• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    High-Resolution Geochemical Records in the Inner Shelf Mud Wedge of the East China Sea and Their Indication to the Holocene Monsoon Climatic Changes and Events

    2021-12-22 11:21:24WANGLongshengZHOUBinZHENGBangWANGKeMEIXiWANGQingWANGXiaohuiandZHENGHongbo
    Journal of Ocean University of China 2021年6期

    WANG Longsheng, ZHOU Bin, ZHENG Bang, WANG Ke, MEI Xi, WANG Qing, WANG Xiaohui, and ZHENG Hongbo

    High-Resolution Geochemical Records in the Inner Shelf Mud Wedge of the East China Sea and Their Indication to the Holocene Monsoon Climatic Changes and Events

    WANG Longsheng1), 3), 7), *, ZHOU Bin2), *, ZHENG Bang2), WANG Ke4), MEI Xi5), WANG Qing1), WANG Xiaohui1), and ZHENG Hongbo6)

    1),264025,2),,210023,3),,,264003,4),,,1130033,5),,,266071,6),,650091,7),,,710061,

    The inner shelf mud wedge (ISMW) located in the East China Sea (ECS) is the fine-grained sedimentary area with high sedimentation rate and has provided an ideal study area for understanding the East Asian Summer Monsoon (EASM) evolution during the Holocene. In this paper, we presented the high-resolution geochemical data of the sediments from the core MD06-3040 in the ISMW of the ECS determined by X-ray fluorescence core scanning (XRF-CS) analysis, a high-resolution, continuous, and multi- element method. Geochemical and factor analysis results reveal that the variations of elemental compositions (Al, Si, K, Ti, Fe), the elemental ratios of Al/Zr, Ca/Ti and Rb/Sr, and the factor scores (F1) are correlated with the changes of the EASM during the period of 6000–1300calyrBP. The higher values of geochemical compositions indicating the terrigenous inputs implied the intensification of anthropogenic activities after 1300calyrBP. Meanwhile, the significant decrease of most geochemical compositions and the F1 factor scores during 4500–3500 calyrBP and 1700–1500calyrBP, within the dating errors, coincided with the weak EASM events (presumably drought and cold events). The spectral analysis results of K concentrations, Al/Zr ratios and F1 factor scores show the millennial and centennial climatic fluctuations, which are consistent with other marine sedimentary records in the adjacent areas. All the findings show that the geochemical compositions of sediments from core MD06-3040 are influenced by the EASM evolution, the variable El Ni?o/Southern Oscillation (ENSO) and the local oceanic thermohaline circulation (., Kuroshio Current). These results are greatly helpful in uncovering the forcing mechanism of the monsoonal climate in the east China over the Holocene and also contribute to the understanding of EASM variability.

    Holocene climatic event; East Asian Summer Monsoon; XRF core scanning; inner shelf mud wedge

    1 Introduction

    X-ray fluorescence core scanning (XRF-CS) is a convenient and nondestructive method to determine the geochemical variations of unprocessed sediments for a wide variety of research topics such as paleoenvironmental reconstruction over various timescales, stratigraphic correlation, sedimentology and high-resolution time series analysis (Tian., 2011; Hennekamand de Lange, 2012; Liang., 2012; Chawchai., 2016; Martin-Puertas., 2017;Wang., 2018c). Many significant findings about the nature of abrupt climate changes have been described based on the high-resolution geochemical recordsobtained by XRF-CS analyses (Lamy., 2004; Yancheva., 2007; Spofforth., 2008; L?wemark., 2010; Liang., 2012). For example, Gallet. (1996) used the Rb/Sr ratios from XRF analyses to identify the loess and paleosol sequence of Luochuan profile in China. Brown. (2007) revealed that the changes in sediment input of the tropical Africa were linked to movement of the Intertropical Convergence Zone (ITCZ) over the last 55kyr. Wang. (2018b) advanced Quaternary stratigraphy and paleo- ceanographic reconstruction of Arctic Ocean.

    The Yangtze River has discharged a substantial amount of terrigenous sediments into the East China Sea (ECS), with an average annual sedimentary loading of 48×107tons. During the last 7000yr, nearly 70% of the particles from the Yangtze River have deposited in Yangtze River Delta, and the remaining (about 30%) were transported southward, and settled in a distinct mud sedimentary area along the entire inner shelf mud wedge (ISMW) of the ECS called ‘East China Sea inner shelf mud’ (Milliman and Meade, 1983; Liu., 2006). The provenance ofsediments, and environmental and climatic changes record- ed in the ISMW of the ECS have been discussed (Xiao., 2006; Liu., 2007; Xu., 2012; Wu., 2016; Bi., 2017; Liu., 2018; Zheng., 2018). The grain size compositions (Wang., 2014) and clay mineral assemblages (Fang., 2018) suggested that most terrigenous sediments in the ISMW were originated from the Yangtze River, with minor from the Taiwan Island during the entire Holocene. Based on sedimentology, geochemistry, paleoceanography, mineralogy and modeling studies, the paleoenvironmental changes of the ECS were generally discussed (Liu., 2006; Xiao., 2006; Wang., 2007; Xu., 2009a, 2009b; Liu., 2010; Xu., 2010; Wang and Li, 2014; Wu., 2016; Liu., 2018; Ding, 2019; Li and Zhang, 2020). Geochemical compositions have been widely used in researches about marine productivity, sediment provenance and paleoenvironmental evolution. For example, Sr/ Ca can be used to study the paleo-marine productivity (Heather., 2000), the ratios of Rb/Sr, Ti/Al, K/Ti and K/Al can indicate the chemical weathering and the variation of precipitation (Wei., 2006; Jin., 2015; Yang, 2015). Although a lot of climatic indicators have been widely used in the paleoenvironmental studies in the ECS, the driving mechanism of paleoclimatic evolution is still uncertain and disputable due to their different work regions and limitations (Xiao., 2006; Bi., 2017; Wang., 2020). More effective and definite climatic indicators are needed to meet the requirementsof practical research works. Thus, high-resolution geoche- mical studies are necessary to understand the paleoenviron- mental change and reconstruct the evolution of the EASM in the ECS. In this paper, we presented high-resolution re- sults of XRF-CS elemental analyses for the sediments in core MD06-3040 collected from the ISMW of ECS in the Holocene and compared the geochemical data with previous paleoenvironmental indicators to find their correlation with EASM precipitation. We also discussed the variability of Yangtze River-derived sediments coupled with changes of EASM.

    2 Regional Setting

    The ISMW in the ECS extends southward about 1.0× 106m from the Yangtze River Mouth to the Taiwan Strait (Qin., 1987). Coastal currents influencing the inner shelf mud wedge of ECS include the northward flowing Kuroshio Current (KC), Taiwan Warm Current (TWC), Zhejiang-Fujian Coastal Current (ZFCC), the southward flowing Yellow Sea Warm Current (YSWC), Changjiang (Yangtze River) Dilute Water (CDW) and Jiangsu Coastal Current (JCC) (Lee and Chao, 2003) (Fig.1). The ISMW in the ECS is composed of clayey silt and occurs as a clinoform zone, which dips approximately 50m in water depth. Modern sedimentation rates of the ISMW in the ECS range from 0.8 to 2cmyr?2, which are very high (Huh and Su, 1999; Liu., 2007). The average annual atmospheric temperature is 17.1℃. The ECS was affected by the subtropical high, with a maximum atmospheric tem- perature of 28.6℃ in summer, and influenced by the Siberian High in winter, with a minimum atmospheric temperature of 4.8℃. The EASM has an important impact on the precipitation of the ECS. The average annual precipitation is 1157cmyr?2. Winter and summer precipitation account for 18% and 54%, respectively (Tong and Cheng, 1981).

