• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Evaluation of NOAA/AVHRR Sea Surface Temperature at Full HRPT Resolution in the Northwest Pacific Ocean

    2021-12-22 11:39:26CHENYanQULiqinandGUANLei
    Journal of Ocean University of China 2021年6期

    CHEN Yan, QU Liqin, *, and GUAN Lei

    Evaluation of NOAA/AVHRR Sea Surface Temperature at Full HRPT Resolution in the Northwest Pacific Ocean

    CHEN Yan1), 2), QU Liqin1), 2), *, and GUAN Lei1), 2)

    1),,,266100,2),,266237,

    TheNational Oceanic and Atmospheric Administration (NOAA) Polar Orbiting Environmental Satellites (POES) High Resolution Picture Transmission (HRPT) data in the Northwest Pacific Ocean has been acquired through the SeaSpace ground station located at the Ocean University of China since October 2000, and these data have been processed by the TeraScan system. The sea surface temperature (SST) products in the Northwest Pacific Ocean derived from Advanced Very High Resolution Radiometer (AVHRR) are evaluated. We compared the SST products with the buoy SSTs during the stable operational period of each satellite. There are a total of 33715 and 71819 matchups acquired for daytime and nighttime, respectively, between the NOAA/AVHRR SSTs and buoy SSTs. For each satellite, the biases and standard deviations at daytime are smaller than those at nighttime. The monthly biases at daytime generally oscillate around 0℃, except for NOAA-15. By contrast, the monthly biases at nighttime mostly oscillate around ?0.5℃. Both daytime and nighttime biases exhibit seasonal oscillations for all satellites. The seasonal biases of the SST difference at daytime between each satellite and buoy are mostly within±0.25℃, except for the negative bias of ?0.58℃ in May for NOAA-18. The seasonal biases of the SST difference at nighttime are mostly around ?0.5℃, and NOAA-16 has a lower bias,., ?0.86℃, in April. These results indicate that the accuracy of the SST products is inconsistent for each satellite during different periods. It is suggested that the NOAA/AVHRR data should be reprocessed to provide highly accurate SST products.

    NOAA/AVHRR HRPT data; sea surface temperature (SST); buoy data; validation; Northwest Pacific Ocean

    1 Introduction

    The Northwest Pacific Ocean is a crucial marginal sea inthe Pacific Ocean. It includes East China Sea, South China Sea, Yellow Sea, and Sea of Japan. Moreover, the Kuro- shio Current, the world’s second-warmest current, flows through it. The mean state and variation of sea surface tem- perature (SST) over the Northwest Pacific Ocean are the key to study regional air-sea interaction (Sakaida and Ka- wamura, 1992; Lee, 2005). SST can initially be collected from multiplemeasurements, such as ships, buoys and offshore platforms, and these measurements are usually accurate but are limited by time and space. During the past decades, satellites are widely used owing to their high spatial-temporal resolution. Furthermore, SSTs can be retrieved from thermal infrared and passive microwave satellites’ sensors, but they have their own advantages and shortcomings (Wentz, 2000; Emery, 2001). Infrared sensors have high spatial resolution, but the observations for SST are affected by cloud and aerosols (Guan and Kawamura, 2003). Microwave sensors can penetrate cloud and aerosols (Reynolds, 1993), but the observations for SST are affected by rain (Rapp, 2008)and side lobe contamination near land in coastal waters (Castro, 2012), also they have lower spatial resolution than infrared sensors.

    The Advanced Very High Resolution Radiometer (AV- HRR) on theNational Oceanic and Atmospheric Administration (NOAA) Polar Orbiting Environmental Satellites (POES) have been providing SST products at a high spatial resolution of 1.1km since the 1980s. There have been a number of studies on the accuracy of SSTs from NOAA/ AVHRR, particularly on the development of SST validations, algorithms, and applications. A common method to validate satellite SST accuracy is to compare the collocated satellite SSTs with theSSTs. The multichannel SST (MCSST) and nonlinear SST (NLSST) algorithms havebeen proposed by using brightness temperature differences among thermal infrared channels to improve the accuracy of the SST data (McClain, 1985; Walton, 1988). TheNOAA/AVHRR and buoy matchups between 1989 and 1997 revealed that the differences between NOAA/AV- HRR retrieved SSTs and buoy SSTs ranged within 0.2–0.4℃ over the nine-year period (Walton, 1998). The SSTs derived from NOAA-12 and NOAA-14 have been validated withSSTs and their biases both have been found to be positive , but the biases of NOAA-14, which were less than 0.5℃, were lower than those of NOAA-12 (Li, 2001). AVHRR SSTs retrieved by using an op- timal estimation with a simple empirical bias correction model have been obtained with bias and standard deviations (SD) of ?0.06℃ and 0.44℃ (Merchant, 2008). Validation of the AVHRR-derived SSTs withSSTs has revealed that the biases and SDs of AVHRR SSTs were ?0.43±0.76℃ and ?0.33±0.79℃for daytime and nighttime and the regional biaseswere large in the northern South China Sea (Qiu, 2009). AVHRR SSTs have been validated with drifter data over the seas around South Korea, and the root-mean-square errors (RMSEs) of MCSST and NLSST were evaluated to be less than 1℃ in most cases, and the dependencies of these biases on atmospheric and oceanic conditions were revealed (Park, 2011). Detailed validation results for all SST data in Climate Change Initiative (CCI) phase 1 products have reported that daytime SSTs in the SST CCI Along Track Scanning Radiometer (ATSR) and AVHRR products were generally noisier than nighttime SSTs and have larger robust standard deviation (RSD) relative to global drifting buoys (Corlett, 2014). AVHRR SSTs have been va- lidated in the East Japan Sea by using surface drifter SST as ground truths from 2005 to 2010, and the SST biases (satellite-drifter) have also demonstrated diurnal variationswith a relatively higher RMSE from 0.80℃ to 1.00℃ during nighttime and a smaller RMSE of approximately 0.50℃ during daytime (Park, 2015). NOAA has re- processed the AVHRR/3 global area coverage (4km) SST data from five NOAA and two Metop satellites from 2002 to 2015, by using variable regression SST coefficients in each satellite’s most stable operational periods, thus the stability of the SST time series has been further improved (Ignatov, 2016). The validation analyses have been conducted for all levels (L2P, L3U and L3C) of both the SST CCI ATSR and SST CCI AVHRR records within phase 2 of the ESA SST CCI project in order to offer sa- tellite-based time series of SSTs since 1981 for climate applications (Merchant, 2019). Therefore, the detail- ed validation of the SSTs derived from NOAA/AVHRR should be conducted to analyze the accuracy of the AVHRR SST products.

