• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Evaluation of NOAA/AVHRR Sea Surface Temperature at Full HRPT Resolution in the Northwest Pacific Ocean

    2021-12-22 11:39:26CHENYanQULiqinandGUANLei
    Journal of Ocean University of China 2021年6期

    CHEN Yan, QU Liqin, *, and GUAN Lei

    Evaluation of NOAA/AVHRR Sea Surface Temperature at Full HRPT Resolution in the Northwest Pacific Ocean

    CHEN Yan1), 2), QU Liqin1), 2), *, and GUAN Lei1), 2)

    1),,,266100,2),,266237,

    TheNational Oceanic and Atmospheric Administration (NOAA) Polar Orbiting Environmental Satellites (POES) High Resolution Picture Transmission (HRPT) data in the Northwest Pacific Ocean has been acquired through the SeaSpace ground station located at the Ocean University of China since October 2000, and these data have been processed by the TeraScan system. The sea surface temperature (SST) products in the Northwest Pacific Ocean derived from Advanced Very High Resolution Radiometer (AVHRR) are evaluated. We compared the SST products with the buoy SSTs during the stable operational period of each satellite. There are a total of 33715 and 71819 matchups acquired for daytime and nighttime, respectively, between the NOAA/AVHRR SSTs and buoy SSTs. For each satellite, the biases and standard deviations at daytime are smaller than those at nighttime. The monthly biases at daytime generally oscillate around 0℃, except for NOAA-15. By contrast, the monthly biases at nighttime mostly oscillate around ?0.5℃. Both daytime and nighttime biases exhibit seasonal oscillations for all satellites. The seasonal biases of the SST difference at daytime between each satellite and buoy are mostly within±0.25℃, except for the negative bias of ?0.58℃ in May for NOAA-18. The seasonal biases of the SST difference at nighttime are mostly around ?0.5℃, and NOAA-16 has a lower bias,., ?0.86℃, in April. These results indicate that the accuracy of the SST products is inconsistent for each satellite during different periods. It is suggested that the NOAA/AVHRR data should be reprocessed to provide highly accurate SST products.

    NOAA/AVHRR HRPT data; sea surface temperature (SST); buoy data; validation; Northwest Pacific Ocean

    1 Introduction

    The Northwest Pacific Ocean is a crucial marginal sea inthe Pacific Ocean. It includes East China Sea, South China Sea, Yellow Sea, and Sea of Japan. Moreover, the Kuro- shio Current, the world’s second-warmest current, flows through it. The mean state and variation of sea surface tem- perature (SST) over the Northwest Pacific Ocean are the key to study regional air-sea interaction (Sakaida and Ka- wamura, 1992; Lee, 2005). SST can initially be collected from multiplemeasurements, such as ships, buoys and offshore platforms, and these measurements are usually accurate but are limited by time and space. During the past decades, satellites are widely used owing to their high spatial-temporal resolution. Furthermore, SSTs can be retrieved from thermal infrared and passive microwave satellites’ sensors, but they have their own advantages and shortcomings (Wentz, 2000; Emery, 2001). Infrared sensors have high spatial resolution, but the observations for SST are affected by cloud and aerosols (Guan and Kawamura, 2003). Microwave sensors can penetrate cloud and aerosols (Reynolds, 1993), but the observations for SST are affected by rain (Rapp, 2008)and side lobe contamination near land in coastal waters (Castro, 2012), also they have lower spatial resolution than infrared sensors.

    The Advanced Very High Resolution Radiometer (AV- HRR) on theNational Oceanic and Atmospheric Administration (NOAA) Polar Orbiting Environmental Satellites (POES) have been providing SST products at a high spatial resolution of 1.1km since the 1980s. There have been a number of studies on the accuracy of SSTs from NOAA/ AVHRR, particularly on the development of SST validations, algorithms, and applications. A common method to validate satellite SST accuracy is to compare the collocated satellite SSTs with theSSTs. The multichannel SST (MCSST) and nonlinear SST (NLSST) algorithms havebeen proposed by using brightness temperature differences among thermal infrared channels to improve the accuracy of the SST data (McClain, 1985; Walton, 1988). TheNOAA/AVHRR and buoy matchups between 1989 and 1997 revealed that the differences between NOAA/AV- HRR retrieved SSTs and buoy SSTs ranged within 0.2–0.4℃ over the nine-year period (Walton, 1998). The SSTs derived from NOAA-12 and NOAA-14 have been validated withSSTs and their biases both have been found to be positive , but the biases of NOAA-14, which were less than 0.5℃, were lower than those of NOAA-12 (Li, 2001). AVHRR SSTs retrieved by using an op- timal estimation with a simple empirical bias correction model have been obtained with bias and standard deviations (SD) of ?0.06℃ and 0.44℃ (Merchant, 2008). Validation of the AVHRR-derived SSTs withSSTs has revealed that the biases and SDs of AVHRR SSTs were ?0.43±0.76℃ and ?0.33±0.79℃for daytime and nighttime and the regional biaseswere large in the northern South China Sea (Qiu, 2009). AVHRR SSTs have been validated with drifter data over the seas around South Korea, and the root-mean-square errors (RMSEs) of MCSST and NLSST were evaluated to be less than 1℃ in most cases, and the dependencies of these biases on atmospheric and oceanic conditions were revealed (Park, 2011). Detailed validation results for all SST data in Climate Change Initiative (CCI) phase 1 products have reported that daytime SSTs in the SST CCI Along Track Scanning Radiometer (ATSR) and AVHRR products were generally noisier than nighttime SSTs and have larger robust standard deviation (RSD) relative to global drifting buoys (Corlett, 2014). AVHRR SSTs have been va- lidated in the East Japan Sea by using surface drifter SST as ground truths from 2005 to 2010, and the SST biases (satellite-drifter) have also demonstrated diurnal variationswith a relatively higher RMSE from 0.80℃ to 1.00℃ during nighttime and a smaller RMSE of approximately 0.50℃ during daytime (Park, 2015). NOAA has re- processed the AVHRR/3 global area coverage (4km) SST data from five NOAA and two Metop satellites from 2002 to 2015, by using variable regression SST coefficients in each satellite’s most stable operational periods, thus the stability of the SST time series has been further improved (Ignatov, 2016). The validation analyses have been conducted for all levels (L2P, L3U and L3C) of both the SST CCI ATSR and SST CCI AVHRR records within phase 2 of the ESA SST CCI project in order to offer sa- tellite-based time series of SSTs since 1981 for climate applications (Merchant, 2019). Therefore, the detail- ed validation of the SSTs derived from NOAA/AVHRR should be conducted to analyze the accuracy of the AVHRR SST products.

