• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    High-Resolution Geochemical Records in the Inner Shelf Mud Wedge of the East China Sea and Their Indication to the Holocene Monsoon Climatic Changes and Events

    2021-12-22 11:21:24WANGLongshengZHOUBinZHENGBangWANGKeMEIXiWANGQingWANGXiaohuiandZHENGHongbo
    Journal of Ocean University of China 2021年6期

    WANG Longsheng, ZHOU Bin, ZHENG Bang, WANG Ke, MEI Xi, WANG Qing, WANG Xiaohui, and ZHENG Hongbo

    High-Resolution Geochemical Records in the Inner Shelf Mud Wedge of the East China Sea and Their Indication to the Holocene Monsoon Climatic Changes and Events

    WANG Longsheng1), 3), 7), *, ZHOU Bin2), *, ZHENG Bang2), WANG Ke4), MEI Xi5), WANG Qing1), WANG Xiaohui1), and ZHENG Hongbo6)

    1),264025,2),,210023,3),,,264003,4),,,1130033,5),,,266071,6),,650091,7),,,710061,

    The inner shelf mud wedge (ISMW) located in the East China Sea (ECS) is the fine-grained sedimentary area with high sedimentation rate and has provided an ideal study area for understanding the East Asian Summer Monsoon (EASM) evolution during the Holocene. In this paper, we presented the high-resolution geochemical data of the sediments from the core MD06-3040 in the ISMW of the ECS determined by X-ray fluorescence core scanning (XRF-CS) analysis, a high-resolution, continuous, and multi- element method. Geochemical and factor analysis results reveal that the variations of elemental compositions (Al, Si, K, Ti, Fe), the elemental ratios of Al/Zr, Ca/Ti and Rb/Sr, and the factor scores (F1) are correlated with the changes of the EASM during the period of 6000–1300calyrBP. The higher values of geochemical compositions indicating the terrigenous inputs implied the intensification of anthropogenic activities after 1300calyrBP. Meanwhile, the significant decrease of most geochemical compositions and the F1 factor scores during 4500–3500 calyrBP and 1700–1500calyrBP, within the dating errors, coincided with the weak EASM events (presumably drought and cold events). The spectral analysis results of K concentrations, Al/Zr ratios and F1 factor scores show the millennial and centennial climatic fluctuations, which are consistent with other marine sedimentary records in the adjacent areas. All the findings show that the geochemical compositions of sediments from core MD06-3040 are influenced by the EASM evolution, the variable El Ni?o/Southern Oscillation (ENSO) and the local oceanic thermohaline circulation (., Kuroshio Current). These results are greatly helpful in uncovering the forcing mechanism of the monsoonal climate in the east China over the Holocene and also contribute to the understanding of EASM variability.

    Holocene climatic event; East Asian Summer Monsoon; XRF core scanning; inner shelf mud wedge

    1 Introduction

    X-ray fluorescence core scanning (XRF-CS) is a convenient and nondestructive method to determine the geochemical variations of unprocessed sediments for a wide variety of research topics such as paleoenvironmental reconstruction over various timescales, stratigraphic correlation, sedimentology and high-resolution time series analysis (Tian., 2011; Hennekamand de Lange, 2012; Liang., 2012; Chawchai., 2016; Martin-Puertas., 2017;Wang., 2018c). Many significant findings about the nature of abrupt climate changes have been described based on the high-resolution geochemical recordsobtained by XRF-CS analyses (Lamy., 2004; Yancheva., 2007; Spofforth., 2008; L?wemark., 2010; Liang., 2012). For example, Gallet. (1996) used the Rb/Sr ratios from XRF analyses to identify the loess and paleosol sequence of Luochuan profile in China. Brown. (2007) revealed that the changes in sediment input of the tropical Africa were linked to movement of the Intertropical Convergence Zone (ITCZ) over the last 55kyr. Wang. (2018b) advanced Quaternary stratigraphy and paleo- ceanographic reconstruction of Arctic Ocean.

    The Yangtze River has discharged a substantial amount of terrigenous sediments into the East China Sea (ECS), with an average annual sedimentary loading of 48×107tons. During the last 7000yr, nearly 70% of the particles from the Yangtze River have deposited in Yangtze River Delta, and the remaining (about 30%) were transported southward, and settled in a distinct mud sedimentary area along the entire inner shelf mud wedge (ISMW) of the ECS called ‘East China Sea inner shelf mud’ (Milliman and Meade, 1983; Liu., 2006). The provenance ofsediments, and environmental and climatic changes record- ed in the ISMW of the ECS have been discussed (Xiao., 2006; Liu., 2007; Xu., 2012; Wu., 2016; Bi., 2017; Liu., 2018; Zheng., 2018). The grain size compositions (Wang., 2014) and clay mineral assemblages (Fang., 2018) suggested that most terrigenous sediments in the ISMW were originated from the Yangtze River, with minor from the Taiwan Island during the entire Holocene. Based on sedimentology, geochemistry, paleoceanography, mineralogy and modeling studies, the paleoenvironmental changes of the ECS were generally discussed (Liu., 2006; Xiao., 2006; Wang., 2007; Xu., 2009a, 2009b; Liu., 2010; Xu., 2010; Wang and Li, 2014; Wu., 2016; Liu., 2018; Ding, 2019; Li and Zhang, 2020). Geochemical compositions have been widely used in researches about marine productivity, sediment provenance and paleoenvironmental evolution. For example, Sr/ Ca can be used to study the paleo-marine productivity (Heather., 2000), the ratios of Rb/Sr, Ti/Al, K/Ti and K/Al can indicate the chemical weathering and the variation of precipitation (Wei., 2006; Jin., 2015; Yang, 2015). Although a lot of climatic indicators have been widely used in the paleoenvironmental studies in the ECS, the driving mechanism of paleoclimatic evolution is still uncertain and disputable due to their different work regions and limitations (Xiao., 2006; Bi., 2017; Wang., 2020). More effective and definite climatic indicators are needed to meet the requirementsof practical research works. Thus, high-resolution geoche- mical studies are necessary to understand the paleoenviron- mental change and reconstruct the evolution of the EASM in the ECS. In this paper, we presented high-resolution re- sults of XRF-CS elemental analyses for the sediments in core MD06-3040 collected from the ISMW of ECS in the Holocene and compared the geochemical data with previous paleoenvironmental indicators to find their correlation with EASM precipitation. We also discussed the variability of Yangtze River-derived sediments coupled with changes of EASM.

    2 Regional Setting

    The ISMW in the ECS extends southward about 1.0× 106m from the Yangtze River Mouth to the Taiwan Strait (Qin., 1987). Coastal currents influencing the inner shelf mud wedge of ECS include the northward flowing Kuroshio Current (KC), Taiwan Warm Current (TWC), Zhejiang-Fujian Coastal Current (ZFCC), the southward flowing Yellow Sea Warm Current (YSWC), Changjiang (Yangtze River) Dilute Water (CDW) and Jiangsu Coastal Current (JCC) (Lee and Chao, 2003) (Fig.1). The ISMW in the ECS is composed of clayey silt and occurs as a clinoform zone, which dips approximately 50m in water depth. Modern sedimentation rates of the ISMW in the ECS range from 0.8 to 2cmyr?2, which are very high (Huh and Su, 1999; Liu., 2007). The average annual atmospheric temperature is 17.1℃. The ECS was affected by the subtropical high, with a maximum atmospheric tem- perature of 28.6℃ in summer, and influenced by the Siberian High in winter, with a minimum atmospheric temperature of 4.8℃. The EASM has an important impact on the precipitation of the ECS. The average annual precipitation is 1157cmyr?2. Winter and summer precipitation account for 18% and 54%, respectively (Tong and Cheng, 1981).

