• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Six New 3,5-Dimethylcoumarins from Chelonopsis praecox,Chelonopsis odontochila and Chelonopsis pseudobracteata

    2021-12-16 12:29:08ChangAnGengZhenTaoDengQianHuangChunLeiXiangJiJunChen
    Natural Products and Bioprospecting 2021年6期

    Chang-An Geng·Zhen-Tao Deng·Qian Huang·Chun-Lei Xiang·Ji-Jun Chen

    Abstract Ten 3,5-dimethylcoumarins ( 1– 6 and 8-11) involving six new ones ( 1– 6), together with a known 3-methylcoumarin ( 7), were isolated from the aerial parts of three Chelonopsis plants,C.praecox,C.odontochila, and C.pseudobracteata.The structures of the new compounds were determined by extensive HRESIMS, 1D and 2D NMR spectroscopic analyses.According to the substitution at C-5, these coumarins were classifi ed into 5-methyl, 5-hydroxymethyl, 5-formyl, and 5- nor types.All the isolates were assayed for their inhibition on α-glucosidase, protein tyrosine phosphatase 1B, and T-cell protein tyrosine phosphatase in vitro.

    Keywords 3,5-Dimethylcoumarins·3-Methylcoumarin·Chelonopsis ·Enzyme inhibiti on

    1 Introduction

    Coumarins with the benzo-α-pyrone core are widely distributed in plant kingdom and show a wide range of biological activities, including antimicrobial, antiviral, antidiabetic antiinfl ammatory, and antihypertensive activities,etc.[1].Structurally, coumarins can be divided into simple coumarins, C-substituted coumarins, miscellaneous coumarins, biscoumarins, and triscoumarins.Besides hydroxy and methoxy groups, isopentenyl related C5-groups are the most common substituents present in coumarins, which are generally located at C-3, C-6, or C-8 positions by C–C linkage [2– 4].The methyl substituent in coumarin is very unusual, and only limited coumarins with the methylation at C-3, C-5, or C-6 positions have been reported.Currently, tens of 3,5-dimethylcoumarins have been isolated fromClutia lanceolata[5],Clutia abyssinica[6],Juniperus sabina[7],Leucas infl ata[8], andSideritis pullulans[9], but never fromChelonopsisplants.Our previous investigation onChelonopsisplants yielded a series of diterpenoids withα-glucosidase inhibitory activity,i.e., tenent-kauranes fromC.praecox[10], and 13ent-labdanes and 11ent-kauranes fromC.odontochila[11].As a continuous search for antidiabetic candidates from natural sources [12– 16], ten 3,5-dimethylcoumarins ( 1– 6 and 8 -11) involving six new ones and one known 3-methylcoumarin ( 7) were fi rst isolated from threeChelonopsisplants (Fig.1).Herein, we report their isolation, structural elucidation, and enzymatic inhibition onα-glucosidase, protein tyrosine phosphatase 1B (PTP1B), and T-cell protein tyrosine phosphatase (TCPTP).

    2 Results and Discussion

    2.1 Structural Elucidation

    Compound 1 had a chemical composition of C12H12O4deduced by the [M + H] + ion atm/z221.0809, accounting for seven indices of hydrogen defi ciency.The UV spectrum showed characteristic absorption atλmax321 nm for coumarins.The IR absorptions at 3204, 1681, 1610, and 1454 cm ?1 were indicative for the presence of hydroxyl, carbonyl, and aromatic functionalities.In the 1 H NMR spectrum, twometa-coupled aromatic protons atδH6.93 (J= 2.4 Hz) and 6.87 (J= 2.4 Hz), one methoxy atδH 3.64, and two singlet methyls atδH 2.56 and 2.10 were well recognized (Table 1).The 13 C NMR spectrum displayed 12 carbons comprising one carbonyl carbon, eight olefi nic carbons, one methoxy, and two methyls.The 1 H and 13 C NMR data of 1 showed high resemblance with 6-hydroxy-3,5-dimethyl-4,7-dimethoxycoumarin ( 9) [5] except for the absence of a methoxy and an oxygenated methine in 9 being changed to be a methine in 1.In the HMBC spectrum, the correlations from the methyl (δH2.10) to C-2 (δC164.0) and C-4 (δC166.9), and from the methoxy (δH3.64) to C-4 (δC166.9) affi rmed the 3-methyl and 4-methoxy substitution.Taking the ROESY correlations of Me-3/OMe-4/Me-5/H-6 into consideration, this compound was characterized to be 7-hydroxy-4-methoxy-3,5-dimethylcoumarin ( 1).

