• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Climatological and Seasonal Variations of the Tropical Cyclone Genesis Potential Index Based on Oceanic Parameters in the Global Ocean

    2021-12-22 11:37:06PANLixiaWANGXinZHOULeiandWANGChunzai
    Journal of Ocean University of China 2021年6期

    PAN Lixia, WANG Xin, ZHOU Lei, and WANG Chunzai

    Climatological and Seasonal Variations of the Tropical Cyclone Genesis Potential Index Based on Oceanic Parameters in the Global Ocean

    PAN Lixia1), 4), WANG Xin1), 2), 3), *, ZHOU Lei5), 6), and WANG Chunzai1), 2), 3)

    1) State Key Laboratory of Tropical Oceanography, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China 2) Innovation Academy of South China Sea Ecology and Environmental Engineering, Chinese Academy of Sciences, Guangzhou 510301, China 3) Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou 511458, China 4) University of Chinese Academy of Sciences, Beijing 100049, China 5) School of Oceanography, Shanghai Jiao Tong University, Shanghai 200030, China 6) Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai 519080, China

    This study investigates the global performance of the tropical cyclone (TC) genesis potential index based on oceanic parameters (GPIocean) proposed by Zhang(2016). In six major TC formation basins, GPIoceancan represent the seasonal variations of TC genesis over most basins, except for the North Indian Ocean (NIO). The monthly climatological GPIoceanshows only a single peak in the NIO, which cannot describe the bimodal pattern of the annual cycle of TC genesis. To determine the cause of the poor performance of GPIoceanin the NIO, the relative contributions of different parameters related to GPIoceanare calculated and compared with those related to the genesis potential index developed by Emanuel and Nolan (2004) (GPI04). Results show that the net longwave radiation on the sea surface is responsible for the single peak of TC genesis in the NIO in boreal summer. Compared with GPI04, vertical wind shear is not involved in GPIocean. Vertical wind shear is the dominant factor inhibiting TC genesis in the NIO in boreal summer. Therefore, the absence of vertical wind shear in GPIoceanresults in the failure of the annual cycle of TC genesis in the NIO.

    North Indian Ocean; tropical cyclone; genesis potential index

    1 Introduction

    Tropical cyclones (TCs) are one of the most devastating natural disasters that are generated in the ocean. Because TC genesis largely depends on environmental conditions, it is of importance to understand the influence of large-scale environmental parameters on TC genesis. Gray (1967) identified six parameters that considerably influenced TC genesis, that is, i) low-level relative vorticity, ii) vertical shear of horizontal winds, iii) Coriolis parameter (at least a few degrees poleward of the equator), iv) sea surface temperature (SST) threshold (usually taken as 26℃), v) conditional instability through the air column, and vi) humidity in the lower and middle levels of the troposphere. To analyze the relationship between environmental para- meters and TC genesis quantitatively, Gray (1979) developed an empirical index for TC genesis. This index provides an empirical quantification of the relative contribu-tions of various environmental factors to TC genesis.

    Emanuel and Nolan (2004) developed a genesis potential index (referred to as GPI04 hereafter) by considering four parameters related to TC genesis, that is, potential intensity (PI), relative humidity, low-troposphere wind vorticity, and vertical wind shear. GPI04 is widely applied to analyze the variations of TC activity on multiple timescales for further use in conducting reanalysis and deriving model outputs (Camargo, 2007a, 2007b; Nolan, 2007; Vecchi and Soden, 2007; Camargo, 2009; Daloz and Camargo, 2018; Zhang, 2018). For example, Camargo(2007a) used the index to diagnose the effects of the El Ni?o-Southern Oscillation (ENSO) on cyclone genesis and found that GPI04 could reproduce the variations of the observed frequency and location of TC genesis in the global ocean during El Ni?o and La Ni?a. Some modifications have been made to improve GPI04 (Emanuel, 2010; Murakami and Wang, 2010; McGauley and Nolan, 2011; Tippett, 2011; Bruyère, 2012; Wang and Moon, 2017). Because vertical velocity is essential for TC genesis, it was added to GPI04 by Murakami and Wang (2010). Moreover, several studies defined different indices from GPI04 (Bye and Keay, 2008; Tang and Emanuel, 2012; Waters, 2012). For example, Wa- ters(2012) considered the importance of the phase of the Madden-Julian oscillation (MJO) and equatorial wave activity to medium-frequency to high-frequency tropical cyclogenesis variability. They developed metrics for medium-frequency to high-frequency (15-day base period) variability of environmental conditions and assessed its utility as a diagnostic index for TC genesis in the North Atlantic (NATL) main development region. The details of these indices are shown in Table 1. All of these modified indices facilitate studies of the environmental effects of TC genesis and help predict TC activity.

    The previously mentioned GPIs mainly considered the atmospheric parameters. The SST is usually the only parameter used to characterize ocean contribution as a heat source of TC genesis. Recently, several studies found that oceanic parameters, such as surface heat flux, mixed layer depth, upper ocean heat content, and ocean wave, rather than SST could significantly influence TC activities (Shay, 2000; Black, 2007; Wu, 2007; Price, 2009; Scoccimarro, 2011; Lee and Chen, 2012; Aijaz, 2017). Several general circulation models that combine the TC forecast system with three-dimensional ocean circulation models can make detailed forecasts of specific storms (Ginis, 2002; Bender, 2007; Chen, 2007; Dong, 2017; Balaguru, 2018). These studies showed the importance of oceanic parameters to TC activity (, intensity). Several researchers investigated the effect of oceanic factors on TC genesis according to the modified PI by changing the SST (Vechi and Soden, 2007; Lin, 2013). For example, Lin(2013) replaced the SST with the mean temperature in the pre-cyclone upper thermocline in the PI index, which improved its performance.

    Given the importance of oceanic parameters, Zhang(2016) took oceanic factors into account and defined a new GPI. Various oceanic factors have been selected as candidate factors on the basis of the physical understanding of the effects of oceanic factors on TCs, and several necessary atmospheric factors are also included. To better address the roles of the ocean, they considered the effects of the atmospheric parameters on the sea surface. Four parameters were used to define the new GPI (referred to as GPIoceanhereafter), including i) absolute vorticity at 1000 hPa, ii) net longwave radiation on the sea surface, iii) mean ocean temperature in the upper mixed layer, and iv) depth of the 26℃ isotherm. Compared with previous GPIs, GPIoceanconsiders the contributions of oceanic processes that reflect the roles of subsurface factors in TC genesis. GPIoceancan reproduce TC genesis in the Western North Pacific (WNP), which shows that oceanic factors have a statistically significant relationship with TC genesis (Zhang, 2016). GPIoceanprovides a quantitative tool that connects the subsurface oceanic environment and long-term variability of TC genesis.