    Fig.1 Location map of the study region (left), with arrows showing Westerlies, EASM (East Asian summer monsoon), and ISM (Indian summer monsoon). The location of inner shelf mud wedge of East China Sea (right), with arrows showing the Changjiang Dilute Water (CDW), the Chinese Coastal Current (CCC), the Zhejiang Fujian Coastal Current (ZFCC), the Jiangsu Coastal Current (JCC), the Yellow Sea Warm Current (YSWC), and the Taiwan Warm Current (TWC).

    3 Materials and Methods

    Two parallel sediment cores, MD06-3039 (core depth: 8.11m, 121?46?91?E, 27?43?36?N) and MD06-3040 (depth: 19.39m, 121?46?88?E, 27?43?36?N), were collected in close proximity from the ISMW in the ECS at a water depth of 47m in 2006 (Fig.1). The lithostratigraphic units in the core MD06-3040 were described by Wang. (2014). Core MD06-3040 is mainly divided into three li- thological units according to visual observation, geochemi- cal compositions and grain size compositions (Wang., 2014), clay mineral compositions (Fang., 2018), and magnetic properties (Zheng., 2010). The age model of the core MD06-3040 based on eleven AMS14C ages of bivalve shells has been built (Wang., 2014; Kajita., 2018). The detailed descriptions of lithology and14C ages are shown in Fig.2. There is no sign of hiatus in core MD06-3040, so it can provide the continuous paleo- environmental record since the early Holocene.

    The core MD06-3040 was scanned by using an Avaatech III X-ray fluorescence core scanner at the Key Laboratory of Surficial Geochemistry of Ministry of Education, Nanjing University. The Avaatech X-ray fluorescence core scan- ner generated three types of output: high-resolution optical pictures, chromaticity data for the RGB and CIE L*- a*-b* color spaces at a resolution of 70μm and element signal values. The instrumental setup was as follows: a 5- kV tube voltage and a 10-kV tube voltage with no filter were used to analyze the light elements (., Ca, Al, Si, Ca and Fe), and a 30-kV tube voltage with a Pb filter and a 50-kV tube voltage with a Cu filter were used for the determination of the heavy elements (., Zr, Sr and Rb). Signal intensity of the element was expressed as counts per second (cps), which can provide semi-quantitative information about each elemental concentration of the diffe- rent sediments (Francus., 2009; L?wemark., 2011).

    Fig.2 Comprehensive profile of core MD06-3040 including 14C ages (Wang et al., 2014; Kajita et al., 2018), grain size (Wang et al., 2014), magnetic susceptibility (Zheng et al., 2010), lithology profile and description, sedimentary units.

    4 Results

    In continental shelf sediments, Ca may be derived from terrestrial input or marine biogenesis. Generally, the biogenetic Ca is higher than those from detrital inputs (Arz., 2001; Carlson., 2008; Kwiecien., 2008; Jorry., 2011). The Ca values in the core MD06-3040 sediments range from 8120 to 19864cps, with a mean of 12086cps. Unit 1 (19.3–18.3m) has the highest Ca contents (mean of 12957cps), and Unit 3 (15.86–0m) has the lowest Ca contents (mean of 11957cps) (Table 1). Fe, Ti, Al, Si and K are commonly the major components of terrigenous detritus (Arz., 2001, 2003). The Fe, Ti, Al, Si and K values range from 29329 to 45114cps, 3298 to 4978cps, 876 to 2743cps, 7626 to 20748cps and 7977 to 13604cps, respectively. The highest values of Al, Si, K, Ti and Fe occurred in Unit 3, and the lowest values occurred in Unit 1 (Fig.3).

    The Pearson coefficient of determination (2) is an effective parameter to assess inter-elemental associations and provide more details about different sedimentary components. The concentrations of major elements Fe, Ti, Al, Si and K in core MD06-3040 sediments are correlated (2>0.57), indicating the downcore variation of a terrigenous fraction (Table 2). Al has a weak mobility and is non-active in the weathering process. It is difficult to be carried away by fluids (Wehausen and Brumsack, 2002). Compared with Al, Zr exists in zircon which has strong weathering resistance. Al/Zr is commonly used to reflect monsoon changes(Wei., 2006). The behavior of K, Al, Ti and Fe in se- diments is well known and they can be used as indicative of terrigenous components (Vidal., 2002; Wehausen and Brumsack, 2002; Grüetzner., 2003). A strong correlation between the ratios of Al/Zr and the concentrations of Fe, Ti, Al, Si and K suggests that the ratios of Al/Zr can also be used as the indicator of terrigenous detrital input(Fig.4). The correlation between these major elements and elemental ratios can also be found in elemental pair diagrams (Fig.5).

    Table 1 Comparison of the range and mean value of geochemical compositions and factor analysis results (F1) for sediments in different units

    Fig.3 Variation of Al, Si, K, Ti, and Fe with depth for sediments in each unit (Black lines are the original values, with red lines smoothed by a 9-point running average).

    Table 2 Pearson correlation coefficients and results of factor analysis for sediments from core MD06-3040

    Notes: PVE, percent of variance explained; CPVE, cumulative percent of variance explained.

    Fig.4 Variation of Al/Zr, Rb/Sr, Sr/Al, Ca/Ti and factor analysis results (F1) with depth for sediments in each unit (Black lines are the original values, with red lines smoothed by a 9-point running average).

    Fig.5 Correlation diagrams of selected major elements in core MD06-3040 sediments (number of data: 1904).

    5 Discussion

    The large accommodation for river-derived sediments provided by sea-level changes may have an important influence for the formation of the ISMW in the ECS (Chen., 2000; Berne., 2002; Wang., 2014). The high contents of silt with the thin interbedded sandy silt layer (Wang., 2014), the coarse magnetic fraction (Zheng., 2010) and the high Fe, Ti, Al, Si, K values (this study) in sediments below 15.86m (before 7500calyrBP) of core MD06-3040 were controlled by the transgression. Fang(2018) presented a high-resolution clay mineral study to the sediments from core MD06-3040 and semi-quantitatively evaluated the terrigenous contributionsfrom various potential sources throughout the entire Holocene. Provenance analysis suggested that most fine-grained terrigenous sediments originated from the Yangtze River, with minor sediments derived from Taiwan Island and negligible sediments from nearby Zhejiang and Fujian Pro- vinces. In addition, the quasi-bimodal grain size distribution showed that the sediments in the core MD06-3040 from 7500 to 6000calyrBP are influenced by the local rivers such as Qiantang, Min and Ou Rivers, which was also supported by the clay mineral assemblages (Bi, 2017; Fang., 2018), the crystallinity index (CI) of quartz and electron spin resonance (ESR) signal intensity in the 16–63μm fraction (Wang., 2020). All these showed that the sediments in the core MD06-3040 are mainly from the Yangtze River since 6000calyrBP, and the influence of the local rivers can be neglected. Thus, in order to eliminate the influence caused by the provenance differences, we mainly discussed the relationships between the geochemical characteristics of the sediments in the core MD06-3040 and the environmental changes under the control of the EASM since 6000calyrBP.

    Factor analysis is a useful technique to combine many variables into several potential components that form the basis of multivariate data (Reimann., 2002; Yao., 2012). The factor analysis in sedimentary geochemistry has already been used to distinguish the end-member se- dimentary components and their respective compositions (Ziegler and Murray, 2007; Yao, 2012). The results (Table 2) shows that the elements of Al, Si, S, Zr, Cl, Ca, Ti and Fe were dominated by two principal components (F1 and F2) that account for 74.108% of the total variances. F1 account for 59.589% of the total variances with high positive loadings of Al (0.933), Si (0.893), K (0.896), Ti (0.807) and Fe (0.719). The elements such as Si, Al and Fe mainly hosted in the terrigenous clasts and clay minerals. The strong hydrodynamic conditions are conducive to the enrichment of Si, Al and Fe in the sediments (Dou., 2012). The behavior of K, Al, Ti and Fe in sediments is well known to be indicative of terrigenous components (Vidal., 2002; Grüetzner., 2003). Therefore, the F1 factor is interpreted as the terrigenous components in the sediments. The F2 factor explains 14.51% of the total variance and shows high positive factor loading of S (0.643) and relatively high negative factor loading of Ca (?0.733), indicating a variance related to biogenic component (Yao, 2012).

