qiu, 2010; Yu., 2014). It is reported thatmight play an essential role in tes- ticular development and differentiation (Zhang and Qiu, 2010; Yu., 2014). The primary function ofge- nes in the gonad is to promote male-specific and repress female-specific differentiation (Kopp, 2012). In general, mostgenes are expressed in males and function in male sexual differentiation. However, inand,genes are expressed in a fe- male-specific manner (Kato., 2008; Kasahara., 2018), which might be unique to Branchiopoda and Insecta species (Kasahara., 2018). Tissue- and sex-specificgenes expressions in different portal gonads in chor- data, arthropoda, and molluska suggests that they already played a role in testicular development in a common bilateral ancestor. In contrast, the inconsistent functions ofgenes in some species may reflect independent co- option (Kopp, 2012). In non-gonadal tissues,genes appear to have the ability to modulate a wide range of de- velopmental processes (Hong., 2007), to which only limited attention has been paid to date. The time-depen- dent expression patterns ofgenes inthe period of the embryo, larval, post-larval and adult stages might indicate that these proteins may be involved in so- matic genesis rather than in reproductive development (Yu., 2014). Furthermore,might conservatively function for somitogenesis both in zebrafish and mouse (Meng., 1999; Sato., 2010). It suggested thatgenes play regulatory roles in both sexual and so- matic development (Abayed., 2019). Here, the expression ofduring the early developmen reaches peak at zoea I stage which is equipped with segments compared to the embryonic stage, whichsuggests that themight also play roles in somitoge- nesis in mud crab larvae.

    In absence of sufficient elucidations in arthropods, the functions of DMRT99B can be indicated by their vertebrate homologs, namely DMRT4/5s (Fig.5). Dmrt4 and Dmrt5 inand Dmrt5 in zebrafish are involved in neurogenesis (Yoshizawa., 2011; Parlier., 2013), and so as DMRT99B in(Kasahara., 2018). However, the Dmrt4 mutant in mouse has normal olfactory function (Balciuniene, 2006). Except for gonad development and neurogenesis, Dmrt5 has important roles in various processes including embryonic development andsomite formation (Urquhart., 2016; Muralidharan., 2017; De Clercq., 2018). Furthermore, tissue dis- tributions of Dmrt4 and Dmrt5 in adults are divergent in different species (Guan., 2000; Kondo., 2002;Ottolenghi., 2002; Balciuniene., 2006; Veith.,2006). All functions of DMRT4 and DMRT5 in vertebratesmay reflect their intermediate or multi-functional statusduring evolution of the DMRT family, so does SpDMRT- 99B in this study. Thewas reported in the embryonic development and sexual differentiation of(Yu., 2014). In silkworm, it plays an important role in behavior-related neurogenesis (Kasahara., 2018). In addition, due to the technical difficulties in manipulating mud crab embryos, the effects ofgene on early embryonic development or larvae cannot be studied by up-regulating or down-regulating methods. While more researchesare needed on studying the function of these molecules in crustaceans, current expression pattern evidences suggest that thegene has a multifunctional role.

    In the present study, we identified the DM-domain gene in the mud crab and detected its expression characteriza- tions. The expression ofpresents sexually di- morphism and male-bias pattern. The peak expression in zoea I stage might indicate the involvement ofin somitogenesis. However, many efforts should be con- ducted on revealing the functions ofgenes in mud crab possibly by means of up-regulating or down-regula- ting technique in the future. Our present findings enhance our understanding of DM domain genes in sexual dimor- phism in crustaceans and lay the foundation for the fur- ther study ingenes in mud crab.

    Acknowledgements

    This study was funded by the National Natural Science Foundation of China (No. 31772837), the National Key Research & Development Program of China (No. 2018YF D0900201), the Science and Technology Project of Guang- dong Province (No. 2018A050506080), the Shantou Uni- versity Scientific Research Foundation for Talents (No. NTF17006), and the Program for Innovation and Enhance- ment of School of Department of Education of Guangdong Province (No. 2017KCXTD014).

    Abayed, F. A., Manor, R., Aflalo, E. D., and Sagi, A., 2019. Screen- ing forgenes from embryo to matureprawns., 282: 113205.

    Balciuniene, J., Bardwell, V. J., and Zarkower, D., 2006. Mice mutant in the DM domain geneare viable and fertile but have polyovular follicles., 26 (23): 8891-8984.

    Bellefroid, E. J., Leclere, L., Saulnier, A., Keruzore, M., Sirakov, M., Vervoort, M.,., 2013. Expanding roles for the evolutionarily conserved Dmrt sex transcriptional regulators during embryogenesis., 70: 3829- 3845.