    Table 1 Details of various indices

    Although GPIoceancan represent the seasonal and interannual variations and long-term variability of TC activities in the WNP (Zhang, 2016), its performance in the global ocean is still unknown. Therefore, the present study aims to evaluate GPIoceanin the global ocean with respect to the seasonal variations of TC genesis and investigate the possible causes of the poor performance of GPIocean.

    The remainder of this paper is organized as follows: Section 2 introduces the datasets and methods used in the study. Section 3 evaluates and compares the performance of GPIoceanin the global ocean with that of GPI04. Section 4 presents the conclusions and discussion.

    2 Datasets and Methods

    2.1 Datasets

    The monthly atmospheric variables (, wind vorticity, relative humidity, and vertical pressure velocity) and surface heat flux (, shortwave radiation, longwave radiation, and latent heat flux) are obtained from the Medium Range Weather Forecasts interim reanalysis (ERA-Interim reanalysis) with a resolution of 1? longitude×1? latitude (Dee, 2011). The monthly National Center for Environmental Prediction/National Center for Atmospheric Research reanalysis (Kalnay, 1996) is used to calculate GPI04 and GPIocean, which show similar results to those from the ERA-Interim reanalysis. The upward heat flux from the ocean to the atmosphere is determined to have a positive value. The monthly SST is obtained from the Met Office Hadley Center with a resolution of 1? longitude×1? latitude (Rayner, 2003). The mean ocean temperature is the EN4 quality-controlled ocean data (EN4.0.2) derived from the Hadley Center subsurface temperature and salinity objective analyses with a horizontal resolution of 1? longitude×1? latitude and a vertical resolution of approximately 1m apart at the top 100m of the ocean, 10m apart above 1500m depth, and 50m apart below that depth (Good, 2013). Global TC genesis data are obtained from the Joint Typhoon Warning Center. The analysis period is from 1979 to 2016 in the present study.

    2.2 Methods

    According to Zhang(2016), GPIoceancan be calculated as follows:

    ,(1)

    According to Emanuel and Nolan (2004), GPI04 can be calculated as follows:

    where8500is the absolute vorticity at 850hPa,shearis the magnitude of vertical wind shear between 850hPa and 200hPa and is calculated using the formula

    is the relative humidity at 600hPa,potis the maximum TC PI, andis set as 7.4×10?3.

    To investigate the contributions of various large-scale environmental factors to GPI04 and GPIocean, the method proposed by Li(2013) can be expressed as follows:

    where GPI denotes GPIoceanor GPI04,is the constant co- efficient in Eqs. (1) and (2) for GPIoceanor GPI04,

    whereas

    Applying the total differential to both sides of Eq. (3) yields the following expression:

    Integrating Eq. (4) from the annual mean to a particular month yields the following expression:

    where1,2,3, and4are assumed to be constant coefficients and expressed as follows:

    where the bar denotes the annual mean value and δdenotes the difference between an individual month and the annual mean in Eq. (5). The four terms on the right side of Eq. (5) denote the contributions of each environmental factor to GPI04 or GPIocean.

    3 Results

    3.1 Global Distribution of GPIocean

    The climatological GPIoceanand GPI04 during the period 1979–2016 are shown in Figs.1a and 1b, respectively

    TC mainly occurs in six basins, namely, North Indian Ocean (NIO; 5? to 15?N, 67? to 95?E), WNP (5? to 20?N, 130? to 150?E), eastern North Pacific (ENP; 10? to 20?N, 240? to 260?E), NATL (10? to 20?N, 310? to 340?E), south- ern Indian Ocean (SIO; 5? to 15?S, 55? to 100?E), and southwestern Pacific (SWP; 5? to 15?S, 150? to 180?E) (Fig.1c). In general, GPIoceanand GPI04 have high values inall of these well-known TC-prone regions (Figs.1a and 1b). Differences between the spatial distributions of GPIoceanand GPI04 are observed. GPIoceanshows maximum values along the Kuroshio and the Gulf Stream. The amplitude of GPIoceanin the ENP is less than that in the WNP, whereas the amplitude of GPI04 in these two basins is comparable. The center of GPIoceanin the SWP shifts eastward compared with that of GPI04. These two indices also perform differently along the coast of the South American continent. GPIoceanshows a positive value along the coast of the Pacific side because no TC genesis occurs in the region, whereas GPI04 does not show a significant positive value along the coast of the Pacific side. Along the coastal regions of the Atlantic side, the significant positive value of GPIoceancan represent the generation of three TCs, which cannot be represented by GPI04.

    To investigate the details of GPIocean, the annual cycles in six basins are individually examined. Consistent with the results of a previous study, the frequency of TC genesis in all basins shows a single peak, except for the NIO (Fig.2). The peaks of TC genesis in the WNP, ENP, and NATL occur in boreal summer and autumn (Figs.2b, 2c, and 2d), whereas the peaks of TC genesis in the SIO and WSP occur in boreal winter (Figs.2e and 2f). The frequency of TC genesis in the NIO has two peaks, that is, during the pre-monsoon (April–May) and post-monsoon (October–November) periods, and only a few TCs occur during the southwest monsoon period (June–September; Fig.2a). The annual cycles of GPI04 in six basins are consistent with those of TC genesis. GPIoceanshows a single peak in all basins. In the NIO, GPIoceanshows a peak in boreal summer and fails to represent the observed bimodal pattern of the annual cycle of TC genesis (Fig.2a). Therefore, we focus on the NIO.

    Fig.1 Global distribution of climatological (a) GPIocean, (b) GPI04, and (c) tropical cyclone (TC) genesis during the period 1979–2016. The black dots in (c) denote the locations of TC genesis, and the blue boxes represent the six major regions of TC genesis, namely, North Indian Ocean (NIO; 5? to 15?N, 67? to 95?E), western North Pacific (WNP; 5? to 20?N, 130? to 150?E), eastern North Pacific (ENP; 10? to 20?N, 240? to 260?E), North Atlantic (NATL; 10? to 20?N, 310? to 340?E), southern Indian Ocean (SIO; 5? to 15?S, 55? to 100?E), and southwestern Pacific (SWP; 5? to 15?S, 150? to 180?E). The map shown in this figure was generated bythe National Center for Atmospheric Research (NCAR) Command Language (Version 6.6.2) [Software] (2019). Boulder, Colorado: UCAR/NCAR/CISL/TDD. http://dx.doi.org/10.5065/D6WD3XH5.