    In this study, the AVHRR SSTs in the Northwest Pacific Ocean are evaluated by usingSST quality mo- nitor (iQuam) buoy SSTs asmeasurements. First, the AVHRR anddata are introduced in Section 2. Then, the comparison results between AVHRR andSSTs are discussed in Section 3. Finally, the conclusions are presented in Section 4.

    2 Data and Methods

    2.1 NOAA/AVHRR Data

    In this study, the NOAA/AVHRR data have been acquired through the SeaSpace ground station located at Ocean University of China (OUC) since October 2000, and these data have been processed by the TeraScan system. The TeraScan system separates the AVHRR data from the HRPT dataset, and then the AVHRR SSTs have been retrieved through cloud detection, geometric correction and MCSST algorithms. The SST products are projected to a 0.01?× 0.01? grid within 10?–50?N and 105?–145?E. Herein, we select the SST data from the AVHRRs on several satellites during their stable operational periods (Merchant, 2019), and the details are shown in Table 1. The coverage of the OUC ground station is shown in Fig.1.

    Table 1 Summary of the characteristics of the satellite data used

    Fig.1 The data coverage area received by the OUC ground station(inside the red circle).

    2.2 iQuam in situ Data

    TheSST data are from theSST quality monitor (iQuam) system developed by the NOAA NESDIS/STAR. The iQuam data files preserve much information, including SST, wind direction, wind speed and so on (Xu and Ignatov, 2013). The iQuam data include ship and buoy data, but we only select the buoy data with the highest data quality as thedataset. The monthly iQuam data files have been provided online in the NetCDF format, and can be downloaded from its website (ftp://ftp.star.ne sdis.noaa.gov/pub/sod/sst/iquam/v2.10/). Moreover, the i- Quam version 2.10 data have been used.

    2.3 Generating the Matchups of Satellite and in situ SST

    In this study, we obtained a matchup dataset between AVHRR and buoy data within a spatial window of 0.01? and a temporal window of 0.5h. Also we used the 5×5 block to detect the cloud data, and only when all SST data in the block around the center pixel of AVHRR SST are valid values, the pixel can be selected into the matchup dataset. The pixels wherein the solar zenith angles were below 85? were selected as the daytime dataset and the rest were put in the nighttime dataset (Ackerman, 2010; Wang, 2014). The overall flowchart of the matchup procedure is shown in Fig.2.

    3 Comparisons Between the AVHRR and in situ SST Data

    3.1 Statistical Analysis to the AVHRR and in situ SST Matchups

    To evaluate the accuracies of AVHRR SST, we calculated the statistic parameters, including the matchup num- bers, bias, the minimum SST difference (min), the maximum SST difference (max), median, SD and RSD by using the matchup data. The RSD used herein was 1.48 times the median absolute deviation from the median (Embury, 2012). The data were eliminated beyond thrice of the RSD from the median as outliers (Bevington and Robinson, 2003; O’Carroll, 2008; Dash, 2012).By removing the outliers, the numbers of daytime and night- time matchups were reduced by 3.71% and 4.27%, respectively. Finally, 33715 and 71819 matchups for daytime andnighttime between the AVHRR SSTs and buoy SSTs were obtained. The number and statistic parameters of the ma- tchups for each satellite are summarized in Table 2. The number of daytime matchups for each satellite is less than that at nighttime, and the biases and SD values exhibit si- milar trends. The daytime biases range from ?0.08(NOAA- 17) to ?0.32℃ (NOAA-16), and the nighttimebiases range from ?0.32℃ (NOAA-15) to ?0.60℃ (NOAA-16).The daytime SDs range from 0.62℃(NOAA-17) to 0.75℃ (NOAA-15), and the nighttime SDs range from 0.76℃ (NOAA-17) to 0.82℃ (NOAA-16).

    Fig.2 Flowchart for the generation of the matchup datasets between AVHRR and in situ data.

