• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Climatological and Seasonal Variations of the Tropical Cyclone Genesis Potential Index Based on Oceanic Parameters in the Global Ocean

    2021-12-22 11:37:06PANLixiaWANGXinZHOULeiandWANGChunzai
    Journal of Ocean University of China 2021年6期

    PAN Lixia, WANG Xin, ZHOU Lei, and WANG Chunzai

    Climatological and Seasonal Variations of the Tropical Cyclone Genesis Potential Index Based on Oceanic Parameters in the Global Ocean

    PAN Lixia1), 4), WANG Xin1), 2), 3), *, ZHOU Lei5), 6), and WANG Chunzai1), 2), 3)

    1) State Key Laboratory of Tropical Oceanography, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China 2) Innovation Academy of South China Sea Ecology and Environmental Engineering, Chinese Academy of Sciences, Guangzhou 510301, China 3) Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou 511458, China 4) University of Chinese Academy of Sciences, Beijing 100049, China 5) School of Oceanography, Shanghai Jiao Tong University, Shanghai 200030, China 6) Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai 519080, China

    This study investigates the global performance of the tropical cyclone (TC) genesis potential index based on oceanic parameters (GPIocean) proposed by Zhang(2016). In six major TC formation basins, GPIoceancan represent the seasonal variations of TC genesis over most basins, except for the North Indian Ocean (NIO). The monthly climatological GPIoceanshows only a single peak in the NIO, which cannot describe the bimodal pattern of the annual cycle of TC genesis. To determine the cause of the poor performance of GPIoceanin the NIO, the relative contributions of different parameters related to GPIoceanare calculated and compared with those related to the genesis potential index developed by Emanuel and Nolan (2004) (GPI04). Results show that the net longwave radiation on the sea surface is responsible for the single peak of TC genesis in the NIO in boreal summer. Compared with GPI04, vertical wind shear is not involved in GPIocean. Vertical wind shear is the dominant factor inhibiting TC genesis in the NIO in boreal summer. Therefore, the absence of vertical wind shear in GPIoceanresults in the failure of the annual cycle of TC genesis in the NIO.

    North Indian Ocean; tropical cyclone; genesis potential index

    1 Introduction

    Tropical cyclones (TCs) are one of the most devastating natural disasters that are generated in the ocean. Because TC genesis largely depends on environmental conditions, it is of importance to understand the influence of large-scale environmental parameters on TC genesis. Gray (1967) identified six parameters that considerably influenced TC genesis, that is, i) low-level relative vorticity, ii) vertical shear of horizontal winds, iii) Coriolis parameter (at least a few degrees poleward of the equator), iv) sea surface temperature (SST) threshold (usually taken as 26℃), v) conditional instability through the air column, and vi) humidity in the lower and middle levels of the troposphere. To analyze the relationship between environmental para- meters and TC genesis quantitatively, Gray (1979) developed an empirical index for TC genesis. This index provides an empirical quantification of the relative contribu-tions of various environmental factors to TC genesis.

    Emanuel and Nolan (2004) developed a genesis potential index (referred to as GPI04 hereafter) by considering four parameters related to TC genesis, that is, potential intensity (PI), relative humidity, low-troposphere wind vorticity, and vertical wind shear. GPI04 is widely applied to analyze the variations of TC activity on multiple timescales for further use in conducting reanalysis and deriving model outputs (Camargo, 2007a, 2007b; Nolan, 2007; Vecchi and Soden, 2007; Camargo, 2009; Daloz and Camargo, 2018; Zhang, 2018). For example, Camargo(2007a) used the index to diagnose the effects of the El Ni?o-Southern Oscillation (ENSO) on cyclone genesis and found that GPI04 could reproduce the variations of the observed frequency and location of TC genesis in the global ocean during El Ni?o and La Ni?a. Some modifications have been made to improve GPI04 (Emanuel, 2010; Murakami and Wang, 2010; McGauley and Nolan, 2011; Tippett, 2011; Bruyère, 2012; Wang and Moon, 2017). Because vertical velocity is essential for TC genesis, it was added to GPI04 by Murakami and Wang (2010). Moreover, several studies defined different indices from GPI04 (Bye and Keay, 2008; Tang and Emanuel, 2012; Waters, 2012). For example, Wa- ters(2012) considered the importance of the phase of the Madden-Julian oscillation (MJO) and equatorial wave activity to medium-frequency to high-frequency tropical cyclogenesis variability. They developed metrics for medium-frequency to high-frequency (15-day base period) variability of environmental conditions and assessed its utility as a diagnostic index for TC genesis in the North Atlantic (NATL) main development region. The details of these indices are shown in Table 1. All of these modified indices facilitate studies of the environmental effects of TC genesis and help predict TC activity.

    The previously mentioned GPIs mainly considered the atmospheric parameters. The SST is usually the only parameter used to characterize ocean contribution as a heat source of TC genesis. Recently, several studies found that oceanic parameters, such as surface heat flux, mixed layer depth, upper ocean heat content, and ocean wave, rather than SST could significantly influence TC activities (Shay, 2000; Black, 2007; Wu, 2007; Price, 2009; Scoccimarro, 2011; Lee and Chen, 2012; Aijaz, 2017). Several general circulation models that combine the TC forecast system with three-dimensional ocean circulation models can make detailed forecasts of specific storms (Ginis, 2002; Bender, 2007; Chen, 2007; Dong, 2017; Balaguru, 2018). These studies showed the importance of oceanic parameters to TC activity (, intensity). Several researchers investigated the effect of oceanic factors on TC genesis according to the modified PI by changing the SST (Vechi and Soden, 2007; Lin, 2013). For example, Lin(2013) replaced the SST with the mean temperature in the pre-cyclone upper thermocline in the PI index, which improved its performance.

    Given the importance of oceanic parameters, Zhang(2016) took oceanic factors into account and defined a new GPI. Various oceanic factors have been selected as candidate factors on the basis of the physical understanding of the effects of oceanic factors on TCs, and several necessary atmospheric factors are also included. To better address the roles of the ocean, they considered the effects of the atmospheric parameters on the sea surface. Four parameters were used to define the new GPI (referred to as GPIoceanhereafter), including i) absolute vorticity at 1000 hPa, ii) net longwave radiation on the sea surface, iii) mean ocean temperature in the upper mixed layer, and iv) depth of the 26℃ isotherm. Compared with previous GPIs, GPIoceanconsiders the contributions of oceanic processes that reflect the roles of subsurface factors in TC genesis. GPIoceancan reproduce TC genesis in the Western North Pacific (WNP), which shows that oceanic factors have a statistically significant relationship with TC genesis (Zhang, 2016). GPIoceanprovides a quantitative tool that connects the subsurface oceanic environment and long-term variability of TC genesis.