    The molecular formula of 2 was assigned to be C13H14O5by the positive HRESIMS ion atm/z251.0897 ([M + H] + , calcd.for 251.0914).By comparing its 1 H and 13 C NMR data with those of 1, the 5-methyl in 1 was changed to be a hydroxymethyl (δH4.89,δC56.2) in 2, as well as an additional methoxyl group.The substitution of 5-hydroxymethyl and 7-methoxyl was confi rmed by the HMBC correlations from H-10 (δH4.89) to C-6 and C-4a, and from OMe-7 (δH3.86) to C-7, as well as the ROESY correlations of H 3 -9/OMe-4/H 2 -10/H-6/OMe-7/H-8 (Fig.2).Hence, compound 2 was defi ned as 5-hydroxymethyl-4,7-dimethoxy-3-methylcoumarin.

    Fig.1 Chemical structures of compounds 1– 11

    Table 1 1 H NMR data of compounds 1– 7 ( δ in ppm,J in Hz)

    Compounds 3 and 4 were a pair of isomers with the same molecular formula of C14H16O 6 , indicating an additional CH2O moiety than 2.In their 1 H and 13 C NMR spectra, three methoxy groups (δH3.86, 3.93, 4.01 andδC56.2, 61.9, 62.1 for 3;δH3.95, 3.97, 3.98 andδC56.5, 61.67, 61.70 for 4) were obviously recognized (Table 2), suggesting compounds 3 and 4 should be the methoxylated derivatives of 2.The position of the additional methoxy in 3 and 4 were unambiguously determined by analyzing their ROESY experiments.In the ROESY spectrum of 3, the correlation peaks of H3-9/OMe-4/H2-10/OMe-6 and OMe-7/H-8 revealed the methoxy at C-6 position.Similarly, the ROESY signals of H3-9/OMe-4/H2-10/H-6/OMe-7 in 4 supported the methoxy at C-8 position.Thus, compounds 3 and 4 were concluded as 5-hydroxymethyl-4,6,7-trimethoxy-3-methylcoumarin ( 3) and 5-hydroxymethyl-4,7,8-trimethoxy-3-methylcoumarin ( 4), respectively.

    Compound 5 had a chemical composition of C13H12O5according to the protonated ion atm/z249.0744 in the HRESIMS data.In the 1 H NMR spectrum, the presence of a formyl group atδH10.74, twometa-coupled aromatic protons atδH7.24 (J= 2.7 Hz) and 6.99 (J= 2.7 Hz), two methoxys atδH3.91 and 3.89, and a methyl atδH2.19 were easily recognized.By comparing with 2, compound 5 had an additional formyl group atδH10.74 andδC192.3, but with the absence of a hydroxymethyl group (δH4.89 andδC64.6), indicating the dehydrogenated derivative of 2.The formyl group was assigned at C-5 by the ROESY correlations of H3-9/OMe-4/H-10, and HMBC correlation from H-6 to C-10 and from H-10 to C-5, C-6 and C-4a.Consequently, compound 5 was defi ned as 5-formyl-4,7-dimethoxy-3-methylcoumarin.

    Fig.2 Selected 2D NMR correlations of compounds 1– 7

    Table 2 13 C NMR data of compounds 1– 7 ( δ in ppm,J in Hz)

    The molecular formula of 6 was assigned as C14H14O6by the [M + H]+ion atm/z279.0906 in positive HRESIMS spectrum.In the1H NMR spectrum, one formal atδH10.44, one aromatic singlet atδH6.89, three methoxy groups atδH3.81, 3.82, and 3.93, and one methyl group atδH2.15 were observed, showing an extra methoxy than 5.The above deduction was consistent with that twometa-coupled protons atδH7.24 and 6.99 in 5 was changed to be an aromatic singlet atδH6.89 in 6.By analyzing the ROESY experiment, the correlations of H3-9/OMe-4/H-10/OMe-6 and OMe-7/H-8 demonstrated the structure of 5-formyl-4,6,7-trimethoxy-3-methylcoumarin ( 6).