    Table 2 Statistics of the AVHRR and in situ SST matchup datasets for daytime and nighttime

    3.2 Characteristics of the AVHRR and in situ Matchups

    Fig.3 shows the monthly distributions of the number of matchups between each satellite anddata. The mon- thlynumbers of daytime matchups for each satellite are smaller than those at nighttime.The numbers of matchups in May and October are greater than those of the other months for each year, and it reaches the maximum in October owing to the cloud cover variation in the work region. No collocated points exist for some months because the ground station did not acquire the data during those months. For a more precise look at this seasonal feature, Fig.4 illustrates the seasonal distributions of the total num- ber of matchups from 2000 to 2017 between each satellite anddata.The numbers of matchups in spring (Marchto May) and autumn (September to November) are greater than those of other seasons at both daytime and nighttime. This is consistent with the distribution shown in Fig.3.

    The probability distribution of the SST differences between AVHRR andmatchups is shown in Fig.5. For all satellites, the differences between AVHRR andSSTs show a nearly symmetrical distribution at daytime, of which over 81.5% are within±1℃, and 54.1% are within±0.5℃. However, over 71.1% of the nighttime SST differences are within±1℃, and 41.6% of the nighttime SST differences are within±0.5℃. Moreover, the overall trend of the nighttime SST differences exhibits clear cold biases with a high frequency, indicating that most AVHRR SSTs are lower thanSSTs at nighttime.

    Fig.6 presents the comparisons between NOAA satellite andSSTs at daytime and nighttime for the overall matchups. Most of the satellite SSTs seem to be well correlated with theSSTs by showing a linear relationship for both daytime and nighttime. The majority of the matchups lie in the temperature range from 20℃ to 30℃, and most of the SST differences are within±1.0℃. However, the satellite SSTs generally show a certain degree of underestimation at a relatively low temperature range from 5℃ to 15℃ at nighttime, particularly for NOAA-16 and NOAA-18. This requires a more detailed study on these satellites.

    Fig.3 Monthly distributions of the number of matchups between AVHRR and in situ data: daytime (upper panel) and nighttime (lower panel).

    Fig.4 Seasonal distributions of the number of matchups between AVHRR and in situ data: daytime (left panel) and nighttime (right panel).

    Fig.5 Probability distribution histogram of SST differences between AVHRR and in situ matchups: daytime (left panels) and nighttime (right panels).

    Fig.6 Scatterplots of SST matchups between AVHRR and in situ data: daytime (left panels) and nighttime (right panels).

    To evaluate the stability of the satellite SSTs, we show the monthly variations of the bias and SD for AVHRR andSST differences in Fig.7. For NOAA-15, the monthlybiases generally oscillate between ?1.06℃and 0.56℃ atdaytime and between ?1.09℃ and 0.75℃ at nighttime. For NOAA-16, the monthly biases generally oscillate between ?0.68℃and 0.03℃ at daytime and between ?1.06℃and ?0.01℃ at nighttime. For NOAA-17, the monthly biases generally oscillate between ?0.64℃and 0.75℃ at daytime and between ?1.04℃ and 0.09℃ at nighttime. For NOAA-18, the monthly biases generally oscillate be- tween ?0.88℃and 0.21℃ at daytime and between ?1.27℃ and ?0.03℃ at nighttime. For NOAA-19, the monthly biases generally oscillate between ?0.86℃and 0.20℃at daytime and between ?0.94℃ and 0.17℃ at nighttime. Furthermore, the daytime and nighttime biases exhibit seasonal periodical oscillations for all satellites, and it can be seen that the biases during spring (March to May) are generally lower than those during other seasons in each year, particularly in 2008.

    Fig.8 shows the seasonal SST difference biases and SDs between each satellite anddata. The seasonal daytime biases generally change within ±0.25℃ except forthe maximum negative bias of ?0.58℃ in May for NOAA-18, and the nighttime biases generally change around ?0.5℃ except for the maximum negative bias of ?0.86℃ in April for NOAA-16. The biases in spring (March to May) are lower than those in other seasons during both daytime and nighttime, and this is consistent with the distribution shown in Fig.7.

    4 Conclusions

    In this study, we evaluated the accuracy of NOAA/ AVHRR SSTs retrieved from the OUC SeaSpace ground station using the high-quality buoy data. For each satellite, the biases and standard deviations at daytime are smaller than those at nighttime. The monthly biases at daytime generally oscillate around 0℃, except for NOAA-15. By contrast, the monthly biases at nighttime mostly oscillate around ?0.5℃. Both daytime and nighttime biases exhibit seasonal oscillations for all satellites. The seasonal biases at daytime are mostly within ±0.25℃, except for the ne- gative bias of ?0.58℃ in May for NOAA-18. The seasonal biases at nighttime are mostly around ?0.5℃, and only NOAA-16 has a lower bias,., ?0.86℃, in spring. Overall, NOAA-17 exhibits the best performance and NOAA-16 performs worst. The quality of the AVHRR SSTs in the Northwest Pacific Ocean are not as good as previous studies. For example, the AVHRR SSTs retrieved by using an optimal estimation with a simple empirical bias correction model have the bias and standard deviations (SD) of ?0.06℃ and 0.44℃ (Merchant, 2008).

    Fig.7 Time series of the monthly biases (dots) and SDs (bars) for AVHRR and in situ SST differences at daytime (red) and nighttime (black). (a)–(e) represent NOAA-15 to NOAA-19, respectively.

    Fig.8 Seasonal distributions of the biases and SDs between AVHRR and in situ data: daytime (upper panel) and nighttime (lower panel).

    Above all, the accuracy of the SST data is inconsistent for each satellite during different periods. The failures of cloud detection may cause large underestimation at nighttime. It is suggested that the NOAA/AVHRR data from the OUC SeaSpace ground station should be reprocessed to improve the cloud detection and SST retrieval accuracy.