    In this study, the AVHRR SSTs in the Northwest Pacific Ocean are evaluated by usingSST quality mo- nitor (iQuam) buoy SSTs asmeasurements. First, the AVHRR anddata are introduced in Section 2. Then, the comparison results between AVHRR andSSTs are discussed in Section 3. Finally, the conclusions are presented in Section 4.

    2 Data and Methods

    2.1 NOAA/AVHRR Data

    In this study, the NOAA/AVHRR data have been acquired through the SeaSpace ground station located at Ocean University of China (OUC) since October 2000, and these data have been processed by the TeraScan system. The TeraScan system separates the AVHRR data from the HRPT dataset, and then the AVHRR SSTs have been retrieved through cloud detection, geometric correction and MCSST algorithms. The SST products are projected to a 0.01?× 0.01? grid within 10?–50?N and 105?–145?E. Herein, we select the SST data from the AVHRRs on several satellites during their stable operational periods (Merchant, 2019), and the details are shown in Table 1. The coverage of the OUC ground station is shown in Fig.1.

    Table 1 Summary of the characteristics of the satellite data used

    Fig.1 The data coverage area received by the OUC ground station(inside the red circle).

    2.2 iQuam in situ Data

    TheSST data are from theSST quality monitor (iQuam) system developed by the NOAA NESDIS/STAR. The iQuam data files preserve much information, including SST, wind direction, wind speed and so on (Xu and Ignatov, 2013). The iQuam data include ship and buoy data, but we only select the buoy data with the highest data quality as thedataset. The monthly iQuam data files have been provided online in the NetCDF format, and can be downloaded from its website (ftp://ftp.star.ne sdis.noaa.gov/pub/sod/sst/iquam/v2.10/). Moreover, the i- Quam version 2.10 data have been used.

    2.3 Generating the Matchups of Satellite and in situ SST

    In this study, we obtained a matchup dataset between AVHRR and buoy data within a spatial window of 0.01? and a temporal window of 0.5h. Also we used the 5×5 block to detect the cloud data, and only when all SST data in the block around the center pixel of AVHRR SST are valid values, the pixel can be selected into the matchup dataset. The pixels wherein the solar zenith angles were below 85? were selected as the daytime dataset and the rest were put in the nighttime dataset (Ackerman, 2010; Wang, 2014). The overall flowchart of the matchup procedure is shown in Fig.2.

    3 Comparisons Between the AVHRR and in situ SST Data

    3.1 Statistical Analysis to the AVHRR and in situ SST Matchups

    To evaluate the accuracies of AVHRR SST, we calculated the statistic parameters, including the matchup num- bers, bias, the minimum SST difference (min), the maximum SST difference (max), median, SD and RSD by using the matchup data. The RSD used herein was 1.48 times the median absolute deviation from the median (Embury, 2012). The data were eliminated beyond thrice of the RSD from the median as outliers (Bevington and Robinson, 2003; O’Carroll, 2008; Dash, 2012).By removing the outliers, the numbers of daytime and night- time matchups were reduced by 3.71% and 4.27%, respectively. Finally, 33715 and 71819 matchups for daytime andnighttime between the AVHRR SSTs and buoy SSTs were obtained. The number and statistic parameters of the ma- tchups for each satellite are summarized in Table 2. The number of daytime matchups for each satellite is less than that at nighttime, and the biases and SD values exhibit si- milar trends. The daytime biases range from ?0.08(NOAA- 17) to ?0.32℃ (NOAA-16), and the nighttimebiases range from ?0.32℃ (NOAA-15) to ?0.60℃ (NOAA-16).The daytime SDs range from 0.62℃(NOAA-17) to 0.75℃ (NOAA-15), and the nighttime SDs range from 0.76℃ (NOAA-17) to 0.82℃ (NOAA-16).

    Fig.2 Flowchart for the generation of the matchup datasets between AVHRR and in situ data.