    Compound 7 was assigned with the chemical formula of C13H14O5by the [M + H]+ion atm/z251.0898 in positive HRESIMS spectrum.In the 1 H NMR spectrum, two aromatic protons atδH7.07 and 6.85, three methoxy groups atδH4.01, 3.95, and 3.94, and a methyl group atδH2.17, were recognized.Compared with 4,6,7-trimethoxy-3,5-dimethylcoumarin ( 10) [6], the 5-methyl in 10 was absent in 7 but with an extra aromatic singlet atδH7.07.This proton (δH7.07) was assigned to be H-5 by the HMBC correlation from H-5 to C-4, and ROESY correlations of H-5/OMe-6 and H-8/OMe-7.Thus, compound 7 was deduced as 4,6,7-trimethoxy-3-methylcoumarin, the demethylated derivative of 10.Although this compound has been synthesized by methylation of 4-hydroxy-6,7-dimethoxy-3-methylcoumarin in 1949 [17], it is the fi rst report of its natural occurrence and NMR spectroscopic data.

    The known coumarins were determined to be 4,7,8-trimethoxy-3,5-dimethylcoumarin ( 8) [7], 6-hydroxy-4,7-dimethoxy-3,5-dimethylcoumarin ( 9) [5], 4,6,7-trimethoxy-3,5-dimethylcoumarin ( 10) [6], and 5-formyl-4,7,8-trimethoxy-3-methylcoumarin ( 11) [8] by comparing their 1 H and 13 C NMR data with those in the literatures.

    In order to evaluate their antidiabetic potency, all the coumarins were assayed for their inhibitory activity onα-glucosidase, PTP1B, and TCPTP.As shown in Table 3, all the compounds showed only weak or no inhibition to three enzymes at the concentration of 200 μM.According to the previous study [5], this type of coumarins could enhance the glucose-triggered secretion of insulin from murine islets.Thus, further studies will be needed to reveal their targets and mechanisms in exerting hypoglycemic eff ects.

    3 Experimental Section

    3.1 General Experimental Procedures

    A Jasco model 1020 digital polarimeter (Jasco Corp., Tokyo, Japan) was used to measure optical rotations.UV and IR data were obtained using a Shimadzu UV2401PC spectrophotometer (Shimadzu, Kyoto, Japan) and a Nicolet iS10 spectrometer (Thermo Fisher Scientific, Madison, WI, USA), respectively.A Waters AutoSpec Premier P776 mass spectrometer (Waters, Milford, MA, USA) or aShimadzu LCMS-IT-TOF mass spectrometer (Shimadzu, Kyoto, Japan) was used to acquire the high-resolution mass spectra.ECD spectra were recorded on an Applied Photophysics Chirascan apparatus (Applied Photophysics, Surrey, UK).NMR spectra were obtained by using DRX-500, Avance III-600, and Ascend? 800 MHz spectrometers (Bruker, Karlsruhe, Germany).TLC detection was run on silica gel plates (60 F254).Silica gel (200–300 mesh, Qingdao Makall group Co.Ltd., Qingdao, China) and Sephadex LH-20 (GE Healthcare Bio-Sciences AB, Uppsala, Sweden) were used for column chromatography.A Dr-Flash II apparatus was applied to accomplish the MPLC separations.HPLC purifications were conducted on a Shimadzu LC-CBM-20 system (Shimadzu, Kyoto, Japan), equipped with an Agilent Eclipse XDB-C18column (5 μm, 9.4 × 250 mm).

    Table 3 Inhibitory rates of the isolates (200 μM) on α-glucosidase, PTP1B, and TCPTP

    3.2 Plant Materials

    The aerial parts of threeChelonopsisplants were collected in October 2016 from Lijiang, Yunnan Province of China, which were authenticated to beChelonopsis odontochilaDiels,Chelonopsis pseudobracteataC.Y.Wu et H.W.Li, andChelonopsis praecoxWeckerle and F.Huber by Dr.Chun-Lei Xiang.Voucher specimens (Nos.2016102101, 2016102102, 2016102103) were deposited in the Laboratory of Anti-virus and Natural Medicinal Chemistry, Kunming Institute of Botany, Chinese Academy of Sciences, China.