    We selected the K, the ratios of Al/Zr and factor F1 to compared their variation with those of the reconstructed summer rainfall at Xinjie site in the lower reaches of Yang- tze River (Lu, 2019), the annual sea surface temperature (SST) derived by the linear transfer function FP-12E in the Okinawa Through (Jian, 2000) and the number of ENSO events per century (Moy., 2002). These results revealed that higher values of K, Al/Zr and F1 factor scores correspond to the higher precipitation and temperature during 6000–3500calyrBP, and the lower va- lues of these geochemical compositions correspond to the lower precipitation and temperature during 3500–1300calyrBP. The previous studies showed that the precipitation and temperature in the ECS are mainly controlled by the change of EASM (Liu, 2006; Wang., 2018d). All these suggested a relatively strong EASM period during the period 6000–3500calyrBP, indicated by higher va- lues of K (mean of 11467cps), Al/Zr (mean of 1.03) and F1 factor scores (mean of 0.47). The decrease of K (mean of 10432cps), Al/Zr (mean of 0.98) and F1 factor scores (mean of ?0.82) during the period 3500–1300calyrBP suggest a relatively weak EASM period in the Yangtze drainage. Since 1300calyrBP, the temperature and rainfallkept at lower levels. However, a rapid increase in K (meanof 10760cps), Al/Zr (mean of 0.96), and F1 (mean of ?0.54) during this period indicated that the impact of human activities (., deforestation, agriculture, and soil erosion) cannot be ignored (Fig.6), which is also supported by the high values of magnetic susceptibility (Zheng., 2010) and organic geochemical records (Zheng., 2018). Significant variability in the geochemical compositions indicates the variation of EASM since 6000calyrBP, besides the notable decreases at 4500–3500calyrBP and 1700–1500calyrBP. The abrupt geochemical changes at these periods, within dating errors, are correlated with the weak EASM events documented by grain size parameters (Wang., 2014) and magnetic parameters in the adjacent area (Zheng., 2010). In the Yangtze River Basin, several terrestrial monsoon records such as lake-level changes and speleothems have shown the weak EASM events and abrupt cool and dry shifts during the same periods (Wang., 2005; Hu., 2008; Innes., 2014; Wang., 2018a). These findings show that EASM precipitation of Yangtze drainage should be a prevailing factor for the deposition of Yangtze-derived sediments in the ECS’s ISMW. The periods with the low values of geo- chemical compositions also coincide with globally recognized events such as ice-rafted debris events documented in North Atlantic (Bond., 2001), cold events in the subtropical Africa (deMenocal., 2000), and the weakening of the Kuroshio Current (Jian., 2000) (Fig.6). Although Stanley. (1999), Zhang. (2005) and Wang. (2018d) proposed that there were floods due to climate and sea-level change from 4500 to 3500calyrBP in sub-humid regions, and the climate change was characterized by high variability with the occasional incidence of both droughts and floods. In this study, the well-dated and continuous geochemical records suggested that the climate showed a dry and cold trend in the lower reaches of the Yangtze River from 4500–3500calyrBP with a relatively large fluctuation, which was also supported by the-alkanes indicators (Zheng, 2018). Several terrestrial monsoon records obtained in southern-central China, such as speleothems, lake levels and sediment cores, have indicated the dry and cold shifts in southeast China during 4500–3500calyrBP (An, 2000; Chen, 2005; Ma, 2009; Innes, 2014). Meanwhile, the numbers of cultural sites in the Yangtze River Delta decrease during 4500–3500calyrBP (Zhang, 2005), which is consistent with the weak EASM events shown by the geochemical data. In addition, the notable decrease of some characteristic geochemical compositions can well correspond with the low ENSO events, which indicated that the EASM are readily influenced by ENSO through the strength of the subtropical high in the western Pacific region, and ENSO can possibly serve as the physical mechanism of the extreme climatic and flooding events in the Yangtze River Basin (Moy., 2002). A recent study suggests a close relationship between the large floods along the Yangtze River in 1998 and ENSO event (Wei, 2014). These results suggest that the changes of runoff in the Yangtze River catchment were sensitive to the ENSO events to vary at the sub-millennial timescale (Moy, 2002; Marchitto, 2010).

    Fig.6 Variation of proxy parameters for K (a), Al/Zr (b) and factor analysis results (F1 factor scores) (c) smoothed by 9- point running averages with time for sediments from core MD06-3040; (d), the summer rainfall at site Xinjie in the lower reaches of Yangtze River (Lu et al., 2019); (e), the number of ENSO events per 100yr (Moy et al., 2002); (f), the annual SSTderived from the standard errors of the linear transfer function FP-12E in the Okinawa Through (Jian et al., 2000).

    In order to further confirm this correlation, the REDFIT 38 was used to perform power spectral analysis (Fig.7) (Schulz and Mudelsee, 2002). The results show that the values of K, Al/Zr and F1 factor scores have a clear periodicity of 2893yr, similar to the results of Kuroshio Current (2560yr) (Jian., 2000), ENSO (2000yr) (Moy., 2002) and magnetic characteristics of sediments from the South Yellow Sea, eastern China (2361yr) (Wang., 2018a). The 1243–1571 yr is another period, close to the 1400–1500yr of the North Atlantic climate (Bianchi and McCave, 1999), the 1500yr of Kuroshio Current (Jian., 2000) and the 1500yr of ENSO (Moy., 2002). The variation of K, Al/Zr and F1 are attributed to the changes of ENSO and oceanic thermohaline circulation. The marked centennial periods at 364 and 521yr are close to the periods of the Kuroshio Current (388yr, 602yr) (Jian., 2000). All these results revealed that the geochemical compositions of sediments in core MD06- 3040 are influenced by the evolution of EASM, the variation of ENSO and local oceanic thermohaline circulation (., Kuroshio Current).

    Fig.7 Spectral analysis of K, Al/Zr and factor analysis results (F1) in core MD06-3040 for the past 6000yr. Peaks are labeled with periods in years above 90% (yellow line) and 95% (gray line) confidence levels.

    6 Conclusions

    High-resolution geochemical compositions of sediments were determined by XRF-CS for the core MD06-3040 from the ISMW of the ECS. Geochemical variations and factor analysis revealed their correlation with the changes in EASM precipitation during the period of 6000–1300calyrBP. After 1300calyrBP, the higher inputs of terrigenous materials implied the intensification of anthropogenic activities. The notable decreases of some geochemical compositions at 4500–3500 and 1700–1500calyrBP, within the dating errors, coincided with the presumable cold and dry geochemical compositionsevents documented in the adjacent area, and were also correlated with many global recognized features. The spectral analysis revealed that the geochemical compositions of core MD06-3040 were influenced by the evolution of EASM, the variation of El Ni?o/Southern Oscillation (ENSO) and local oceanic ther- mohaline circulation (., Kuroshio Current), indicating that the geochemical compositions determined by XRF-CS can provide new insights for paleoenvironmental changes. These findings are important for studying the relationshipsbetween regional systems and global changes in monsoonal climate regions.

    Acknowledgements

    This research was supported financially by the National Natural Science Foundation of China (Nos. 41991323, 41 702185, 41977378, U1706220), the National Key Basic Research Program of China (No. 2015CB953804), the Na- tural Science Foundation of Shandong Province (No. ZR 2018PD005), the Jiangsu Provincial Basic Research Program Natural Science Foundation General Project of China(No. BK20171340), the Open Foundation of CAS Key La- boratory of Coastal Environmental Processes and Ecolo- gical Remediation, YICCAS (No. 2020KFJJ10), the Open Foundation of State Key Laboratory of Loess and Quater- nary Geology, Institute of Earth Environment, CAS (No. SKLLQG2024), the Laboratory for Marine Geology, Qingdao National Laboratory for Marine Science and Technology(No. MGQNLM-KF201704), and the Foundation of School and Land Integration Development in Yantai (No. 2021 XDRHXMQT18).