    Fig.1 Location map of the study region (left), with arrows showing Westerlies, EASM (East Asian summer monsoon), and ISM (Indian summer monsoon). The location of inner shelf mud wedge of East China Sea (right), with arrows showing the Changjiang Dilute Water (CDW), the Chinese Coastal Current (CCC), the Zhejiang Fujian Coastal Current (ZFCC), the Jiangsu Coastal Current (JCC), the Yellow Sea Warm Current (YSWC), and the Taiwan Warm Current (TWC).

    3 Materials and Methods

    Two parallel sediment cores, MD06-3039 (core depth: 8.11m, 121?46?91?E, 27?43?36?N) and MD06-3040 (depth: 19.39m, 121?46?88?E, 27?43?36?N), were collected in close proximity from the ISMW in the ECS at a water depth of 47m in 2006 (Fig.1). The lithostratigraphic units in the core MD06-3040 were described by Wang. (2014). Core MD06-3040 is mainly divided into three li- thological units according to visual observation, geochemi- cal compositions and grain size compositions (Wang., 2014), clay mineral compositions (Fang., 2018), and magnetic properties (Zheng., 2010). The age model of the core MD06-3040 based on eleven AMS14C ages of bivalve shells has been built (Wang., 2014; Kajita., 2018). The detailed descriptions of lithology and14C ages are shown in Fig.2. There is no sign of hiatus in core MD06-3040, so it can provide the continuous paleo- environmental record since the early Holocene.

    The core MD06-3040 was scanned by using an Avaatech III X-ray fluorescence core scanner at the Key Laboratory of Surficial Geochemistry of Ministry of Education, Nanjing University. The Avaatech X-ray fluorescence core scan- ner generated three types of output: high-resolution optical pictures, chromaticity data for the RGB and CIE L*- a*-b* color spaces at a resolution of 70μm and element signal values. The instrumental setup was as follows: a 5- kV tube voltage and a 10-kV tube voltage with no filter were used to analyze the light elements (., Ca, Al, Si, Ca and Fe), and a 30-kV tube voltage with a Pb filter and a 50-kV tube voltage with a Cu filter were used for the determination of the heavy elements (., Zr, Sr and Rb). Signal intensity of the element was expressed as counts per second (cps), which can provide semi-quantitative information about each elemental concentration of the diffe- rent sediments (Francus., 2009; L?wemark., 2011).

    Fig.2 Comprehensive profile of core MD06-3040 including 14C ages (Wang et al., 2014; Kajita et al., 2018), grain size (Wang et al., 2014), magnetic susceptibility (Zheng et al., 2010), lithology profile and description, sedimentary units.

    4 Results

    In continental shelf sediments, Ca may be derived from terrestrial input or marine biogenesis. Generally, the biogenetic Ca is higher than those from detrital inputs (Arz., 2001; Carlson., 2008; Kwiecien., 2008; Jorry., 2011). The Ca values in the core MD06-3040 sediments range from 8120 to 19864cps, with a mean of 12086cps. Unit 1 (19.3–18.3m) has the highest Ca contents (mean of 12957cps), and Unit 3 (15.86–0m) has the lowest Ca contents (mean of 11957cps) (Table 1). Fe, Ti, Al, Si and K are commonly the major components of terrigenous detritus (Arz., 2001, 2003). The Fe, Ti, Al, Si and K values range from 29329 to 45114cps, 3298 to 4978cps, 876 to 2743cps, 7626 to 20748cps and 7977 to 13604cps, respectively. The highest values of Al, Si, K, Ti and Fe occurred in Unit 3, and the lowest values occurred in Unit 1 (Fig.3).

    The Pearson coefficient of determination (2) is an effective parameter to assess inter-elemental associations and provide more details about different sedimentary components. The concentrations of major elements Fe, Ti, Al, Si and K in core MD06-3040 sediments are correlated (2>0.57), indicating the downcore variation of a terrigenous fraction (Table 2). Al has a weak mobility and is non-active in the weathering process. It is difficult to be carried away by fluids (Wehausen and Brumsack, 2002). Compared with Al, Zr exists in zircon which has strong weathering resistance. Al/Zr is commonly used to reflect monsoon changes(Wei., 2006). The behavior of K, Al, Ti and Fe in se- diments is well known and they can be used as indicative of terrigenous components (Vidal., 2002; Wehausen and Brumsack, 2002; Grüetzner., 2003). A strong correlation between the ratios of Al/Zr and the concentrations of Fe, Ti, Al, Si and K suggests that the ratios of Al/Zr can also be used as the indicator of terrigenous detrital input(Fig.4). The correlation between these major elements and elemental ratios can also be found in elemental pair diagrams (Fig.5).

    Table 1 Comparison of the range and mean value of geochemical compositions and factor analysis results (F1) for sediments in different units

    Fig.3 Variation of Al, Si, K, Ti, and Fe with depth for sediments in each unit (Black lines are the original values, with red lines smoothed by a 9-point running average).

    Table 2 Pearson correlation coefficients and results of factor analysis for sediments from core MD06-3040

    Notes: PVE, percent of variance explained; CPVE, cumulative percent of variance explained.

    Fig.4 Variation of Al/Zr, Rb/Sr, Sr/Al, Ca/Ti and factor analysis results (F1) with depth for sediments in each unit (Black lines are the original values, with red lines smoothed by a 9-point running average).

    Fig.5 Correlation diagrams of selected major elements in core MD06-3040 sediments (number of data: 1904).

    5 Discussion

    The large accommodation for river-derived sediments provided by sea-level changes may have an important influence for the formation of the ISMW in the ECS (Chen., 2000; Berne., 2002; Wang., 2014). The high contents of silt with the thin interbedded sandy silt layer (Wang., 2014), the coarse magnetic fraction (Zheng., 2010) and the high Fe, Ti, Al, Si, K values (this study) in sediments below 15.86m (before 7500calyrBP) of core MD06-3040 were controlled by the transgression. Fang(2018) presented a high-resolution clay mineral study to the sediments from core MD06-3040 and semi-quantitatively evaluated the terrigenous contributionsfrom various potential sources throughout the entire Holocene. Provenance analysis suggested that most fine-grained terrigenous sediments originated from the Yangtze River, with minor sediments derived from Taiwan Island and negligible sediments from nearby Zhejiang and Fujian Pro- vinces. In addition, the quasi-bimodal grain size distribution showed that the sediments in the core MD06-3040 from 7500 to 6000calyrBP are influenced by the local rivers such as Qiantang, Min and Ou Rivers, which was also supported by the clay mineral assemblages (Bi, 2017; Fang., 2018), the crystallinity index (CI) of quartz and electron spin resonance (ESR) signal intensity in the 16–63μm fraction (Wang., 2020). All these showed that the sediments in the core MD06-3040 are mainly from the Yangtze River since 6000calyrBP, and the influence of the local rivers can be neglected. Thus, in order to eliminate the influence caused by the provenance differences, we mainly discussed the relationships between the geochemical characteristics of the sediments in the core MD06-3040 and the environmental changes under the control of the EASM since 6000calyrBP.

    Factor analysis is a useful technique to combine many variables into several potential components that form the basis of multivariate data (Reimann., 2002; Yao., 2012). The factor analysis in sedimentary geochemistry has already been used to distinguish the end-member se- dimentary components and their respective compositions (Ziegler and Murray, 2007; Yao, 2012). The results (Table 2) shows that the elements of Al, Si, S, Zr, Cl, Ca, Ti and Fe were dominated by two principal components (F1 and F2) that account for 74.108% of the total variances. F1 account for 59.589% of the total variances with high positive loadings of Al (0.933), Si (0.893), K (0.896), Ti (0.807) and Fe (0.719). The elements such as Si, Al and Fe mainly hosted in the terrigenous clasts and clay minerals. The strong hydrodynamic conditions are conducive to the enrichment of Si, Al and Fe in the sediments (Dou., 2012). The behavior of K, Al, Ti and Fe in sediments is well known to be indicative of terrigenous components (Vidal., 2002; Grüetzner., 2003). Therefore, the F1 factor is interpreted as the terrigenous components in the sediments. The F2 factor explains 14.51% of the total variance and shows high positive factor loading of S (0.643) and relatively high negative factor loading of Ca (?0.733), indicating a variance related to biogenic component (Yao, 2012).