    Table 2 Statistics of the AVHRR and in situ SST matchup datasets for daytime and nighttime

    3.2 Characteristics of the AVHRR and in situ Matchups

    Fig.3 shows the monthly distributions of the number of matchups between each satellite anddata. The mon- thlynumbers of daytime matchups for each satellite are smaller than those at nighttime.The numbers of matchups in May and October are greater than those of the other months for each year, and it reaches the maximum in October owing to the cloud cover variation in the work region. No collocated points exist for some months because the ground station did not acquire the data during those months. For a more precise look at this seasonal feature, Fig.4 illustrates the seasonal distributions of the total num- ber of matchups from 2000 to 2017 between each satellite anddata.The numbers of matchups in spring (Marchto May) and autumn (September to November) are greater than those of other seasons at both daytime and nighttime. This is consistent with the distribution shown in Fig.3.

    The probability distribution of the SST differences between AVHRR andmatchups is shown in Fig.5. For all satellites, the differences between AVHRR andSSTs show a nearly symmetrical distribution at daytime, of which over 81.5% are within±1℃, and 54.1% are within±0.5℃. However, over 71.1% of the nighttime SST differences are within±1℃, and 41.6% of the nighttime SST differences are within±0.5℃. Moreover, the overall trend of the nighttime SST differences exhibits clear cold biases with a high frequency, indicating that most AVHRR SSTs are lower thanSSTs at nighttime.

    Fig.6 presents the comparisons between NOAA satellite andSSTs at daytime and nighttime for the overall matchups. Most of the satellite SSTs seem to be well correlated with theSSTs by showing a linear relationship for both daytime and nighttime. The majority of the matchups lie in the temperature range from 20℃ to 30℃, and most of the SST differences are within±1.0℃. However, the satellite SSTs generally show a certain degree of underestimation at a relatively low temperature range from 5℃ to 15℃ at nighttime, particularly for NOAA-16 and NOAA-18. This requires a more detailed study on these satellites.

    Fig.3 Monthly distributions of the number of matchups between AVHRR and in situ data: daytime (upper panel) and nighttime (lower panel).

    Fig.4 Seasonal distributions of the number of matchups between AVHRR and in situ data: daytime (left panel) and nighttime (right panel).

    Fig.5 Probability distribution histogram of SST differences between AVHRR and in situ matchups: daytime (left panels) and nighttime (right panels).

    Fig.6 Scatterplots of SST matchups between AVHRR and in situ data: daytime (left panels) and nighttime (right panels).

    To evaluate the stability of the satellite SSTs, we show the monthly variations of the bias and SD for AVHRR andSST differences in Fig.7. For NOAA-15, the monthlybiases generally oscillate between ?1.06℃and 0.56℃ atdaytime and between ?1.09℃ and 0.75℃ at nighttime. For NOAA-16, the monthly biases generally oscillate between ?0.68℃and 0.03℃ at daytime and between ?1.06℃and ?0.01℃ at nighttime. For NOAA-17, the monthly biases generally oscillate between ?0.64℃and 0.75℃ at daytime and between ?1.04℃ and 0.09℃ at nighttime. For NOAA-18, the monthly biases generally oscillate be- tween ?0.88℃and 0.21℃ at daytime and between ?1.27℃ and ?0.03℃ at nighttime. For NOAA-19, the monthly biases generally oscillate between ?0.86℃and 0.20℃at daytime and between ?0.94℃ and 0.17℃ at nighttime. Furthermore, the daytime and nighttime biases exhibit seasonal periodical oscillations for all satellites, and it can be seen that the biases during spring (March to May) are generally lower than those during other seasons in each year, particularly in 2008.

    Fig.8 shows the seasonal SST difference biases and SDs between each satellite anddata. The seasonal daytime biases generally change within ±0.25℃ except forthe maximum negative bias of ?0.58℃ in May for NOAA-18, and the nighttime biases generally change around ?0.5℃ except for the maximum negative bias of ?0.86℃ in April for NOAA-16. The biases in spring (March to May) are lower than those in other seasons during both daytime and nighttime, and this is consistent with the distribution shown in Fig.7.

    4 Conclusions

    In this study, we evaluated the accuracy of NOAA/ AVHRR SSTs retrieved from the OUC SeaSpace ground station using the high-quality buoy data. For each satellite, the biases and standard deviations at daytime are smaller than those at nighttime. The monthly biases at daytime generally oscillate around 0℃, except for NOAA-15. By contrast, the monthly biases at nighttime mostly oscillate around ?0.5℃. Both daytime and nighttime biases exhibit seasonal oscillations for all satellites. The seasonal biases at daytime are mostly within ±0.25℃, except for the ne- gative bias of ?0.58℃ in May for NOAA-18. The seasonal biases at nighttime are mostly around ?0.5℃, and only NOAA-16 has a lower bias,., ?0.86℃, in spring. Overall, NOAA-17 exhibits the best performance and NOAA-16 performs worst. The quality of the AVHRR SSTs in the Northwest Pacific Ocean are not as good as previous studies. For example, the AVHRR SSTs retrieved by using an optimal estimation with a simple empirical bias correction model have the bias and standard deviations (SD) of ?0.06℃ and 0.44℃ (Merchant, 2008).

    Fig.7 Time series of the monthly biases (dots) and SDs (bars) for AVHRR and in situ SST differences at daytime (red) and nighttime (black). (a)–(e) represent NOAA-15 to NOAA-19, respectively.

    Fig.8 Seasonal distributions of the biases and SDs between AVHRR and in situ data: daytime (upper panel) and nighttime (lower panel).

    Above all, the accuracy of the SST data is inconsistent for each satellite during different periods. The failures of cloud detection may cause large underestimation at nighttime. It is suggested that the NOAA/AVHRR data from the OUC SeaSpace ground station should be reprocessed to improve the cloud detection and SST retrieval accuracy.