    3.3 Extraction and Isolation

    The air-dried plants ofC.pseudobracteata(6 kg) were powdered and extracted three times with 90% aqueous EtOH (25 L × 3) at room temperature.The extract was evaporated under reduced pressure, and the residue was suspended in H2O and partitioned with CHCl3.The CHCl3extraction (95 g) was subjected to silica gel column chromatography (Si CC) and eluted with an acetone-petroleum ether solvent system (from 10:90 to 50:50,v/v) to aff ord seven fractions (A–G).Fraction C (19.8 g) was subjected over MCI gel CHP 20P column (H2O–MeOH, 50:50–0:100) to provide fi ve fractions, Frs.C1–C5.Fr.C3(3.4 g) was purifi ed via Si CC (EtOAc-petroleum ether, 10:90–50:50) to give three fractions, Frs.C3-1–C3-3.Fr.C3-1 (600 mg) was purifi ed by Sephadex LH-20 CC (MeOH–CHCl3, 50:50) and semi-preparative HPLC (H2O–MeCN, 36:64) to give compounds 1 (16 mg) and 3 (18 mg).Compounds 2 (25 mg) and 4 (38 mg) were obtained from Fr.C3-2 (750 mg) by Sephadex LH-20 CC (MeOH–CHCl 3 , 50:50) and semi-preparative HPLC (H2O–MeCN, 50:50).

    The air-dried plants ofC.praecox(25 kg) were powdered and extracted three times with 90% aqueous EtOH (100 L × 3) at room temperature.The combined EtOH extract was concentrated and partitioned between H2Oand CHCl3.The CHCl3extraction (380 g) was subjected to Si CC (4.0 kg, 30 × 100 cm), using a gradient elution of EtOAc-petroleum ether (from 10:90 to 100:0) to aff ord seven fractions (A–G).MPLC separation of Fr.D (46 g) by using a CHP20P MCI gel column (H2O-MeOH, from 50:50 to 0:100) provided fi ve fractions, Frs.D1–D5.Fr.D3 (1.3 g) was separated by Si CC (EtOAc-CHCl 3 , 2:98–50:50) to aff ord fi ve fractions, Frs.D3-1–D3-5.Fr.D3-1 (265 mg) was purifi ed by Si CC (acetone-petroleum ether, 5:95), and semi-preparative HPLC (H2O–MeCN, 42:58) to yield compounds 8 (25 mg),5 (18 mg), and 6 (18 mg).Fr.E (17 g) was subjected to MPLC to give fi ve fractions, Frs.E1–E5.Compounds 9 (5 mg) and 7 (25 mg) were obtained from Fr.E3 after repeated Si CC (acetone-petroleum ether, 10:90) and Sephadex LH-20 (MeOH–CHCl3, 50:50), and semipreparative HPLC (MeCN–H2O, 40:60).

    Air-dried and powdered plants ofC.odontochila(8.0 kg) were extracted with 90% aqueous EtOH (35 L × 3) at room temperature.The combined EtOH extract was concentrated and partitioned between H2O and CHCl 3 .The CHCl 3 extract (160 g) was chromatographed on a silica gel column (1.3 kg, 30 × 100 cm), and eluted with acetone-petroleum ether gradient (from 0:100 to 100:0) to yielded seven fractions, Frs.A–G.MPLC separation of Fr.C (15 g) with MCI gel CHP 20P column (H2O–MeOH, from 50:50 to 0:100) gave rise to fi ve fractions, Frs.C1–C5.Fraction C3 (2.8 g) was chromatographed on a silica gel column (acetone-CHCl3, from 10:90 to 100:0) to provide four fractions, Frs.C3-1–C3-4.Compound 11 (12 mg) was purifi ed from Fr.C3-2 (500 mg) by Sephadex LH-20 CC (MeOH–CHCl3, 50:50), and semipreparative HPLC (H2O–MeCN, 64:36).After repeated separation over Si CC (acetone-petroleum ether, 15:85), Sephadex LH-20 CC (MeOH–CHCl 3 , 50:50), and semi-preparative HPLC (H2O–MeCN, 60:40), compounds 10 (27 mg) and 8 (21 mg) were obtained from Fr.C3-3 (470 mg).

    3.4 Spectroscopic Data of Compounds

    3.4.1 7-Hydroxy-4-Methoxy-3,5-Dimethylcoumarin ( 1)

    White amorphous powder; UV (MeOH)λmax(logε): 321 (3.99) nm; IR (KBr)νmax: 3204, 1681, 1610, 1567, 1454, 1378, 1358, 1344, 1257, 1154, 1102, 1074, 1016 cm ?1 ; 1 H and 13 C NMR data, see Tables 1 and 2; positive HRESIMSm/z221.0809 [M + H] + (calcd.for C12H13O 4 , 221.0808).