    Table 1 Details of various indices

    Although GPIoceancan represent the seasonal and interannual variations and long-term variability of TC activities in the WNP (Zhang, 2016), its performance in the global ocean is still unknown. Therefore, the present study aims to evaluate GPIoceanin the global ocean with respect to the seasonal variations of TC genesis and investigate the possible causes of the poor performance of GPIocean.

    The remainder of this paper is organized as follows: Section 2 introduces the datasets and methods used in the study. Section 3 evaluates and compares the performance of GPIoceanin the global ocean with that of GPI04. Section 4 presents the conclusions and discussion.

    2 Datasets and Methods

    2.1 Datasets

    The monthly atmospheric variables (, wind vorticity, relative humidity, and vertical pressure velocity) and surface heat flux (, shortwave radiation, longwave radiation, and latent heat flux) are obtained from the Medium Range Weather Forecasts interim reanalysis (ERA-Interim reanalysis) with a resolution of 1? longitude×1? latitude (Dee, 2011). The monthly National Center for Environmental Prediction/National Center for Atmospheric Research reanalysis (Kalnay, 1996) is used to calculate GPI04 and GPIocean, which show similar results to those from the ERA-Interim reanalysis. The upward heat flux from the ocean to the atmosphere is determined to have a positive value. The monthly SST is obtained from the Met Office Hadley Center with a resolution of 1? longitude×1? latitude (Rayner, 2003). The mean ocean temperature is the EN4 quality-controlled ocean data (EN4.0.2) derived from the Hadley Center subsurface temperature and salinity objective analyses with a horizontal resolution of 1? longitude×1? latitude and a vertical resolution of approximately 1m apart at the top 100m of the ocean, 10m apart above 1500m depth, and 50m apart below that depth (Good, 2013). Global TC genesis data are obtained from the Joint Typhoon Warning Center. The analysis period is from 1979 to 2016 in the present study.

    2.2 Methods

    According to Zhang(2016), GPIoceancan be calculated as follows:

    ,(1)

    According to Emanuel and Nolan (2004), GPI04 can be calculated as follows:

    where8500is the absolute vorticity at 850hPa,shearis the magnitude of vertical wind shear between 850hPa and 200hPa and is calculated using the formula

    is the relative humidity at 600hPa,potis the maximum TC PI, andis set as 7.4×10?3.

    To investigate the contributions of various large-scale environmental factors to GPI04 and GPIocean, the method proposed by Li(2013) can be expressed as follows:

    where GPI denotes GPIoceanor GPI04,is the constant co- efficient in Eqs. (1) and (2) for GPIoceanor GPI04,

    whereas

    Applying the total differential to both sides of Eq. (3) yields the following expression:

    Integrating Eq. (4) from the annual mean to a particular month yields the following expression:

    where1,2,3, and4are assumed to be constant coefficients and expressed as follows:

    where the bar denotes the annual mean value and δdenotes the difference between an individual month and the annual mean in Eq. (5). The four terms on the right side of Eq. (5) denote the contributions of each environmental factor to GPI04 or GPIocean.

    3 Results

    3.1 Global Distribution of GPIocean

    The climatological GPIoceanand GPI04 during the period 1979–2016 are shown in Figs.1a and 1b, respectively

    TC mainly occurs in six basins, namely, North Indian Ocean (NIO; 5? to 15?N, 67? to 95?E), WNP (5? to 20?N, 130? to 150?E), eastern North Pacific (ENP; 10? to 20?N, 240? to 260?E), NATL (10? to 20?N, 310? to 340?E), south- ern Indian Ocean (SIO; 5? to 15?S, 55? to 100?E), and southwestern Pacific (SWP; 5? to 15?S, 150? to 180?E) (Fig.1c). In general, GPIoceanand GPI04 have high values inall of these well-known TC-prone regions (Figs.1a and 1b). Differences between the spatial distributions of GPIoceanand GPI04 are observed. GPIoceanshows maximum values along the Kuroshio and the Gulf Stream. The amplitude of GPIoceanin the ENP is less than that in the WNP, whereas the amplitude of GPI04 in these two basins is comparable. The center of GPIoceanin the SWP shifts eastward compared with that of GPI04. These two indices also perform differently along the coast of the South American continent. GPIoceanshows a positive value along the coast of the Pacific side because no TC genesis occurs in the region, whereas GPI04 does not show a significant positive value along the coast of the Pacific side. Along the coastal regions of the Atlantic side, the significant positive value of GPIoceancan represent the generation of three TCs, which cannot be represented by GPI04.

    To investigate the details of GPIocean, the annual cycles in six basins are individually examined. Consistent with the results of a previous study, the frequency of TC genesis in all basins shows a single peak, except for the NIO (Fig.2). The peaks of TC genesis in the WNP, ENP, and NATL occur in boreal summer and autumn (Figs.2b, 2c, and 2d), whereas the peaks of TC genesis in the SIO and WSP occur in boreal winter (Figs.2e and 2f). The frequency of TC genesis in the NIO has two peaks, that is, during the pre-monsoon (April–May) and post-monsoon (October–November) periods, and only a few TCs occur during the southwest monsoon period (June–September; Fig.2a). The annual cycles of GPI04 in six basins are consistent with those of TC genesis. GPIoceanshows a single peak in all basins. In the NIO, GPIoceanshows a peak in boreal summer and fails to represent the observed bimodal pattern of the annual cycle of TC genesis (Fig.2a). Therefore, we focus on the NIO.

    Fig.1 Global distribution of climatological (a) GPIocean, (b) GPI04, and (c) tropical cyclone (TC) genesis during the period 1979–2016. The black dots in (c) denote the locations of TC genesis, and the blue boxes represent the six major regions of TC genesis, namely, North Indian Ocean (NIO; 5? to 15?N, 67? to 95?E), western North Pacific (WNP; 5? to 20?N, 130? to 150?E), eastern North Pacific (ENP; 10? to 20?N, 240? to 260?E), North Atlantic (NATL; 10? to 20?N, 310? to 340?E), southern Indian Ocean (SIO; 5? to 15?S, 55? to 100?E), and southwestern Pacific (SWP; 5? to 15?S, 150? to 180?E). The map shown in this figure was generated bythe National Center for Atmospheric Research (NCAR) Command Language (Version 6.6.2) [Software] (2019). Boulder, Colorado: UCAR/NCAR/CISL/TDD. http://dx.doi.org/10.5065/D6WD3XH5.