    Acknowledgement

    This work has been supported by the National Key R& D Program of China (No. 2019YFA0607001).

    Ackerman, S., Strabala, K., Menzel, P., Frey, R., Moeller, C., and Gumley, L., 2010. Discriminating clear-sky from cloud with MODIS algorithm theoretical basis document (MOD35). MODIS Cloud Mask Team, Cooperative Institute for Meteorological Satellite Studies, University of Wisconsin.

    Bevington, P. R., and Robinson, D. K., 2003. Estimates of mean and errors. In:3rd edition. McGraw-Hill, New York, 1-55.

    Castro, S. L., Wick, G. A., and Emery, W. J., 2012. Evaluation of the relative performance of sea surface temperature mea- surements from different types of drifting and moored buoys using satellite-derived reference products., 117: C02029.

    Corlett, G., Atkinson, C., Rayner, N., Good, S., Fiedler, E., Mc- Laren, A.,., 2014. Product validation and intercomparison report. Project Document SST_CCIPVIR-UoL-001. http:// www.esa-sst-cci.org/PUG/documents.

    Dash, P., Ignatov, A., Martin, M., Donlon, C., Brasnett, B., Rey- nolds, R. W.,., 2012. Group for high resolution sea surface temperature (GHRSST) analysis fields inter-comparisons- Part 2: Near real time web-based level 4 SST quality monitor (L4-SQUAM)., 77-80: 31-43.

    Embury, O., Merchant, C. J., and Corlett, G. K., 2012. A repro- cessing for climate of sea surface temperature from the along- track scanning radiometers: Initial validation, accounting for skin and diurnal variability effects., 116 (4): 62-78.

    Emery, W., Castro, S., Wick, G., Schluessel, P., and Donlon, C., 2001. Estimating sea surface temperature from infrared satellite andtemperature data., 82: 2773-2785.

    Guan, L., and Kawamura, H., 2003. Study on the SST availabi- lities of satellite infrared and microwave measurements., 59 (2): 201-209.

    Ignatov, A., Zhou, X. J., Petrenko, B., Liang, X. M., Kihai, Y., Dash P.,., 2016. AVHRR GAC SST reanalysis version 1 (RAN1)., 8 (4): 315, DOI: 10.3390/rs8040315.

    Lee, M. A., Chang, Y., Sakaida, F., Kawamura, H., Cheng, C. H., Chan, J. W.,., 2005. Validation of satellite-derived seasurface temperatures for waters around Taiwan, Terrestrial., 16 (5): 1189-1204.

    Li, X., Pichel, W., Clemente-Colon, P., Krasnopolsky, V., and Sapper, J., 2001. Validation of coastal sea and lake surface temperature measurements derived from NOAA/AVHRR data., 22 (7): 1285-1303.

    McClain, E. P., Pichel, W. G., and Walton, C. C., 1985. Compa- rative performance of AVHRR-based multichannel sea surface temperatures., 90: 11587- 11601.

    Merchant, C. J., Borgne, P. L., Marsouin, A., and Roquet, H., 2008.Optimal estimation of sea surface temperature from split-win- dow observations., 112 (5): 2469- 2484.

    Merchant, C. J., Embury, O., Bulgin, C. E., Block, T., Corlett, G. K., Fiedler, E.,., 2019. Satellite-based time-series of sea surface temperature since 1981 for climate applications., 6: 223, https://doi.org/10.1038/s41597-019-0236-x.

    O’Carroll, A. G., Eyre, J. R., and Saunders, R. W., 2008. Three- way error analysis between AATSR, AMSR-E, andsea surface temperature observations., 25 (7): 1197-1207.

    Park, K. A., Lee, E. Y., Chung, S. R., and Sohn, E. H., 2011. Accuracy assessment of sea surface temperature from NOAA/ AVHRR data in the seas around Korea and error characteristics., 27 (6): 663-675.

    Park, K. A., Lee, E. Y., Li, X. F., Chung, S. R., Sohn, E. H., and Hong, S., 2015. NOAA/AVHRR sea surface temperature accuracy in the East/Japan Sea., 8 (10): 784-804.

    Qiu, C. H., Wang, D. X., Kawamura, H., Guan, L., and Qin, H. L., 2009. Validation of AVHRR and TMI-derived sea surface temperature in the northern South China Sea., 29: 2358-236.

    Rapp, A. D., Kummerow, C., and Elsaesser, C., 2008. On the ef- fects of warm rain clouds in the tropics.. Fort Collins, Colorado, 0897.

    Reynolds, R. W., 1993. Impact of Mount Pinatubo aerosols on satellite-derived sea surface temperatures., 6: 768-774.

    Sakaida, F., and Kawamura, H., 1992. Estimation of sea surface temperatures around Japan using the advanced very high re- solution radiometer, (AVHRR)/NOAA-11., 48 (2): 179-192.

    Walton, C. C., 1988. Nonlinear multichannel algorithm for estima- ting sea surface temperature with AVHRR satellite data., 27: 115-124.

    Walton, C. C., Pichel, W. G., Sapper, J. F., and May, D. A., 1998.The development and operational application of non-linear algorithms for the measurement of sea surface temperatures with the NOAA polar-orbiting environmental satellites., 103 (C12): 27999-28012.

    Wang, S., Cui, P., Zhang, P., Ran, M., Lu, F., and Wang, W., 2014. FY-3C/VIRR SST algorithm and cal/val activities at NSMC/CMA., 9261: 92610G-2.