    We selected the K, the ratios of Al/Zr and factor F1 to compared their variation with those of the reconstructed summer rainfall at Xinjie site in the lower reaches of Yang- tze River (Lu, 2019), the annual sea surface temperature (SST) derived by the linear transfer function FP-12E in the Okinawa Through (Jian, 2000) and the number of ENSO events per century (Moy., 2002). These results revealed that higher values of K, Al/Zr and F1 factor scores correspond to the higher precipitation and temperature during 6000–3500calyrBP, and the lower va- lues of these geochemical compositions correspond to the lower precipitation and temperature during 3500–1300calyrBP. The previous studies showed that the precipitation and temperature in the ECS are mainly controlled by the change of EASM (Liu, 2006; Wang., 2018d). All these suggested a relatively strong EASM period during the period 6000–3500calyrBP, indicated by higher va- lues of K (mean of 11467cps), Al/Zr (mean of 1.03) and F1 factor scores (mean of 0.47). The decrease of K (mean of 10432cps), Al/Zr (mean of 0.98) and F1 factor scores (mean of ?0.82) during the period 3500–1300calyrBP suggest a relatively weak EASM period in the Yangtze drainage. Since 1300calyrBP, the temperature and rainfallkept at lower levels. However, a rapid increase in K (meanof 10760cps), Al/Zr (mean of 0.96), and F1 (mean of ?0.54) during this period indicated that the impact of human activities (., deforestation, agriculture, and soil erosion) cannot be ignored (Fig.6), which is also supported by the high values of magnetic susceptibility (Zheng., 2010) and organic geochemical records (Zheng., 2018). Significant variability in the geochemical compositions indicates the variation of EASM since 6000calyrBP, besides the notable decreases at 4500–3500calyrBP and 1700–1500calyrBP. The abrupt geochemical changes at these periods, within dating errors, are correlated with the weak EASM events documented by grain size parameters (Wang., 2014) and magnetic parameters in the adjacent area (Zheng., 2010). In the Yangtze River Basin, several terrestrial monsoon records such as lake-level changes and speleothems have shown the weak EASM events and abrupt cool and dry shifts during the same periods (Wang., 2005; Hu., 2008; Innes., 2014; Wang., 2018a). These findings show that EASM precipitation of Yangtze drainage should be a prevailing factor for the deposition of Yangtze-derived sediments in the ECS’s ISMW. The periods with the low values of geo- chemical compositions also coincide with globally recognized events such as ice-rafted debris events documented in North Atlantic (Bond., 2001), cold events in the subtropical Africa (deMenocal., 2000), and the weakening of the Kuroshio Current (Jian., 2000) (Fig.6). Although Stanley. (1999), Zhang. (2005) and Wang. (2018d) proposed that there were floods due to climate and sea-level change from 4500 to 3500calyrBP in sub-humid regions, and the climate change was characterized by high variability with the occasional incidence of both droughts and floods. In this study, the well-dated and continuous geochemical records suggested that the climate showed a dry and cold trend in the lower reaches of the Yangtze River from 4500–3500calyrBP with a relatively large fluctuation, which was also supported by the-alkanes indicators (Zheng, 2018). Several terrestrial monsoon records obtained in southern-central China, such as speleothems, lake levels and sediment cores, have indicated the dry and cold shifts in southeast China during 4500–3500calyrBP (An, 2000; Chen, 2005; Ma, 2009; Innes, 2014). Meanwhile, the numbers of cultural sites in the Yangtze River Delta decrease during 4500–3500calyrBP (Zhang, 2005), which is consistent with the weak EASM events shown by the geochemical data. In addition, the notable decrease of some characteristic geochemical compositions can well correspond with the low ENSO events, which indicated that the EASM are readily influenced by ENSO through the strength of the subtropical high in the western Pacific region, and ENSO can possibly serve as the physical mechanism of the extreme climatic and flooding events in the Yangtze River Basin (Moy., 2002). A recent study suggests a close relationship between the large floods along the Yangtze River in 1998 and ENSO event (Wei, 2014). These results suggest that the changes of runoff in the Yangtze River catchment were sensitive to the ENSO events to vary at the sub-millennial timescale (Moy, 2002; Marchitto, 2010).

    Fig.6 Variation of proxy parameters for K (a), Al/Zr (b) and factor analysis results (F1 factor scores) (c) smoothed by 9- point running averages with time for sediments from core MD06-3040; (d), the summer rainfall at site Xinjie in the lower reaches of Yangtze River (Lu et al., 2019); (e), the number of ENSO events per 100yr (Moy et al., 2002); (f), the annual SSTderived from the standard errors of the linear transfer function FP-12E in the Okinawa Through (Jian et al., 2000).

    In order to further confirm this correlation, the REDFIT 38 was used to perform power spectral analysis (Fig.7) (Schulz and Mudelsee, 2002). The results show that the values of K, Al/Zr and F1 factor scores have a clear periodicity of 2893yr, similar to the results of Kuroshio Current (2560yr) (Jian., 2000), ENSO (2000yr) (Moy., 2002) and magnetic characteristics of sediments from the South Yellow Sea, eastern China (2361yr) (Wang., 2018a). The 1243–1571 yr is another period, close to the 1400–1500yr of the North Atlantic climate (Bianchi and McCave, 1999), the 1500yr of Kuroshio Current (Jian., 2000) and the 1500yr of ENSO (Moy., 2002). The variation of K, Al/Zr and F1 are attributed to the changes of ENSO and oceanic thermohaline circulation. The marked centennial periods at 364 and 521yr are close to the periods of the Kuroshio Current (388yr, 602yr) (Jian., 2000). All these results revealed that the geochemical compositions of sediments in core MD06- 3040 are influenced by the evolution of EASM, the variation of ENSO and local oceanic thermohaline circulation (., Kuroshio Current).

    Fig.7 Spectral analysis of K, Al/Zr and factor analysis results (F1) in core MD06-3040 for the past 6000yr. Peaks are labeled with periods in years above 90% (yellow line) and 95% (gray line) confidence levels.

    6 Conclusions

    High-resolution geochemical compositions of sediments were determined by XRF-CS for the core MD06-3040 from the ISMW of the ECS. Geochemical variations and factor analysis revealed their correlation with the changes in EASM precipitation during the period of 6000–1300calyrBP. After 1300calyrBP, the higher inputs of terrigenous materials implied the intensification of anthropogenic activities. The notable decreases of some geochemical compositions at 4500–3500 and 1700–1500calyrBP, within the dating errors, coincided with the presumable cold and dry geochemical compositionsevents documented in the adjacent area, and were also correlated with many global recognized features. The spectral analysis revealed that the geochemical compositions of core MD06-3040 were influenced by the evolution of EASM, the variation of El Ni?o/Southern Oscillation (ENSO) and local oceanic ther- mohaline circulation (., Kuroshio Current), indicating that the geochemical compositions determined by XRF-CS can provide new insights for paleoenvironmental changes. These findings are important for studying the relationshipsbetween regional systems and global changes in monsoonal climate regions.

    Acknowledgements

    This research was supported financially by the National Natural Science Foundation of China (Nos. 41991323, 41 702185, 41977378, U1706220), the National Key Basic Research Program of China (No. 2015CB953804), the Na- tural Science Foundation of Shandong Province (No. ZR 2018PD005), the Jiangsu Provincial Basic Research Program Natural Science Foundation General Project of China(No. BK20171340), the Open Foundation of CAS Key La- boratory of Coastal Environmental Processes and Ecolo- gical Remediation, YICCAS (No. 2020KFJJ10), the Open Foundation of State Key Laboratory of Loess and Quater- nary Geology, Institute of Earth Environment, CAS (No. SKLLQG2024), the Laboratory for Marine Geology, Qingdao National Laboratory for Marine Science and Technology(No. MGQNLM-KF201704), and the Foundation of School and Land Integration Development in Yantai (No. 2021 XDRHXMQT18).