    An, Z., Porter, S. C., Kutzbach, J. E., Wu, X., Wang, S., Liu, X.,., 2000. Asynchronous Holocene optimum of the East Asian monsoon., 19: 743-762.

    Arz, H. W., Gerhardt, S., Patzold, J., and R?hl, U., 2001. Millennial-scale changes of surface and deep-water flow in the western tropical Atlantic linked to Northern Hemisphere high- latitude climate during the Holocene., 29 (3): 239- 242.

    Arz, H. W., Patzold, J., Muller, P. J., and Moammar, M. O., 2003. Influence of Northern Hemisphere climate and global sea level rise on the restricted Red Sea marine environment during termination I., 18 (2): 1-13.

    Berne, S., Vagner, P., Guichard, F., Lericolais, G., Liu, Z., Trentesaux, A.,., 2002. Pleistocene forced regressions and tidal sand ridges in the East China Sea., 188 (3-4): 293-315.

    Bi, L., Yang, S. Y., Zhao, Y., Wang, Z. B., Dou, Y. G., Li, C.,.,2017. Provenance study of the Holocene sediments in the Changjiang (Yangtze River) Estuary and inner shelf of the East China Sea., 441: 147-161.

    Bianchi, G. G., and McCave, I. N., 1999. Holocene periodicity in North Atlantic climate and deep-ocean flow south of Iceland., 397: 515-517.

    Bond, G., Kromer, B., Beer, J., Muscheler, R., Evans, M. N., Showers, W.,., 2001. Persistent solar influence on North Atlantic climate during the Holocene., 294: 2130- 2136.

    Brown, E. T., Johnson, T. C., Scholz, C. A., Cohen, A. S., and King, J. W., 2007. Abrupt change in tropical African climate linked to the bipolar seesaw over the past 55000 years., 34: L20702.

    Carlson, A. E., LeGrande, A. N., Oppo, D. W., and Came, R. E., 2008. Rapid early Holocene deglaciation of the Laurentide ice sheet., 1: 620-624.

    Chawchai, S., Kylander, M. E., Chabangborn, A., Lowemark, L., and Wohlfarth, B., 2016. Testing commonly used X-ray fluorescence core scanning-based proxies for organic-rich lake sediments and peat., 45: 180-189.

    Chen, Z. Y., Song, B., Wang, Z., and Cai, Y., 2000. Late Quaternary evolution of the subaqueous Yangtze Delta, China: Se- dimentation, stratigraphy, palynology, and deformation., 162 (2-4): 423-441.

    Chen, Z., Wang, Z., Schneiderman, J., Tao, J., and Cai, Y., 2005. Holocene climate fluctuations in the Yangtze Delta of eastern China and the Neolithic response., 15: 915-924.

    deMenocal, P., Ortiz, J., Guilderson, T., and Sarnthein, M., 2000. Coherent high- and low latitude climate variability during the Holocene warm period., 288: 2198-2202.

    Ding, D. L., Zhang, X. H., Yu, J. J., and Wang, X. Q., 2019. Progress in sedimentary sources and palaeocliamate evolution in Zhejiang-Fujian mud area in Holocene., 49 (1): 178-195.

    Dou, Y. G., Li, J., and Yang, S. Y., 2012. Element composition and provenance implication of surface sediments in offshore areas of the eastern Shandong Peninsula in China.,34 (1): 109-119.

    Fang, J. Y., Liu, Z. F., and Zhao, Y. L., 2018. High-resolution clay mineral assemblages in the inner shelf mud wedge of the East China Sea during the Holocene: Implications for the East AsianMonsoon evolution.–, 61 (9): 1316-1329.

    Francus, P., Lamb, H., Nakagawa, T., Marshall, M., and Brown, E., 2009. The potential of high-resolution X-ray fluorescence core scanning: Applications in paleolimnology., 17 (3): 93-95.

    Gallet, S., Jahn, B. M., and Torri, M., 1996. Geochemical cha- racterization of the Luochuan Loess-paleosol sequence, China, and paleoclimatic implications., 133 (1-4): 67-88.

    Grüetzner, J., Robesco, M., Cooper, A., Forberg, C., Kryc, K., and Wefer, G., 2003. Evidence for orbitally controlled size va- riations of the East Antarctic ice sheet during the late Miocene., 31 (9): 777-780.

    Heather, S., Probert, K. C., Tan, P., Patrizia, Z., Ruiz, E. J., and Garcia, A. I., 2000. Sr/Ca of coccolith carbonate; testing the stories of the smallest carbonate repositories., 22: 142-148.

    Hennekam, R., and de Lange, G., 2012. X-ray fluorescence core scanning of wet marine sediments: Methods to improve qua- lity and reproducibility of high resolution paleoenvironmental records., 10: 991- 1003.

    Hu, C. Y., Henderson, G. M., Huang, J. H., Xie, S. C., Sun, Y., and Johnson, K. R., 2008. Quantification of Holocene Asian monsoon rainfall from spatially separated cave records., 266: 221-232.

    Huh, C. A., and Su, C. C., 1999. Sedimentation dynamics in the East China Sea elucidated from210Pb,137Cs and239, 240Pu., 160: 183-196.

    Innes, J. B., Zong, Y., Wang, Z., and Chen, Z., 2014. Climatic and palaeoecological changes during the mid- to late Holocene transition in eastern China: High-resolution pollen and non- pollen palynomorph analysis at Pingwang, Yangtze coastal low- lands., 99: 164-175.

    Jian, Z. M., Wang, P. X., Saito, Y., Wang, J. L., Pflaumann, U., Oba, T.,., 2000. Holocene variability of the Kuroshio Current in the Okinawa Trough, northwestern Pacific Ocean., 184: 305-319.

    Jin, Z. D., An, Z. S., Yu, J. M., Li, F. C., and Zhang, F., 2015. Lake Qinghai sediment geochemistry linked to hydroclimate variability since the last glacial., 122: 63-73.

    Jorry, S. J., Jegou, I., Emmanuel, L., Jacinto, R. S., and Savoye, B., 2011. Turbiditic levee deposition in response to climate changes: The Var Sedimentary Ridge (Ligurian Sea)., 279 (1): 148-161.

    Kajita, H., Kawahata, H., Wang, K., Zheng, H. B., Yang, S. Y., Ohkouchi, N.,., 2018. Extraordinary cold episodes during the mid-Holocene in the Yangtze Delta: Interruption of the earliest rice cultivating civilization., 201: 418-428.

    Kwiecien, O., Arz, H. W., Lamy, F., Wulf, S., Bahr, A., Rohl, U.,., 2008. Estimated reservoir ages of the Black Sea since the last glacial., 50 (1): 99-118.

    Lamy, F., Kaiser, J., Ninnemann, U., Hebbeln, D., Arz, H. W., and Stoner, J., 2004. Antarctic timing of surface water changesoff Chile and Patagonian ice sheet response., 304: 1959- 1962.

    Lee, H. J., and Chao, S. Y., 2003. A climatological description of circulation in and around the East China Sea., 50 (6-7): 1065-1084.

    Li, A. C., and Zhang, K. D., 2020. Research progress of mud wedge in the inner continental shelf of the East China Sea., 51 (4): 705-726 (in Chinese with English abstract).

    Liang, L. J., Sun, Y. B., Yao, Z. Q., Liu, Y. G., and Wu, F., 2012. Evaluation of high-resolution elemental analyses of Chinese loess deposits measured by X-ray fluorescence core scanner., 92: 75-82.

    Liu, J. P., Li, A. C., Xu, K. H., Velozzi, D. M., Yang, Z. S., Milliman, J. D.,., 2006. Sedimentary features of the Yangtze River-derived along-shelf clinoform deposit in the East China Sea., 26: 2141-2156.