    Fig.2 Annual cycle of GPIocean (blue curve), GPI04 (red curve), and TC genesis (gray bar) averaged in the (a) NIO, (b) WNP, (c) ENP, (d) NATL, (e) SIO, and (f) WSP regions during the period 1979–2016. The left y-axis denotes TC genesis, and the right y-axis denotes the GPIocean or GPI04 values.

    3.2 Cause of the Poor Performance of GPIocean in the NIO During the Summer Monsoon

    Fig.2a shows the failure of GPIoceamto depict the annual cycle of TC in the NIO. The spatial distributions of the climatological monthly GPIoceamin the NIO are investigated. Fig.3 shows that GPIoceanhas a high value in the northern Bay of Bengal and the Arabian Sea in boreal summer (June–September; Figs.3f to 3i). However, only a few TCs occur, particularly in July and August. TCs are usually generated in the region with high values of GPIoceamin the other months, indicating that GPIoceamcould represent the features of TC genesis in boreal autumn, winter, and spring.

    To determine why GPIoceancannot represent the bimodal pattern of the annual cycle of TC genesis in the NIO, the method proposed by Li(2013) is used to identify the relative contribution of each environmental factor to GPIocean. According to Eq. (7), Fig.4a shows the climatological monthly contributions of four environmental factors of GPIoceanand the sum of these four terms. The figure illustrates that the combined contributions of the four parameters are favorable for TC genesis in May–November, which is consistent with the results shown in Fig.2a. GPIoceanshows a peak during the summer monsoon (June–August), which is mostly controlled by the positive contribution of net longwave radiation on the sea surface. How- ever, only a few TCs occur in the NIO in boreal summer. This finding indicates that several important environmental factors influencing TC genesis in the NIO are missing in GPIocean.

    In contrast to GPIocean, GPI04 can represent the occurrence of only a few TCs in the NIO in boreal summer (Fig.2a), which helps in finding the missing environmental factor in GPIocean. The analysis of the individual contributions of the four parameters of GPI04 showed that a strong environmental vertical wind shear is unfavorable for TC genesis and can offset the positive contributions of relative humidity together with other environmental factors (Fig.4b). Vertical wind shear is not involved in GPIocean, thus resulting in the failure to reproduce the two peaks of TC genesis in the NIO in the seasonal cycle.

    Fig.3 Climatological monthly GPIocean in the NIO. The black dots denote individual genesis events during the period 1979–2016. The map shown in this figure was generated by the NCAR Command Language (Version 6.6.2) [Software] (2019). Boulder, Colorado: UCAR/NCAR/CISL/TDD. http://dx.doi.org/10.5065/D6WD3XH5.

    Fig.4 Climatological monthly contributions of each term of (a) GPIocean and (b) GPI04 in the NIO (denoted by a specified bar). The coefficients are,,, and .,,, and in (a), and ,, , and in (b). The red solid line denotes the value of δGPIocean and δGPI04 in (a) and (b), respectively.

    Previous studies showed that a strong environmental vertical wind shear is unfavorable for TC genesis and is the main reason for the suppression of TC genesis in the NIO during the summer monsoon (Gray, 1967; Camargo, 2007a; Evan and Camargo, 2011). Strong vertical wind shear suppresses TC genesis by ventilating the incipient disturbance with low-entropy (low-equivalent potential temperature) air (Tang and Emanuel, 2012). The environmental flow also advects dry air into the disturbance, disrupting the formation of a deep, moist column that is postulated to be imperative for genesis (Bister and Emanuel, 1997; Nolan, 2007). Li(2013) found that the vertical wind shear cap for TC genesis in the Bay of Bengal is approximately 24ms?1. Values larger than the cap inhibit TC formation. Although the maximum value of vertical wind shear is located at approximately 50? to 60?E, 10? to 20?N, the value over most parts of the NIO is larger than the cap, thus inhibiting TC genesis during the summer monsoon (Fig.5). This finding indicates that vertical wind shear plays a dominant role in TC genesis in the NIO. Because of the missing vertical wind shear, GPIoceanoverestimates the TC genesis in the NIO in boreal summer; thus, it cannot reproduce the two peaks in April–May and October–December.

    Fig.5 Climatological monthly vertical wind shear in the NIO from June to August during the period 1979–2016 (unit: ms?1). The solid black line denotes the isoline of 24ms?1.

    4 Discussion and Conclusions

    In previous studies, the atmospheric parameters are used to define GPIs to describe the spatial and temporal distri- butions of TCs. The roles of oceanic parameters in TC gen- esis are not considered, except for SST. However, more re- search showed that oceanic parameters in addition to SST play important roles in modulating TC activity (Shay, 2000; Ginis, 2002; Bender, 2007; Black, 2007; Chen, 2007; Wu, 2007; Halliwell Jr., 2008; Price, 2009; Scoccimarro, 2011; Lin, 2013). Thus, Zhang(2016) defined a new index (, GPIocean) on the basis of several oceanic parameters that significantly affect TC genesis.

    The present study investigated the global distribution of GPIocean. The results show that GPIoceancould represent the annual cycle of TC genesis in the global ocean, except for the NIO. GPIoceanshows a peak during the summer monsoon in the NIO, whereas only a few TCs occur. To determine why GPIoceanfails to represent the annual cycle of TC genesis in the NIO, the relative contribution of each factor to GPIoceanis calculated and addressed on the basis of the method proposed by Li(2013). The results show that the net longwave radiation on the sea surface is responsible for the false peak of TC genesis in the NIO in boreal summer, and the three other oceanic factors do not contribute to the false peak of TC genesis. Compared with GPI04, vertical wind shear is not involved in GPIocean. Vertical wind shear in the NIO in summer is strong because of the summer monsoon, which considerably inhibits TC genesis. Therefore, the absence of vertical wind shear in GPIoceanresults in the failure of the annual cycle of TC genesis in the NIO.