    An, Z., Porter, S. C., Kutzbach, J. E., Wu, X., Wang, S., Liu, X.,., 2000. Asynchronous Holocene optimum of the East Asian monsoon., 19: 743-762.

    Arz, H. W., Gerhardt, S., Patzold, J., and R?hl, U., 2001. Millennial-scale changes of surface and deep-water flow in the western tropical Atlantic linked to Northern Hemisphere high- latitude climate during the Holocene., 29 (3): 239- 242.

    Arz, H. W., Patzold, J., Muller, P. J., and Moammar, M. O., 2003. Influence of Northern Hemisphere climate and global sea level rise on the restricted Red Sea marine environment during termination I., 18 (2): 1-13.

    Berne, S., Vagner, P., Guichard, F., Lericolais, G., Liu, Z., Trentesaux, A.,., 2002. Pleistocene forced regressions and tidal sand ridges in the East China Sea., 188 (3-4): 293-315.

    Bi, L., Yang, S. Y., Zhao, Y., Wang, Z. B., Dou, Y. G., Li, C.,.,2017. Provenance study of the Holocene sediments in the Changjiang (Yangtze River) Estuary and inner shelf of the East China Sea., 441: 147-161.

    Bianchi, G. G., and McCave, I. N., 1999. Holocene periodicity in North Atlantic climate and deep-ocean flow south of Iceland., 397: 515-517.

    Bond, G., Kromer, B., Beer, J., Muscheler, R., Evans, M. N., Showers, W.,., 2001. Persistent solar influence on North Atlantic climate during the Holocene., 294: 2130- 2136.

    Brown, E. T., Johnson, T. C., Scholz, C. A., Cohen, A. S., and King, J. W., 2007. Abrupt change in tropical African climate linked to the bipolar seesaw over the past 55000 years., 34: L20702.

    Carlson, A. E., LeGrande, A. N., Oppo, D. W., and Came, R. E., 2008. Rapid early Holocene deglaciation of the Laurentide ice sheet., 1: 620-624.

    Chawchai, S., Kylander, M. E., Chabangborn, A., Lowemark, L., and Wohlfarth, B., 2016. Testing commonly used X-ray fluorescence core scanning-based proxies for organic-rich lake sediments and peat., 45: 180-189.

    Chen, Z. Y., Song, B., Wang, Z., and Cai, Y., 2000. Late Quaternary evolution of the subaqueous Yangtze Delta, China: Se- dimentation, stratigraphy, palynology, and deformation., 162 (2-4): 423-441.

    Chen, Z., Wang, Z., Schneiderman, J., Tao, J., and Cai, Y., 2005. Holocene climate fluctuations in the Yangtze Delta of eastern China and the Neolithic response., 15: 915-924.

    deMenocal, P., Ortiz, J., Guilderson, T., and Sarnthein, M., 2000. Coherent high- and low latitude climate variability during the Holocene warm period., 288: 2198-2202.

    Ding, D. L., Zhang, X. H., Yu, J. J., and Wang, X. Q., 2019. Progress in sedimentary sources and palaeocliamate evolution in Zhejiang-Fujian mud area in Holocene., 49 (1): 178-195.

    Dou, Y. G., Li, J., and Yang, S. Y., 2012. Element composition and provenance implication of surface sediments in offshore areas of the eastern Shandong Peninsula in China.,34 (1): 109-119.

    Fang, J. Y., Liu, Z. F., and Zhao, Y. L., 2018. High-resolution clay mineral assemblages in the inner shelf mud wedge of the East China Sea during the Holocene: Implications for the East AsianMonsoon evolution.–, 61 (9): 1316-1329.

    Francus, P., Lamb, H., Nakagawa, T., Marshall, M., and Brown, E., 2009. The potential of high-resolution X-ray fluorescence core scanning: Applications in paleolimnology., 17 (3): 93-95.

    Gallet, S., Jahn, B. M., and Torri, M., 1996. Geochemical cha- racterization of the Luochuan Loess-paleosol sequence, China, and paleoclimatic implications., 133 (1-4): 67-88.

    Grüetzner, J., Robesco, M., Cooper, A., Forberg, C., Kryc, K., and Wefer, G., 2003. Evidence for orbitally controlled size va- riations of the East Antarctic ice sheet during the late Miocene., 31 (9): 777-780.

    Heather, S., Probert, K. C., Tan, P., Patrizia, Z., Ruiz, E. J., and Garcia, A. I., 2000. Sr/Ca of coccolith carbonate; testing the stories of the smallest carbonate repositories., 22: 142-148.

    Hennekam, R., and de Lange, G., 2012. X-ray fluorescence core scanning of wet marine sediments: Methods to improve qua- lity and reproducibility of high resolution paleoenvironmental records., 10: 991- 1003.

    Hu, C. Y., Henderson, G. M., Huang, J. H., Xie, S. C., Sun, Y., and Johnson, K. R., 2008. Quantification of Holocene Asian monsoon rainfall from spatially separated cave records., 266: 221-232.

    Huh, C. A., and Su, C. C., 1999. Sedimentation dynamics in the East China Sea elucidated from210Pb,137Cs and239, 240Pu., 160: 183-196.

    Innes, J. B., Zong, Y., Wang, Z., and Chen, Z., 2014. Climatic and palaeoecological changes during the mid- to late Holocene transition in eastern China: High-resolution pollen and non- pollen palynomorph analysis at Pingwang, Yangtze coastal low- lands., 99: 164-175.

    Jian, Z. M., Wang, P. X., Saito, Y., Wang, J. L., Pflaumann, U., Oba, T.,., 2000. Holocene variability of the Kuroshio Current in the Okinawa Trough, northwestern Pacific Ocean., 184: 305-319.

    Jin, Z. D., An, Z. S., Yu, J. M., Li, F. C., and Zhang, F., 2015. Lake Qinghai sediment geochemistry linked to hydroclimate variability since the last glacial., 122: 63-73.

    Jorry, S. J., Jegou, I., Emmanuel, L., Jacinto, R. S., and Savoye, B., 2011. Turbiditic levee deposition in response to climate changes: The Var Sedimentary Ridge (Ligurian Sea)., 279 (1): 148-161.

    Kajita, H., Kawahata, H., Wang, K., Zheng, H. B., Yang, S. Y., Ohkouchi, N.,., 2018. Extraordinary cold episodes during the mid-Holocene in the Yangtze Delta: Interruption of the earliest rice cultivating civilization., 201: 418-428.

    Kwiecien, O., Arz, H. W., Lamy, F., Wulf, S., Bahr, A., Rohl, U.,., 2008. Estimated reservoir ages of the Black Sea since the last glacial., 50 (1): 99-118.

    Lamy, F., Kaiser, J., Ninnemann, U., Hebbeln, D., Arz, H. W., and Stoner, J., 2004. Antarctic timing of surface water changesoff Chile and Patagonian ice sheet response., 304: 1959- 1962.

    Lee, H. J., and Chao, S. Y., 2003. A climatological description of circulation in and around the East China Sea., 50 (6-7): 1065-1084.

    Li, A. C., and Zhang, K. D., 2020. Research progress of mud wedge in the inner continental shelf of the East China Sea., 51 (4): 705-726 (in Chinese with English abstract).

    Liang, L. J., Sun, Y. B., Yao, Z. Q., Liu, Y. G., and Wu, F., 2012. Evaluation of high-resolution elemental analyses of Chinese loess deposits measured by X-ray fluorescence core scanner., 92: 75-82.

    Liu, J. P., Li, A. C., Xu, K. H., Velozzi, D. M., Yang, Z. S., Milliman, J. D.,., 2006. Sedimentary features of the Yangtze River-derived along-shelf clinoform deposit in the East China Sea., 26: 2141-2156.

    Liu, J. P., Xu, K. H., Li, A. C., Milliman, J. D., Velozzi, D. M., Xiao, S. B.,., 2007. Flux and fate of Yangtze River sediment delivered to the East China Sea., 85: 208-224.