    Brunner, B., Hornung, U., Shan, Z., Nanda, I., Kondo, M., Zend- Ajusch, E.,., 2001. Genomic organization and expression of the doublesex-related gene cluster in vertebrates and detection of putative regulatory regions for., 77 (1-2): 8-17.

    Chandler, J. C., Fitzgibbon, Q. P., Smith, G., Elizur, A., and Ven- tura, T., 2017. Y-linkedparalogue () in the East- ern spiny lobster,: The first invertebrate sex-linked., 430 (2): 337-345.

    De Clercq, S., Keruzore, M., Desmaris, E., Pollart, C., Assimacopoulos, S., Preillon, J.,., 2016. DMRT5 together with DMRT3 directly controls hippocampus development and neo- cortical area map formation., 28 (2): 493-509.

    Felsenstein, J., 1985. Confidence limits on phylogenies: An ap- proach using the bootstrap., 39: 783-791.

    Fontana, J. R., and Crews, S. T., 2012. Transcriptome analysis ofCNS midline cells reveals diverse peptidergic pro- perties and a role for castor in neuronal differentiation., 372: 131-142.

    Galindo-Torres, P., Garcia-Gasca, A., Llera-Herrera, R., Escobedo-Fregoso, C., Abreu-Goodger, C., and Ibarra, A. M., 2018.Sex determination and differentiation genes in a functional her-maphrodite scallop,.,37: 161-175.

    Guan, G., Kobayashi, T., and Nagahama, Y., 2000. Sexually di- morphic expression of two types of DM (Doublesex/Mab-3)- domain genes in a teleost fish, the Tilapia ()., 272 (3): 662-666.

    Guo, Y., Li, Q., Gao, S., Zhou, X., He, Y., Shang, X.,., 2004. Molecular cloning, characterization, and expression in brain and gonad ofof zebrafish., 324 (2): 569-575.

    Henry, G. L., Davis, F. P., Picard, S., and Eddy, S. R., 2012. Cell type-specific genomics ofneurons., 40 (19): 9691-9704.

    Hong, C. S., Park, B. Y., and Saint-Jeannet, J. P., 2007. The func- tion ofgenes in vertebrate development: It is not just about sex., 310 (1): 1-9.

    Jiang, Q., Lu, B., Wang, G., and Ye, H., 2020. Transcriptional in- hibition of Sp-IAG by crustacean female sex hormone in the mud crab,., 21 (15): 5300.

    Jones, D. T., Taylor, W. R., and Thornton, J. M., 1992. The rapid generation of mutation data matrices from protein sequences., 8: 275-282.

    Kasahara, R., Aoki, F., and Suzuki, M. G., 2018. Deficiency inortholog causes behavioral abnormalities in the silkworm,., 53 (3): 381-393.

    Kato, Y., Kobayashi, K., Oda, S., Colbourn, J. K., Tatarazako, N., Watanabe, H.,., 2008. Molecular cloning and sexually di- morphic expression of DM-domain genes in., 91 (1): 94-101.

    Kato, Y., Kobayashi, K., Watanabe, H., and Iguchi, T., 2011. En- vironmental sex determination in the branchiopod crustacean: Deep conservation of a doublesex gene in the sex-determining pathway., 7: e1001345.

    Kim, S., Kettlewell, J. R., Anderson, R. C., Bardwell, V. J., and Zarkower, D., 2003. Sexually dimorphic expression of multiple doublesex-related genes in the embryonic mouse gonad., 3 (1): 77-82.

    Kondo, M., Froschauer, A., Kitano, A., Nanda, I., Hornung, U., Volff, J.,., 2002. Molecular cloning and characterization ofgenes from the medakaand the platy- fish., 295 (2): 213-222.

    Kopp, A., 2012.genes in the development and evolution of sexual dimorphism., 28 (4): 175-184.

    Kumar, S., Stecher, G., and Tamura, K., 2016. MEGA7: Mole- cular Evolutionary Genetics Analysis version 7.0 for bigger datasets., 33 (7): 1870-1874.

    Le Vay, L., Ut, V. N., and Walton, M., 2007. Population ecology of the mud crab(Estampador) in an estuarine mangrove system; a mark-recapture study., 151 (3): 1127-1135.

    Li, S., Li, F., Yu, K., and Xiang, J., 2018. Identification and characterization of a doublesex gene which regulates the expression of insulin-like androgenic gland hormone in., 649: 1-7.

    Li, Y. Y., Ai, C. X., and Liu, L. J., 2018. Mud crab,China’s leading maricultured crab. In:. Gui, J. F.,., eds., Wiley Online Library, 226-233.

    Lin, J., Yuan, Y., Shi, X., Fang, S., Zhang, Y., Guan, M.,., 2020. Molecular cloning, characterization and expression pro- files of a SoxB2 gene related to gonadal development in mud crab ()., 64 (2): 126-136.