    Acknowledgements

    This research is supported by the Strategic Priority Research Program of the Chinese Academy of Sciences (No. XDA20060502), the National Key Research and Development Program of China (No. 2019YFA0606701), the National Natural Science Foundation of China (Nos. 41925024 and 41731173), the Pioneer Hundred Talents Program of the Chinese Academy of Sciences, the Leading Talents of Guangdong Province Program, Innovation Academy of South China Sea Ecology and Environmental Engineering, Chinese Academy of Sciences (No. ISEE2018PY06), and the Key Special Project for Introduced Talents Team of Southern Marine Science and Engineering Guangdong Lab- oratory (Guangzhou) (No. GML2019ZD0306).

    Aijaz, S., Ghantous, M., Babanin, A. V., Ginis, I., Thomas, B., and Wake, G., 2017. Nonbreaking wave-induced mixing in upper ocean during tropical cyclones using coupled hurricane- ocean-wave modeling., 122: 3939-3963, https://doi.org/10.1002/2016JC012219.

    Balaguru, K., Foltz, G. R., Leung, L. R., Hagos, S., and Judi, D. R., 2018. On the use of ocean dynamic temperature for hurricane intensity forecasting., 33 (2): 411-418, https://doi.org/10.1175/WAF-D-17-0143.1.

    Bender, M. A., Ginis, I., Tuleya, R., Thomas, B., and Marchok, T., 2007. The operational GFDL coupled hurricane-ocean prediction system and a summary of its performance.,135: 3965-3989,https://doi.org/10.1175/2007MWR2032.1.

    Bister, M., and Emanuel, K. A., 1997. The genesis of Hurricane Guillermo: TEXMEX analyses and a modeling study.,125: 2662-2682,https://doi.org/10.1175/1520-0493(1997)125<2662:TGOHGT>2.0.CO;2.

    Black, P. G., Dasaro, E. A., Drennan, W. M., French, J. R., Niiler, P. P., Sanford, T. B.,, 2007. Air-sea exchange in hurri- canes: Synthesis of observations from the coupled boundary layer air-sea transfer experiment., 88 (3): 357-374, https://doi.org/10.1175/BAMS-88-3-357.

    Bruyère, C. L., Holland, G. J., and Towler, E., 2012. Investigating the use of a genesis potential index for tropical cyclones in the North Atlantic Basin., 25: 8611-8626,https://doi.org/10.1175/JCLI-D-11-00619.1.

    Bye, J., and Keay, K., 2008. A new hurricane index for the Car- ibbean., 33: 556-560.

    Camargo, S. J., Emanuel, K. A., and Sobel, A. H., 2007a. Use of a genesis potential index to diagnose ENSO effects on tropicalcyclone genesis., 20: 4819-4834,https://doi.org/10.1175/JCLI4282.1.

    Camargo, S. J., Sobel, A. H., Barnston, A. G., and Emanuel, K. A., 2007b. Tropical cyclone genesis potential index in climate models., 59A: 428-443, https://doi.org/10.1111/j.1600-0870.2007.00238.x.

    Camargo, S. J., Wheeler, M. C., and Sobel, A. H., 2009. Diagno- sis of the MJO modulation of tropical cyclogenesis using an empirical index., 66: 3061-3074,https://doi.org/10.1175/2009JAS3101.1.

    Chen, S. S., Price, J. F., Zhao, W., Donelan, M. A., and Walsh, E. J., 2007. The CBLAST-Hurricane program and the next-gen- eration fully coupled atmosphere-wave-ocean models for hur- ricane research and prediction., 88: 311-318.

    Daloz, A. S., and Camargo, S. J., 2018. Is the poleward migration of tropical cyclone maximum intensity associated with a pole- ward migration of tropical cyclone genesis.,50 (1-2): 705-715, https://doi.org/10.1007/s00382-017-3636-7.

    Dee, D., Uppala, S., Simmons, A. J., Berrisford, P., Poli, P., Kobayashi, S.,, 2011. The ERA-interim reanalysis: Con- figuration and performance of the data assimilation system., 137 (656): 553-597, https://doi.org/10.1002/qj.828.

    Dong, J., Domingues, R., Goni, G., Halliwell, G. R., Kim, H., Lee, S.,, 2017. Impact of assimilating underwater glider data on Hurricane Gonzalo (2014) forecasts., 32 (3): 1143-1159, https://doi.org/10.1175/WAF- D-16-0182.1.

    Emanuel, K., 2010. Tropical cyclone activity downscaled from NOAA-CIRES reanalysis, 1908–1958.,2: 1-12, https://doi.org/10.3894/JAMES.2010.2.1.

    Emanuel, K., and Nolan, D. S., 2004. Tropical cyclone activity and the global climate system.. Miami, 240-241.

    Evan, A. T., and Camargo, S. J., 2011. A climatology of Arabian Sea cyclonic storms., 24: 140-158,https://doi.org/10.1175/2010JCLI3611.1.

    Ginis, I., 2002. Tropical cyclone-ocean interactions., 33: 83-114,https://doi.org/10.1145/3093338.3104149.

    Good, S. A., Martin, M. J., and Rayner, N. A., 2013. EN4: Quali- ty controlled ocean temperature and salinity profiles and month- ly objective analyses with uncertainty estimates.,118: 6704-6716,https://doi.org/10.1002/2013JC009067.

    Gray, W. M., 1967. Global view of the origin of tropical distur- bances and storms.,96 (10): 669-700,https://doi.org/10.1175/1520-0493(1968)096<0669:GVOTOO >2.0.CO;2.

    Gray, W. M., 1979. Hurricanes: Their formation, structure and likely role in the tropical circulation., 77: 155-218.

    Halliwell Jr., G. R., Shay, L. K., Jacob, S. D., Smedstad, O. M., and Uhlhorn, E. W., 2008. Improving ocean model initialization for coupled tropical cyclone forecast models using GOD- AE nowcasts., 136 (7): 2576-2591, https://doi.org/10.1175/2007MWR2154.1.

    Kalnay, E., Kanamitsu, M., Kistler, R., Collins, W. D., Deaven, D. G., Gandin, L. S.,, 1996. The NCEP/NCAR 40-year reanalysis project., 77: 437-472,https://doi.org/10.1175/1520-0477(1996)077<0437:TNYRP>2.0.CO;2.

    Lee, C.-Y., and Chen, S. S., 2012. Symmetric and asymmetric structures of hurricane boundary layer in coupled atmosphere-wave-ocean models and observations., 69 (12): 3576-3594, https://doi.org/10.1175/JAS-D-12-046.1.