    Liu, J. T., Hsu, R. T., Yang, R. J., Wang, Y. P., Wu, H., Du, X. Q.,., 2018. A comprehensive sediment dynamics study of a major mud belt system on the inner shelf along an energetic coast., 8: 4229.

    Liu, S. F., Shi, X. F., Liu, Y. G., Zhu, A. M., and Song, X. H., 2010. Geochemical characteristics and geological significance of major elements in the surface sediments from the inner shelf mud area of the East China Sea., 28 (1): 80-86 (in Chinese with English abstract).

    L?wemark, L., Chen, H. F., Yang, T. N., Kylander, M., Yu, E. F., Hsu, Y. W.,., 2010. Normalizing XRF-scanner data: A cautionary note on the interpretation of high-resolution records from organic-rich lakes., 40: 1250-1256.

    Lu, F. Z., Ma, C. M., Zhu, C., Lu, H. Y., Zhang, X. J., Huang, K. Y.,., 2019. Variability of East Asian summer monsoon precipitation during the Holocene and possible forcing mechanisms., 52: 969-989.

    Ma, C., Zhu, C., Zheng, C., Qian, Y., and Zhao, Z., 2009. Climate changes in East China since the late-glacial inferred from high-resolution mountain peat humification records.–,52: 118-131.

    Marchitto, T. M., Muscheler, R., Ortiz, J. D., Carriquiry, J. D., and Van, G. A., 2010. Dynamical response of the tropical Pacific Ocean to solar forcing during the early Holocene., 330 (6009): 1378-1381.

    Martin-Puertas, C., Tjallingii, R., Bloemsma, M., and Brauer, A., 2017. Varved sediment responses to early Holocene climate and environmental changes in Lake Meerfelder Maar (Germany) obtained from multivariate analyses of micro X-ray fluorescence core scanning data., 32 (3): 427-436.

    Milliman, J., and Meade, R. H., 1983. World-wide delivery of river sediment to the oceans., 91: 1-21.

    Moy, C. M., Seltzer, G. O., Rodbell, D. T., and Anderson, D. M., 2002. Variability of El Nino/southern Oscillation activity at millennial timescales during the Holocene epoch., 420 (6912): 162-165.

    Qin, Y. S., Zhao, Y. Y., Zhao, L. R., and Zhao, S. L., 1987.. Science Press, Beijing, 290pp (in Chinese).

    Reimann, C., Filzmoser, P., and Garrett, R. G., 2002. Factor ana- lysis applied to regional geochemical data: Problems and possibilities., 17: 185-206.

    Schulz, M., and Mudelsee, M., 2002. REDFIT: Estimating red- noise spectra directly from unevenly spaced paleoclimatic time series., 28: 421-426.

    Spofforth, D. J. A., P?like, H., and Green, D., 2008. Paleogene record of elemental concentrations in sediments from the Arctic Ocean obtained by XRF analyses., 23: PA 1S09.

    Stanley, D. J., Chen, Z., and Song, J., 1999. Inundation, sea-levelrise and transition from Neolithic to Bronze age cultures, Yang- tze Delta, China., 14: 15-26.

    Tian, J., Xie, X., Ma, W. T., Jin, H. Y., and Wang, P. X., 2011. X-ray fluorescence core scanning records of chemical weathering and monsoon evolution over the past 5 Myr in the southern South China Sea., 26: PA4202.

    Tong, Q. C., and Cheng, T. W., 1981. Runoff. In:. Science Press, Beijing, 6-121.

    Vidal, L., Bickert, T., Wefer, G., and R?hl, U., 2002. Late Mio- cene stable isotope stratigraphy of SE Atlantic ODP Site 1085: Relation to Messinian events., 180 (1): 71-85.

    Wang, K., Tada, R., Zheng, H. B., Irino, T., Zhou, B., and Saito, K., 2020. Provenance changes in fine detrital quartz in the inner shelf sediments of the East China Sea associated with shifts in the East Asian summer monsoon front during the last 6kyrs., 7: 5.

    Wang, K., Zheng, H. B., Tada, R., Irino, T., Zheng, Y., Saito, K.,., 2014. Millenniale scale East Asian summer monsoon variability recorded in grain size and provenance of mud belt sediments on the inner shelf of the East China Sea during mid to late Holocene., 349: 79-89.

    Wang, L. M., and Li, G. X., 2014. High-resolution sedimentary records of the muddy area in the South Yellow Sea and East China Sea: A Review of new progress.,34 (3): 167-174 (in Chinese with English abstract).

    Wang, L. S., Hu, S. Y., Yu, G., Ma, M. M., Wang, Q., Zhang, Z. H.,., 2018a. Magnetic characteristics of sediments from a radial sand ridge field in the South Yellow Sea, eastern China, and environmental implications during the mid- to late-Holo- cene., 163: 224-234.

    Wang, R. J., Polyak, L., Xiao, W. S., Wu, L., Zhang, T. L., Sun, Y. C.,., 2018b. Late-middle Quaternary lithostratigraphy and sedimentation patterns on the Alpha Ridge, central Arctic Ocean: Implications for Arctic climate variability on orbital time scales., 181: 93-108.

    Wang, S. H., Zhang, G. D., Zhang, J. H., and Wu, Y. L., 2007. Geochemical studies on Rb and Sr in the mud on the inner shelf of the East China Sea and their palaeoclimate significance., 25 (3): 22-27 (in Chinese with English abstract).

    Wang, X. Q., Jin, Z. D., Zhang, X. B., Xiao, J., Zhang, F., and Pan, Y. H., 2018c. High-resolution geochemical records of deposition couplets in a palaeolandslide-dammed reservoir on the Chinese Loess Plateau and its implication for rainstorm erosion., 18: 1147-1158.

    Wang, Y., Cheng, H., Edwards, R. L., He, Y., Kong, X., An, Z.,., 2005. The Holocene Asian monsoon: Links to solar changes and North Atlantic climate., 308: 854-857.

    Wang, Z., Ryves, D. B., Lei, S., Nian, X., Lv, Y., Tang, L.,., 2018d. Middle Holocene marine flooding and human response in the South Yangtze coastal plain, East China., 187: 80-93.

    Wehausen, R., and Brumsack, H. J., 2002. Astronomical forcing of the East Asian monsoon mirrored by the composition of Pliocene South China Sea sediments., 201 (3): 621-636.

    Wei, G. J., Li, X. H., Liu, Y., Shao, L., and Liang, X. R., 2006. Geochemical record of chemical weathering and monsoon climate change since the early Miocene in the South China Sea., 21 (4): 1-11.

    Wei, W., Chang, Y. P., and Dai, Z. J., 2014. Streamflow changes of the Changjiang (Yangtze) River in the recent 60 years: Impacts of the East Asian summer monsoon, ENSO, and human activities., 336 (12): 98-107.

    Wu, J. X., Ren, J., Liu, H., Qiu, C. H., Cui, Y. S., and Zhang, Q. J., 2016. Trapping and escaping processes of Yangtze River- derived sediments to the East China Sea., 253: 69.

    Xiao, S. B., Li, A. C., Liu, J. P., Chen, M. H., Xie, Q., Jiang, F. Q.,., 2006. Coherence between solar activity and the East Asian winter monsoon variability in the past 8000 years from Yangtze River-derived mud in the East China Sea., 237: 293-304.

    Xu, F. J., Li, A. C., Li, T. G., Wan, S. M., Chen, S. Y., and Cao, Y. C., 2010. Geochemical characteristics of sediments on the inner shelf of the East China Sea: Implications for paleoenviron- ment since the last deglaciation., 39 (3): 240-250 (in Chinese with English abstract).

    Xu, F. J., Li, A. C., Xu, Z. K., Xiao, S. B., Wan, S. M., and Liu, J. G., 2009a. Rare earth element geochemistry in inner shelf of the East China Sea and implication for sediment provenance., 27 (4): 574-582.