    Fig.2 Annual cycle of GPIocean (blue curve), GPI04 (red curve), and TC genesis (gray bar) averaged in the (a) NIO, (b) WNP, (c) ENP, (d) NATL, (e) SIO, and (f) WSP regions during the period 1979–2016. The left y-axis denotes TC genesis, and the right y-axis denotes the GPIocean or GPI04 values.

    3.2 Cause of the Poor Performance of GPIocean in the NIO During the Summer Monsoon

    Fig.2a shows the failure of GPIoceamto depict the annual cycle of TC in the NIO. The spatial distributions of the climatological monthly GPIoceamin the NIO are investigated. Fig.3 shows that GPIoceanhas a high value in the northern Bay of Bengal and the Arabian Sea in boreal summer (June–September; Figs.3f to 3i). However, only a few TCs occur, particularly in July and August. TCs are usually generated in the region with high values of GPIoceamin the other months, indicating that GPIoceamcould represent the features of TC genesis in boreal autumn, winter, and spring.

    To determine why GPIoceancannot represent the bimodal pattern of the annual cycle of TC genesis in the NIO, the method proposed by Li(2013) is used to identify the relative contribution of each environmental factor to GPIocean. According to Eq. (7), Fig.4a shows the climatological monthly contributions of four environmental factors of GPIoceanand the sum of these four terms. The figure illustrates that the combined contributions of the four parameters are favorable for TC genesis in May–November, which is consistent with the results shown in Fig.2a. GPIoceanshows a peak during the summer monsoon (June–August), which is mostly controlled by the positive contribution of net longwave radiation on the sea surface. How- ever, only a few TCs occur in the NIO in boreal summer. This finding indicates that several important environmental factors influencing TC genesis in the NIO are missing in GPIocean.

    In contrast to GPIocean, GPI04 can represent the occurrence of only a few TCs in the NIO in boreal summer (Fig.2a), which helps in finding the missing environmental factor in GPIocean. The analysis of the individual contributions of the four parameters of GPI04 showed that a strong environmental vertical wind shear is unfavorable for TC genesis and can offset the positive contributions of relative humidity together with other environmental factors (Fig.4b). Vertical wind shear is not involved in GPIocean, thus resulting in the failure to reproduce the two peaks of TC genesis in the NIO in the seasonal cycle.

    Fig.3 Climatological monthly GPIocean in the NIO. The black dots denote individual genesis events during the period 1979–2016. The map shown in this figure was generated by the NCAR Command Language (Version 6.6.2) [Software] (2019). Boulder, Colorado: UCAR/NCAR/CISL/TDD. http://dx.doi.org/10.5065/D6WD3XH5.

    Fig.4 Climatological monthly contributions of each term of (a) GPIocean and (b) GPI04 in the NIO (denoted by a specified bar). The coefficients are,,, and .,,, and in (a), and ,, , and in (b). The red solid line denotes the value of δGPIocean and δGPI04 in (a) and (b), respectively.

    Previous studies showed that a strong environmental vertical wind shear is unfavorable for TC genesis and is the main reason for the suppression of TC genesis in the NIO during the summer monsoon (Gray, 1967; Camargo, 2007a; Evan and Camargo, 2011). Strong vertical wind shear suppresses TC genesis by ventilating the incipient disturbance with low-entropy (low-equivalent potential temperature) air (Tang and Emanuel, 2012). The environmental flow also advects dry air into the disturbance, disrupting the formation of a deep, moist column that is postulated to be imperative for genesis (Bister and Emanuel, 1997; Nolan, 2007). Li(2013) found that the vertical wind shear cap for TC genesis in the Bay of Bengal is approximately 24ms?1. Values larger than the cap inhibit TC formation. Although the maximum value of vertical wind shear is located at approximately 50? to 60?E, 10? to 20?N, the value over most parts of the NIO is larger than the cap, thus inhibiting TC genesis during the summer monsoon (Fig.5). This finding indicates that vertical wind shear plays a dominant role in TC genesis in the NIO. Because of the missing vertical wind shear, GPIoceanoverestimates the TC genesis in the NIO in boreal summer; thus, it cannot reproduce the two peaks in April–May and October–December.

    Fig.5 Climatological monthly vertical wind shear in the NIO from June to August during the period 1979–2016 (unit: ms?1). The solid black line denotes the isoline of 24ms?1.

    4 Discussion and Conclusions

    In previous studies, the atmospheric parameters are used to define GPIs to describe the spatial and temporal distri- butions of TCs. The roles of oceanic parameters in TC gen- esis are not considered, except for SST. However, more re- search showed that oceanic parameters in addition to SST play important roles in modulating TC activity (Shay, 2000; Ginis, 2002; Bender, 2007; Black, 2007; Chen, 2007; Wu, 2007; Halliwell Jr., 2008; Price, 2009; Scoccimarro, 2011; Lin, 2013). Thus, Zhang(2016) defined a new index (, GPIocean) on the basis of several oceanic parameters that significantly affect TC genesis.

    The present study investigated the global distribution of GPIocean. The results show that GPIoceancould represent the annual cycle of TC genesis in the global ocean, except for the NIO. GPIoceanshows a peak during the summer monsoon in the NIO, whereas only a few TCs occur. To determine why GPIoceanfails to represent the annual cycle of TC genesis in the NIO, the relative contribution of each factor to GPIoceanis calculated and addressed on the basis of the method proposed by Li(2013). The results show that the net longwave radiation on the sea surface is responsible for the false peak of TC genesis in the NIO in boreal summer, and the three other oceanic factors do not contribute to the false peak of TC genesis. Compared with GPI04, vertical wind shear is not involved in GPIocean. Vertical wind shear in the NIO in summer is strong because of the summer monsoon, which considerably inhibits TC genesis. Therefore, the absence of vertical wind shear in GPIoceanresults in the failure of the annual cycle of TC genesis in the NIO.