    Li, Z., Yu, W., Li, T., Murty, V. S. N., and Tangang, F., 2013. Bimodal character of cyclone climatology in the Bay of Bengal modulated by monsoon seasonal cycle., 26: 1033-1046, https://doi.org/10.1175/JCLI-D-11-00627.1.

    Lin, I. I., Black, P. G., Price, J. F., Yang, C., Chen, S. S., Lien, C.,, 2013. An ocean coupling potential intensity index for tropical cyclones., 40: 1878-1882,https://doi.org/10.1002/grl.50091.

    McGauley, M. G., and Nolan, D. S., 2011. Measuring environ- mental favorability for tropical cyclogenesis by statistical anal- ysis of threshold parameters., 24: 5968-5997,https://doi.org/10.1175/2011JCLI4176.1.

    Murakami, H., and Wang, B., 2010. Future change of North Atlantic tropical cyclone tracks: Projection by a 20-km-mesh global atmospheric model., 23: 2699-2721,https://doi.org/10.1175/2010JCLI3338.1.

    Nolan, D. S., 2007. What is the trigger for tropical cyclogenesis?, 56 (4): 241-266.

    Nolan, D. S., Rappin, E. D., and Emanuel, K. A., 2007. Tropical cyclogenesis sensitivity to environmental parameters in radi- ative-convective equilibrium.,133: 2085-2107,https://doi.org/10.1002/qj.170.

    Price, J. F., 2009. Metrics of hurricane-ocean interaction: Ver- tically-integrated or vertically-averaged ocean temperature?, 5: 351-368, https://doi.org/10.5194/os-5-351-2009.

    Rayner, N. A., Parker, D. E., Horton, E. B., Folland, C. K., Alexander, L. V., Rowell, D. P.,, 2003. Global analyses of sea surface temperature, sea ice, and night marine air tem- perature since the late nineteenth century., 108 (D14): 4407, https://doi.org/10.1029/2002JD002670.

    Scoccimarro, E., Gualdi, S., Bellucci, A., Sanna, A., Fogli, P. G., Manzini, E.,, 2011. Effects of tropical cyclones on ocean heat transport in a high-resolution coupled general circulation model., 24 (16): 4368-4384, https://doi.org/10.1175/2011JCLI4104.1.

    Shay, L. K., Goni, G. J., and Black, P. G., 2000. Effects of a warm oceanic feature on Hurricane Opal.,128: 1366-1383, https://doi.org/10.1175/1520-0493(2000)128<1366:EOAWOF>2.0.CO;2.

    Tang, B., and Emanuel, K., 2012. A ventilation index for tropical cyclones., 93: 1901-1912,https://doi.org/10.1175/BAMS-D-11-00165.1.

    Tippett, M. K., Camargo, S. J., and Sobel, A. H., 2011. A Poisson regression index for tropical cyclone genesis and the role of large-scale vorticity in genesis., 24: 2335-2357,https://doi.org/10.1175/2010JCLI3811.1.

    Vecchi, G. A., and Soden, B. J., 2007. Increased tropical Atlantic wind shear in model projections of global warming., 34: L08702, https://doi.org/10.1029/2006GL028905.

    Wang, B., and Moon, J., 2017. An anomalous genesis potential index for MJO modulation of tropical cyclones., 30 (11): 4021-4035,https://doi.org/10.1175/jcli-d-16-0749.1.

    Waters, J. J., Evans, J. L., and Forest, C. E., 2012. Large-scale diagnostics of tropical cyclogenesis potential using environ- ment variability metrics and logistic regression models.,25: 6092-6107,https://doi.org/10.1175/JCLI-D-11-00359.1.

    Wu, C. C., Lee, C. Y., and Lin, I. I., 2007. The effect of the ocean eddy on tropical cyclone intensity.,64: 3562-3578,https://doi.org/10.1175/JAS4051.1.

    Zhang, M., Zhou, L., Chen, D., and Wang, C., 2016. A genesis potential index for western North Pacific tropical cyclones by using oceanic parameters.,121: 6762-6778,https://doi.org/10.1002/2016JC011851.

    Zhang, W., Villarini, G., Vecchi, G. A., and Murakami, H., 2018. Impacts of the Pacific Meridional Mode on landfalling North Atlantic tropical cyclones., 50 (3): 991-1006,https://doi.org/10.1007/s00382-017-3656-3.

    June 17, 2020;

    July 7, 2020;

    July 19, 2020

    ? Ocean University of China, Science Press and Springer-Verlag GmbH Germany 2021

    . Tel: 0086-20-34134191 E-mail: wangxin@scsio.ac.cn

    (Edited by Xie Jun)