    Acknowledgement

    This work has been supported by the National Key R& D Program of China (No. 2019YFA0607001).

    Ackerman, S., Strabala, K., Menzel, P., Frey, R., Moeller, C., and Gumley, L., 2010. Discriminating clear-sky from cloud with MODIS algorithm theoretical basis document (MOD35). MODIS Cloud Mask Team, Cooperative Institute for Meteorological Satellite Studies, University of Wisconsin.

    Bevington, P. R., and Robinson, D. K., 2003. Estimates of mean and errors. In:3rd edition. McGraw-Hill, New York, 1-55.

    Castro, S. L., Wick, G. A., and Emery, W. J., 2012. Evaluation of the relative performance of sea surface temperature mea- surements from different types of drifting and moored buoys using satellite-derived reference products., 117: C02029.

    Corlett, G., Atkinson, C., Rayner, N., Good, S., Fiedler, E., Mc- Laren, A.,., 2014. Product validation and intercomparison report. Project Document SST_CCIPVIR-UoL-001. http:// www.esa-sst-cci.org/PUG/documents.

    Dash, P., Ignatov, A., Martin, M., Donlon, C., Brasnett, B., Rey- nolds, R. W.,., 2012. Group for high resolution sea surface temperature (GHRSST) analysis fields inter-comparisons- Part 2: Near real time web-based level 4 SST quality monitor (L4-SQUAM)., 77-80: 31-43.

    Embury, O., Merchant, C. J., and Corlett, G. K., 2012. A repro- cessing for climate of sea surface temperature from the along- track scanning radiometers: Initial validation, accounting for skin and diurnal variability effects., 116 (4): 62-78.

    Emery, W., Castro, S., Wick, G., Schluessel, P., and Donlon, C., 2001. Estimating sea surface temperature from infrared satellite andtemperature data., 82: 2773-2785.

    Guan, L., and Kawamura, H., 2003. Study on the SST availabi- lities of satellite infrared and microwave measurements., 59 (2): 201-209.

    Ignatov, A., Zhou, X. J., Petrenko, B., Liang, X. M., Kihai, Y., Dash P.,., 2016. AVHRR GAC SST reanalysis version 1 (RAN1)., 8 (4): 315, DOI: 10.3390/rs8040315.

    Lee, M. A., Chang, Y., Sakaida, F., Kawamura, H., Cheng, C. H., Chan, J. W.,., 2005. Validation of satellite-derived seasurface temperatures for waters around Taiwan, Terrestrial., 16 (5): 1189-1204.

    Li, X., Pichel, W., Clemente-Colon, P., Krasnopolsky, V., and Sapper, J., 2001. Validation of coastal sea and lake surface temperature measurements derived from NOAA/AVHRR data., 22 (7): 1285-1303.

    McClain, E. P., Pichel, W. G., and Walton, C. C., 1985. Compa- rative performance of AVHRR-based multichannel sea surface temperatures., 90: 11587- 11601.

    Merchant, C. J., Borgne, P. L., Marsouin, A., and Roquet, H., 2008.Optimal estimation of sea surface temperature from split-win- dow observations., 112 (5): 2469- 2484.

    Merchant, C. J., Embury, O., Bulgin, C. E., Block, T., Corlett, G. K., Fiedler, E.,., 2019. Satellite-based time-series of sea surface temperature since 1981 for climate applications., 6: 223, https://doi.org/10.1038/s41597-019-0236-x.

    O’Carroll, A. G., Eyre, J. R., and Saunders, R. W., 2008. Three- way error analysis between AATSR, AMSR-E, andsea surface temperature observations., 25 (7): 1197-1207.

    Park, K. A., Lee, E. Y., Chung, S. R., and Sohn, E. H., 2011. Accuracy assessment of sea surface temperature from NOAA/ AVHRR data in the seas around Korea and error characteristics., 27 (6): 663-675.

    Park, K. A., Lee, E. Y., Li, X. F., Chung, S. R., Sohn, E. H., and Hong, S., 2015. NOAA/AVHRR sea surface temperature accuracy in the East/Japan Sea., 8 (10): 784-804.

    Qiu, C. H., Wang, D. X., Kawamura, H., Guan, L., and Qin, H. L., 2009. Validation of AVHRR and TMI-derived sea surface temperature in the northern South China Sea., 29: 2358-236.

    Rapp, A. D., Kummerow, C., and Elsaesser, C., 2008. On the ef- fects of warm rain clouds in the tropics.. Fort Collins, Colorado, 0897.

    Reynolds, R. W., 1993. Impact of Mount Pinatubo aerosols on satellite-derived sea surface temperatures., 6: 768-774.

    Sakaida, F., and Kawamura, H., 1992. Estimation of sea surface temperatures around Japan using the advanced very high re- solution radiometer, (AVHRR)/NOAA-11., 48 (2): 179-192.

    Walton, C. C., 1988. Nonlinear multichannel algorithm for estima- ting sea surface temperature with AVHRR satellite data., 27: 115-124.

    Walton, C. C., Pichel, W. G., Sapper, J. F., and May, D. A., 1998.The development and operational application of non-linear algorithms for the measurement of sea surface temperatures with the NOAA polar-orbiting environmental satellites., 103 (C12): 27999-28012.

    Wang, S., Cui, P., Zhang, P., Ran, M., Lu, F., and Wang, W., 2014. FY-3C/VIRR SST algorithm and cal/val activities at NSMC/CMA., 9261: 92610G-2.