    Acknowledgements

    This research is supported by the Strategic Priority Research Program of the Chinese Academy of Sciences (No. XDA20060502), the National Key Research and Development Program of China (No. 2019YFA0606701), the National Natural Science Foundation of China (Nos. 41925024 and 41731173), the Pioneer Hundred Talents Program of the Chinese Academy of Sciences, the Leading Talents of Guangdong Province Program, Innovation Academy of South China Sea Ecology and Environmental Engineering, Chinese Academy of Sciences (No. ISEE2018PY06), and the Key Special Project for Introduced Talents Team of Southern Marine Science and Engineering Guangdong Lab- oratory (Guangzhou) (No. GML2019ZD0306).

    Aijaz, S., Ghantous, M., Babanin, A. V., Ginis, I., Thomas, B., and Wake, G., 2017. Nonbreaking wave-induced mixing in upper ocean during tropical cyclones using coupled hurricane- ocean-wave modeling., 122: 3939-3963, https://doi.org/10.1002/2016JC012219.

    Balaguru, K., Foltz, G. R., Leung, L. R., Hagos, S., and Judi, D. R., 2018. On the use of ocean dynamic temperature for hurricane intensity forecasting., 33 (2): 411-418, https://doi.org/10.1175/WAF-D-17-0143.1.

    Bender, M. A., Ginis, I., Tuleya, R., Thomas, B., and Marchok, T., 2007. The operational GFDL coupled hurricane-ocean prediction system and a summary of its performance.,135: 3965-3989,https://doi.org/10.1175/2007MWR2032.1.

    Bister, M., and Emanuel, K. A., 1997. The genesis of Hurricane Guillermo: TEXMEX analyses and a modeling study.,125: 2662-2682,https://doi.org/10.1175/1520-0493(1997)125<2662:TGOHGT>2.0.CO;2.

    Black, P. G., Dasaro, E. A., Drennan, W. M., French, J. R., Niiler, P. P., Sanford, T. B.,, 2007. Air-sea exchange in hurri- canes: Synthesis of observations from the coupled boundary layer air-sea transfer experiment., 88 (3): 357-374, https://doi.org/10.1175/BAMS-88-3-357.

    Bruyère, C. L., Holland, G. J., and Towler, E., 2012. Investigating the use of a genesis potential index for tropical cyclones in the North Atlantic Basin., 25: 8611-8626,https://doi.org/10.1175/JCLI-D-11-00619.1.

    Bye, J., and Keay, K., 2008. A new hurricane index for the Car- ibbean., 33: 556-560.

    Camargo, S. J., Emanuel, K. A., and Sobel, A. H., 2007a. Use of a genesis potential index to diagnose ENSO effects on tropicalcyclone genesis., 20: 4819-4834,https://doi.org/10.1175/JCLI4282.1.

    Camargo, S. J., Sobel, A. H., Barnston, A. G., and Emanuel, K. A., 2007b. Tropical cyclone genesis potential index in climate models., 59A: 428-443, https://doi.org/10.1111/j.1600-0870.2007.00238.x.

    Camargo, S. J., Wheeler, M. C., and Sobel, A. H., 2009. Diagno- sis of the MJO modulation of tropical cyclogenesis using an empirical index., 66: 3061-3074,https://doi.org/10.1175/2009JAS3101.1.

    Chen, S. S., Price, J. F., Zhao, W., Donelan, M. A., and Walsh, E. J., 2007. The CBLAST-Hurricane program and the next-gen- eration fully coupled atmosphere-wave-ocean models for hur- ricane research and prediction., 88: 311-318.

    Daloz, A. S., and Camargo, S. J., 2018. Is the poleward migration of tropical cyclone maximum intensity associated with a pole- ward migration of tropical cyclone genesis.,50 (1-2): 705-715, https://doi.org/10.1007/s00382-017-3636-7.

    Dee, D., Uppala, S., Simmons, A. J., Berrisford, P., Poli, P., Kobayashi, S.,, 2011. The ERA-interim reanalysis: Con- figuration and performance of the data assimilation system., 137 (656): 553-597, https://doi.org/10.1002/qj.828.

    Dong, J., Domingues, R., Goni, G., Halliwell, G. R., Kim, H., Lee, S.,, 2017. Impact of assimilating underwater glider data on Hurricane Gonzalo (2014) forecasts., 32 (3): 1143-1159, https://doi.org/10.1175/WAF- D-16-0182.1.

    Emanuel, K., 2010. Tropical cyclone activity downscaled from NOAA-CIRES reanalysis, 1908–1958.,2: 1-12, https://doi.org/10.3894/JAMES.2010.2.1.

    Emanuel, K., and Nolan, D. S., 2004. Tropical cyclone activity and the global climate system.. Miami, 240-241.

    Evan, A. T., and Camargo, S. J., 2011. A climatology of Arabian Sea cyclonic storms., 24: 140-158,https://doi.org/10.1175/2010JCLI3611.1.

    Ginis, I., 2002. Tropical cyclone-ocean interactions., 33: 83-114,https://doi.org/10.1145/3093338.3104149.

    Good, S. A., Martin, M. J., and Rayner, N. A., 2013. EN4: Quali- ty controlled ocean temperature and salinity profiles and month- ly objective analyses with uncertainty estimates.,118: 6704-6716,https://doi.org/10.1002/2013JC009067.

    Gray, W. M., 1967. Global view of the origin of tropical distur- bances and storms.,96 (10): 669-700,https://doi.org/10.1175/1520-0493(1968)096<0669:GVOTOO >2.0.CO;2.

    Gray, W. M., 1979. Hurricanes: Their formation, structure and likely role in the tropical circulation., 77: 155-218.

    Halliwell Jr., G. R., Shay, L. K., Jacob, S. D., Smedstad, O. M., and Uhlhorn, E. W., 2008. Improving ocean model initialization for coupled tropical cyclone forecast models using GOD- AE nowcasts., 136 (7): 2576-2591, https://doi.org/10.1175/2007MWR2154.1.

    Kalnay, E., Kanamitsu, M., Kistler, R., Collins, W. D., Deaven, D. G., Gandin, L. S.,, 1996. The NCEP/NCAR 40-year reanalysis project., 77: 437-472,https://doi.org/10.1175/1520-0477(1996)077<0437:TNYRP>2.0.CO;2.

    Lee, C.-Y., and Chen, S. S., 2012. Symmetric and asymmetric structures of hurricane boundary layer in coupled atmosphere-wave-ocean models and observations., 69 (12): 3576-3594, https://doi.org/10.1175/JAS-D-12-046.1.