    电影成人av| 欧美日韩亚洲国产一区二区在线观看 | av视频免费观看在线观看| 成人免费观看视频高清| 久久精品亚洲av国产电影网| 啦啦啦在线观看免费高清www| 王馨瑶露胸无遮挡在线观看| 韩国精品一区二区三区| 久久久久精品人妻al黑| 国产精品一国产av| 久久97久久精品| 一边摸一边做爽爽视频免费| 亚洲视频免费观看视频| av网站免费在线观看视频| 亚洲成国产人片在线观看| 久久久久久久精品精品| 久久人人爽av亚洲精品天堂| 久久精品久久久久久噜噜老黄| 精品第一国产精品| a级毛片黄视频| tube8黄色片| 久久国产精品大桥未久av| 99香蕉大伊视频| 久久久久久久久免费视频了| 激情视频va一区二区三区| 国产精品国产av在线观看| 亚洲精品aⅴ在线观看| 国产精品亚洲av一区麻豆 | 狠狠婷婷综合久久久久久88av| 亚洲欧洲国产日韩| 看免费av毛片| 丰满饥渴人妻一区二区三| 少妇被粗大的猛进出69影院| 黄片无遮挡物在线观看| 久久精品久久精品一区二区三区| 午夜精品国产一区二区电影| 国产探花极品一区二区| 亚洲av福利一区| 男女午夜视频在线观看| 久久人人97超碰香蕉20202| 黄色视频在线播放观看不卡| 亚洲欧美中文字幕日韩二区| 亚洲国产欧美网| 9色porny在线观看| 亚洲精品久久午夜乱码| 两个人看的免费小视频| 一级毛片 在线播放| 一本色道久久久久久精品综合| 少妇人妻久久综合中文| 69精品国产乱码久久久| 一级毛片 在线播放| 色吧在线观看| 2018国产大陆天天弄谢| 男女国产视频网站| 亚洲国产精品一区三区| 亚洲 欧美一区二区三区| 国产成人av激情在线播放| 久久综合国产亚洲精品| xxx大片免费视频| 人人妻人人添人人爽欧美一区卜| 国产亚洲午夜精品一区二区久久| 激情视频va一区二区三区| a级片在线免费高清观看视频| 午夜日本视频在线| 免费观看性生交大片5| 超碰97精品在线观看| 午夜福利,免费看| 老鸭窝网址在线观看| 亚洲免费av在线视频| 亚洲综合色网址| 午夜精品国产一区二区电影| 极品少妇高潮喷水抽搐| 亚洲少妇的诱惑av| 男人添女人高潮全过程视频| 叶爱在线成人免费视频播放| 国产 一区精品| 久久久国产一区二区| 亚洲色图综合在线观看| 久久久久国产精品人妻一区二区| 国产精品99久久99久久久不卡 | 99精国产麻豆久久婷婷| 亚洲色图 男人天堂 中文字幕| 欧美另类一区| 王馨瑶露胸无遮挡在线观看| 国产 精品1| 高清在线视频一区二区三区| 欧美黄色片欧美黄色片| 国产av码专区亚洲av| 久久精品亚洲av国产电影网| av又黄又爽大尺度在线免费看| 色视频在线一区二区三区| av女优亚洲男人天堂| 伊人久久大香线蕉亚洲五| 欧美变态另类bdsm刘玥| 免费高清在线观看日韩| 国产黄频视频在线观看| 精品久久蜜臀av无| 国产av国产精品国产| 亚洲欧美一区二区三区国产| 国产在线一区二区三区精| 国产成人午夜福利电影在线观看| 欧美日韩综合久久久久久| 国产精品无大码| 午夜激情久久久久久久| 男男h啪啪无遮挡| 久久久精品区二区三区| 考比视频在线观看| 国产高清不卡午夜福利| 精品免费久久久久久久清纯 | 亚洲精品久久成人aⅴ小说| 人人妻,人人澡人人爽秒播 | 亚洲欧美一区二区三区国产| 免费在线观看黄色视频的| 狂野欧美激情性xxxx| av国产精品久久久久影院| 丝袜脚勾引网站| 国产深夜福利视频在线观看| 人妻一区二区av| 午夜福利网站1000一区二区三区| 少妇人妻 视频| 精品第一国产精品| 9热在线视频观看99| 精品亚洲成国产av| 欧美激情极品国产一区二区三区| 久久免费观看电影| 一本—道久久a久久精品蜜桃钙片| 久久精品久久精品一区二区三区| 亚洲欧美日韩另类电影网站| 国产日韩欧美在线精品| 亚洲成人av在线免费| 国产国语露脸激情在线看| 最近中文字幕高清免费大全6| 一本大道久久a久久精品| 亚洲专区中文字幕在线 | 一级毛片 在线播放| 大片免费播放器 马上看| 精品少妇一区二区三区视频日本电影 | 最近2019中文字幕mv第一页| 老熟女久久久| 日韩一区二区三区影片| 国产一区二区在线观看av| 国产男女内射视频| av天堂久久9| 久久精品国产综合久久久| 一二三四在线观看免费中文在| www.自偷自拍.com| 国产一区二区三区综合在线观看| 可以免费在线观看a视频的电影网站 | 人人妻人人澡人人爽人人夜夜| 亚洲一级一片aⅴ在线观看| 美女国产高潮福利片在线看| 黄色一级大片看看| 国产成人啪精品午夜网站| 亚洲三区欧美一区| 伦理电影大哥的女人| 可以免费在线观看a视频的电影网站 | 纵有疾风起免费观看全集完整版| 中文字幕最新亚洲高清| 国产亚洲av片在线观看秒播厂| 中文天堂在线官网| 啦啦啦中文免费视频观看日本| 国产乱人偷精品视频| 精品福利永久在线观看| 亚洲成人手机| 亚洲第一青青草原| 亚洲国产欧美在线一区| 晚上一个人看的免费电影| 午夜福利在线免费观看网站| 欧美精品av麻豆av| 精品亚洲成国产av| 欧美人与性动交α欧美精品济南到| 国产免费一区二区三区四区乱码| 精品人妻在线不人妻| 亚洲天堂av无毛| 午夜91福利影院| 久热这里只有精品99| 亚洲天堂av无毛| 我要看黄色一级片免费的| 成人午夜精彩视频在线观看| 一级毛片 在线播放| 侵犯人妻中文字幕一二三四区| www.av在线官网国产| 亚洲av福利一区| 久久久久久免费高清国产稀缺| 人体艺术视频欧美日本| 黄片播放在线免费| 欧美精品高潮呻吟av久久| 亚洲精品久久久久久婷婷小说| 热re99久久国产66热| 日韩电影二区| 观看av在线不卡| 在现免费观看毛片| 国产精品一区二区在线观看99| 欧美日韩亚洲国产一区二区在线观看 | 亚洲欧洲国产日韩| 亚洲国产欧美网| tube8黄色片| 人成视频在线观看免费观看| 不卡视频在线观看欧美| 国产黄色免费在线视频| 久久影院123| 久久精品久久久久久久性| 亚洲,欧美精品.