    Wentz, F., Gentemann, C., Smith, D., and Chelton, D., 2000. Sa- tellite measurements of sea surface temperature through clouds., 288: 847-850.

    Xu, F., and Ignatov, A., 2013.SST quality monitor (iQuam)., 31 (1): 164- 180, DOI: 10.1175/JTECH-D-13-00121.1.

    August 4, 2020;

    October 9, 2020;

    January 13, 2021

    ? Ocean University of China, Science Press and Springer-Verlag GmbH Germany 2021

    Tel: 0086-532-66782907

    E-mail: quliqin@ouc.edu.cn

    (Edited by Chen Wenwen)

    一级毛片 在线播放| 久久久久久久大尺度免费视频| 色哟哟·www| .国产精品久久| 女人被狂操c到高潮| 国产精品一及| 大话2 男鬼变身卡| 成人美女网站在线观看视频| 国产免费视频播放在线视频 | 国产黄色免费在线视频| 91精品一卡2卡3卡4卡| 麻豆精品久久久久久蜜桃| 激情五月婷婷亚洲| 五月伊人婷婷丁香| 精品熟女少妇av免费看| 久久久a久久爽久久v久久| 国产精品嫩草影院av在线观看| 久久人人爽人人爽人人片va| 一区二区三区高清视频在线| 伦精品一区二区三区| 亚洲欧美一区二区三区国产| 欧美激情在线99| 日韩不卡一区二区三区视频在线| 中国美白少妇内射xxxbb| 99久国产av精品| 亚洲国产精品成人综合色| 美女黄网站色视频| .国产精品久久| 中文字幕久久专区| 中文字幕制服av| 性插视频无遮挡在线免费观看| av免费在线看不卡| 在线天堂最新版资源| 国产色婷婷99| 人妻少妇偷人精品九色| 一区二区三区四区激情视频| 丝袜喷水一区| 青青草视频在线视频观看| 中文欧美无线码| 国产白丝娇喘喷水9色精品| 一级爰片在线观看| 久久久久久久大尺度免费视频| 国产亚洲一区二区精品| av一本久久久久| 日本午夜av视频| 国产真实伦视频高清在线观看| 夜夜看夜夜爽夜夜摸| 亚洲精华国产精华液的使用体验| 久久精品熟女亚洲av麻豆精品 | 日本三级黄在线观看| 国产人妻一区二区三区在| 一级毛片我不卡| 欧美激情在线99| 美女xxoo啪啪120秒动态图| 亚洲av.av天堂| 97人妻精品一区二区三区麻豆| 久久久午夜欧美精品| 精品一区二区三区人妻视频| 插逼视频在线观看| 欧美激情久久久久久爽电影| 日韩欧美一区视频在线观看 | 午夜精品国产一区二区电影 | 国产国拍精品亚洲av在线观看| 最新中文字幕久久久久| 亚洲精品日韩在线中文字幕| 午夜福利在线观看免费完整高清在| 一个人看的www免费观看视频| 人人妻人人看人人澡| 内地一区二区视频在线| 少妇人妻精品综合一区二区| 人妻系列 视频| 国产精品伦人一区二区| 久久午夜福利片| 免费观看a级毛片全部| 欧美精品一区二区大全| 色综合色国产| 国产亚洲精品av在线| 真实男女啪啪啪动态图| 午夜福利成人在线免费观看| 亚洲国产精品成人久久小说| 一区二区三区乱码不卡18| 午夜福利在线观看吧| 亚洲av免费高清在线观看| 国产精品蜜桃在线观看| 欧美97在线视频| 麻豆成人av视频| 伦理电影大哥的女人| 欧美高清性xxxxhd video| 国产美女午夜福利| 一区二区三区免费毛片| 好男人视频免费观看在线| 日本爱情动作片www.在线观看| 一级二级三级毛片免费看| 噜噜噜噜噜久久久久久91| 亚洲av成人av| 亚洲一级一片aⅴ在线观看| 国产成人91sexporn| 99久久精品热视频| 国产黄频视频在线观看| 人妻夜夜爽99麻豆av| 九九在线视频观看精品| 亚洲欧美日韩东京热| 免费观看精品视频网站| 国产 一区 欧美 日韩| 老师上课跳d突然被开到最大视频| 久久精品国产亚洲av天美| 中文字幕制服av| 免费看日本二区| 欧美高清性xxxxhd video| 丝瓜视频免费看黄片| 亚洲精品中文字幕在线视频 | 久久久久久伊人网av| 亚洲av国产av综合av卡| 寂寞人妻少妇视频99o| 插逼视频在线观看| 精品少妇黑人巨大在线播放| 尾随美女入室| 亚洲av成人精品一区久久| 极品教师在线视频| 又爽又黄无遮挡网站| 晚上一个人看的免费电影| 极品教师在线视频| 久久精品久久久久久久性| 国产亚洲一区二区精品| 