    Liu, J. P., Xu, K. H., Li, A. C., Milliman, J. D., Velozzi, D. M., Xiao, S. B.,., 2007. Flux and fate of Yangtze River sediment delivered to the East China Sea., 85: 208-224.

    Liu, J. T., Hsu, R. T., Yang, R. J., Wang, Y. P., Wu, H., Du, X. Q.,., 2018. A comprehensive sediment dynamics study of a major mud belt system on the inner shelf along an energetic coast., 8: 4229.

    Liu, S. F., Shi, X. F., Liu, Y. G., Zhu, A. M., and Song, X. H., 2010. Geochemical characteristics and geological significance of major elements in the surface sediments from the inner shelf mud area of the East China Sea., 28 (1): 80-86 (in Chinese with English abstract).

    L?wemark, L., Chen, H. F., Yang, T. N., Kylander, M., Yu, E. F., Hsu, Y. W.,., 2010. Normalizing XRF-scanner data: A cautionary note on the interpretation of high-resolution records from organic-rich lakes., 40: 1250-1256.

    Lu, F. Z., Ma, C. M., Zhu, C., Lu, H. Y., Zhang, X. J., Huang, K. Y.,., 2019. Variability of East Asian summer monsoon precipitation during the Holocene and possible forcing mechanisms., 52: 969-989.

    Ma, C., Zhu, C., Zheng, C., Qian, Y., and Zhao, Z., 2009. Climate changes in East China since the late-glacial inferred from high-resolution mountain peat humification records.–,52: 118-131.

    Marchitto, T. M., Muscheler, R., Ortiz, J. D., Carriquiry, J. D., and Van, G. A., 2010. Dynamical response of the tropical Pacific Ocean to solar forcing during the early Holocene., 330 (6009): 1378-1381.

    Martin-Puertas, C., Tjallingii, R., Bloemsma, M., and Brauer, A., 2017. Varved sediment responses to early Holocene climate and environmental changes in Lake Meerfelder Maar (Germany) obtained from multivariate analyses of micro X-ray fluorescence core scanning data., 32 (3): 427-436.

    Milliman, J., and Meade, R. H., 1983. World-wide delivery of river sediment to the oceans., 91: 1-21.

    Moy, C. M., Seltzer, G. O., Rodbell, D. T., and Anderson, D. M., 2002. Variability of El Nino/southern Oscillation activity at millennial timescales during the Holocene epoch., 420 (6912): 162-165.

    Qin, Y. S., Zhao, Y. Y., Zhao, L. R., and Zhao, S. L., 1987.. Science Press, Beijing, 290pp (in Chinese).

    Reimann, C., Filzmoser, P., and Garrett, R. G., 2002. Factor ana- lysis applied to regional geochemical data: Problems and possibilities., 17: 185-206.

    Schulz, M., and Mudelsee, M., 2002. REDFIT: Estimating red- noise spectra directly from unevenly spaced paleoclimatic time series., 28: 421-426.

    Spofforth, D. J. A., P?like, H., and Green, D., 2008. Paleogene record of elemental concentrations in sediments from the Arctic Ocean obtained by XRF analyses., 23: PA 1S09.

    Stanley, D. J., Chen, Z., and Song, J., 1999. Inundation, sea-levelrise and transition from Neolithic to Bronze age cultures, Yang- tze Delta, China., 14: 15-26.

    Tian, J., Xie, X., Ma, W. T., Jin, H. Y., and Wang, P. X., 2011. X-ray fluorescence core scanning records of chemical weathering and monsoon evolution over the past 5 Myr in the southern South China Sea., 26: PA4202.

    Tong, Q. C., and Cheng, T. W., 1981. Runoff. In:. Science Press, Beijing, 6-121.

    Vidal, L., Bickert, T., Wefer, G., and R?hl, U., 2002. Late Mio- cene stable isotope stratigraphy of SE Atlantic ODP Site 1085: Relation to Messinian events., 180 (1): 71-85.

    Wang, K., Tada, R., Zheng, H. B., Irino, T., Zhou, B., and Saito, K., 2020. Provenance changes in fine detrital quartz in the inner shelf sediments of the East China Sea associated with shifts in the East Asian summer monsoon front during the last 6kyrs., 7: 5.

    Wang, K., Zheng, H. B., Tada, R., Irino, T., Zheng, Y., Saito, K.,., 2014. Millenniale scale East Asian summer monsoon variability recorded in grain size and provenance of mud belt sediments on the inner shelf of the East China Sea during mid to late Holocene., 349: 79-89.

    Wang, L. M., and Li, G. X., 2014. High-resolution sedimentary records of the muddy area in the South Yellow Sea and East China Sea: A Review of new progress.,34 (3): 167-174 (in Chinese with English abstract).

    Wang, L. S., Hu, S. Y., Yu, G., Ma, M. M., Wang, Q., Zhang, Z. H.,., 2018a. Magnetic characteristics of sediments from a radial sand ridge field in the South Yellow Sea, eastern China, and environmental implications during the mid- to late-Holo- cene., 163: 224-234.

    Wang, R. J., Polyak, L., Xiao, W. S., Wu, L., Zhang, T. L., Sun, Y. C.,., 2018b. Late-middle Quaternary lithostratigraphy and sedimentation patterns on the Alpha Ridge, central Arctic Ocean: Implications for Arctic climate variability on orbital time scales., 181: 93-108.

    Wang, S. H., Zhang, G. D., Zhang, J. H., and Wu, Y. L., 2007. Geochemical studies on Rb and Sr in the mud on the inner shelf of the East China Sea and their palaeoclimate significance., 25 (3): 22-27 (in Chinese with English abstract).

    Wang, X. Q., Jin, Z. D., Zhang, X. B., Xiao, J., Zhang, F., and Pan, Y. H., 2018c. High-resolution geochemical records of deposition couplets in a palaeolandslide-dammed reservoir on the Chinese Loess Plateau and its implication for rainstorm erosion., 18: 1147-1158.

    Wang, Y., Cheng, H., Edwards, R. L., He, Y., Kong, X., An, Z.,., 2005. The Holocene Asian monsoon: Links to solar changes and North Atlantic climate., 308: 854-857.

    Wang, Z., Ryves, D. B., Lei, S., Nian, X., Lv, Y., Tang, L.,., 2018d. Middle Holocene marine flooding and human response in the South Yangtze coastal plain, East China., 187: 80-93.

    Wehausen, R., and Brumsack, H. J., 2002. Astronomical forcing of the East Asian monsoon mirrored by the composition of Pliocene South China Sea sediments., 201 (3): 621-636.

    Wei, G. J., Li, X. H., Liu, Y., Shao, L., and Liang, X. R., 2006. Geochemical record of chemical weathering and monsoon climate change since the early Miocene in the South China Sea., 21 (4): 1-11.

    Wei, W., Chang, Y. P., and Dai, Z. J., 2014. Streamflow changes of the Changjiang (Yangtze) River in the recent 60 years: Impacts of the East Asian summer monsoon, ENSO, and human activities., 336 (12): 98-107.

    Wu, J. X., Ren, J., Liu, H., Qiu, C. H., Cui, Y. S., and Zhang, Q. J., 2016. Trapping and escaping processes of Yangtze River- derived sediments to the East China Sea., 253: 69.

    Xiao, S. B., Li, A. C., Liu, J. P., Chen, M. H., Xie, Q., Jiang, F. Q.,., 2006. Coherence between solar activity and the East Asian winter monsoon variability in the past 8000 years from Yangtze River-derived mud in the East China Sea., 237: 293-304.

    Xu, F. J., Li, A. C., Li, T. G., Wan, S. M., Chen, S. Y., and Cao, Y. C., 2010. Geochemical characteristics of sediments on the inner shelf of the East China Sea: Implications for paleoenviron- ment since the last deglaciation., 39 (3): 240-250 (in Chinese with English abstract).