    3.4.2 5-Hydroxymethyl-4,7-Dimethoxy-3-Methylcoumarin( 2)

    White amorphous powder; UV (MeOH)λmax(logε): 222 (3.91), 320 (3.90) nm; IR (KBr)νmax: 3398, 1663, 1616, 1592, 1558, 1453, 1432, 1369, 1336, 1251, 1197, 1151, 1083, 1047, 1012, 946 cm ?1 ; 1 H and 13 C NMR data, see Tables 1 and 2; positive HRESIMSm/z251.0897 [M + H] + (calcd.for C13H15O5, 251.0914).

    3.4.3 5-Hydroxymethyl-4,6,7-Trimethoxy-3-Methylcoumarin ( 3)

    White amorphous powder; UV (MeOH)λmax(logε): 294 (3.75), 328 (4.00) nm; IR (KBr)νmax: 3434, 1683, 1603, 1562, 1452, 1418, 1366, 1331, 1262, 1224, 1161, 1130, 1081, 1061, 1004, 987 cm ?1 ; 1 H and 13 C NMR data, see Tables 1 and 2; positive HRESIMSm/z281.1039 [M + H] + (calcd.for C14H17O6, 281.1020).

    3.4.4 5-Hydroxymethyl-4,7,8-Trimethoxy-3-Methylcoumarin ( 4)

    White amorphous powder; UV (MeOH)λmax (logε): 318 (4.07) nm; IR (KBr)νmax: 3435, 1687, 1595, 1571, 1457, 1421, 1337, 1274, 1136, 1096, 1052 1012 cm ?1 ; 1 H and 13 C NMR data, see Tables 1 and 2; positive HRESIMSm/z281.1014 [M + H] + (calcd.for C14H17O6, 281.1020).

    3.4.5 5-Formyl-4,7-Dimethoxy-3-Methylcoumarin ( 5)

    White amorphous powder; UV (MeOH)λmax(logε): 218 (3.09), 291 (2.74), 328 (2.83) nm; IR (KBr)νmax: 3426, 1725, 1688, 1605, 1448, 1367, 1336, 1258, 1168, 1089, 953 cm ?1 ; 1 H and 13 C NMR data, see Tables 1 and 2; positive HRESIMSm/z249.0744 [M + H] + (calcd.for C13H13O5, 249.0758).

    3.4.6 5-Formyl-4,6,7-Trimethoxy-3-Methylcoumarin ( 6)

    White amorphous powder; UV (MeOH)λmax(logε): 207 (3.67), 224 (3.63), 290 (3.20), 329 (3.45) nm; IR (KBr)νmax: 3420, 1721, 1693, 1603, 1455, 1388, 1369, 1266, 1226, 1078, 1006, 959 cm ?1 ; 1 H and 13 C NMR data, see Tables 1 and 2; positive HRESIMSm/z279.0906 [M + H] + (calcd.for C14H15O6, 279.0863).

    3.4.7 4,6,7-Trimethoxy-3-Methylcoumarin ( 7)

    Colorless gum; UV (MeOH)λmax(logε): 208 (2.99), 222 (2.83), 287 (2.30), 333 (2.58) nm; IR (KBr)νmax: 3431, 1709, 1620, 1580, 1453, 1372, 1337, 1249, 1215, 1162, 1025, 994 cm ?1 ; 1 H and 13 C NMR data, see Tables 1 and 2; positive HRESIMSm/z251.0898 [M + H] + (calcd.for C13H15O5, 251.0914).

    3.5 In Vitro Enzyme Inhibition Assays

    In this study, three enzymes closely related to diabetes, namelyα-glucosidase, PTP1B, and TCPTP, were applied to assess the antidiabetic potency of compounds.Enzyme inhibition was assayed in accordance with the previous reports [18,19].Acarbose (forα-glucosidase) and Na3VO4(for PTP1B and TCPTP) were used as the positive controls.

    4 Supporting Information

    1D and 2D NMR, HRMS, UV and IR spectra of compounds 1 ? 7.

    Supplementary InformationThe online version contains supplementary material available at https:// doi.org/ 10.1007/ s13659- 021- 00318-9.

    AcknowledgementsThis work was supported by the Yunnan Wanren Project (YNWR-QNBJ-2018-061), the Natural Science Foundation of Yunnan Province (2019FI017), and the Reserve Talents of Young and Middle-Aged Academic and Technical Leaders in Yunnan Province.

    Declarations

    Conflict of interestThe authors declare that they have no competing fi nancial interest.