日本wwww免费看| 日本wwww免费看| 91aial.com中文字幕在线观看| 久久精品人妻少妇| 国内精品一区二区在线观看| 精品人妻一区二区三区麻豆| 中文字幕亚洲精品专区| 亚洲精品一区蜜桃| 亚洲精华国产精华液的使用体验| 日韩视频在线欧美| 免费看av在线观看网站| 好男人在线观看高清免费视频| 亚洲国产精品成人久久小说| 精品人妻熟女av久视频| 性色avwww在线观看| 一级毛片我不卡| 少妇猛男粗大的猛烈进出视频 | 亚洲伊人久久精品综合| 国产 一区精品| 欧美三级亚洲精品| 人人妻人人澡人人爽人人夜夜 | 国产免费福利视频在线观看| 人体艺术视频欧美日本| 国产黄片美女视频| 99久久九九国产精品国产免费| 国产午夜精品论理片| 高清视频免费观看一区二区 | 有码 亚洲区| 一级片'在线观看视频| 亚洲18禁久久av| 久久久国产一区二区| 在线观看美女被高潮喷水网站| 日本欧美国产在线视频| 国产人妻一区二区三区在| 久久久久九九精品影院| 好男人视频免费观看在线| 丰满少妇做爰视频| 国语对白做爰xxxⅹ性视频网站| 国语对白做爰xxxⅹ性视频网站| 最近手机中文字幕大全| 欧美zozozo另类| 美女cb高潮喷水在线观看| 免费观看的影片在线观看| 男人和女人高潮做爰伦理| 男人和女人高潮做爰伦理| 美女cb高潮喷水在线观看| 亚洲国产精品成人久久小说| 午夜爱爱视频在线播放| 亚洲欧美一区二区三区国产| 狂野欧美白嫩少妇大欣赏| 干丝袜人妻中文字幕| 亚洲国产成人一精品久久久| 熟妇人妻不卡中文字幕| 欧美极品一区二区三区四区| 中文字幕制服av| 精品人妻一区二区三区麻豆| 国产探花极品一区二区| 亚洲欧美精品自产自拍| 亚洲av.av天堂| 亚洲av电影在线观看一区二区三区 | 午夜激情福利司机影院| 成人性生交大片免费视频hd| 少妇人妻精品综合一区二区| 建设人人有责人人尽责人人享有的 | 国语对白做爰xxxⅹ性视频网站| av国产久精品久网站免费入址| 成人午夜高清在线视频| 天天躁日日操中文字幕| 最近手机中文字幕大全| 少妇人妻精品综合一区二区| 欧美极品一区二区三区四区| 久久久久久久亚洲中文字幕| 日韩欧美一区视频在线观看 | 内地一区二区视频在线| 真实男女啪啪啪动态图| 黄色配什么色好看| 亚洲第一区二区三区不卡| 人妻夜夜爽99麻豆av| 深夜a级毛片| av又黄又爽大尺度在线免费看| 亚洲自偷自拍三级| 一个人观看的视频www高清免费观看| 精品久久久久久成人av| 少妇人妻精品综合一区二区| 欧美3d第一页| 夜夜爽夜夜爽视频| 中国美白少妇内射xxxbb| 大陆偷拍与自拍| 日韩欧美精品v在线| 国产亚洲91精品色在线| 日本av手机在线免费观看| 国产亚洲精品久久久com| 久久久久久久午夜电影| 午夜福利视频1000在线观看| 日韩欧美国产在线观看| 国产高清不卡午夜福利| 九九久久精品国产亚洲av麻豆| 午夜福利视频精品| 简卡轻食公司| 亚洲精品中文字幕在线视频 | 欧美一区二区亚洲| 亚洲av免费在线观看| 成人国产麻豆网| 久久久久久久久中文| 一个人看视频在线观看www免费| 国产成人精品久久久久久| 国产 一区精品| 精品午夜福利在线看| 在线观看免费高清a一片| 亚洲人与动物交配视频| 国产在视频线在精品| 国产精品人妻久久久久久| av天堂中文字幕网| 成人亚洲精品一区在线观看 | 看十八女毛片水多多多| 国产视频首页在线观看| 欧美日韩综合久久久久久| 熟妇人妻久久中文字幕3abv| 午夜福利在线观看免费完整高清在| 午夜福利在线在线| 免费不卡的大黄色大毛片视频在线观看 | 久久精品久久精品一区二区三区| 亚洲精品国产av成人精品| 蜜桃亚洲精品一区二区三区| 国产探花在线观看一区二区| 国产伦一二天堂av在线观看| 91午夜精品亚洲一区二区三区| 国产亚洲91精品色在线| 欧美成人一区二区免费高清观看| 久久99热6这里只有精品| 免费少妇av软件| 日韩,欧美,国产一区二区三区| 国内少妇人妻偷人精品xxx网站| 美女国产视频在线观看| 国产精品一及| 丰满乱子伦码专区| 国产精品久久视频播放| 成年免费大片在线观看| 国产乱来视频区| 久热久热在线精品观看| 国产69精品久久久久777片| 极品少妇高潮喷水抽搐| 日本熟妇午夜| 免费高清在线观看视频在线观看| 一级a做视频免费观看| 亚洲高清免费不卡视频| 久久久久久久大尺度免费视频| 亚洲在线观看片| 成人亚洲精品一区在线观看 | 男女边吃奶边做爰视频| 亚洲va在线va天堂va国产| 三级国产精品片| 啦啦啦韩国在线观看视频| 日韩国内少妇激情av| 欧美日韩一区二区视频在线观看视频在线 | 美女主播在线视频| xxx大片免费视频| 亚洲va在线va天堂va国产| 国产亚洲一区二区精品| 