    Li, Z., Yu, W., Li, T., Murty, V. S. N., and Tangang, F., 2013. Bimodal character of cyclone climatology in the Bay of Bengal modulated by monsoon seasonal cycle., 26: 1033-1046, https://doi.org/10.1175/JCLI-D-11-00627.1.

    Lin, I. I., Black, P. G., Price, J. F., Yang, C., Chen, S. S., Lien, C.,, 2013. An ocean coupling potential intensity index for tropical cyclones., 40: 1878-1882,https://doi.org/10.1002/grl.50091.

    McGauley, M. G., and Nolan, D. S., 2011. Measuring environ- mental favorability for tropical cyclogenesis by statistical anal- ysis of threshold parameters., 24: 5968-5997,https://doi.org/10.1175/2011JCLI4176.1.

    Murakami, H., and Wang, B., 2010. Future change of North Atlantic tropical cyclone tracks: Projection by a 20-km-mesh global atmospheric model., 23: 2699-2721,https://doi.org/10.1175/2010JCLI3338.1.

    Nolan, D. S., 2007. What is the trigger for tropical cyclogenesis?, 56 (4): 241-266.

    Nolan, D. S., Rappin, E. D., and Emanuel, K. A., 2007. Tropical cyclogenesis sensitivity to environmental parameters in radi- ative-convective equilibrium.,133: 2085-2107,https://doi.org/10.1002/qj.170.

    Price, J. F., 2009. Metrics of hurricane-ocean interaction: Ver- tically-integrated or vertically-averaged ocean temperature?, 5: 351-368, https://doi.org/10.5194/os-5-351-2009.

    Rayner, N. A., Parker, D. E., Horton, E. B., Folland, C. K., Alexander, L. V., Rowell, D. P.,, 2003. Global analyses of sea surface temperature, sea ice, and night marine air tem- perature since the late nineteenth century., 108 (D14): 4407, https://doi.org/10.1029/2002JD002670.

    Scoccimarro, E., Gualdi, S., Bellucci, A., Sanna, A., Fogli, P. G., Manzini, E.,, 2011. Effects of tropical cyclones on ocean heat transport in a high-resolution coupled general circulation model., 24 (16): 4368-4384, https://doi.org/10.1175/2011JCLI4104.1.

    Shay, L. K., Goni, G. J., and Black, P. G., 2000. Effects of a warm oceanic feature on Hurricane Opal.,128: 1366-1383, https://doi.org/10.1175/1520-0493(2000)128<1366:EOAWOF>2.0.CO;2.

    Tang, B., and Emanuel, K., 2012. A ventilation index for tropical cyclones., 93: 1901-1912,https://doi.org/10.1175/BAMS-D-11-00165.1.

    Tippett, M. K., Camargo, S. J., and Sobel, A. H., 2011. A Poisson regression index for tropical cyclone genesis and the role of large-scale vorticity in genesis., 24: 2335-2357,https://doi.org/10.1175/2010JCLI3811.1.

    Vecchi, G. A., and Soden, B. J., 2007. Increased tropical Atlantic wind shear in model projections of global warming., 34: L08702, https://doi.org/10.1029/2006GL028905.

    Wang, B., and Moon, J., 2017. An anomalous genesis potential index for MJO modulation of tropical cyclones., 30 (11): 4021-4035,https://doi.org/10.1175/jcli-d-16-0749.1.

    Waters, J. J., Evans, J. L., and Forest, C. E., 2012. Large-scale diagnostics of tropical cyclogenesis potential using environ- ment variability metrics and logistic regression models.,25: 6092-6107,https://doi.org/10.1175/JCLI-D-11-00359.1.

    Wu, C. C., Lee, C. Y., and Lin, I. I., 2007. The effect of the ocean eddy on tropical cyclone intensity.,64: 3562-3578,https://doi.org/10.1175/JAS4051.1.

    Zhang, M., Zhou, L., Chen, D., and Wang, C., 2016. A genesis potential index for western North Pacific tropical cyclones by using oceanic parameters.,121: 6762-6778,https://doi.org/10.1002/2016JC011851.

    Zhang, W., Villarini, G., Vecchi, G. A., and Murakami, H., 2018. Impacts of the Pacific Meridional Mode on landfalling North Atlantic tropical cyclones., 50 (3): 991-1006,https://doi.org/10.1007/s00382-017-3656-3.

    June 17, 2020;

    July 7, 2020;

    July 19, 2020

    ? Ocean University of China, Science Press and Springer-Verlag GmbH Germany 2021

    . Tel: 0086-20-34134191 E-mail: wangxin@scsio.ac.cn

    (Edited by Xie Jun)