    Open AccessThis article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made.The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material.If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.To view a copy of this licence, visit http:// creat iveco mmons.org/ licen ses/ by/4.0/.

    黄色丝袜av网址大全| 欧美日韩亚洲国产一区二区在线观看| 黄色怎么调成土黄色| 亚洲va日本ⅴa欧美va伊人久久| 激情视频va一区二区三区| 国产xxxxx性猛交| 国产av精品麻豆| 波多野结衣一区麻豆| 欧美中文综合在线视频| 欧美激情久久久久久爽电影 | 久久中文看片网| 免费观看人在逋| 国产国语露脸激情在线看| 正在播放国产对白刺激| 欧美不卡视频在线免费观看 | 丰满人妻熟妇乱又伦精品不卡| 黑人操中国人逼视频| 99久久久亚洲精品蜜臀av| 两个人免费观看高清视频| 亚洲av电影在线进入| 国产av又大| 色尼玛亚洲综合影院| 又黄又爽又免费观看的视频| 一a级毛片在线观看| 欧美激情高清一区二区三区| 欧美黄色淫秽网站| 在线播放国产精品三级| 久久久久久久久免费视频了| 搡老乐熟女国产| 级片在线观看| 久久性视频一级片| 嫁个100分男人电影在线观看| 美女大奶头视频| 天天躁狠狠躁夜夜躁狠狠躁| 国产又色又爽无遮挡免费看| 黄色视频不卡| 无人区码免费观看不卡| av电影中文网址| 成人国产一区最新在线观看| 黄色视频,在线免费观看| 亚洲一卡2卡3卡4卡5卡精品中文| 精品一区二区三区av网在线观看| 女人被躁到高潮嗷嗷叫费观| 久久中文看片网| 久久精品成人免费网站| 伦理电影免费视频| 999久久久精品免费观看国产| 欧美午夜高清在线| 日日干狠狠操夜夜爽| 两人在一起打扑克的视频| 午夜日韩欧美国产| 国产亚洲精品第一综合不卡| 叶爱在线成人免费视频播放| 91麻豆av在线| 久热爱精品视频在线9| 亚洲精品久久成人aⅴ小说| 18禁美女被吸乳视频| av片东京热男人的天堂| 国产成人免费无遮挡视频| 久久婷婷成人综合色麻豆| 岛国视频午夜一区免费看| 午夜精品在线福利| 日日夜夜操网爽| 丝袜在线中文字幕| 女性生殖器流出的白浆| 国产亚洲欧美98| 国产亚洲精品综合一区在线观看 | 如日韩欧美国产精品一区二区三区| 成人18禁高潮啪啪吃奶动态图| 亚洲精品一卡2卡三卡4卡5卡| 一a级毛片在线观看| 99国产精品一区二区蜜桃av| 黄片播放在线免费| 麻豆久久精品国产亚洲av | 在线观看舔阴道视频| 久久人人97超碰香蕉20202| 女生性感内裤真人,穿戴方法视频| 日韩有码中文字幕| 香蕉久久夜色| 亚洲美女黄片视频| 久久久久久久精品吃奶| 最新美女视频免费是黄的| 亚洲精品成人av观看孕妇| 国产免费av片在线观看野外av| 啪啪无遮挡十八禁网站| 级片在线观看| 午夜精品国产一区二区电影| 少妇裸体淫交视频免费看高清 | 亚洲av成人不卡在线观看播放网| 99精国产麻豆久久婷婷| 成人三级做爰电影| 午夜激情av网站| 国产主播在线观看一区二区| 真人一进一出gif抽搐免费| 免费在线观看日本一区| 午夜免费成人在线视频| 满18在线观看网站| 精品第一国产精品| 好男人电影高清在线观看| 久久精品人人爽人人爽视色| 精品午夜福利视频在线观看一区| 国产亚洲精品久久久久久毛片| 亚洲视频免费观看视频| 国产色视频综合| 国产在线精品亚洲第一网站| 老熟妇仑乱视频hdxx| 国产一区二区在线av高清观看| 