    Wentz, F., Gentemann, C., Smith, D., and Chelton, D., 2000. Sa- tellite measurements of sea surface temperature through clouds., 288: 847-850.

    Xu, F., and Ignatov, A., 2013.SST quality monitor (iQuam)., 31 (1): 164- 180, DOI: 10.1175/JTECH-D-13-00121.1.

    August 4, 2020;

    October 9, 2020;

    January 13, 2021

    ? Ocean University of China, Science Press and Springer-Verlag GmbH Germany 2021

    Tel: 0086-532-66782907

    E-mail: quliqin@ouc.edu.cn

    (Edited by Chen Wenwen)

    在线观看美女被高潮喷水网站| 国产男女内射视频| 亚洲av福利一区| 国产成人免费无遮挡视频| 熟女人妻精品中文字幕| 乱码一卡2卡4卡精品| 免费av观看视频| 免费观看av网站的网址| 精品国产乱码久久久久久小说| 国产精品av视频在线免费观看| 少妇的逼好多水| 99久久精品热视频| 欧美性感艳星| 日本黄色片子视频| 亚洲国产精品999| 男女边摸边吃奶| 国产av不卡久久| 日本av手机在线免费观看| av女优亚洲男人天堂| 国产精品麻豆人妻色哟哟久久| 精品酒店卫生间| 少妇人妻一区二区三区视频| 国产精品人妻久久久影院| 偷拍熟女少妇极品色| 97精品久久久久久久久久精品| 大又大粗又爽又黄少妇毛片口| 高清午夜精品一区二区三区| 久久人人爽人人爽人人片va| 狂野欧美激情性xxxx在线观看| av免费观看日本| 国产乱来视频区| 在线观看免费高清a一片| 插阴视频在线观看视频| 干丝袜人妻中文字幕| 最近最新中文字幕大全电影3| 免费av观看视频| 边亲边吃奶的免费视频| 亚洲国产av新网站| 久久人人爽av亚洲精品天堂 | 日韩成人伦理影院| h日本视频在线播放| 亚洲色图av天堂| 免费av观看视频| 国产伦理片在线播放av一区| 亚洲,欧美,日韩| 国产成人精品福利久久| 看免费成人av毛片| 纵有疾风起免费观看全集完整版| 亚洲国产精品国产精品| 国产一级毛片在线| 嘟嘟电影网在线观看| 国产亚洲一区二区精品| 晚上一个人看的免费电影| 在线观看一区二区三区激情| 一级爰片在线观看| 成人一区二区视频在线观看| 人妻一区二区av| 国产成人一区二区在线| 色综合色国产| 国产成人freesex在线| 欧美日韩综合久久久久久| 国产永久视频网站| 99视频精品全部免费 在线| 国产爱豆传媒在线观看| 亚洲av欧美aⅴ国产| 久久99蜜桃精品久久| 国产一区二区三区av在线| 久久99热这里只有精品18| av免费在线看不卡| 在线观看美女被高潮喷水网站| 女人十人毛片免费观看3o分钟| 日本爱情动作片www.在线观看| 一本色道久久久久久精品综合| 日韩中字成人| 亚洲精品日韩av片在线观看| 少妇人妻 视频| 精品久久久久久久久亚洲| 在线观看av片永久免费下载| 成人毛片a级毛片在线播放| 午夜日本视频在线| 一区二区三区精品91| 国产亚洲5aaaaa淫片| freevideosex欧美| 精品国产乱码久久久久久小说| 亚洲怡红院男人天堂| 我的女老师完整版在线观看| av又黄又爽大尺度在线免费看| 噜噜噜噜噜久久久久久91| 成人漫画全彩无遮挡| 一二三四中文在线观看免费高清| 国模一区二区三区四区视频| 少妇 在线观看| 久久久久久久亚洲中文字幕| 在线观看一区二区三区激情| 精品久久久噜噜| 搞女人的毛片| 国产熟女欧美一区二区| 全区人妻精品视频| 国产老妇女一区| 国产成人一区二区在线| 国产欧美亚洲国产| 我的老师免费观看完整版| 日本与韩国留学比较| 街头女战士在线观看网站| 亚洲国产高清在线一区二区三| 国产av码专区亚洲av| 精品人妻视频免费看| 国产伦精品一区二区三区视频9| 少妇人妻久久综合中文| 综合色丁香网| 国产乱来视频区| 欧美极品一区二区三区四区| 国产 一区 欧美 日韩| 一级毛片aaaaaa免费看小| 尾随美女入室| 中国美白少妇内射xxxbb| 熟女av电影| 亚洲成色77777| 国产白丝娇喘喷水9色精品| 免费观看在线日韩| 在线观看av片永久免费下载| 国产黄色免费在线视频| 午夜福利网站1000一区二区三区| 