    Livak, K. J., and Schmittgen, T. D., 2001. Analysis of relative gene expression data using real-time quantitative PCR and the 2?ΔΔCTmethod., 25 (4): 402-408.

    Meng, A., Moore, B., Tang, H., Yuan, B., and Lin, S., 1999. Adoublesex-related gene, terra, is involved in somi- togenesis in vertebrates., 126 (6): 1259-1268.

    Miller, S. W., Hayward, D. C., Bunch, T. A., Miller, D. J., Ball, E. E., Bardwell, V. J.,., 2003. A DM domain protein from a coral,, homologous to proteins important for sex determination., 5: 251- 258.

    Muralidharan, B., Keruzore, M., Pradhan, S. J., Roy, B., Shetty, A. S., Kinare, V.,., 2017. Dmrt5, a novel neurogenic factor, reciprocally regulates Lhx2 to control the neuron-glia cell fate switch in the developing hippocampus., 37 (46): 11245-11254.

    Murphy, M. W., Lee, J. K., Rojo, S., Gearhart, M. D., Kurahashi, K., Banerjee, S.,., 2015. An ancient protein-DNA interaction underlying metazoan sex determination., 22 (6): 442-451.

    Ottolenghi, C., Fellous, M., Barbieri, M., and McElreavey, K., 2002. Novel paralogy relations among human chromosomes support a link between the phylogeny of doublesex-related ge- nes and the evolution of sex determination., 79 (3): 333-343.

    Parlier, D., Moers, V., Van Campenhout, C., Preillon, J., Leclère, L., Saulnier, A.,., 2013. Thedoublesex-related geneis required for olfactory placode neurogenesis., 373 (1): 39-52.

    Raymond, C. S., Murphy, M. W., Osullivan, M. G., Bardwell, V. J., and Zarkower, D., 2000., a gene related to worm and fly sexual regulators, is required for mammalian testis differentiation., 14 (20): 2587-2595.

    Raymond, C. S., Parker, E. D., Kettlewell, J. R., Brown, L. G., Page, D. C., Kusz, K.,., 1999. A region of human chromosome 9p required for testis development contains two genes related to known sexual regulators., 8 (6): 989-996.

    Raymond, C. S., Shamu, C. E., Shen, M. M., Seifert, K. J., Hirsch, B., Hodgkin, J.,., 1998. Evidence for evolutionary conservation of sex-determining genes., 391: 691.

    Rideout, E. J., Dornan, A. J., Neville, M. C., Eadie, S., and Good- win, S. F., 2010. Control of sexual differentiation and beha- vior by the doublesex gene in., 13 (4): 458-466.

    Sato, T., Rocancourt, D., Marques, L., Thorsteinsdóttir, S., and Buckingham, M., 2010. A Pax3/Dmrt2/Myf5 regulatory cascade functions at the onset of myogenesis., 6 (4): e1000897.

    Toyota, K., Kato, Y., Sato, M., Sugiura, N., Miyagawa, S., Miya- kawa, H.,., 2013. Molecular cloning of doublesex genes of four cladocera (water flea) species., 14: 239.

    Urquhart, J. E., Beaman, G. M., Byers, H., Roberts, N. A., Cher- vinsky, E., Osullivan, J.,., 2016. DMRTA2 () is mutated in a novel cortical brain malformation., 89 (6): 724-727.

    Veith, A. M., Schafer, M., Kluver, N., Schmidt, C., Schultheis, C., Schartl, M.,., 2006. Tissue-specific expression of dmrt genes in embryos and adults of the platyfish., 3 (3): 325-337.

    Volff, J., Zarkower, D., Bardwell, V. J., and Schartl, M., 2003. Evolutionary dynamics of the DM domain gene family in me- tazoans., 57 (1): S241-S249.

    Wang, M., Xie, X., Xu, D., Wang, Z., Yu, G., Jin, Z.,., 2020. Molecular characterization of the sex-lethal gene in mud craband its potential role in sexual develop- ment., 250: 110486.

    Wang, Y., Jin, S., Fu, H., Qiao, H., Sun, S., Zhang, W.,., 2019. Identification and characterization of thegene in the oriental river prawn., 20 (7): 1734.

    Wexler, J. R., Plachetzki, D. C., and Kopp, A., 2014. Pan-me- tazoan phylogeny of the DMRT gene family: A framework for functional studies., 224 (3): 175-181.

    Williams, M. J., and Primavera, J. H., 2001. Choosing tropical portunid species for culture, domestication and stock enhance- ment in the Indo-Pacific., 14 (2): 121- 142.

    Winkler, C., Hornung, U., Kondo, M., Neuner, C., Duschl, J., Shi- ma, A.,., 2004. Developmentally regulated and non-sex- specific expression of autosomal dmrt genes in embryos of the Medaka fish ()., 121(7): 997-1005.