国产精品美女特级片免费视频播放器 | 久久久久国产一级毛片高清牌| 两性午夜刺激爽爽歪歪视频在线观看 | 别揉我奶头~嗯~啊~动态视频| 国产精品电影一区二区三区| 久久久国产欧美日韩av| 日本a在线网址| 一级片'在线观看视频| 手机成人av网站| 男女做爰动态图高潮gif福利片 | 久久这里只有精品19| 亚洲av成人一区二区三| av欧美777| a在线观看视频网站| 9色porny在线观看| 国产深夜福利视频在线观看| 国产成人精品无人区| 自拍欧美九色日韩亚洲蝌蚪91| 欧美激情久久久久久爽电影 | 久久性视频一级片| netflix在线观看网站| 亚洲成人免费av在线播放| 免费女性裸体啪啪无遮挡网站| 十分钟在线观看高清视频www| 亚洲va日本ⅴa欧美va伊人久久| 国产精品香港三级国产av潘金莲| 久久午夜亚洲精品久久| 在线观看舔阴道视频| 在线观看一区二区三区| 久久精品亚洲av国产电影网| 亚洲av片天天在线观看| 精品一品国产午夜福利视频| 99精品久久久久人妻精品| 麻豆一二三区av精品| 国产野战对白在线观看| 午夜免费激情av| 免费在线观看日本一区| 国产又爽黄色视频| 成年人黄色毛片网站| 亚洲 欧美一区二区三区| 免费看a级黄色片| 亚洲av第一区精品v没综合| www.精华液| 久久久久久免费高清国产稀缺| 久久久水蜜桃国产精品网| 一个人观看的视频www高清免费观看 | 99在线人妻在线中文字幕| 午夜激情av网站| 国产精品免费一区二区三区在线| 极品人妻少妇av视频| 亚洲自偷自拍图片 自拍| 久久亚洲精品不卡| 操出白浆在线播放| 一边摸一边抽搐一进一出视频| 欧美激情 高清一区二区三区| 久9热在线精品视频| 国产成人精品久久二区二区免费| 午夜福利一区二区在线看| 欧美日韩视频精品一区| 亚洲自偷自拍图片 自拍| 亚洲视频免费观看视频| 日本wwww免费看| 精品国产国语对白av| 搡老岳熟女国产| a在线观看视频网站| 久久 成人 亚洲| 日韩成人在线观看一区二区三区| 制服诱惑二区| 一本大道久久a久久精品| 一区二区日韩欧美中文字幕| 亚洲色图 男人天堂 中文字幕| 看片在线看免费视频| 国产男靠女视频免费网站| 69av精品久久久久久| 久久影院123| 国产欧美日韩一区二区三区在线| 69av精品久久久久久| 人人澡人人妻人| 伊人久久大香线蕉亚洲五| 亚洲国产精品一区二区三区在线| 亚洲在线自拍视频| 啦啦啦免费观看视频1| 午夜精品在线福利| 国产精品99久久99久久久不卡| 亚洲精品粉嫩美女一区| 国产成人欧美在线观看| 老熟妇仑乱视频hdxx| 国产成人精品无人区| 国产成人av激情在线播放| 男女午夜视频在线观看| 免费看十八禁软件| 免费日韩欧美在线观看| 久久久久久久午夜电影 | 在线免费观看的www视频| 无人区码免费观看不卡| 亚洲欧美激情在线| 嫩草影院精品99| 免费av中文字幕在线| 18禁观看日本| 超色免费av| 看片在线看免费视频| 国产精品香港三级国产av潘金莲| 国产精品美女特级片免费视频播放器 | 天堂俺去俺来也www色官网| 女性生殖器流出的白浆| 最近最新中文字幕大全电影3 | 亚洲va日本ⅴa欧美va伊人久久| 欧美激情 高清一区二区三区| 精品无人区乱码1区二区| 国产精品99久久99久久久不卡| 啦啦啦 在线观看视频| 欧美中文日本在线观看视频| 91字幕亚洲| 欧美日韩乱码在线| 日日爽夜夜爽网站| avwww免费| 亚洲一卡2卡3卡4卡5卡精品中文| 在线观看66精品国产| 女性生殖器流出的白浆| 在线播放国产精品三级| 女人高潮潮喷娇喘18禁视频| 大香蕉久久成人网| 国产乱人伦免费视频| 女生性感内裤真人,穿戴方法视频| 人妻久久中文字幕网| 99久久久亚洲精品蜜臀av| 亚洲国产精品一区二区三区在线| 色播在线永久视频| 