欧美一级a爱片免费观看看| 国产一区二区三区综合在线观看 | 国产伦理片在线播放av一区| 搞女人的毛片| 免费观看在线日韩| 亚洲真实伦在线观看| 久久久久久久午夜电影| 亚洲va在线va天堂va国产| 欧美高清性xxxxhd video| 人妻制服诱惑在线中文字幕| 久久久亚洲精品成人影院| 国产成人91sexporn| 一二三四中文在线观看免费高清| 免费看av在线观看网站| 国产探花在线观看一区二区| 三级经典国产精品| 久久久午夜欧美精品| 亚洲av福利一区| 国产片特级美女逼逼视频| 联通29元200g的流量卡| 国内精品美女久久久久久| 亚洲综合色惰| 性色avwww在线观看| 中文字幕免费在线视频6| 五月天丁香电影| 国产乱人偷精品视频| 成人高潮视频无遮挡免费网站| 中文欧美无线码| 国国产精品蜜臀av免费| 国产精品久久视频播放| 国产精品久久久久久久久免| 久久久精品免费免费高清| 纵有疾风起免费观看全集完整版 | 亚洲av一区综合| 国产精品国产三级国产专区5o| 欧美一级a爱片免费观看看| 全区人妻精品视频| 亚洲av成人精品一二三区| 欧美日韩视频高清一区二区三区二| 少妇人妻精品综合一区二区| 91精品一卡2卡3卡4卡| 在线观看av片永久免费下载| 床上黄色一级片| 国产老妇伦熟女老妇高清| 中文字幕久久专区| 熟女电影av网| 亚洲av成人av| 一区二区三区乱码不卡18| 男人狂女人下面高潮的视频| 尾随美女入室| 亚洲成色77777| 中文字幕av成人在线电影| 国产一区亚洲一区在线观看| 精品欧美国产一区二区三| 最近最新中文字幕大全电影3| 人体艺术视频欧美日本| 久久久成人免费电影| 亚洲欧美清纯卡通| 成人午夜精彩视频在线观看| 人人妻人人澡欧美一区二区| 国产亚洲午夜精品一区二区久久 | av在线天堂中文字幕| 久久精品国产亚洲网站| 联通29元200g的流量卡| 午夜福利高清视频| 日韩av免费高清视频| 在线 av 中文字幕| 久久久a久久爽久久v久久| 欧美xxⅹ黑人| 欧美精品国产亚洲| 亚洲综合精品二区| 日韩电影二区| 麻豆久久精品国产亚洲av| 日韩三级伦理在线观看| 亚洲四区av| 青春草视频在线免费观看| 亚洲电影在线观看av| 久久鲁丝午夜福利片| 成人综合一区亚洲| 身体一侧抽搐| 国产黄a三级三级三级人| 国产精品久久久久久精品电影小说 | 国产午夜精品论理片| 国产黄频视频在线观看| 国产综合精华液| 久热久热在线精品观看| 九草在线视频观看| 搡女人真爽免费视频火全软件| 国产综合精华液| 丝瓜视频免费看黄片| 在线天堂最新版资源| 国产精品一区二区三区四区久久| 在线 av 中文字幕| 欧美日本视频| 国产乱人视频| 激情 狠狠 欧美| 18禁动态无遮挡网站| 欧美区成人在线视频| 亚洲av成人av| 亚洲欧美一区二区三区国产| 人人妻人人澡人人爽人人夜夜 | 亚洲精华国产精华液的使用体验| 汤姆久久久久久久影院中文字幕 | 亚洲人与动物交配视频| av专区在线播放| 少妇丰满av| 一二三四中文在线观看免费高清| 精品99又大又爽又粗少妇毛片| 熟女电影av网| 2018国产大陆天天弄谢| 天堂俺去俺来也www色官网 | 一区二区三区高清视频在线| 综合色av麻豆| 亚洲av不卡在线观看| av福利片在线观看| 五月玫瑰六月丁香| 国产麻豆成人av免费视频| 欧美激情国产日韩精品一区| av国产免费在线观看| 精品久久久久久久末码| 又黄又爽又刺激的免费视频.| 寂寞人妻少妇视频99o| 久久久国产一区二区| 亚洲一区高清亚洲精品| 女人久久www免费人成看片| 又粗又硬又长又爽又黄的视频| 建设人人有责人人尽责人人享有的 | 久久精品熟女亚洲av麻豆精品 | 成年女人看的毛片在线观看| 男女国产视频网站| 建设人人有责人人尽责人人享有的 | 日韩成人伦理影院| www.色视频.com| 成年人午夜在线观看视频 | 99久久精品一区二区三区| 国产午夜精品久久久久久一区二区三区| 亚洲aⅴ乱码一区二区在线播放| 精品一区二区三卡| 自拍偷自拍亚洲精品老妇| 插阴视频在线观看视频| 欧美变态另类bdsm刘玥| 国产不卡一卡二| 亚洲欧美中文字幕日韩二区| 少妇熟女aⅴ在线视频| 黑人高潮一二区| 直男gayav资源| 国产精品一区二区性色av| 亚洲精品国产成人久久av| 高清在线视频一区二区三区| 黄片无遮挡物在线观看| 久久久久网色| 亚洲欧美日韩东京热| 国产精品一区二区三区四区久久| 亚洲欧洲国产日韩| 丰满乱子伦码专区| 青春草国产在线视频| av福利片在线观看| 淫秽高清视频在线观看| 精品亚洲乱码少妇综合久久| 久久精品人妻少妇| 美女内射精品一级片tv| 看黄色毛片网站| 七月丁香在线播放| 国产精品国产三级国产专区5o| 