    Wu, Q., Waiho, K., Huang, Z., Li, S., Zheng, H., Zhang, Y.,., 2020. Growth traits and biochemical composition dynamics of ovary, hepatopancreas and muscle tissues at different ovarian maturation stages of female mud crab,., 515: 734560.

    Yang, X., Ikhwanuddin, M., Li, X., Lin, F., Wu, Q., Zhang, Y.,., 2018. Comparative transcriptome analysis provides insights into differentially expressed genes and long non-coding RNAs between ovary and testis of the mud crab ()., 20 (1): 20-34.

    Yoshizawa, A., Nakahara, Y., Izawa, T., Ishitani, T., Tsutsumi, M., Kuroiwa, A.,., 2011. Zebrafish Dmrta2 regulates neurogenesis in the telencephalon., 16 (11): 1097-1109.

    Yu, Y., Ma, W., Zeng, Q., Qian, Y., Yang, J., and Yang, W., 2014. Molecular cloning and sexually dimorphic expression of two Dmrt genes in the giant freshwater prawn,., 3 (2): 181-191.

    Yu, Y., Zhang, X., Yuan, J., Li, F., Chen, X., Zhao, Y.,., 2015.Genome survey and high-density genetic map construction pro- vide genomic and genetic resources for the Pacific White Shrimp., 5: 15612.

    Yu, Y., Zhang, X., Yuan, J., Wang, Q., Li, S., Huang, H.,., 2017. Identification of sex-determining loci in Pacific White Shrimpusing linkage and association analysis., 19 (3): 277-286.

    Zhang, E., and Qiu, G., 2010. A novel Dmrt gene is specifically expressed in the testis of Chinese mitten crab,., 220 (5): 151-159.

    Zhang, T., and Zarkower, D., 2017. DMRT proteins and coordi- nation of mammalian spermatogenesis., 24: 195-202.

    Zhong, P., Zhou, T., Zhang, Y., Chen, Y., Yi, J., Lin, W.,., 2019. Potential involvement of a DMRT family member (Mr- Dsx) in the regulation of sexual differentiation and moulting in the giant river prawn., 50 (10): 3037-3049.

    Zhu, L., Wilken, J., Phillips, N. B., Narendra, U., Chan, G., Strat- ton, S. M.,., 2000. Sexual dimorphism in diverse metazoans is regulated by a novel class of intertwined zinc fingers., 14 (14): 1750-1764.

    Zwarts, L., Broeck, L. V., Cappuyns, E., Ayroles, J. F., Magwire, M. M., Vulsteke, V.,., 2015. The genetic basis of natural variation in mushroom body size in., 6 (1): 10115-10115.

    September 16, 2020;

    December 21, 2020;

    February 22, 2021

    ? Ocean University of China, Science Press and Springer-Verlag GmbH Germany 2021

    . Tel: 0086-754-86503471

    E-mail: mahy@stu.edu.cn

    (Edited by Qiu Yantao)