99视频精品全部免费 在线| 亚洲激情五月婷婷啪啪| 国产精品无大码| 一本色道久久久久久精品综合| 亚洲国产欧美人成| 嫩草影院新地址| 97热精品久久久久久| 韩国av在线不卡| 免费黄网站久久成人精品| 人人妻人人看人人澡| 日韩人妻高清精品专区| 九九久久精品国产亚洲av麻豆| 五月玫瑰六月丁香| 欧美一区二区亚洲| 国产精品久久久久久av不卡| 一二三四中文在线观看免费高清| 丝袜脚勾引网站| 好男人在线观看高清免费视频| 亚洲人与动物交配视频| 别揉我奶头 嗯啊视频| a级一级毛片免费在线观看| 久久久久久久久久成人| 肉色欧美久久久久久久蜜桃 | 成人漫画全彩无遮挡| 欧美zozozo另类| 亚洲,一卡二卡三卡| 在现免费观看毛片| 乱系列少妇在线播放| 三级国产精品片| 久久久久久久久久久丰满| 黄色一级大片看看| 国产女主播在线喷水免费视频网站| 身体一侧抽搐| 自拍偷自拍亚洲精品老妇| 在线观看av片永久免费下载| 精品人妻视频免费看| 国产精品三级大全| 久久人人爽人人爽人人片va| 亚洲欧美日韩卡通动漫| 免费观看的影片在线观看| 一本一本综合久久| 亚洲av一区综合| 精品人妻熟女av久视频| 观看免费一级毛片| 国产精品.久久久| 国产午夜福利久久久久久| 日日撸夜夜添| 亚洲国产欧美人成| 久久久久久国产a免费观看| 亚洲最大成人手机在线| 亚洲图色成人| 免费看光身美女| 欧美日韩视频精品一区| av在线播放精品| av女优亚洲男人天堂| 精品一区二区三卡| 国产探花极品一区二区| 亚洲精品乱码久久久久久按摩| 亚洲自偷自拍三级| 欧美激情在线99| 51国产日韩欧美| 狠狠精品人妻久久久久久综合| 人妻一区二区av| 久久久久久九九精品二区国产| av免费观看日本| 国产亚洲最大av| 最后的刺客免费高清国语| 女的被弄到高潮叫床怎么办| 中文字幕久久专区| 少妇的逼水好多| 日韩欧美一区视频在线观看 | 简卡轻食公司| 老师上课跳d突然被开到最大视频| 91狼人影院| 国产爱豆传媒在线观看| 亚洲精品乱久久久久久| 国产综合精华液| 乱系列少妇在线播放| 成人美女网站在线观看视频| 最近中文字幕2019免费版| av国产免费在线观看| 深爱激情五月婷婷| 欧美丝袜亚洲另类| 男人添女人高潮全过程视频| 老司机影院毛片| 亚洲av男天堂| 久久精品久久精品一区二区三区| 天堂网av新在线| 亚洲天堂av无毛| 一本一本综合久久| 老司机影院毛片| 久久ye,这里只有精品| 亚洲不卡免费看| 久久久亚洲精品成人影院| 一二三四中文在线观看免费高清| 亚洲欧美成人精品一区二区| 大码成人一级视频| 日本三级黄在线观看| 亚洲av中文av极速乱| 王馨瑶露胸无遮挡在线观看| 99re6热这里在线精品视频| 99热网站在线观看| 亚洲国产成人一精品久久久| 自拍偷自拍亚洲精品老妇| 日本一二三区视频观看| 久久久久久久久久久免费av| 丰满乱子伦码专区| 又黄又爽又刺激的免费视频.| 91aial.com中文字幕在线观看| 美女cb高潮喷水在线观看| 国产成人一区二区在线| 国产成人91sexporn| 国模一区二区三区四区视频| 国产色爽女视频免费观看| 午夜福利在线观看免费完整高清在| 国产精品女同一区二区软件| 国产精品国产av在线观看| 99久久精品热视频| 亚洲精品国产av蜜桃| 久久久久久九九精品二区国产| 嫩草影院入口| 99re6热这里在线精品视频| 久久久国产一区二区| 免费在线观看成人毛片| 欧美激情久久久久久爽电影| 久久精品综合一区二区三区| 亚洲久久久久久中文字幕| 三级经典国产精品| 免费大片18禁| 亚洲欧美成人精品一区二区| 亚洲国产欧美人成| 国产高清三级在线| 国产极品天堂在线| 下体分泌物呈黄色| av.在线天堂| 免费观看性生交大片5| 亚洲丝袜综合中文字幕| 久久精品人妻少妇| 亚洲内射少妇av| 久久韩国三级中文字幕| 午夜爱爱视频在线播放| 久久亚洲国产成人精品v| 中文欧美无线码| 亚洲色图综合在线观看| 又爽又黄a免费视频| 22中文网久久字幕| 青青草视频在线视频观看| 亚洲久久久久久中文字幕| 亚洲国产高清在线一区二区三| 2018国产大陆天天弄谢| 亚洲欧美日韩另类电影网站 | 男女那种视频在线观看| 国产精品国产三级专区第一集| 在线观看美女被高潮喷水网站| 91精品国产九色| 你懂的网址亚洲精品在线观看| 男女国产视频网站| 男人狂女人下面高潮的视频| 人人妻人人澡人人爽人人夜夜| 国产成人福利小说| 一级av片app| 一级毛片黄色毛片免费观看视频| 性色avwww在线观看| 嘟嘟电影网在线观看| 国产伦在线观看视频一区| 亚洲欧美成人综合另类久久久| 国产成人免费无遮挡视频| 欧美一级a爱片免费观看看| 