    Xu, K. H., Li, A. C., Liu, J. P., Milliman, J. D., Yang, Z. S., Liu, C. S.,., 2012. Provenance, structure, and formation of the mud wedge along inner continental shelf of the East China Sea: A synthesis of the Yangtze dispersal system., 291-294: 176-191.

    Xu, K. H., Milliman, J. D., Li, A. C., Liu, J. P., Kao, S. J., and Wan, S. M., 2009b. Yangtze and Taiwan derived sediments on the inner shelf of East China Sea., 29 (18): 2240-2256.

    Yancheva, G., Nowaczyk, N. R., Mingram, J., Dulski, P., Schettler, G., Negendank, J. F. W.,., 2007. Influence of the intertropical convergence zone on the East Asian monsoon., 445: 74-77.

    Yang, W. Q., Zhou, X., Xiang, R., Wang, Y. H., Shao, D., and Sun, L. G., 2015. Reconstruction of winter monsoon strength by elemental ratio of sediments in the East China Sea., 114: 467-475.

    Yao, Z. Q., Liu, Y. G., Shi, X. F., and Suk, B. C., 2012. Paleoenvironmental changes in the East/Japan Sea during the last 48 ka: Indications from high-resolution X-ray fluorescence core scanning., 27 (9): 932-940.

    Zhang, Q., Zhu, C., Liu, T., and Jiang, T., 2005. Environmental change and its impacts on human settlement in the Yangtze Delta, P. R. China., 60: 267-277.

    Zheng, B., 2018. Holocene vegetation and climate changes and provenance analysis based on geochemical records from the mud shelf sediments of the East China Sea. Master thesis. Nanjing University.

    Zheng, B., Zhou, B., Wang, K., Pang, Y., Chen, M. D., and Zheng, H. B., 2018. Changes of provenance input and source vegetation of changes and their impact factors since late Holocene based on-alkanes records from core MD06-3039a in the muddy area of the East China Sea., 38 (5): 1293-1303 (in Chinese with English abstract).

    Zheng, Y., Kissel, C., Zheng, H. B., Laj, C., and Wang, K., 2010. Sedimentation on the inner shelf of the East China Sea: Magnetic properties, diagenesis and paleoclimate implications.,268: 34-42.

    Ziegler, C. L., and Murray, R. W., 2007. Geochemical evolution of the central Pacific Ocean over the past 56Myr.,22: PA2203.

    June 28, 2020;

    September 8, 2020;

    February 28, 2021

    ? Ocean University of China, Science Press and Springer-Verlag GmbH Germany 2021

    E-mail: 52wls@163.com

    E-mail: zhoubinok@163.com

    (Edited by Chen Wenwen)