| 日本色播在线视频| 国产免费视频播放在线视频| 韩国高清视频一区二区三区| 18禁国产床啪视频网站| 两性夫妻黄色片| 日本猛色少妇xxxxx猛交久久| 曰老女人黄片| 日韩欧美一区视频在线观看| 国产精品久久久久久人妻精品电影 | 久久久久精品人妻al黑| 最近最新中文字幕大全免费视频 | 亚洲精品自拍成人| 亚洲av福利一区| 久久青草综合色| 亚洲精品第二区| 女人高潮潮喷娇喘18禁视频| 美女中出高潮动态图| 久久女婷五月综合色啪小说| videosex国产| 日韩大码丰满熟妇| 国产亚洲最大av| 亚洲精品在线美女| 亚洲人成网站在线观看播放| 视频在线观看一区二区三区| 欧美精品av麻豆av| 激情视频va一区二区三区| 亚洲欧美成人精品一区二区| 亚洲精品aⅴ在线观看| 99精品久久久久人妻精品| 久久久久国产一级毛片高清牌| 色视频在线一区二区三区| 国产精品免费视频内射| 国产精品一二三区在线看| 人妻 亚洲 视频| 国产精品一区二区在线观看99| 中文字幕人妻熟女乱码| 丰满乱子伦码专区| 一边摸一边抽搐一进一出视频| 欧美av亚洲av综合av国产av | 国精品久久久久久国模美| 狠狠精品人妻久久久久久综合| 中文字幕人妻丝袜制服| 91精品国产国语对白视频| 少妇被粗大的猛进出69影院| 国产男人的电影天堂91| 新久久久久国产一级毛片| 国产极品天堂在线| 中文字幕精品免费在线观看视频| 不卡视频在线观看欧美| 黑人欧美特级aaaaaa片| 国产精品久久久人人做人人爽| 国产一区二区在线观看av| 激情视频va一区二区三区| 成人三级做爰电影| 国产视频首页在线观看| 成人国语在线视频| 免费av中文字幕在线| 国产精品三级大全| 国产片内射在线| 国产精品免费大片| 国精品久久久久久国模美| 18禁动态无遮挡网站| 亚洲人成网站在线观看播放| 伊人亚洲综合成人网| 少妇人妻久久综合中文| 色婷婷久久久亚洲欧美| 国产成人一区二区在线| 免费观看人在逋| 一级毛片 在线播放| 成人漫画全彩无遮挡| 久久人人爽人人片av| 亚洲精品一二三| 免费高清在线观看视频在线观看| 国产精品免费大片| a 毛片基地| 人妻 亚洲 视频| av免费观看日本| 水蜜桃什么品种好| 满18在线观看网站| 欧美 亚洲 国产 日韩一| 精品酒店卫生间| 两个人看的免费小视频| 宅男免费午夜| 国产高清国产精品国产三级| 精品一品国产午夜福利视频| 国产亚洲欧美精品永久| 天天影视国产精品| 少妇人妻 视频| a 毛片基地| 久久精品国产a三级三级三级| 狂野欧美激情性bbbbbb| 亚洲精华国产精华液的使用体验| 免费观看人在逋| 伦理电影免费视频| 晚上一个人看的免费电影| 国产伦人伦偷精品视频| 丰满迷人的少妇在线观看| 国产在线一区二区三区精| 久久久亚洲精品成人影院| 青青草视频在线视频观看| 我的亚洲天堂| 久久久精品国产亚洲av高清涩受| 亚洲,一卡二卡三卡| 超碰成人久久| 成年av动漫网址| 尾随美女入室| 一级片免费观看大全| 日本wwww免费看| 国产片特级美女逼逼视频| 国产精品久久久av美女十八| 视频在线观看一区二区三区| 欧美另类一区| 亚洲国产欧美日韩在线播放| 欧美精品人与动牲交sv欧美| 在线 av 中文字幕| 天天操日日干夜夜撸| 亚洲欧美清纯卡通| 免费观看人在逋| 午夜91福利影院| 看十八女毛片水多多多| 丁香六月欧美| 午夜福利免费观看在线| 亚洲国产欧美网| 女人久久www免费人成看片| 久久综合国产亚洲精品| 国产精品二区激情视频| 日本爱情动作片www.在线观看| 免费在线观看完整版高清| 伦理电影免费视频| 18禁国产床啪视频网站| 两个人看的免费小视频| 亚洲在久久综合| 两个人看的免费小视频| 亚洲久久久国产精品| 丰满迷人的少妇在线观看| 国产成人午夜福利电影在线观看| 青春草亚洲视频在线观看| 两个人免费观看高清视频| 精品午夜福利在线看| 涩涩av久久男人的天堂| 亚洲一级一片aⅴ在线观看| 97在线人人人人妻| 亚洲一级一片aⅴ在线观看| av在线app专区| 午夜老司机福利片| 乱人伦中国视频| 精品国产乱码久久久久久小说| 美女视频免费永久观看网站| 免费观看a级毛片全部| 激情视频va一区二区三区| 十八禁人妻一区二区| 九色亚洲精品在线播放| 看十八女毛片水多多多| svipshipincom国产片| 国产精品久久久久久久久免| 成年美女黄网站色视频大全免费| 国产亚洲午夜精品一区二区久久| 久久久久久久大尺度免费视频| 亚洲av日韩精品久久久久久密 | 一级爰片在线观看| 纵有疾风起免费观看全集完整版| 亚洲精品国产色婷婷电影| 少妇人妻精品综合一区二区| 亚洲,欧美精品.| 日本色播在线视频| 日本爱情动作片www.在线观看| 999久久久国产精品视频| 精品人妻熟女毛片av久久网站| 一级,二级,三级黄色视频| 国产日韩一区二区三区精品不卡| 午夜精品国产一区二区电影| 最近中文字幕2019免费版| 美女扒开内裤让男人捅视频| 女人被躁到高潮嗷嗷叫费观| 18在线观看网站| 色婷婷久久久亚洲欧美| 老鸭窝网址在线观看| 国产 精品1| 一级,二级,三级黄色视频| 一级a爱视频在线免费观看| 母亲3免费完整高清在线观看| 国产精品99久久99久久久不卡 | 18禁动态无遮挡网站| 美女主播在线视频| 精品亚洲乱码少妇综合久久| 国产精品人妻久久久影院| videos熟女内射| 欧美日韩福利视频一区二区| 91精品国产国语对白视频| 国产精品 欧美亚洲| 欧美人与性动交α欧美软件| 日韩欧美一区视频在线观看| 日韩精品有码人妻一区| 看免费成人av毛片| 亚洲免费av在线视频| 夜夜骑夜夜射夜夜干| 国产伦理片在线播放av一区| 久久性视频一级片| 久久97久久精品| av线在线观看网站| 丝袜人妻中文字幕| 91老司机精品| 日日啪夜夜爽| 成年美女黄网站色视频大全免费| 国产精品免费大片| 亚洲专区中文字幕在线 | 国产人伦9x9x在线观看| 精品亚洲成国产av| 日本av免费视频播放| 99久国产av精品国产电影| 亚洲,欧美精品.