黄片无遮挡物在线观看| 亚洲国产精品成人综合色| 国产精品麻豆人妻色哟哟久久| 亚洲av国产av综合av卡| av卡一久久| 日韩一区二区视频免费看| 国产亚洲5aaaaa淫片| 大片免费播放器 马上看| 成年女人在线观看亚洲视频 | 欧美成人精品欧美一级黄| 女人久久www免费人成看片| 在线观看三级黄色| 色视频www国产| 天天一区二区日本电影三级| av免费在线看不卡| 国产亚洲一区二区精品| 99精国产麻豆久久婷婷| 大码成人一级视频| 欧美3d第一页| 日本-黄色视频高清免费观看| 美女xxoo啪啪120秒动态图| 午夜精品国产一区二区电影 | 国产永久视频网站| 五月玫瑰六月丁香| 蜜桃亚洲精品一区二区三区| 亚洲av欧美aⅴ国产| 亚洲欧美日韩卡通动漫| 中文字幕久久专区| 精品国产乱码久久久久久小说| 又粗又硬又长又爽又黄的视频| 天堂俺去俺来也www色官网| 精品少妇黑人巨大在线播放| 国产精品av视频在线免费观看| 最后的刺客免费高清国语| 久久精品熟女亚洲av麻豆精品| 国产女主播在线喷水免费视频网站| 精品久久久久久久久av| 国内精品宾馆在线| 天堂网av新在线| 日本与韩国留学比较| 国产成人免费无遮挡视频| 99热这里只有是精品50| 欧美日韩一区二区视频在线观看视频在线 | 黄色日韩在线| 一级片'在线观看视频| 男插女下体视频免费在线播放| 国产精品国产av在线观看| 久久精品久久久久久噜噜老黄| videossex国产| 在线观看一区二区三区激情| 蜜臀久久99精品久久宅男| 久久影院123| 美女高潮的动态| 欧美日韩综合久久久久久| 欧美精品国产亚洲| 免费看av在线观看网站| 中国美白少妇内射xxxbb| 美女国产视频在线观看| 国产老妇伦熟女老妇高清| 日韩国内少妇激情av| 我的女老师完整版在线观看| av线在线观看网站| 菩萨蛮人人尽说江南好唐韦庄| 内地一区二区视频在线| 久久久成人免费电影| 直男gayav资源| 日韩不卡一区二区三区视频在线| 亚洲人成网站在线播| 在线观看一区二区三区| 精品亚洲乱码少妇综合久久| 一本—道久久a久久精品蜜桃钙片 精品乱码久久久久久99久播 | 婷婷色麻豆天堂久久| 日韩 亚洲 欧美在线| 午夜福利高清视频| 国产人妻一区二区三区在| 交换朋友夫妻互换小说| 亚洲成人久久爱视频| 纵有疾风起免费观看全集完整版| 国产 精品1| 国内少妇人妻偷人精品xxx网站| 国产人妻一区二区三区在| 中文天堂在线官网| 国语对白做爰xxxⅹ性视频网站| 欧美+日韩+精品| 亚洲精品乱久久久久久| 日韩亚洲欧美综合| 高清视频免费观看一区二区| 亚洲精品国产成人久久av| 又爽又黄a免费视频| 街头女战士在线观看网站| 春色校园在线视频观看| 久久鲁丝午夜福利片| 日本猛色少妇xxxxx猛交久久| 中文字幕亚洲精品专区| 亚洲av中文av极速乱| 亚洲精品国产av成人精品| 一个人看视频在线观看www免费| 精品久久国产蜜桃| 亚洲av不卡在线观看| 亚洲精品乱码久久久久久按摩| 一级毛片我不卡| 亚洲,欧美,日韩| 男女边吃奶边做爰视频| 97在线人人人人妻| 深夜a级毛片| 水蜜桃什么品种好| 大陆偷拍与自拍| 欧美日韩视频高清一区二区三区二| 联通29元200g的流量卡| 日本午夜av视频| 下体分泌物呈黄色| 免费看不卡的av| 菩萨蛮人人尽说江南好唐韦庄| 久久久久网色| www.av在线官网国产| 国产男人的电影天堂91| 女人被狂操c到高潮| 亚洲av日韩在线播放| 免费观看无遮挡的男女| 国产欧美日韩精品一区二区| 精品久久久久久电影网| 少妇熟女欧美另类| 国产av码专区亚洲av| 青青草视频在线视频观看| 国产免费又黄又爽又色| 黄片wwwwww| 韩国av在线不卡| 身体一侧抽搐| 六月丁香七月| 99re6热这里在线精品视频| 国产男女内射视频| 国产在线一区二区三区精| 国产 一区精品| 美女内射精品一级片tv| kizo精华| 亚洲自偷自拍三级| 亚洲不卡免费看| 亚洲精品日韩av片在线观看| 国产中年淑女户外野战色| 久久99精品国语久久久| 欧美3d第一页| 草草在线视频免费看| av黄色大香蕉| 国产男女内射视频| 欧美+日韩+精品| 亚洲国产精品成人综合色| 插逼视频在线观看| 熟女人妻精品中文字幕| 国产 一区精品| 内地一区二区视频在线| 亚洲av福利一区| 赤兔流量卡办理| 午夜免费鲁丝| 久久久亚洲精品成人影院| 最近2019中文字幕mv第一页| 蜜臀久久99精品久久宅男| 欧美成人精品欧美一级黄| 菩萨蛮人人尽说江南好唐韦庄| 亚洲人成网站高清观看| a级毛片免费高清观看在线播放| 人妻一区二区av| 在线观看免费高清a一片| 99视频精品全部免费 