欧美高清成人免费视频www| 成人亚洲精品一区在线观看 | 久久久久网色| 熟妇人妻久久中文字幕3abv| 97超视频在线观看视频| 欧美丝袜亚洲另类| 黄色日韩在线| 青春草亚洲视频在线观看| 国产大屁股一区二区在线视频| 国产真实伦视频高清在线观看| 久久国内精品自在自线图片| 国产伦一二天堂av在线观看| 亚洲av福利一区| 亚洲不卡免费看| 日日啪夜夜撸| 99久国产av精品国产电影| 精品酒店卫生间| 国产亚洲最大av| 国产精品麻豆人妻色哟哟久久 | 亚洲精品第二区| 精品国产露脸久久av麻豆 | 啦啦啦啦在线视频资源| 1000部很黄的大片| av国产久精品久网站免费入址| 搞女人的毛片| 国产亚洲av嫩草精品影院| av专区在线播放| 亚洲一级一片aⅴ在线观看| 欧美 日韩 精品 国产| 亚洲精品自拍成人| 插阴视频在线观看视频| 少妇高潮的动态图| 成人漫画全彩无遮挡| 国产成人a区在线观看| 精品国产三级普通话版| 国产精品一二三区在线看| 我的老师免费观看完整版| 国产精品久久久久久av不卡| 色5月婷婷丁香| 一夜夜www| 免费黄频网站在线观看国产| 久久精品久久久久久噜噜老黄| 免费看日本二区| 3wmmmm亚洲av在线观看| 中文字幕制服av| 国内揄拍国产精品人妻在线| 欧美丝袜亚洲另类| 国产免费一级a男人的天堂| 午夜老司机福利剧场| 亚洲,欧美,日韩| av一本久久久久| 国产淫语在线视频| 日韩大片免费观看网站| 欧美成人精品欧美一级黄| 免费看a级黄色片| 国产成人aa在线观看| 亚洲av日韩在线播放| 高清av免费在线| 99热这里只有是精品在线观看| av在线蜜桃| 一本久久精品| 免费av不卡在线播放| 日日摸夜夜添夜夜爱| 国产成人一区二区在线| 国产精品日韩av在线免费观看| 国产成人a区在线观看| 在线免费观看的www视频| 极品教师在线视频| 久久99精品国语久久久| 精品人妻熟女av久视频| 欧美xxⅹ黑人| 高清欧美精品videossex| 亚洲av二区三区四区| 久久97久久精品| 伦精品一区二区三区| 亚洲精品国产成人久久av| 成人一区二区视频在线观看| 色吧在线观看| 高清毛片免费看| 免费播放大片免费观看视频在线观看| 一级av片app| 亚洲熟女精品中文字幕| 少妇熟女欧美另类| 日韩一本色道免费dvd| 亚洲成人久久爱视频| 国产一区二区三区av在线| 丰满少妇做爰视频| 国产成人精品福利久久| 99九九线精品视频在线观看视频| 久久这里有精品视频免费| 亚洲熟妇中文字幕五十中出| 精品亚洲乱码少妇综合久久| 看非洲黑人一级黄片| 男人狂女人下面高潮的视频| 亚洲av国产av综合av卡| 亚洲成人久久爱视频| 男的添女的下面高潮视频| 成人av在线播放网站| 国内精品美女久久久久久| 最后的刺客免费高清国语| 女人久久www免费人成看片| 日本av手机在线免费观看| 人人妻人人看人人澡| 淫秽高清视频在线观看| 久久久欧美国产精品| 亚洲精品国产成人久久av| 中文字幕av在线有码专区| 国产精品三级大全| 丝袜喷水一区| 99热全是精品| 婷婷色麻豆天堂久久| 国产乱来视频区| 中文字幕av成人在线电影| 国产精品一区www在线观看| 久久久久久久亚洲中文字幕| 久久久久久久久大av| 十八禁国产超污无遮挡网站| 日韩制服骚丝袜av| 在线观看人妻少妇| 久久精品夜夜夜夜夜久久蜜豆| 精品久久久久久久久久久久久| 色综合亚洲欧美另类图片| 高清毛片免费看| 热99在线观看视频| 99热这里只有精品一区| 在线观看一区二区三区| 狠狠精品人妻久久久久久综合| 亚洲欧美成人综合另类久久久| 亚洲人成网站在线播| 久久这里只有精品中国| 国产在视频线在精品| 黑人高潮一二区| 国产综合懂色| 亚洲国产精品专区欧美| av线在线观看网站| 最近最新中文字幕免费大全7| 高清毛片免费看| 青春草亚洲视频在线观看| 男插女下体视频免费在线播放| 麻豆久久精品国产亚洲av| 国产视频内射| 九九久久精品国产亚洲av麻豆| 在线观看人妻少妇| 高清日韩中文字幕在线| 真实男女啪啪啪动态图| 久久久国产一区二区| 日韩欧美一区视频在线观看 | 亚洲内射少妇av| 成人午夜精彩视频在线观看| 日韩成人av中文字幕在线观看| 亚洲av成人精品一区久久| 国产精品人妻久久久影院| 黄色欧美视频在线观看| 国产男人的电影天堂91| 秋霞伦理黄片| 听说在线观看完整版免费高清| 日韩国内少妇激情av| 69av精品久久久久久| 精品国产露脸久久av麻豆 | 天堂影院成人在线观看| av又黄又爽大尺度在线免费看| 免费人成在线观看视频色| or卡值多少钱| 一个人看视频在线观看www免费| 欧美激情在线99| 在线天堂最新版资源| 成人av在线播放网站| 国产精品国产三级专区第一集|