    老司机亚洲免费影院| 亚洲七黄色美女视频| 久久香蕉激情| 免费在线观看日本一区| 丝袜在线中文字幕| 日本精品一区二区三区蜜桃| 欧美乱妇无乱码| 欧洲精品卡2卡3卡4卡5卡区| 亚洲午夜精品一区,二区,三区| 久久国产乱子伦精品免费另类| 亚洲av日韩精品久久久久久密| 午夜福利一区二区在线看| 色综合站精品国产| 麻豆国产av国片精品| 成人18禁高潮啪啪吃奶动态图| 欧美人与性动交α欧美软件| 亚洲国产精品sss在线观看 | 欧美最黄视频在线播放免费 | 日本免费a在线| 久久这里只有精品19| 免费观看精品视频网站| ponron亚洲| www.999成人在线观看| 又大又爽又粗| 两个人看的免费小视频| 久久精品91蜜桃| 少妇被粗大的猛进出69影院| 日韩大码丰满熟妇| 亚洲情色 制服丝袜| 老司机在亚洲福利影院| 国产野战对白在线观看| 亚洲av第一区精品v没综合| 欧美丝袜亚洲另类 | 午夜免费成人在线视频| 香蕉丝袜av| 老司机午夜十八禁免费视频| 我的亚洲天堂| 男女下面进入的视频免费午夜 | 亚洲国产精品sss在线观看 | 老司机深夜福利视频在线观看| 国产91精品成人一区二区三区| 中亚洲国语对白在线视频| 美女扒开内裤让男人捅视频| 九色亚洲精品在线播放| 在线永久观看黄色视频| 大香蕉久久成人网| 成人18禁高潮啪啪吃奶动态图| 搡老乐熟女国产| 亚洲欧美日韩另类电影网站| 88av欧美| 视频区图区小说| 麻豆一二三区av精品| 国产欧美日韩一区二区三区在线| 久久久久久大精品| 国产精品亚洲av一区麻豆| 香蕉久久夜色| 天天躁狠狠躁夜夜躁狠狠躁| 精品福利永久在线观看| 欧美大码av| 成人特级黄色片久久久久久久| 1024香蕉在线观看| 69精品国产乱码久久久| 在线观看免费高清a一片| 天天躁夜夜躁狠狠躁躁| 天堂中文最新版在线下载| 国产精品亚洲av一区麻豆| 亚洲自偷自拍图片 自拍| 亚洲成人精品中文字幕电影 | 成人精品一区二区免费| 亚洲成人免费av在线播放| 极品教师在线免费播放| 欧美另类亚洲清纯唯美| 精品国产超薄肉色丝袜足j| 日韩欧美三级三区| 别揉我奶头~嗯~啊~动态视频| 国产99久久九九免费精品| 999精品在线视频| 十八禁网站免费在线| 真人一进一出gif抽搐免费| 一级毛片女人18水好多| 99国产极品粉嫩在线观看| 免费高清在线观看日韩| 亚洲国产中文字幕在线视频| 热re99久久精品国产66热6| 国产精品二区激情视频| bbb黄色大片| 成年女人毛片免费观看观看9| 精品国产国语对白av| 侵犯人妻中文字幕一二三四区| 色在线成人网| 久久久久国内视频| 窝窝影院91人妻| 久久人人97超碰香蕉20202| 成人亚洲精品一区在线观看| 大码成人一级视频| 夜夜看夜夜爽夜夜摸 | 欧洲精品卡2卡3卡4卡5卡区| 黄色 视频免费看| 国产一区二区激情短视频| 国产成人av教育| 精品久久久精品久久久| 一级a爱片免费观看的视频| 99国产精品一区二区蜜桃av| 91老司机精品| 自线自在国产av| 俄罗斯特黄特色一大片| 亚洲第一欧美日韩一区二区三区| 午夜两性在线视频| 99在线人妻在线中文字幕| 久99久视频精品免费| 中文字幕高清在线视频| 午夜福利欧美成人| 久久性视频一级片| 精品久久久精品久久久| 精品国产一区二区三区四区第35| 国产精品成人在线| 国产成+人综合+亚洲专区| 99re在线观看精品视频| 国产精华一区二区三区| 国产99久久九九免费精品| 国产深夜福利视频在线观看| 啪啪无遮挡十八禁网站| 淫妇啪啪啪对白视频| 天天躁夜夜躁狠狠躁躁| 夜夜爽天天搞| 99国产精品99久久久久| 男女做爰动态图高潮gif福利片 | 亚洲欧美精品综合久久99| 国产乱人伦免费视频| 免费在线观看完整版高清| 69精品国产乱码久久久| 国产精品国产高清国产av| 亚洲视频免费观看视频| 日本撒尿小便嘘嘘汇集6| 91成人精品电影| 亚洲一码二码三码区别大吗| 免费在线观看日本一区| 午夜免费成人在线视频| 十八禁人妻一区二区| 免费在线观看日本一区| 国产不卡一卡二| 久久久久国内视频| 韩国av一区二区三区四区| 免费少妇av软件| 99riav亚洲国产免费| 国产99久久九九免费精品| 亚洲少妇的诱惑av| 午夜福利在线观看吧| 黄色a级毛片大全视频| 嫩草影视91久久| 在线看a的网站| 正在播放国产对白刺激| 女人高潮潮喷娇喘18禁视频| 69av精品久久久久久| 丰满迷人的少妇在线观看| 天天躁夜夜躁狠狠躁躁| 麻豆av在线久日| 丁香六月欧美| 少妇被粗大的猛进出69影院| 日韩一卡2卡3卡4卡2021年| 亚洲专区字幕在线| 欧美黑人欧美精品刺激| 国产麻豆69| 久久久久国产精品人妻aⅴ院| 1024香蕉在线观看| 免费不卡黄色视频| 又紧又爽又黄一区二区| 成在线人永久免费视频| 最近最新中文字幕大全电影3 | 免费一级毛片在线播放高清视频 | 久久99一区二区三区| 成人影院久久| 久久国产乱子伦精品免费另类| 视频在线观看一区二区三区| 亚洲欧美一区二区三区久久| 欧美老熟妇乱子伦牲交| 少妇的丰满在线观看| 一级黄色大片毛片| 亚洲九九香蕉| 50天的宝宝边吃奶边哭怎么回事| av欧美777| 欧美色视频一区免费| av电影中文网址| 另类亚洲欧美激情| 欧美丝袜亚洲另类 | 午夜福利,免费看| 久久这里只有精品19| 欧美精品亚洲一区二区| 欧美日韩亚洲综合一区二区三区_| 欧美中文综合在线视频| 亚洲伊人色综图| 在线观看免费视频日本深夜| 叶爱在线成人免费视频播放| 看免费av毛片| 久久狼人影院| 最近最新中文字幕大全免费视频| 在线av久久热| 久久精品aⅴ一区二区三区四区| 久久人人精品亚洲av| www.999成人在线观看| 在线观看午夜福利视频| 亚洲欧美精品综合久久99| 色婷婷久久久亚洲欧美| 亚洲成人免费av在线播放| 免费观看人在逋| 亚洲精品国产一区二区精华液| 激情在线观看视频在线高清| 精品国产一区二区三区四区第35| av网站免费在线观看视频| 免费av中文字幕在线| 一级黄色大片毛片| 亚洲男人天堂网一区| 欧美日韩视频精品一区| 窝窝影院91人妻| 乱人伦中国视频| 亚洲性夜色夜夜综合| 少妇的丰满在线观看| 欧美乱色亚洲激情| 午夜福利欧美成人| 啪啪无遮挡十八禁网站| 国产av一区在线观看免费| 又黄又粗又硬又大视频| 在线视频色国产色| 免费女性裸体啪啪无遮挡网站| 午夜亚洲福利在线播放| 久久精品91无色码中文字幕| 两性夫妻黄色片| 国产精品秋霞免费鲁丝片| 老司机福利观看| av天堂久久9| 免费一级毛片在线播放高清视频 | 亚洲人成电影观看| av福利片在线| 久久久久久亚洲精品国产蜜桃av| 熟女少妇亚洲综合色aaa.