    Xu, F. J., Li, A. C., Xu, Z. K., Xiao, S. B., Wan, S. M., and Liu, J. G., 2009a. Rare earth element geochemistry in inner shelf of the East China Sea and implication for sediment provenance., 27 (4): 574-582.

    Xu, K. H., Li, A. C., Liu, J. P., Milliman, J. D., Yang, Z. S., Liu, C. S.,., 2012. Provenance, structure, and formation of the mud wedge along inner continental shelf of the East China Sea: A synthesis of the Yangtze dispersal system., 291-294: 176-191.

    Xu, K. H., Milliman, J. D., Li, A. C., Liu, J. P., Kao, S. J., and Wan, S. M., 2009b. Yangtze and Taiwan derived sediments on the inner shelf of East China Sea., 29 (18): 2240-2256.

    Yancheva, G., Nowaczyk, N. R., Mingram, J., Dulski, P., Schettler, G., Negendank, J. F. W.,., 2007. Influence of the intertropical convergence zone on the East Asian monsoon., 445: 74-77.

    Yang, W. Q., Zhou, X., Xiang, R., Wang, Y. H., Shao, D., and Sun, L. G., 2015. Reconstruction of winter monsoon strength by elemental ratio of sediments in the East China Sea., 114: 467-475.

    Yao, Z. Q., Liu, Y. G., Shi, X. F., and Suk, B. C., 2012. Paleoenvironmental changes in the East/Japan Sea during the last 48 ka: Indications from high-resolution X-ray fluorescence core scanning., 27 (9): 932-940.

    Zhang, Q., Zhu, C., Liu, T., and Jiang, T., 2005. Environmental change and its impacts on human settlement in the Yangtze Delta, P. R. China., 60: 267-277.

    Zheng, B., 2018. Holocene vegetation and climate changes and provenance analysis based on geochemical records from the mud shelf sediments of the East China Sea. Master thesis. Nanjing University.

    Zheng, B., Zhou, B., Wang, K., Pang, Y., Chen, M. D., and Zheng, H. B., 2018. Changes of provenance input and source vegetation of changes and their impact factors since late Holocene based on-alkanes records from core MD06-3039a in the muddy area of the East China Sea., 38 (5): 1293-1303 (in Chinese with English abstract).

    Zheng, Y., Kissel, C., Zheng, H. B., Laj, C., and Wang, K., 2010. Sedimentation on the inner shelf of the East China Sea: Magnetic properties, diagenesis and paleoclimate implications.,268: 34-42.

    Ziegler, C. L., and Murray, R. W., 2007. Geochemical evolution of the central Pacific Ocean over the past 56Myr.,22: PA2203.

    June 28, 2020;

    September 8, 2020;

    February 28, 2021

    ? Ocean University of China, Science Press and Springer-Verlag GmbH Germany 2021

    E-mail: 52wls@163.com

    E-mail: zhoubinok@163.com

    (Edited by Chen Wenwen)