    22中文网久久字幕| 看免费av毛片| 免费少妇av软件| 欧美性感艳星| 精品午夜福利在线看| 99香蕉大伊视频| 十分钟在线观看高清视频www| 亚洲国产精品一区三区| 国产免费一区二区三区四区乱码| 国产乱来视频区| 纯流量卡能插随身wifi吗| 黑人高潮一二区| 免费久久久久久久精品成人欧美视频 | 国产精品久久久久久精品古装| 日韩 亚洲 欧美在线| 中文字幕制服av| 亚洲国产毛片av蜜桃av| 国产精品.久久久| 天天躁夜夜躁狠狠久久av| 国产精品.久久久| 一级毛片黄色毛片免费观看视频| 最新的欧美精品一区二区| 极品人妻少妇av视频| 黑人欧美特级aaaaaa片| 国语对白做爰xxxⅹ性视频网站| 97人妻天天添夜夜摸| 热99国产精品久久久久久7| 搡老乐熟女国产| 亚洲国产最新在线播放| 久久久久久人人人人人| 日韩成人伦理影院| 久久99一区二区三区| 亚洲av欧美aⅴ国产| 亚洲av欧美aⅴ国产| 一区二区三区精品91| 天堂俺去俺来也www色官网| 热99国产精品久久久久久7| 欧美3d第一页| videos熟女内射| 亚洲精华国产精华液的使用体验| 99视频精品全部免费 在线| 一区二区三区精品91| 草草在线视频免费看| 男女边吃奶边做爰视频| 美国免费a级毛片| 欧美亚洲日本最大视频资源| 国产精品国产av在线观看| 国产熟女欧美一区二区| 一区二区三区乱码不卡18| 久久久久久久精品精品| 亚洲精品成人av观看孕妇| 国产乱人偷精品视频| 日韩在线高清观看一区二区三区| 成年美女黄网站色视频大全免费| 26uuu在线亚洲综合色| 中国三级夫妇交换| 久久韩国三级中文字幕| 性色av一级| 亚洲少妇的诱惑av| 久久亚洲国产成人精品v| 久久久国产精品麻豆| 国产精品 国内视频| 日韩精品有码人妻一区| av天堂久久9| 日韩免费高清中文字幕av| 美女大奶头黄色视频| 国产精品一国产av| 一边亲一边摸免费视频| 2021少妇久久久久久久久久久| 国产一级毛片在线| 宅男免费午夜| 久久久亚洲精品成人影院| 精品久久久久久电影网| 天美传媒精品一区二区| 免费黄色在线免费观看| 在线 av 中文字幕| 一区二区三区四区激情视频| 国产精品嫩草影院av在线观看| 国产成人欧美| 亚洲一码二码三码区别大吗| 成人国产麻豆网| 国产国拍精品亚洲av在线观看| 国产av国产精品国产| 欧美 亚洲 国产 日韩一| 热re99久久精品国产66热6| 日韩视频在线欧美| 国产高清不卡午夜福利| 日本午夜av视频| 中文字幕制服av| 国产xxxxx性猛交| 性高湖久久久久久久久免费观看| 国产黄频视频在线观看| 国国产精品蜜臀av免费| 国内精品宾馆在线| 亚洲av在线观看美女高潮| 午夜免费观看性视频| 男人舔女人的私密视频| 性色avwww在线观看| 国产有黄有色有爽视频| 亚洲成人av在线免费| 成年美女黄网站色视频大全免费| 精品亚洲乱码少妇综合久久| 九色亚洲精品在线播放| 日日摸夜夜添夜夜爱| 在线观看美女被高潮喷水网站| 亚洲高清免费不卡视频| 免费黄色在线免费观看| 一个人免费看片子| 人人妻人人爽人人添夜夜欢视频| 成人手机av| 寂寞人妻少妇视频99o| 国产精品国产三级专区第一集| 99久久中文字幕三级久久日本| 亚洲av在线观看美女高潮| 国产xxxxx性猛交| 宅男免费午夜| 精品熟女少妇av免费看| 日韩av不卡免费在线播放| 欧美人与性动交α欧美精品济南到 | 国产极品粉嫩免费观看在线| 韩国精品一区二区三区 | 97精品久久久久久久久久精品| 最近的中文字幕免费完整| 亚洲国产成人一精品久久久| 久久久国产欧美日韩av| 99久久人妻综合| 亚洲美女搞黄在线观看| 亚洲精品第二区| 国产 精品1| 亚洲av.av天堂| 国产一区有黄有色的免费视频| 亚洲少妇的诱惑av| 国产亚洲av片在线观看秒播厂| 赤兔流量卡办理| 女人久久www免费人成看片| 一级片免费观看大全| 18在线观看网站| 成人黄色视频免费在线看| 午夜免费观看性视频| 国产精品不卡视频一区二区| 在线天堂最新版资源| 美女主播在线视频| 综合色丁香网| 在线观看www视频免费| 99热这里只有是精品在线观看| 99香蕉大伊视频| 大片电影免费在线观看免费| 久久精品夜色国产| 国产成人一区二区在线| 爱豆传媒免费全集在线观看| 性色av一级| 捣出白浆h1v1| 