    国产老妇伦熟女老妇高清| 色视频在线一区二区三区| 女人被躁到高潮嗷嗷叫费观| 久久精品国产自在天天线| 全区人妻精品视频| 大香蕉久久网| h视频一区二区三区| 欧美亚洲日本最大视频资源| 久久99热这里只频精品6学生| 午夜激情久久久久久久| 视频在线观看一区二区三区| 成人亚洲欧美一区二区av| 亚洲精品美女久久久久99蜜臀 | 亚洲精品久久成人aⅴ小说| 9191精品国产免费久久| 搡老乐熟女国产| 在线观看国产h片| 国产综合精华液| 久久国产亚洲av麻豆专区| 国产在视频线精品| 亚洲精品中文字幕在线视频| 免费少妇av软件| 亚洲成av片中文字幕在线观看 | 午夜老司机福利剧场| 亚洲欧美中文字幕日韩二区| 久久精品久久久久久久性| 国产无遮挡羞羞视频在线观看| 在线亚洲精品国产二区图片欧美| 精品一区二区三卡| videosex国产| 久久99蜜桃精品久久| 精品一区二区三区四区五区乱码 | 90打野战视频偷拍视频| 亚洲欧美精品自产自拍| 欧美精品一区二区免费开放| av片东京热男人的天堂| 久久久精品区二区三区| 欧美精品亚洲一区二区| 伊人久久国产一区二区| 国产伦理片在线播放av一区| 你懂的网址亚洲精品在线观看| 91午夜精品亚洲一区二区三区| 国产 一区精品| 亚洲欧洲国产日韩| 久久综合国产亚洲精品| 久久精品夜色国产| 国产精品麻豆人妻色哟哟久久| 熟女av电影| 岛国毛片在线播放| 亚洲精品乱码久久久久久按摩| 欧美日韩精品成人综合77777| 爱豆传媒免费全集在线观看| 国产av国产精品国产| 性色avwww在线观看| 成人无遮挡网站| 久久久久精品性色| 成年av动漫网址| 精品一品国产午夜福利视频| 色94色欧美一区二区| 大香蕉久久网| 欧美精品一区二区大全| 精品一品国产午夜福利视频| 国产高清不卡午夜福利| 日本色播在线视频| 狂野欧美激情性xxxx在线观看| 国产1区2区3区精品| 在线 av 中文字幕| 亚洲成人一二三区av| 在线观看一区二区三区激情| 国产在线免费精品| 国产黄色免费在线视频| 亚洲av福利一区| 在线观看美女被高潮喷水网站| 最近手机中文字幕大全| 中文字幕免费在线视频6| 欧美变态另类bdsm刘玥| 久久久久久久久久久久大奶| 日本wwww免费看| 国产视频首页在线观看| 精品国产国语对白av| 国产 精品1| 如何舔出高潮| 美女中出高潮动态图| 国产精品.久久久| 男女啪啪激烈高潮av片| 国产精品人妻久久久影院| 免费大片18禁| 国产免费一区二区三区四区乱码| 免费黄网站久久成人精品| 热99久久久久精品小说推荐| 国产免费一级a男人的天堂| 精品国产乱码久久久久久小说| 男女高潮啪啪啪动态图| 女性被躁到高潮视频| 晚上一个人看的免费电影| 97超碰精品成人国产| 全区人妻精品视频| 欧美bdsm另类| 啦啦啦中文免费视频观看日本| 五月天丁香电影| 纯流量卡能插随身wifi吗| 80岁老熟妇乱子伦牲交| 高清黄色对白视频在线免费看| 免费在线观看黄色视频的| 男女国产视频网站| av女优亚洲男人天堂| 精品99又大又爽又粗少妇毛片| 成人综合一区亚洲| 久久久久久久久久久免费av| 国产欧美日韩综合在线一区二区| 国产日韩一区二区三区精品不卡| 久久久久国产精品人妻一区二区| 亚洲国产成人一精品久久久| 狠狠婷婷综合久久久久久88av| 五月伊人婷婷丁香| 久久青草综合色| 一二三四在线观看免费中文在 | 黄色一级大片看看| 天天躁夜夜躁狠狠久久av| av天堂久久9| 2021少妇久久久久久久久久久| 国产成人欧美| 精品少妇黑人巨大在线播放| 波多野结衣一区麻豆| 亚洲精品国产色婷婷电影| 中文字幕精品免费在线观看视频 | a级毛片在线看网站| 日本vs欧美在线观看视频| 最近中文字幕高清免费大全6| a 毛片基地| 国产在线一区二区三区精| 亚洲性久久影院| 边亲边吃奶的免费视频| 国产男女内射视频| 国内精品宾馆在线| 国产av国产精品国产| 99久久人妻综合| 免费在线观看完整版高清| 男的添女的下面高潮视频| 女人精品久久久久毛片| 夜夜骑夜夜射夜夜干| 婷婷成人精品国产| 另类亚洲欧美激情| 制服丝袜香蕉在线| 美女国产视频在线观看| 午夜老司机福利剧场| 久久人人97超碰香蕉20202| 国产免费又黄又爽又色| 看十八女毛片水多多多| 中文欧美无线码| 亚洲内射少妇av| 亚洲综合精品二区| 中文字幕制服av| 国产精品不卡视频一区二区| 亚洲精品久久久久久婷婷小说| 国产男人的电影天堂91| 久久国内精品自在自线图片| 一个人免费看片子| 欧美xxⅹ黑人| 一区二区av电影网| 日韩成人av中文字幕在线观看| 韩国精品一区二区三区 | 国产亚洲最大av| 99久久精品国产国产毛片| 精品亚洲乱码少妇综合久久| 久久久久久久久久人人人人人人| 美女国产视频在线观看| 欧美 亚洲 国产 日韩一| 亚洲精品国产av蜜桃| 国产午夜精品一二区理论片| 人妻一区二区av| 母亲3免费完整高清在线观看 | 老司机影院毛片| 制服诱惑二区| 成人18禁高潮啪啪吃奶动态图| 国产老妇伦熟女老妇高清| 国产精品久久久av美女十八| 天堂中文最新版在线下载| www.色视频.com| 热re99久久国产66热| 在线亚洲精品国产二区图片欧美| 国产成人精品在线电影| 极品人妻少妇av视频| 热99国产精品久久久久久7| av在线app专区| 亚洲经典国产精华液单| 久久久久久伊人网av| 美女福利国产在线| 免费黄网站久久成人精品| 一本一本久久a久久精品综合妖精 国产伦在线观看视频一区 | 蜜桃国产av成人99| 欧美人与善性xxx| 两性夫妻黄色片 | 51国产日韩欧美| 免费人成在线观看视频色| 九九在线视频观看精品| 我的女老师完整版在线观看| 国产精品一区二区在线不卡| av在线app专区| 欧美日韩综合久久久久久| 亚洲美女视频黄频| av电影中文网址| 国产高清三级在线| 成人毛片a级毛片在线播放| xxx大片免费视频| 一本大道久久a久久精品| 国产高清三级在线| 久久免费观看电影| 国产精品欧美亚洲77777| 9热在线视频观看99| 精品国产一区二区三区四区第35| 亚洲av中文av极速乱| 亚洲欧洲精品一区二区精品久久久 | 一二三四中文在线观看免费高清| 九九爱精品视频在线观看| 国产精品久久久av美女十八| av网站免费在线观看视频| 国产综合精华液| 亚洲精品456在线播放app| 亚洲精品美女久久av网站| 少妇被粗大猛烈的视频| 久久精品国产综合久久久 | 2022亚洲国产成人精品| 精品第一国产精品| 亚洲美女搞黄在线观看| 高清黄色对白视频在线免费看| 亚洲精品色激情综合| 高清欧美精品videossex| 亚洲丝袜综合中文字幕| 男女下面插进去视频免费观看 | 高清毛片免费看| 九草在线视频观看| 免费不卡的大黄色大毛片视频在线观看| 大片电影免费在线观看免费| 亚洲人与动物交配视频| 亚洲av在线观看美女高潮| 母亲3免费完整高清在线观看 | 国产毛片在线视频| 成人毛片60女人毛片免费| 亚洲,一卡二卡三卡| 黑人巨大精品欧美一区二区蜜桃 | 女人精品久久久久毛片| 欧美日韩国产mv在线观看视频| 日韩在线高清观看一区二区三区| 国产国语露脸激情在线看| videossex国产| 新久久久久国产一级毛片| 永久网站在线| 中文精品一卡2卡3卡4更新| 亚洲欧美清纯卡通| 天天影视国产精品| 欧美精品人与动牲交sv欧美| 久久人人爽av亚洲精品天堂| 蜜桃国产av成人99| 国产精品久久久久久久电影| 青春草亚洲视频在线观看| 乱人伦中国视频| 午夜福利在线观看免费完整高清在| xxx大片免费视频| 久久国内精品自在自线图片| 亚洲精品一二三| 日韩一本色道免费dvd| 大片电影免费在线观看免费| 青春草国产在线视频| 最近中文字幕2019免费版| 亚洲综合色网址| 午夜激情av网站| 亚洲精华国产精华液的使用体验| 国产一区二区三区av在线| 久久99热这里只频精品6学生| 亚洲精品国产av蜜桃| 国产av精品麻豆| 国产精品人妻久久久影院| 狂野欧美激情性bbbbbb| 日韩成人伦理影院| 又大又黄又爽视频免费| 国产精品久久久久久精品电影小说| 亚洲精品一二三| 少妇被粗大猛烈的视频| 中文乱码字字幕精品一区二区三区| 国产淫语在线视频| 哪个播放器可以免费观看大片| 亚洲婷婷狠狠爱综合网| 日韩精品免费视频一区二区三区 | 最近最新中文字幕大全免费视频 | 女性被躁到高潮视频| 欧美人与性动交α欧美精品济南到 | 久久鲁丝午夜福利片| 边亲边吃奶的免费视频| 啦啦啦视频在线资源免费观看| 中文字幕免费在线视频6| 一级毛片黄色毛片免费观看视频| 高清av免费在线| 久久99热6这里只有精品| 欧美+日韩+精品| 亚洲av成人精品一二三区| 中文字幕精品免费在线观看视频 | 亚洲一区二区三区欧美精品| 国产精品一区二区在线不卡| 久久精品国产鲁丝片午夜精品| 永久免费av网站大全| 国产高清国产精品国产三级| 黄色 视频免费看| 欧美最新免费一区二区三区| 黑人猛操日本美女一级片| 大片免费播放器 马上看| 男女无遮挡免费网站观看| 亚洲一区二区三区欧美精品| 精品少妇内射三级| 精品一品国产午夜福利视频| 日韩精品有码人妻一区| 日韩欧美精品免费久久| 少妇精品久久久久久久| 边亲边吃奶的免费视频| 国产亚洲午夜精品一区二区久久| 欧美日韩亚洲高清精品| 精品熟女少妇av免费看| 视频中文字幕在线观看| 又黄又爽又刺激的免费视频.