| 色婷婷久久久亚洲欧美| 欧美日本亚洲视频在线播放| 免费高清在线观看日韩| 国产亚洲欧美98| 精品国产国语对白av| 免费看a级黄色片| 露出奶头的视频| e午夜精品久久久久久久| 亚洲中文日韩欧美视频| 女人高潮潮喷娇喘18禁视频| 日本免费a在线| 法律面前人人平等表现在哪些方面| 一二三四在线观看免费中文在| 久热这里只有精品99| 麻豆av在线久日| xxx96com| 老司机靠b影院| videosex国产| 免费在线观看亚洲国产| 一本大道久久a久久精品| 日韩欧美一区视频在线观看| 又大又爽又粗| 看免费av毛片| 久久精品91蜜桃| 一进一出好大好爽视频| 自拍欧美九色日韩亚洲蝌蚪91| 女人被躁到高潮嗷嗷叫费观| 中国美女看黄片| 成人永久免费在线观看视频| 久久久久久大精品| 免费观看精品视频网站| 欧美激情 高清一区二区三区| 亚洲一区高清亚洲精品| 午夜免费成人在线视频| 黄色片一级片一级黄色片| 亚洲中文字幕日韩| 亚洲一码二码三码区别大吗| 两性午夜刺激爽爽歪歪视频在线观看 | 亚洲欧美激情综合另类| 亚洲成人久久性| 一级片免费观看大全| 91在线观看av| 亚洲av日韩精品久久久久久密| 两个人看的免费小视频| 久久精品国产清高在天天线| 欧美中文综合在线视频| 身体一侧抽搐| 国产精品av久久久久免费| 欧美日韩乱码在线| 99国产综合亚洲精品| 99精品久久久久人妻精品| 中文字幕高清在线视频| 久久久久亚洲av毛片大全| 91成年电影在线观看| 久久久国产成人精品二区 | 美女高潮到喷水免费观看| 国产成人一区二区三区免费视频网站| 久久久久久久久中文| 精品电影一区二区在线| 女生性感内裤真人,穿戴方法视频| 亚洲一卡2卡3卡4卡5卡精品中文| netflix在线观看网站| 日韩 欧美 亚洲 中文字幕| 中国美女看黄片| 窝窝影院91人妻| 久久人人精品亚洲av| 午夜福利在线观看吧| 欧美最黄视频在线播放免费 | 免费观看人在逋| 久久久久精品国产欧美久久久| 麻豆久久精品国产亚洲av | 亚洲专区字幕在线| 国产精品久久久人人做人人爽| 嫁个100分男人电影在线观看| 中文字幕高清在线视频| 国产不卡一卡二| e午夜精品久久久久久久| 日本免费一区二区三区高清不卡 | 91老司机精品| 午夜免费观看网址| 国产aⅴ精品一区二区三区波| 国产一区在线观看成人免费| 成人三级做爰电影| 在线观看一区二区三区激情| 欧美中文日本在线观看视频| 91字幕亚洲| 国产av又大| 少妇 在线观看| 国产成人精品无人区| 在线观看舔阴道视频| 久久久国产精品麻豆| 人妻丰满熟妇av一区二区三区| 他把我摸到了高潮在线观看| 久久久久精品国产欧美久久久| 一区福利在线观看| 国产精品 欧美亚洲| 啦啦啦免费观看视频1| 免费不卡黄色视频| 村上凉子中文字幕在线| e午夜精品久久久久久久| www.自偷自拍.com| 精品一区二区三区四区五区乱码| 99国产极品粉嫩在线观看| 国产欧美日韩综合在线一区二区| 成人国产一区最新在线观看| 亚洲人成伊人成综合网2020| 黑人巨大精品欧美一区二区蜜桃| 性少妇av在线| 精品久久久久久,| 性少妇av在线| 天天躁狠狠躁夜夜躁狠狠躁| www国产在线视频色| 村上凉子中文字幕在线| www国产在线视频色| 久久人人精品亚洲av| 操美女的视频在线观看| 久久人人精品亚洲av| 国产亚洲欧美98| 亚洲精品一区av在线观看| 精品国产一区二区久久| 新久久久久国产一级毛片| 亚洲人成伊人成综合网2020| 午夜影院日韩av| e午夜精品久久久久久久| 亚洲av成人不卡在线观看播放网| aaaaa片日本免费| 日韩精品青青久久久久久| 99热国产这里只有精品6| 黄色 视频免费看| 久9热在线精品视频| 妹子高潮喷水视频| 波多野结衣一区麻豆| 欧美日韩黄片免| 黄片大片在线免费观看| 超碰97精品在线观看| 亚洲色图 男人天堂 中文字幕| 天堂俺去俺来也www色官网| 亚洲人成电影观看| 999久久久精品免费观看国产| 欧美乱妇无乱码| 亚洲一区二区三区色噜噜 | 少妇 在线观看| 在线观看午夜福利视频| 国产一区二区三区视频了| 制服诱惑二区| 成人国产一区最新在线观看| 久久久久久亚洲精品国产蜜桃av| 免费少妇av软件| 高清av免费在线| 美女午夜性视频免费| 精品日产1卡2卡| 巨乳人妻的诱惑在线观看| 国产亚洲欧美精品永久| 在线永久观看黄色视频| 久久久久久久久免费视频了| 黄色视频不卡| 91在线观看av| 国产成人精品久久二区二区91| 亚洲自偷自拍图片 自拍| 最近最新中文字幕大全免费视频| 一二三四在线观看免费中文在| 麻豆av在线久日| 亚洲熟女毛片儿| 男人的好看免费观看在线视频 | 免费在线观看亚洲国产| 天天躁狠狠躁夜夜躁狠狠躁| 国产精品久久电影中文字幕| a级片在线免费高清观看视频| 国产aⅴ精品一区二区三区波| 宅男免费午夜| 欧美久久黑人一区二区| 国产三级黄色录像| 无限看片的www在线观看| 久久人妻熟女aⅴ| 不卡av一区二区三区| 高清黄色对白视频在线免费看| 欧美日韩精品网址| 久久性视频一级片| 成人国产一区最新在线观看| 