在线| av女优亚洲男人天堂| 亚洲精品视频女| 国产精品久久久久久精品古装| 日韩不卡一区二区三区视频在线| 国产成人a区在线观看| 成人特级av手机在线观看| 特级一级黄色大片| 午夜福利视频精品| 寂寞人妻少妇视频99o| 亚洲欧美日韩另类电影网站 | 久久99蜜桃精品久久| 国产91av在线免费观看| 精品午夜福利在线看| 国产乱人偷精品视频| 18禁裸乳无遮挡动漫免费视频 | 久久99热这里只频精品6学生| 黄色日韩在线| 精品人妻熟女av久视频| 亚洲熟女精品中文字幕| 观看免费一级毛片| 日韩强制内射视频| 欧美激情国产日韩精品一区| 午夜老司机福利剧场| 久久久久久九九精品二区国产| 欧美3d第一页| 最近最新中文字幕免费大全7| 午夜免费观看性视频| 观看美女的网站| 人体艺术视频欧美日本| 国产美女午夜福利| 精品国产乱码久久久久久小说| 久久久a久久爽久久v久久| 91久久精品国产一区二区三区| 国产成人freesex在线| 亚洲精品国产av成人精品| 日韩av在线免费看完整版不卡| 国产精品蜜桃在线观看| 自拍欧美九色日韩亚洲蝌蚪91 | 亚洲丝袜综合中文字幕| 日本爱情动作片www.在线观看| 国产有黄有色有爽视频| 亚洲欧美日韩另类电影网站 | 国产男人的电影天堂91| 伦精品一区二区三区| videossex国产| 中文字幕av成人在线电影| 如何舔出高潮| 啦啦啦在线观看免费高清www| av在线亚洲专区| 最后的刺客免费高清国语| 日韩一本色道免费dvd| 久久久久久久国产电影| 高清av免费在线| 免费看光身美女| 国产亚洲av嫩草精品影院| 日产精品乱码卡一卡2卡三| av线在线观看网站| 国产成人福利小说| 伦理电影大哥的女人| 色婷婷久久久亚洲欧美| 亚洲成人中文字幕在线播放| 亚洲人成网站高清观看| 色视频在线一区二区三区| 日本免费在线观看一区| 日本黄色片子视频| 亚洲精品乱久久久久久| 国产伦在线观看视频一区| 日韩免费高清中文字幕av| 国内精品美女久久久久久| 一级av片app| 日韩三级伦理在线观看| 高清视频免费观看一区二区| 亚洲欧美清纯卡通| 久久99精品国语久久久| 国产综合懂色| 亚洲av一区综合| 亚洲第一区二区三区不卡| 麻豆精品久久久久久蜜桃| 国产伦精品一区二区三区视频9| 久久久精品免费免费高清| 午夜福利视频精品| 91午夜精品亚洲一区二区三区| 国产爽快片一区二区三区| 国产亚洲午夜精品一区二区久久 | 国内精品宾馆在线| 亚洲精品日韩av片在线观看| 大又大粗又爽又黄少妇毛片口| 久久99热这里只频精品6学生| 国内精品美女久久久久久| 国产一级毛片在线| 少妇的逼好多水| 国产成人精品福利久久| 亚洲欧美一区二区三区国产| 亚洲伊人久久精品综合| 在线播放无遮挡| 亚洲欧美清纯卡通| 亚洲欧美日韩无卡精品| 中文在线观看免费www的网站| 18禁在线播放成人免费| 日本-黄色视频高清免费观看| 成人鲁丝片一二三区免费| 国产精品人妻久久久影院| 国产一区二区三区综合在线观看 | 免费人成在线观看视频色| 欧美zozozo另类| 中文字幕av成人在线电影| 国产久久久一区二区三区| 久久久久久久午夜电影| 夫妻性生交免费视频一级片| 亚洲av在线观看美女高潮| 搡老乐熟女国产| 亚洲成色77777| 久久久久性生活片| 亚州av有码| 看免费成人av毛片| 亚洲欧美中文字幕日韩二区| 日本wwww免费看| 中文资源天堂在线| 高清欧美精品videossex| 日本色播在线视频| 美女被艹到高潮喷水动态| 国产免费视频播放在线视频| 亚洲精品乱码久久久久久按摩| 精品人妻一区二区三区麻豆| 精品一区在线观看国产| av.在线天堂| 亚洲国产成人一精品久久久| 久久久久久久午夜电影| 国产有黄有色有爽视频| 91精品国产九色| 亚洲国产欧美人成| 99精国产麻豆久久婷婷| 国产精品久久久久久精品古装| 一级片'在线观看视频| 人人妻人人澡人人爽人人夜夜| 秋霞在线观看毛片| 国产一区亚洲一区在线观看| 伦理电影大哥的女人| 少妇熟女欧美另类| xxx大片免费视频| 国产白丝娇喘喷水9色精品| 亚洲精品第二区| 国产欧美另类精品又又久久亚洲欧美| 人妻制服诱惑在线中文字幕| 亚洲精品第二区| 日韩三级伦理在线观看| 少妇高潮的动态图| 人妻系列 视频| 自拍欧美九色日韩亚洲蝌蚪91 | 久久精品国产亚洲av涩爱| 国产精品久久久久久精品电影小说 | 18禁裸乳无遮挡动漫免费视频 | 五月天丁香电影| 国产精品av视频在线免费观看| 国产伦理片在线播放av一区| 国产淫片久久久久久久久| 亚洲怡红院男人天堂| 99re6热这里在线精品视频| 乱系列少妇在线播放| 日韩大片免费观看网站| 免费大片黄手机在线观看|