欧美精品国产亚洲| 18禁动态无遮挡网站| 大陆偷拍与自拍| 又粗又硬又长又爽又黄的视频| 51国产日韩欧美| 不卡视频在线观看欧美| 午夜久久久在线观看| 成人二区视频| 精品熟女少妇av免费看| 啦啦啦中文免费视频观看日本| 久久久a久久爽久久v久久| 久久99蜜桃精品久久| 观看美女的网站| 老熟女久久久| 伊人亚洲综合成人网| 在线观看美女被高潮喷水网站| 99久久人妻综合| 男的添女的下面高潮视频| 黄色怎么调成土黄色| 在线 av 中文字幕| 51国产日韩欧美| 69精品国产乱码久久久| 精品久久蜜臀av无| 日韩成人av中文字幕在线观看| 又黄又粗又硬又大视频| 日韩 亚洲 欧美在线| 天堂俺去俺来也www色官网| 国产一区有黄有色的免费视频| 欧美激情国产日韩精品一区| 国产女主播在线喷水免费视频网站| 色婷婷av一区二区三区视频| 国产av国产精品国产| 国产精品国产三级国产专区5o| h视频一区二区三区| 国产精品久久久久久久电影| 人人妻人人添人人爽欧美一区卜| 男女啪啪激烈高潮av片| 日本av免费视频播放| 大码成人一级视频| 亚洲av福利一区| 欧美激情 高清一区二区三区| 国产不卡av网站在线观看| 午夜福利,免费看| 女性生殖器流出的白浆| 天天躁夜夜躁狠狠久久av| 91国产中文字幕| av片东京热男人的天堂| 亚洲,一卡二卡三卡| 免费黄色在线免费观看| 国产色婷婷99| 中文字幕人妻丝袜制服| 极品人妻少妇av视频| 精品一区在线观看国产| 少妇人妻精品综合一区二区| 久久久久久久久久成人| 精品午夜福利在线看| 丰满饥渴人妻一区二区三| 亚洲国产日韩一区二区| 国产国拍精品亚洲av在线观看| 亚洲av综合色区一区| 一级毛片黄色毛片免费观看视频| 啦啦啦视频在线资源免费观看| 90打野战视频偷拍视频| 最近最新中文字幕免费大全7| 大香蕉97超碰在线| 少妇高潮的动态图| 久久久精品94久久精品| 91成人精品电影| 精品福利永久在线观看| 午夜激情久久久久久久| 性色av一级| xxxhd国产人妻xxx| 一二三四在线观看免费中文在 | 永久网站在线| 欧美日韩视频高清一区二区三区二| 欧美成人午夜免费资源| 2022亚洲国产成人精品| 欧美人与性动交α欧美软件 | 国产成人a∨麻豆精品| 亚洲国产看品久久| 极品人妻少妇av视频| 51国产日韩欧美| 亚洲成色77777| 男女国产视频网站| 91成人精品电影| 久久人人爽人人爽人人片va| 国语对白做爰xxxⅹ性视频网站| 亚洲av电影在线观看一区二区三区| av电影中文网址| 日韩 亚洲 欧美在线| 18禁动态无遮挡网站| 欧美激情 高清一区二区三区| 久久免费观看电影| 夫妻午夜视频| 亚洲四区av| 国产又爽黄色视频| 亚洲精品乱码久久久久久按摩| 一边亲一边摸免费视频| 亚洲欧美中文字幕日韩二区| 男女无遮挡免费网站观看| 一级片免费观看大全| 亚洲国产精品一区三区| 国产黄色视频一区二区在线观看| 黄色配什么色好看| 国产片内射在线| av在线app专区| 免费人妻精品一区二区三区视频| 老司机亚洲免费影院| 免费看光身美女| 少妇的逼好多水| 亚洲成人一二三区av| 在线看a的网站| 国产成人免费无遮挡视频| 精品国产一区二区三区四区第35| 日本猛色少妇xxxxx猛交久久| 精品国产国语对白av| 巨乳人妻的诱惑在线观看| 黄片无遮挡物在线观看| 我要看黄色一级片免费的| 亚洲性久久影院| 中国三级夫妇交换| 欧美成人午夜免费资源| 哪个播放器可以免费观看大片| 九色亚洲精品在线播放| 边亲边吃奶的免费视频| 日韩免费高清中文字幕av| 91精品三级在线观看| 国国产精品蜜臀av免费| 欧美精品高潮呻吟av久久| 欧美人与性动交α欧美精品济南到 | 欧美另类一区| 精品一品国产午夜福利视频| 精品久久蜜臀av无| 韩国精品一区二区三区 | 亚洲图色成人| 国产精品一国产av| 国产69精品久久久久777片| 人成视频在线观看免费观看| 日韩欧美精品免费久久| 色94色欧美一区二区| 天堂8中文在线网| 日韩一区二区视频免费看| 我的女老师完整版在线观看| 精品亚洲成a人片在线观看| 少妇被粗大猛烈的视频| 久久久久久人人人人人| 美女主播在线视频| 国产精品蜜桃在线观看| 99香蕉大伊视频| 建设人人有责人人尽责人人享有的| 男的添女的下面高潮视频| 婷婷色综合www| 