    久久精品国产自在天天线| 国产爱豆传媒在线观看| 亚洲人成网站在线播| 亚洲四区av| 在线观看美女被高潮喷水网站| 国产欧美日韩精品一区二区| 色哟哟·www| 日本色播在线视频| 搞女人的毛片| 91精品国产九色| 国产乱人偷精品视频| 久久久精品94久久精品| 亚洲美女视频黄频| av.在线天堂| 国产伦精品一区二区三区四那| 午夜精品国产一区二区电影 | 如何舔出高潮| 精品免费久久久久久久清纯| 亚洲自偷自拍三级| 91麻豆精品激情在线观看国产| 国产极品精品免费视频能看的| 亚洲欧美精品综合久久99| 嫩草影院新地址| 九色成人免费人妻av| av中文乱码字幕在线| 女同久久另类99精品国产91| 搞女人的毛片| 人人妻人人看人人澡| 看黄色毛片网站| 国产精品一区www在线观看| 91久久精品国产一区二区三区| 变态另类丝袜制服| 亚洲成人精品中文字幕电影| 五月伊人婷婷丁香| 18禁黄网站禁片免费观看直播| 99久久久亚洲精品蜜臀av| 欧美一级a爱片免费观看看| 乱人视频在线观看| 最近在线观看免费完整版| 少妇的逼好多水| 国产高清视频在线观看网站| 99久久中文字幕三级久久日本| 午夜影院日韩av| 国产三级中文精品| 日韩在线高清观看一区二区三区| 免费黄网站久久成人精品| 最后的刺客免费高清国语| 成人性生交大片免费视频hd| 两个人的视频大全免费| 欧美区成人在线视频| 成人高潮视频无遮挡免费网站| 一个人看视频在线观看www免费| 亚洲av成人精品一区久久| 91在线精品国自产拍蜜月| 波多野结衣高清作品| 亚洲乱码一区二区免费版| 色哟哟哟哟哟哟| 成人永久免费在线观看视频| 欧美人与善性xxx| 欧美最黄视频在线播放免费| 亚洲美女搞黄在线观看 | 天堂网av新在线| 99热6这里只有精品| 亚洲精品久久国产高清桃花| 搡老妇女老女人老熟妇| 久久精品影院6| eeuss影院久久| 亚洲欧美中文字幕日韩二区| 亚洲精品乱码久久久v下载方式| 简卡轻食公司| 国产成人a∨麻豆精品| 欧美性猛交╳xxx乱大交人| 国产私拍福利视频在线观看| 久久人人精品亚洲av| 国产女主播在线喷水免费视频网站 | 人人妻人人澡欧美一区二区| 1000部很黄的大片| 变态另类成人亚洲欧美熟女| 中文字幕av在线有码专区| 久久人妻av系列| 国产男人的电影天堂91| 美女免费视频网站| 又粗又爽又猛毛片免费看| 国产免费一级a男人的天堂| 伦理电影大哥的女人| 国产探花极品一区二区| 99热精品在线国产| 蜜桃久久精品国产亚洲av| 又爽又黄无遮挡网站| 国产视频内射| 最近的中文字幕免费完整| 日韩欧美精品免费久久| 校园人妻丝袜中文字幕| 综合色丁香网| 日本免费a在线| 日本黄大片高清| 国产高清三级在线| 免费看av在线观看网站| 午夜爱爱视频在线播放| 51国产日韩欧美| 久久久久久久久久久丰满| 亚洲最大成人手机在线| 欧美在线一区亚洲| 色哟哟·www| 丰满人妻一区二区三区视频av| 男人舔女人下体高潮全视频| 成人毛片a级毛片在线播放| 欧美最新免费一区二区三区| 亚洲欧美成人精品一区二区| 黄色欧美视频在线观看| 亚洲av免费高清在线观看| 最新中文字幕久久久久| 免费在线观看影片大全网站| 99久久九九国产精品国产免费| 国产午夜精品论理片| 国产精品人妻久久久久久| 国内久久婷婷六月综合欲色啪| 精品人妻熟女av久视频| 欧美丝袜亚洲另类| 一级黄片播放器| 干丝袜人妻中文字幕| 精品久久久久久久久久久久久| 国产色爽女视频免费观看| 成人高潮视频无遮挡免费网站| 日韩三级伦理在线观看| 国产成人福利小说| 国产高清有码在线观看视频| 午夜免费激情av| 女人被狂操c到高潮| 中文字幕人妻熟人妻熟丝袜美| 日韩欧美国产在线观看| 国内久久婷婷六月综合欲色啪| 女的被弄到高潮叫床怎么办| 可以在线观看的亚洲视频| 欧美最黄视频在线播放免费| 精品久久久噜噜| 国产aⅴ精品一区二区三区波| 成人亚洲精品av一区二区| 如何舔出高潮| 男人狂女人下面高潮的视频| 日本一本二区三区精品| 国产精品美女特级片免费视频播放器| 亚洲va在线va天堂va国产| 插阴视频在线观看视频| 卡戴珊不雅视频在线播放| 天美传媒精品一区二区| 免费大片18禁| 超碰av人人做人人爽久久| 一级毛片久久久久久久久女| 免费大片18禁| 国产黄a三级三级三级人| 女生性感内裤真人,穿戴方法视频| 久久热精品热| 日本 av在线| 久久这里只有精品中国| 国产精品av视频在线免费观看| 黄片wwwwww| 热99在线观看视频| 日韩制服骚丝袜av| 丰满乱子伦码专区| 1024手机看黄色片| 欧美日韩乱码在线| 欧美激情在线99| 少妇猛男粗大的猛烈进出视频 | 精品日产1卡2卡| 亚洲国产精品国产精品| 天堂影院成人在线观看| 国产成人a区在线观看| 午夜视频国产福利| 免费av观看视频| 少妇高潮的动态图| 99视频精品全部免费 在线| 国产精品综合久久久久久久免费| 男女啪啪激烈高潮av片| 午夜福利18| 亚洲成人av在线免费| 国产人妻一区二区三区在| 国产亚洲av嫩草精品影院| 亚洲欧美日韩高清专用| 国产视频内射| 亚洲精品乱码久久久v下载方式| 午夜久久久久精精品| 天堂av国产一区二区熟女人妻| 久久久久国产精品人妻aⅴ院| 免费观看在线日韩| av天堂在线播放| 99热只有精品国产| 嫩草影院精品99| 中国美女看黄片| 舔av片在线| 亚洲va在线va天堂va国产| 在线看三级毛片| 亚洲精品乱码久久久v下载方式| 欧美潮喷喷水| 婷婷亚洲欧美| 国产精品综合久久久久久久免费| 国产一区二区三区在线臀色熟女| 成人漫画全彩无遮挡| 18禁在线无遮挡免费观看视频 | 国产探花极品一区二区| 亚洲人成网站在线播放欧美日韩| 精品人妻偷拍中文字幕| eeuss影院久久| 精品久久久久久久久av| 欧美激情在线99| 最近在线观看免费完整版| 干丝袜人妻中文字幕| 国产色爽女视频免费观看| 精品不卡国产一区二区三区| 免费av观看视频| 女同久久另类99精品国产91| 午夜福利在线在线| 久久精品国产亚洲av香蕉五月| 舔av片在线| 欧美xxxx黑人xx丫x性爽| 少妇人妻精品综合一区二区 | 国产av不卡久久| av在线天堂中文字幕| 六月丁香七月| 日本黄色片子视频| 国内久久婷婷六月综合欲色啪| 麻豆一二三区av精品| av天堂中文字幕网| 日日啪夜夜撸| 99久久中文字幕三级久久日本| 久久久精品欧美日韩精品| 六月丁香七月| 禁无遮挡网站| 99久久无色码亚洲精品果冻| 男人和女人高潮做爰伦理| 一级黄片播放器| 老师上课跳d突然被开到最大视频| 免费看光身美女| 国产成人精品久久久久久| av黄色大香蕉| 欧美成人精品欧美一级黄| 亚洲av成人精品一区久久| 国产免费男女视频| 一进一出抽搐gif免费好疼| 日韩欧美精品v在线| 亚洲综合色惰| a级毛片a级免费在线| 观看美女的网站| 亚洲va在线va天堂va国产| 麻豆精品久久久久久蜜桃| 国产在线精品亚洲第一网站| 国产成人一区二区在线| 白带黄色成豆腐渣| 日韩欧美精品v在线| 免费人成视频x8x8入口观看| 可以在线观看的亚洲视频| 欧洲精品卡2卡3卡4卡5卡区| 联通29元200g的流量卡| 少妇熟女aⅴ在线视频| 国产精品一区二区三区四区免费观看 | 免费在线观看成人毛片| 精品久久久久久成人av| 亚洲人成网站在线观看播放| 欧美不卡视频在线免费观看| 18禁黄网站禁片免费观看直播| 看非洲黑人一级黄片| 久久久精品94久久精品| 国产亚洲av嫩草精品影院| 欧美3d第一页| 欧美一级a爱片免费观看看| 成人永久免费在线观看视频| 大型黄色视频在线免费观看| 男女下面进入的视频免费午夜| 有码 亚洲区| 日韩高清综合在线| 免费看日本二区| 久久久a久久爽久久v久久| 久久久久国产网址| av福利片在线观看| 麻豆一二三区av精品| 三级男女做爰猛烈吃奶摸视频| 2021天堂中文幕一二区在线观| 久久人人爽人人爽人人片va| 一区二区三区四区激情视频 | 日本爱情动作片www.