| 日韩不卡一区二区三区视频在线| 国产片特级美女逼逼视频| av黄色大香蕉| 制服诱惑二区| 日本欧美国产在线视频| 欧美老熟妇乱子伦牲交| 七月丁香在线播放| 一级毛片我不卡| tube8黄色片| 亚洲av中文av极速乱| 91精品伊人久久大香线蕉| 日韩电影二区| 久久99精品国语久久久| 国产免费一区二区三区四区乱码| 赤兔流量卡办理| 一级毛片黄色毛片免费观看视频| 人人妻人人添人人爽欧美一区卜| 国产在线一区二区三区精| 国产av码专区亚洲av| 一级毛片电影观看| 亚洲人成网站在线观看播放| 亚洲欧洲日产国产| 日韩一区二区视频免费看| 18禁裸乳无遮挡动漫免费视频| 老熟女久久久| 亚洲欧美成人综合另类久久久| 飞空精品影院首页| av福利片在线| 免费黄网站久久成人精品| 欧美日韩精品成人综合77777| 丰满饥渴人妻一区二区三| 亚洲精品视频女| 午夜福利影视在线免费观看| 人体艺术视频欧美日本| 欧美精品av麻豆av| 黄色视频在线播放观看不卡| 水蜜桃什么品种好| 国产在线免费精品| 黑人猛操日本美女一级片| 亚洲图色成人| 国产精品一区二区在线观看99| 国产精品秋霞免费鲁丝片| 亚洲精品日本国产第一区| 18禁国产床啪视频网站| 日韩大片免费观看网站| 最近的中文字幕免费完整| 女性生殖器流出的白浆| www.熟女人妻精品国产 | 欧美最新免费一区二区三区| 日韩av免费高清视频| 亚洲五月色婷婷综合| 又黄又爽又刺激的免费视频.| 男的添女的下面高潮视频| 国产免费一区二区三区四区乱码| 久久久久久久久久成人| 免费人妻精品一区二区三区视频| 国内精品宾馆在线| 看免费成人av毛片| 在线观看三级黄色| 成人二区视频| 全区人妻精品视频| 一二三四中文在线观看免费高清| 国产av一区二区精品久久| 国产国语露脸激情在线看| 国产片特级美女逼逼视频| 伦理电影大哥的女人| 哪个播放器可以免费观看大片| 中文字幕精品免费在线观看视频 | 国产成人91sexporn| av不卡在线播放| 欧美激情国产日韩精品一区| 黄片无遮挡物在线观看| 99九九在线精品视频| 97超碰精品成人国产| 亚洲熟女精品中文字幕| 水蜜桃什么品种好| 人体艺术视频欧美日本| 黄色怎么调成土黄色| 2021少妇久久久久久久久久久| 国产一级毛片在线| 日韩一区二区视频免费看| 亚洲精品aⅴ在线观看| 亚洲欧美成人综合另类久久久| 久久久久人妻精品一区果冻| a级毛片黄视频| 国产成人欧美| 国产探花极品一区二区| 美女主播在线视频| 久久久精品94久久精品| 三级国产精品片| av在线老鸭窝| a级片在线免费高清观看视频| 免费观看a级毛片全部| 在线观看美女被高潮喷水网站| 如何舔出高潮| 久久精品aⅴ一区二区三区四区 | 午夜av观看不卡| 多毛熟女@视频| 高清在线视频一区二区三区| 一级,二级,三级黄色视频| 9191精品国产免费久久| 欧美精品高潮呻吟av久久| 国产精品一国产av| 亚洲成人手机| 80岁老熟妇乱子伦牲交| 两性夫妻黄色片 | 在线观看免费日韩欧美大片| 我要看黄色一级片免费的| 国产午夜精品一二区理论片| 亚洲国产欧美在线一区| 精品人妻一区二区三区麻豆| 亚洲天堂av无毛| 成人国产av品久久久| 一本—道久久a久久精品蜜桃钙片| 建设人人有责人人尽责人人享有的| 全区人妻精品视频| 亚洲国产欧美在线一区| 成人二区视频| 亚洲一区二区三区欧美精品| 欧美人与性动交α欧美软件 | 亚洲国产看品久久| 亚洲国产精品一区二区三区在线| 在线观看免费高清a一片| 亚洲精华国产精华液的使用体验| 日本黄大片高清| 免费观看无遮挡的男女| a级片在线免费高清观看视频| 肉色欧美久久久久久久蜜桃| 精品少妇内射三级| 在线精品无人区一区二区三| 男女国产视频网站| 亚洲三级黄色毛片| 最新的欧美精品一区二区| 亚洲av免费高清在线观看| 亚洲性久久影院| 国产激情久久老熟女| 成年人午夜在线观看视频| 亚洲av电影在线进入| 激情五月婷婷亚洲| 十八禁网站网址无遮挡| 欧美国产精品一级二级三级| 看免费成人av毛片| 国产综合精华液| 人人妻人人澡人人爽人人夜夜| 成人18禁高潮啪啪吃奶动态图| 日韩成人伦理影院| 国产精品一区二区在线不卡| 在线观看免费视频网站a站| 欧美国产精品一级二级三级| 国产无遮挡羞羞视频在线观看| 纵有疾风起免费观看全集完整版| 亚洲成人一二三区av| 超色免费av| 自线自在国产av| 蜜臀久久99精品久久宅男| 飞空精品影院首页| 国产熟女午夜一区二区三区| 伊人久久国产一区二区| 人人妻人人澡人人看| 国产又爽黄色视频| 日日撸夜夜添| 国产又色又爽无遮挡免| √禁漫天堂资源中文www| 尾随美女入室| 18禁在线无遮挡免费观看视频| 永久网站在线| 国产无遮挡羞羞视频在线观看| 亚洲伊人久久精品综合| 国产免费又黄又爽又色| 国产国拍精品亚洲av在线观看| 人人妻人人爽人人添夜夜欢视频| av天堂久久9| 久久久国产精品麻豆| 啦啦啦中文免费视频观看日本| 欧美日韩一区二区视频在线观看视频在线| 午夜91福利影院| 高清视频免费观看一区二区| 丝袜美足系列| 伦理电影大哥的女人| 亚洲精品日本国产第一区| 寂寞人妻少妇视频99o| 麻豆乱淫一区二区| 亚洲精品乱码久久久久久按摩| 中文字幕制服av| 中文欧美无线码| 涩涩av久久男人的天堂| 久久久久久伊人网av| 赤兔流量卡办理| 有码 亚洲区| 91精品三级在线观看| 欧美性感艳星| 国产成人午夜福利电影在线观看| 一区二区三区四区激情视频| 精品视频人人做人人爽| 有码 亚洲区| 日本欧美视频一区| 国产国语露脸激情在线看| 亚洲伊人色综图| 亚洲人成电影观看| 女同久久另类99精品国产91| 久久精品人人爽人人爽视色| 精品国产国语对白av| 另类亚洲欧美激情| 国产成人啪精品午夜网站| 久久香蕉国产精品| 美女福利国产在线| av超薄肉色丝袜交足视频| 欧美日韩精品网址| 国产欧美日韩综合在线一区二区| 国产精品久久久久久精品古装| 极品教师在线免费播放| 色婷婷久久久亚洲欧美| 中文字幕人妻丝袜一区二区| 不卡av一区二区三区| 少妇裸体淫交视频免费看高清 | 丰满的人妻完整版| 真人做人爱边吃奶动态| 99在线人妻在线中文字幕 | 少妇被粗大的猛进出69影院| 亚洲一区高清亚洲精品| 美女高潮喷水抽搐中文字幕| 久久人妻av系列| 日韩欧美免费精品| 色婷婷久久久亚洲欧美| 日韩有码中文字幕| 好男人电影高清在线观看| 欧美国产精品一级二级三级| 日韩欧美一区二区三区在线观看 | 午夜影院日韩av| 69精品国产乱码久久久| 亚洲片人在线观看| 多毛熟女@视频| 人人妻人人澡人人爽人人夜夜| 一区二区三区国产精品乱码| 中国美女看黄片| 女同久久另类99精品国产91| 十分钟在线观看高清视频www| 午夜免费成人在线视频| 精品国产一区二区久久| 国产欧美日韩一区二区三区在线| 欧洲精品卡2卡3卡4卡5卡区| 午夜福利一区二区在线看| 少妇猛男粗大的猛烈进出视频| 国产男女超爽视频在线观看| 久久久精品区二区三区| 一级作爱视频免费观看| 久久精品国产亚洲av香蕉五月 | 亚洲av美国av| 欧美久久黑人一区二区| 亚洲国产精品一区二区三区在线| 色老头精品视频在线观看| bbb黄色大片| 老司机在亚洲福利影院| 精品久久久久久久毛片微露脸| av不卡在线播放| 人成视频在线观看免费观看| 亚洲精品成人av观看孕妇| 色婷婷av一区二区三区视频| 精品久久久久久,| 国产99久久九九免费精品| 露出奶头的视频| 韩国av一区二区三区四区| 国产不卡av网站在线观看| 国产免费男女视频| 丝袜人妻中文字幕| 精品一区二区三区视频在线观看免费 | 一级a爱片免费观看的视频| xxxhd国产人妻xxx| 国产av精品麻豆| 999精品在线视频| 欧美日韩视频精品一区| 日韩欧美一区视频在线观看| 国产高清videossex| 国产精品av久久久久免费| 搡老熟女国产l中国老女人| 欧美色视频一区免费| 亚洲精品在线观看二区| 国产成人欧美在线观看 | 黄色怎么调成土黄色| 久久久久精品人妻al黑| 久热爱精品视频在线9| 99在线人妻在线中文字幕 | 中文字幕人妻丝袜制服| 精品国产亚洲在线| 国产精品成人在线| 在线观看www视频免费| 久99久视频精品免费| 欧美老熟妇乱子伦牲交| 亚洲精品久久午夜乱码| 亚洲精品自拍成人| 又紧又爽又黄一区二区| 黄片大片在线免费观看| 欧美精品啪啪一区二区三区| 久久久久国内视频| 欧美av亚洲av综合av国产av| 高清在线国产一区|