| 午夜免费鲁丝| 亚洲成色77777| 一本久久精品| 欧美在线一区亚洲| 激情视频va一区二区三区| 日本午夜av视频| 狠狠精品人妻久久久久久综合| 菩萨蛮人人尽说江南好唐韦庄| 丝袜喷水一区| 男女高潮啪啪啪动态图| 久久久久精品人妻al黑| 欧美日韩国产mv在线观看视频| 人体艺术视频欧美日本| a 毛片基地| 亚洲人成电影观看| 久久久久久人妻| 国产国语露脸激情在线看| 欧美成人精品欧美一级黄| 大香蕉久久成人网| 亚洲熟女精品中文字幕| 大码成人一级视频| 欧美精品亚洲一区二区| 欧美日韩一区二区视频在线观看视频在线| 观看美女的网站| avwww免费| 国产 一区精品| 又黄又粗又硬又大视频| 久久鲁丝午夜福利片| 亚洲国产精品一区三区| 精品少妇久久久久久888优播| 9191精品国产免费久久| 欧美 亚洲 国产 日韩一| 亚洲av日韩在线播放| 曰老女人黄片| 日本av免费视频播放| 久久人人97超碰香蕉20202| 婷婷色综合大香蕉| 韩国高清视频一区二区三区| 久久久亚洲精品成人影院| 亚洲欧美清纯卡通| av有码第一页| 久久久久精品国产欧美久久久 | 波野结衣二区三区在线| 天美传媒精品一区二区| 国产不卡av网站在线观看| 看免费av毛片| 欧美黑人精品巨大| 久久久久国产一级毛片高清牌| 久久精品国产a三级三级三级| 国产一区二区三区av在线| 欧美精品亚洲一区二区| 满18在线观看网站| 无限看片的www在线观看| 丝袜美腿诱惑在线| 男男h啪啪无遮挡| 久久久久精品人妻al黑| 久久热在线av| 亚洲人成网站在线观看播放| 日韩av免费高清视频| 欧美av亚洲av综合av国产av | 亚洲少妇的诱惑av| 一区二区av电影网| 国产深夜福利视频在线观看| 国产男女内射视频| 成年人免费黄色播放视频| 国产在视频线精品| 国产精品国产三级专区第一集| 亚洲专区中文字幕在线 | 人妻一区二区av| 国产成人免费无遮挡视频| 欧美xxⅹ黑人| 久久久久久免费高清国产稀缺| 精品一区二区免费观看| 日韩欧美一区视频在线观看| 日日爽夜夜爽网站| 亚洲一码二码三码区别大吗| 在线观看www视频免费| 精品一区二区三区四区五区乱码 | 高清视频免费观看一区二区| 精品卡一卡二卡四卡免费| 满18在线观看网站| 美女国产高潮福利片在线看| 国产成人精品无人区| av女优亚洲男人天堂| 久久人人爽人人片av| 亚洲美女视频黄频| 这个男人来自地球电影免费观看 | 亚洲男人天堂网一区| av一本久久久久| 日韩视频在线欧美| 国产成人免费观看mmmm| 精品人妻一区二区三区麻豆| 免费看不卡的av| 国产欧美日韩综合在线一区二区| 狂野欧美激情性bbbbbb| 国产成人精品无人区| 在现免费观看毛片| 国产伦人伦偷精品视频| 国产成人a∨麻豆精品| 欧美激情极品国产一区二区三区| 日韩成人av中文字幕在线观看| 一本一本久久a久久精品综合妖精| 一级毛片电影观看| 日韩欧美一区视频在线观看| 亚洲精品国产一区二区精华液| 精品一区二区三卡| 中文字幕色久视频| 91成人精品电影| 亚洲成国产人片在线观看| 欧美黑人精品巨大| 91精品伊人久久大香线蕉| 亚洲av欧美aⅴ国产| 丝袜在线中文字幕| 午夜激情久久久久久久| 国产欧美亚洲国产| 中文乱码字字幕精品一区二区三区| 欧美日韩视频精品一区| 日韩视频在线欧美| 中文字幕av电影在线播放| 男女免费视频国产| 亚洲精品第二区| 亚洲美女黄色视频免费看| 纯流量卡能插随身wifi吗| 亚洲一卡2卡3卡4卡5卡精品中文| 韩国av在线不卡| 亚洲激情五月婷婷啪啪| 亚洲精品国产av成人精品| 你懂的网址亚洲精品在线观看| 男男h啪啪无遮挡| 欧美激情极品国产一区二区三区| 啦啦啦中文免费视频观看日本| 亚洲在久久综合| 亚洲 欧美一区二区三区| av有码第一页| 嫩草影院入口| 亚洲av电影在线进入| 亚洲欧美清纯卡通| 高清黄色对白视频在线免费看| 欧美日韩精品网址| 日本一区二区免费在线视频| h视频一区二区三区| 丁香六月天网| 色视频在线一区二区三区| 最近最新中文字幕大全免费视频 | 丁香六月天网| 人人澡人人妻人| 亚洲七黄色美女视频| 女人被躁到高潮嗷嗷叫费观| 国产精品三级大全| 夫妻性生交免费视频一级片| 亚洲精品成人av观看孕妇| 日韩一卡2卡3卡4卡2021年| 亚洲精品一二三| 欧美人与性动交α欧美软件| 美女主播在线视频| 久热这里只有精品99| netflix在线观看网站| 在线观看免费日韩欧美大片| 亚洲第一av免费看| 亚洲色图综合在线观看| 中文天堂在线官网| 人人妻,人人澡人人爽秒播 | 亚洲成人手机| 只有这里有精品99| 国产xxxxx性猛交| 国产免费视频播放在线视频| 亚洲一区二区三区欧美精品| 国产亚洲精品第一综合不卡| 久久久久久久精品精品| 一级片免费观看大全| 97在线人人人人妻| 黄色怎么调成土黄色| 人成视频在线观看免费观看| 丝瓜视频免费看黄片| 青春草亚洲视频在线观看| 制服丝袜香蕉在线| 熟妇人妻不卡中文字幕| 久久久久精品国产欧美久久久 | 欧美精品高潮呻吟av久久| 亚洲,一卡二卡三卡| 亚洲精品视频女| 少妇精品久久久久久久| 免费av中文字幕在线| 不卡视频在线观看欧美| 女人爽到高潮嗷嗷叫在线视频| 777久久人妻少妇嫩草av网站| 纵有疾风起免费观看全集完整版| 最近2019中文字幕mv第一页| 街头女战士在线观看网站| 韩国精品一区二区三区| 成人国语在线视频| 久久精品aⅴ一区二区三区四区| 成人18禁高潮啪啪吃奶动态图| 老汉色av国产亚洲站长工具| 国产成人a∨麻豆精品| av.在线天堂| 亚洲欧美精品综合一区二区三区| 国产精品无大码| 黑人巨大精品欧美一区二区蜜桃| 国产精品 欧美亚洲| av.在线天堂|