在线观看 | 午夜福利在线观看免费完整高清在 | 91精品国产九色| 99精品在免费线老司机午夜| 成人亚洲欧美一区二区av| 亚洲自拍偷在线| 国产精品三级大全| 久久久久九九精品影院| 老司机午夜福利在线观看视频| 成人一区二区视频在线观看| 网址你懂的国产日韩在线| 美女免费视频网站| 亚洲内射少妇av| 精品久久久久久久末码| 日本a在线网址| 精品一区二区三区视频在线| 欧洲精品卡2卡3卡4卡5卡区| 日日摸夜夜添夜夜添av毛片| 国产女主播在线喷水免费视频网站 | 网址你懂的国产日韩在线| 男人舔奶头视频| 97超视频在线观看视频| 欧美zozozo另类| 免费看av在线观看网站| 免费av不卡在线播放| 免费黄网站久久成人精品| 亚洲无线观看免费| 国产av在哪里看| 十八禁网站免费在线| 亚洲婷婷狠狠爱综合网| 成人二区视频| 日韩成人伦理影院| 3wmmmm亚洲av在线观看| videossex国产| 男女那种视频在线观看| 成年女人看的毛片在线观看| 精华霜和精华液先用哪个| 成人无遮挡网站| 久久精品国产亚洲av天美| 色综合色国产| 国产精品福利在线免费观看| 久久精品91蜜桃| 国产精品久久久久久精品电影| 在线观看美女被高潮喷水网站| 久99久视频精品免费| 看黄色毛片网站| 日韩一本色道免费dvd| 在线观看美女被高潮喷水网站| 一级av片app| 色5月婷婷丁香| 国产一区二区在线观看日韩| 亚洲婷婷狠狠爱综合网| 亚洲在线观看片| 91久久精品电影网| 女生性感内裤真人,穿戴方法视频| 国产欧美日韩一区二区精品| 欧美成人免费av一区二区三区| 国产精品不卡视频一区二区| 亚洲成人精品中文字幕电影| 听说在线观看完整版免费高清| 啦啦啦啦在线视频资源| 国产伦在线观看视频一区| 亚洲精品日韩av片在线观看| 毛片一级片免费看久久久久| 欧美极品一区二区三区四区| 成年版毛片免费区| 久久精品国产亚洲av香蕉五月| 在线观看美女被高潮喷水网站| 久久九九热精品免费| 一本精品99久久精品77| 白带黄色成豆腐渣| 久久99热这里只有精品18| 国产精品一区www在线观看| 精品一区二区免费观看| 99国产精品一区二区蜜桃av| 晚上一个人看的免费电影| 伊人久久精品亚洲午夜| 一进一出好大好爽视频| 99久国产av精品国产电影| 午夜精品一区二区三区免费看| 麻豆久久精品国产亚洲av| 一a级毛片在线观看| 亚洲婷婷狠狠爱综合网| 真实男女啪啪啪动态图| 午夜日韩欧美国产| 亚洲精品成人久久久久久| 国产黄色小视频在线观看| 中文字幕精品亚洲无线码一区| 国产av一区在线观看免费| 精品熟女少妇av免费看| 五月玫瑰六月丁香| 在线免费十八禁| 亚洲人成网站在线观看播放| 国产av在哪里看| 久久综合国产亚洲精品| 麻豆av噜噜一区二区三区| 91在线观看av| 麻豆久久精品国产亚洲av| 亚洲美女黄片视频| 校园人妻丝袜中文字幕| 久久草成人影院| 亚洲国产高清在线一区二区三| 99在线人妻在线中文字幕| av女优亚洲男人天堂| 国产色婷婷99| 午夜福利高清视频| 日韩强制内射视频| 欧美xxxx性猛交bbbb| 亚洲性久久影院| 精华霜和精华液先用哪个| 久久午夜福利片| 国产精品永久免费网站| 成人亚洲欧美一区二区av| 久久久成人免费电影| 免费观看的影片在线观看| 联通29元200g的流量卡| 亚洲av中文av极速乱| 男女视频在线观看网站免费| 国产av不卡久久| 韩国av在线不卡| 亚洲国产精品合色在线| 亚洲综合色惰| 老司机影院成人| 国产免费男女视频| 日韩欧美一区二区三区在线观看| 亚洲av免费高清在线观看| 国产激情偷乱视频一区二区| 少妇人妻一区二区三区视频| 久久久久久大精品| 蜜桃亚洲精品一区二区三区| 99视频精品全部免费 在线| 国产午夜精品论理片| 亚洲欧美日韩无卡精品| 天美传媒精品一区二区| 一卡2卡三卡四卡精品乱码亚洲| 女同久久另类99精品国产91| 嫩草影院精品99| 欧洲精品卡2卡3卡4卡5卡区| 亚洲成人久久性| 亚洲精品国产av成人精品 | 成年版毛片免费区| 天堂√8在线中文| aaaaa片日本免费| 亚洲av二区三区四区| 亚洲自偷自拍三级| 欧美色欧美亚洲另类二区| 亚洲欧美日韩东京热| 日日撸夜夜添| 欧美xxxx性猛交bbbb| 白带黄色成豆腐渣| 国产私拍福利视频在线观看| 一进一出抽搐动态| 欧美人与善性xxx| 久久精品国产清高在天天线| 国产一区二区三区在线臀色熟女| 亚洲高清免费不卡视频| 亚洲在线自拍视频| 日本与韩国留学比较| 亚洲婷婷狠狠爱综合网| 日韩一区二区视频免费看| 亚洲精品成人久久久久久| 亚洲精品国产av成人精品 | 一a级毛片在线观看| 国产亚洲精品久久久com| 亚洲成av人片在线播放无| 午夜a级毛片| 亚洲国产色片| 国产精品乱码一区二三区的特点| 97超视频在线观看视频| a级毛色黄片| 一个人看的www免费观看视频| 亚洲国产欧美人成| 国产91av在线免费观看| 男女啪啪激烈高潮av片| 精品久久久久久久末码| 赤兔流量卡办理| 99久久精品热视频| 免费看日本二区| 日日摸夜夜添夜夜添av毛片| 男人舔奶头视频| 亚洲欧美成人精品一区二区| 美女免费视频网站| 18禁裸乳无遮挡免费网站照片| 真人做人爱边吃奶动态| 亚洲熟妇中文字幕五十中出| 欧美成人免费av一区二区三区| 久久精品91蜜桃| 亚洲av熟女| 免费一级毛片在线播放高清视频| 五月伊人婷婷丁香| 亚洲人与动物交配视频| av在线老鸭窝| 国产av在哪里看| 性色avwww在线观看| 国产精品人妻久久久久久| 最新中文字幕久久久久| 欧美xxxx性猛交bbbb| 亚洲专区国产一区二区| 丰满乱子伦码专区| 免费黄网站久久成人精品| 自拍偷自拍亚洲精品老妇| 毛片女人毛片| 日韩成人伦理影院| 日日撸夜夜添| 国产中年淑女户外野战色| 波野结衣二区三区在线| 欧美性感艳星| 国内精品久久久久精免费| eeuss影院久久| 精品乱码久久久久久99久播| 久久精品国产99精品国产亚洲性色| 两个人的视频大全免费| 免费人成视频x8x8入口观看| 亚洲中文日韩欧美视频| 亚洲美女视频黄频| 欧美丝袜亚洲另类| 三级经典国产精品| 色综合站精品国产| av黄色大香蕉| 久久99热这里只有精品18| 啦啦啦啦在线视频资源| av在线蜜桃| 少妇猛男粗大的猛烈进出视频 | 亚洲成av人片在线播放无| 亚洲国产精品sss在线观看| 日韩欧美精品免费久久| 看黄色毛片网站| 美女黄网站色视频| 晚上一个人看的免费电影| 蜜臀久久99精品久久宅男| 日本欧美国产在线视频| 亚洲色图av天堂| 欧美日韩乱码在线| 99久久精品一区二区三区| 在线免费观看的www视频| 精品午夜福利视频在线观看一区| 我的老师免费观看完整版| 毛片一级片免费看久久久久| 国产亚洲精品综合一区在线观看| 亚洲精品色激情综合| 高清毛片免费看| 久久亚洲国产成人精品v| 免费看a级黄色片| 日韩亚洲欧美综合| 精品熟女少妇av免费看| 女人十人毛片免费观看3o分钟| 亚洲欧美成人精品一区二区| 狂野欧美激情性xxxx在线观看| 中文资源天堂在线| 久久久久久大精品| 赤兔流量卡办理| 国国产精品蜜臀av免费| 国模一区二区三区四区视频| 亚洲国产日韩欧美精品在线观看| 99在线人妻在线中文字幕| 又爽又黄a免费视频| 成人国产麻豆网| 校园春色视频在线观看| 成人三级黄色视频| 桃色一区二区三区在线观看| 人人妻人人澡欧美一区二区| 久久精品夜色国产| 国产高清视频在线播放一区| 最近在线观看免费完整版| 精品熟女少妇av免费看| 亚洲精品久久国产高清桃花| 亚洲色图av天堂| 两个人视频免费观看高清| 亚洲,欧美,日韩| 欧美性感艳星| 日韩欧美在线乱码| 国产一区二区在线av高清观看| 亚洲在线自拍视频| 亚洲一级一片aⅴ在线观看| 久久久久精品国产欧美久久久| 久久99热这里只有精品18| 观看美女的网站| 日韩国内少妇激情av| 亚洲aⅴ乱码一区二区在线播放| 国产熟女欧美一区二区| 99在线视频只有这里精品首页| 欧美一区二区精品小视频在线| 亚洲成人久久爱视频| 美女大奶头视频| 欧美国产日韩亚洲一区| 五月玫瑰六月丁香| 亚洲人成网站在线观看播放| 舔av片在线| 久久久久国产精品人妻aⅴ院| 少妇猛男粗大的猛烈进出视频 | 精品一区二区三区视频在线| 亚洲一区二区三区色噜噜| 日本一二三区视频观看| 中文亚洲av片在线观看爽| 国产精品久久视频播放| 日本黄大片高清| 久久人人爽人人片av| 精品久久久久久久久亚洲| 精品人妻一区二区三区麻豆 | 国产精品国产三级国产av玫瑰| 亚洲图色成人| 久久99热这里只有精品18| 日本三级黄在线观看| 色综合亚洲欧美另类图片| 99热这里只有是精品50| 国产av不卡久久| 欧美潮喷喷水| 最近视频中文字幕2019在线8| av专区在线播放| 噜噜噜噜噜久久久久久91| 看黄色毛片网站| 久久久久久大精品| 亚洲中文日韩欧美视频| 99九九线精品视频在线观看视频| 亚洲性久久影院| 日韩欧美免费精品| 欧美+日韩+精品| 日本免费a在线| 少妇的逼水好多| 国内少妇人妻偷人精品xxx网站| 亚洲最大成人手机在线| 亚洲中文字幕一区二区三区有码在线看| 一级毛片我不卡| 夜夜看夜夜爽夜夜摸| 国产亚洲精品久久久com| 身体一侧抽搐| 午夜爱爱视频在线播放| 欧美日本亚洲视频在线播放| 欧美成人免费av一区二区三区| 国产私拍福利视频在线观看| 少妇的逼水好多| 岛国在线免费视频观看| 成熟少妇高潮喷水视频| 香蕉av资源在线| 淫妇啪啪啪对白视频| 欧美精品国产亚洲|