亚洲成色77777| av国产精品久久久久影院| 久久av网站| 久久久精品94久久精品| 国产午夜精品一二区理论片| 国产片内射在线| 久久婷婷青草| √禁漫天堂资源中文www| 国产极品天堂在线| videossex国产| 亚洲国产日韩一区二区| 久久久久久久精品精品| 亚洲精品美女久久久久99蜜臀 | 一级爰片在线观看| 少妇高潮的动态图| 极品人妻少妇av视频| 一本久久精品| 精品视频人人做人人爽| 男人操女人黄网站| 9色porny在线观看| 欧美xxxx性猛交bbbb| 亚洲精华国产精华液的使用体验| 婷婷色综合大香蕉| 夜夜骑夜夜射夜夜干| 午夜福利乱码中文字幕| 日本免费在线观看一区| av天堂久久9| 久久精品国产a三级三级三级| 一级,二级,三级黄色视频| 精品久久蜜臀av无| 夫妻性生交免费视频一级片| 国产精品女同一区二区软件| 人妻一区二区av| 亚洲av电影在线观看一区二区三区| 国产av一区二区精品久久| 高清av免费在线| 久久国产精品男人的天堂亚洲 | 精品国产一区二区三区四区第35| 九色成人免费人妻av| 国产色婷婷99| 夫妻午夜视频| 热99久久久久精品小说推荐| 亚洲国产精品一区三区| 欧美人与善性xxx| 十八禁网站网址无遮挡| 精品少妇久久久久久888优播| 欧美 日韩 精品 国产| 亚洲成人一二三区av| 日韩,欧美,国产一区二区三区| 美女大奶头黄色视频| 国产男女内射视频| 97人妻天天添夜夜摸| 黄色配什么色好看| 丰满迷人的少妇在线观看| 999精品在线视频| 亚洲av欧美aⅴ国产| 国产亚洲精品久久久com| 亚洲精华国产精华液的使用体验| 成人手机av| 9191精品国产免费久久| 免费看不卡的av| 我的女老师完整版在线观看| 蜜桃在线观看..| 欧美日韩视频精品一区| 在现免费观看毛片| 大香蕉久久网| 国产亚洲最大av| av在线app专区| 两性夫妻黄色片 | 亚洲图色成人| 18在线观看网站| 欧美人与性动交α欧美软件 | 免费观看无遮挡的男女| 国产免费现黄频在线看| 精品久久久精品久久久| 在线看a的网站| 美女国产高潮福利片在线看| 亚洲精品自拍成人| 欧美3d第一页| 观看av在线不卡| 三上悠亚av全集在线观看| 精品国产乱码久久久久久小说| 热99久久久久精品小说推荐| 国产亚洲午夜精品一区二区久久| a级片在线免费高清观看视频| 国产高清国产精品国产三级| 丰满乱子伦码专区| 午夜久久久在线观看| 多毛熟女@视频| 欧美3d第一页| 波野结衣二区三区在线| 亚洲综合色网址| 免费黄色在线免费观看| 视频在线观看一区二区三区| 久久精品国产a三级三级三级| 日产精品乱码卡一卡2卡三| 韩国av在线不卡| 街头女战士在线观看网站| 亚洲国产欧美日韩在线播放| 国产一区二区在线观看av| 乱码一卡2卡4卡精品| 大码成人一级视频| 免费看不卡的av| 青青草视频在线视频观看| 日本黄色日本黄色录像| 成人无遮挡网站| 精品熟女少妇av免费看| 51国产日韩欧美| 在线观看免费日韩欧美大片| 男人舔女人的私密视频| 一本色道久久久久久精品综合| 巨乳人妻的诱惑在线观看| 有码 亚洲区| 热99久久久久精品小说推荐| 免费观看性生交大片5| 国产免费现黄频在线看| 亚洲av免费高清在线观看| 男的添女的下面高潮视频| 少妇熟女欧美另类| 国产欧美日韩综合在线一区二区| 一个人免费看片子| 国产精品嫩草影院av在线观看| 伦理电影大哥的女人| 日韩欧美精品免费久久| 伊人亚洲综合成人网| 三级国产精品片| 国产熟女午夜一区二区三区| 男女午夜视频在线观看 | 亚洲国产精品国产精品| av又黄又爽大尺度在线免费看| 秋霞伦理黄片| 亚洲精品久久午夜乱码| 人体艺术视频欧美日本| 欧美精品亚洲一区二区| 波多野结衣一区麻豆| 国产在线一区二区三区精| av又黄又爽大尺度在线免费看| 久久久精品免费免费高清| 国产综合精华液| videosex国产| 男人爽女人下面视频在线观看| 2022亚洲国产成人精品| 免费黄网站久久成人精品| 中国三级夫妇交换| 热99久久久久精品小说推荐| 亚洲精品av麻豆狂野| 你懂的网址亚洲精品在线观看| 97人妻天天添夜夜摸| 91aial.com中文字幕在线观看| 内地一区二区视频在线| 亚洲综合色网址| 熟女av电影| 少妇猛男粗大的猛烈进出视频| 肉色欧美久久久久久久蜜桃| 韩国av在线不卡| 