久久九九热精品免费| 国产乱人伦免费视频| 女人爽到高潮嗷嗷叫在线视频| 一a级毛片在线观看| www.www免费av| 久久久久国产精品人妻aⅴ院| 天堂√8在线中文| 国产激情久久老熟女| 国产精品综合久久久久久久免费 | 欧美日本亚洲视频在线播放| 国产精品久久久久久人妻精品电影| 91精品国产国语对白视频| 日韩欧美三级三区| √禁漫天堂资源中文www| 久久国产乱子伦精品免费另类| 免费在线观看黄色视频的| 亚洲欧美精品综合一区二区三区| 丝袜美腿诱惑在线| 国产99久久九九免费精品| 国产一卡二卡三卡精品| 欧美日韩亚洲国产一区二区在线观看| 日韩欧美国产一区二区入口| 欧美精品一区二区免费开放| 少妇 在线观看| 国产成人精品久久二区二区91| av电影中文网址| 成人亚洲精品一区在线观看| 人人妻人人添人人爽欧美一区卜| 女生性感内裤真人,穿戴方法视频| 亚洲欧美一区二区三区久久| 免费人成视频x8x8入口观看| 国产99白浆流出| 热99re8久久精品国产| 涩涩av久久男人的天堂| 亚洲国产中文字幕在线视频| 国产精品一区二区三区四区久久 | 亚洲人成电影免费在线| 亚洲国产毛片av蜜桃av| av天堂久久9| 国产精品九九99| 国产成+人综合+亚洲专区| 母亲3免费完整高清在线观看| 无遮挡黄片免费观看| x7x7x7水蜜桃| av在线播放免费不卡| 最新美女视频免费是黄的| 亚洲精品国产精品久久久不卡| 咕卡用的链子| 中亚洲国语对白在线视频| 欧美日韩黄片免| 老司机午夜十八禁免费视频| 一区福利在线观看| xxxhd国产人妻xxx| 少妇裸体淫交视频免费看高清 | 午夜亚洲福利在线播放| 女同久久另类99精品国产91| 国产国语露脸激情在线看| 搡老岳熟女国产| 制服人妻中文乱码| 五月开心婷婷网| 热99国产精品久久久久久7| 视频在线观看一区二区三区| 天天躁夜夜躁狠狠躁躁| 国产亚洲欧美精品永久| 一二三四社区在线视频社区8| 韩国av一区二区三区四区| 啪啪无遮挡十八禁网站| 每晚都被弄得嗷嗷叫到高潮| 性欧美人与动物交配| 亚洲视频免费观看视频| 看黄色毛片网站| 69av精品久久久久久| 999久久久精品免费观看国产| 免费在线观看亚洲国产| 国产av一区二区精品久久| 99精品在免费线老司机午夜| 日本a在线网址| 丰满饥渴人妻一区二区三| x7x7x7水蜜桃| 国产蜜桃级精品一区二区三区| 国产99久久九九免费精品| 国产亚洲精品久久久久5区| 国产亚洲av高清不卡| 热99re8久久精品国产| 久久狼人影院| 国产激情欧美一区二区| 国产成人精品久久二区二区91| 热re99久久精品国产66热6| av片东京热男人的天堂| 亚洲视频免费观看视频| 亚洲午夜理论影院| 国产黄色免费在线视频| 99国产极品粉嫩在线观看| 日本三级黄在线观看| 国产一区二区激情短视频| 757午夜福利合集在线观看| 成年人黄色毛片网站| 色在线成人网| 国产精品一区二区免费欧美| 日韩欧美免费精品| 精品一区二区三区视频在线观看免费 | 免费观看精品视频网站| 狠狠狠狠99中文字幕| 国产99白浆流出| 久久久国产成人精品二区 | 欧美乱码精品一区二区三区| 99riav亚洲国产免费| 韩国精品一区二区三区| 男女高潮啪啪啪动态图| 午夜福利在线免费观看网站| 精品少妇一区二区三区视频日本电影| 免费在线观看亚洲国产| 午夜免费观看网址| 好看av亚洲va欧美ⅴa在| 视频在线观看一区二区三区| 99国产极品粉嫩在线观看| 国产片内射在线| videosex国产| 在线观看66精品国产| 久久这里只有精品19| 少妇被粗大的猛进出69影院| 国产亚洲精品综合一区在线观看 | www.自偷自拍.com| 在线播放国产精品三级| 国产精品自产拍在线观看55亚洲| 国产亚洲精品久久久久久毛片| 99久久精品国产亚洲精品| 国产欧美日韩一区二区三| 欧美日韩国产mv在线观看视频| 午夜福利在线观看吧| 婷婷精品国产亚洲av在线| av天堂久久9| 99国产综合亚洲精品| 一区二区三区激情视频| 狂野欧美激情性xxxx| 十八禁网站免费在线| 岛国在线观看网站| 18禁黄网站禁片午夜丰满| 黄色女人牲交| 精品久久久精品久久久| 中文欧美无线码| 巨乳人妻的诱惑在线观看| 国产精品电影一区二区三区| 99国产精品一区二区蜜桃av| 91字幕亚洲| 国产高清videossex| 久久久精品欧美日韩精品| 亚洲中文字幕日韩| 中出人妻视频一区二区| 成年人免费黄色播放视频| 国产乱人伦免费视频| 免费在线观看亚洲国产| 亚洲av美国av| 亚洲va日本ⅴa欧美va伊人久久| 国产欧美日韩一区二区精品| avwww免费| 99国产精品99久久久久| 18禁裸乳无遮挡免费网站照片 | 亚洲一区中文字幕在线| 国产极品粉嫩免费观看在线| 午夜免费观看网址| 超碰成人久久| 国产欧美日韩综合在线一区二区| 精品国产美女av久久久久小说| 在线观看舔阴道视频| 香蕉国产在线看| 搡老岳熟女国产| 看片在线看免费视频| 色精品久久人妻99蜜桃| 久久人人精品亚洲av| xxxhd国产人妻xxx| av超薄肉色丝袜交足视频| 精品人妻1区二区| 夜夜躁狠狠躁天天躁| 啪啪无遮挡十八禁网站| 女人高潮潮喷娇喘18禁视频| 黄色怎么调成土黄色| 亚洲国产欧美一区二区综合| 国产亚洲精品第一综合不卡| 免费观看精品视频网站| 一级,二级,三级黄色视频| 久久久国产欧美日韩av| 一级毛片精品| 免费看十八禁软件| 丁香欧美五月| 亚洲中文日韩欧美视频| 久久性视频一级片| av欧美777| av电影中文网址| 在线观看日韩欧美| 国产免费av片在线观看野外av| 欧美乱色亚洲激情| 操出白浆在线播放| 他把我摸到了高潮在线观看| 超碰成人久久| 国产成人一区二区三区免费视频网站| 99热只有精品国产| 老司机在亚洲福利影院| 色婷婷av一区二区三区视频| 亚洲精品美女久久av网站| 亚洲精品成人av观看孕妇|