少妇被粗大的猛进出69影院 | 国产男女超爽视频在线观看| 男女高潮啪啪啪动态图| 99国产精品免费福利视频| 啦啦啦在线观看免费高清www| 久久狼人影院| 校园人妻丝袜中文字幕| 国产熟女欧美一区二区| 水蜜桃什么品种好| 最黄视频免费看| 国产亚洲精品第一综合不卡 | 精品少妇黑人巨大在线播放| 人妻人人澡人人爽人人| 人人妻人人澡人人看| 国产亚洲精品第一综合不卡 | 岛国毛片在线播放| 国内精品宾馆在线| 国产黄频视频在线观看| 精品人妻一区二区三区麻豆| 激情五月婷婷亚洲| videosex国产| 少妇精品久久久久久久| 日韩大片免费观看网站| 热99久久久久精品小说推荐| 国产免费视频播放在线视频| 永久免费av网站大全| 另类精品久久| 爱豆传媒免费全集在线观看| 国产伦理片在线播放av一区| 久久精品国产综合久久久 | 欧美 日韩 精品 国产| 日韩大片免费观看网站| 久久亚洲国产成人精品v| 精品少妇内射三级| 一级片免费观看大全| 女的被弄到高潮叫床怎么办| 自拍欧美九色日韩亚洲蝌蚪91| 色5月婷婷丁香| 99九九在线精品视频| 日韩人妻精品一区2区三区| 久久久久久久大尺度免费视频| 国产一区亚洲一区在线观看| 欧美人与善性xxx| 性色avwww在线观看| 亚洲av中文av极速乱| 高清毛片免费看| 国产精品三级大全| 女性生殖器流出的白浆| 97人妻天天添夜夜摸| 最黄视频免费看| 国产色婷婷99| av在线播放精品| 在线看a的网站| 亚洲精品456在线播放app| 各种免费的搞黄视频| 亚洲性久久影院| 午夜福利影视在线免费观看| 大香蕉久久成人网| 丝袜喷水一区| 国产综合精华液| 中文字幕人妻丝袜制服| 免费看av在线观看网站| 国产视频首页在线观看| 成人亚洲欧美一区二区av| 少妇人妻精品综合一区二区| 极品人妻少妇av视频| 国产精品国产av在线观看| 美女内射精品一级片tv| 国产黄色免费在线视频| 亚洲少妇的诱惑av| 成人漫画全彩无遮挡| 大陆偷拍与自拍| 国产精品国产三级国产专区5o| 美女国产视频在线观看| 宅男免费午夜| 一本大道久久a久久精品| 成人手机av| 国产一区有黄有色的免费视频| 天堂8中文在线网| 波野结衣二区三区在线| 少妇熟女欧美另类| 日韩大片免费观看网站| 99re6热这里在线精品视频| 99久国产av精品国产电影| 亚洲熟女精品中文字幕| 亚洲国产看品久久| 久久 成人 亚洲| 天天躁夜夜躁狠狠久久av| 高清毛片免费看| 亚洲欧洲精品一区二区精品久久久 | av视频免费观看在线观看| 亚洲色图综合在线观看| 天天操日日干夜夜撸| 三级国产精品片| 国产 一区精品| 中文字幕免费在线视频6| 大香蕉久久成人网| 久久精品久久久久久久性| 国产精品无大码| 欧美3d第一页| 国产精品一国产av| 久久久久久人人人人人| 国产精品国产三级国产av玫瑰| 伦精品一区二区三区| 国产精品嫩草影院av在线观看| 看非洲黑人一级黄片| 两个人免费观看高清视频| 热re99久久国产66热| 亚洲精品久久久久久婷婷小说| 久久久国产欧美日韩av| 久久青草综合色| 一级片免费观看大全| 久久精品国产鲁丝片午夜精品| 精品第一国产精品| 最近最新中文字幕大全免费视频 | 在线观看三级黄色| 亚洲成色77777| 97精品久久久久久久久久精品| 久久久久久伊人网av| 亚洲久久久国产精品| 中文乱码字字幕精品一区二区三区| 国产欧美日韩综合在线一区二区| 国产精品国产av在线观看| 国产在视频线精品| 99香蕉大伊视频| 热99久久久久精品小说推荐| 婷婷色综合www| av福利片在线| 免费看不卡的av| 2021少妇久久久久久久久久久| 日韩伦理黄色片| kizo精华| 五月天丁香电影| 少妇人妻 视频| 亚洲,欧美精品.| 中文乱码字字幕精品一区二区三区| 激情视频va一区二区三区| 亚洲国产精品专区欧美| 欧美激情国产日韩精品一区| 国产 精品1| 色吧在线观看| 免费大片黄手机在线观看| 亚洲精品成人av观看孕妇| 久久久久视频综合| 成人免费观看视频高清| 天堂俺去俺来也www色官网| 久久久国产一区二区| 久久国产精品大桥未久av| 国产成人欧美| 伦理电影免费视频| 国产成人精品久久久久久| 黑人巨大精品欧美一区二区蜜桃 | 90打野战视频偷拍视频| 啦啦啦啦在线视频资源| 亚洲欧洲日产国产| av.在线天堂|