久久精品影院6| 人妻久久中文字幕网| 欧美日韩亚洲高清精品| 午夜福利在线观看吧| 在线观看舔阴道视频| 18禁国产床啪视频网站| 欧美日韩亚洲国产一区二区在线观看| 日本五十路高清| 亚洲人成电影观看| 色老头精品视频在线观看| 欧美日韩中文字幕国产精品一区二区三区 | 午夜老司机福利片| 精品国产亚洲在线| 国产黄色免费在线视频| 亚洲精品国产精品久久久不卡| 亚洲精品国产一区二区精华液| 老司机靠b影院| 少妇裸体淫交视频免费看高清 | 亚洲视频免费观看视频| 亚洲欧美精品综合久久99| 亚洲成人久久性| 色精品久久人妻99蜜桃| 老司机亚洲免费影院| 国产一区二区三区综合在线观看| 国产人伦9x9x在线观看| 在线观看一区二区三区| 夜夜爽天天搞| 夫妻午夜视频| 亚洲午夜理论影院| 免费在线观看日本一区| 丝袜在线中文字幕| 午夜福利在线免费观看网站| 99在线视频只有这里精品首页| 黄片播放在线免费| 亚洲一区二区三区色噜噜 | 电影成人av| 欧美日韩亚洲国产一区二区在线观看| 老司机深夜福利视频在线观看| 成人三级黄色视频| 黑丝袜美女国产一区| 桃色一区二区三区在线观看| 女人爽到高潮嗷嗷叫在线视频| 亚洲精品一区av在线观看| 久久中文字幕人妻熟女| 可以免费在线观看a视频的电影网站| 欧美精品啪啪一区二区三区| 日韩欧美一区视频在线观看| 久久久久国内视频| 夜夜躁狠狠躁天天躁| 三上悠亚av全集在线观看| 亚洲av日韩精品久久久久久密| 国产亚洲欧美98| 高清欧美精品videossex| av在线播放免费不卡| 中国美女看黄片| 我的亚洲天堂| 亚洲av成人不卡在线观看播放网| 精品免费久久久久久久清纯| 伦理电影免费视频| 黑人巨大精品欧美一区二区蜜桃| 亚洲欧洲精品一区二区精品久久久| 亚洲av成人不卡在线观看播放网| 中文字幕人妻熟女乱码| 日本黄色视频三级网站网址| 一边摸一边抽搐一进一小说| 国产精品国产高清国产av| 国产精品爽爽va在线观看网站 | 欧美日韩视频精品一区| 黄网站色视频无遮挡免费观看| 高清黄色对白视频在线免费看| 色综合婷婷激情| 亚洲,欧美精品.| 免费久久久久久久精品成人欧美视频| 亚洲自拍偷在线| 国产国语露脸激情在线看| 激情视频va一区二区三区| 夜夜爽天天搞| 欧美精品亚洲一区二区| 欧美在线一区亚洲| 亚洲午夜精品一区,二区,三区| 极品教师在线免费播放| 91在线观看av| 国产成人精品在线电影| 久久 成人 亚洲| 国产成年人精品一区二区 | 亚洲精品粉嫩美女一区| 国产aⅴ精品一区二区三区波| 国产一区在线观看成人免费| 高清av免费在线| 亚洲成人精品中文字幕电影 | 国产一区二区三区视频了| 一级,二级,三级黄色视频| 亚洲一区中文字幕在线| 久久精品国产亚洲av高清一级| av电影中文网址| 久久久精品欧美日韩精品| 人妻丰满熟妇av一区二区三区| 欧美激情 高清一区二区三区| 美女扒开内裤让男人捅视频| 搡老岳熟女国产| 成人国语在线视频| 日本欧美视频一区| 成人国语在线视频| 亚洲伊人色综图| 国产国语露脸激情在线看| 超碰97精品在线观看| 这个男人来自地球电影免费观看| 97人妻天天添夜夜摸| 亚洲av第一区精品v没综合| 国产亚洲精品综合一区在线观看 | 欧美精品啪啪一区二区三区| 日本a在线网址| 高清欧美精品videossex| 嫩草影院精品99| 91精品国产国语对白视频| 亚洲男人天堂网一区| 黄色丝袜av网址大全| 一区福利在线观看| 国产激情久久老熟女| 天天影视国产精品| 精品日产1卡2卡| 女人高潮潮喷娇喘18禁视频| 国产精品秋霞免费鲁丝片| ponron亚洲| 欧美色视频一区免费| 久久香蕉精品热| 国产黄色免费在线视频| 久久国产精品影院| 久久久久九九精品影院| 成人特级黄色片久久久久久久| 黄片大片在线免费观看| 变态另类成人亚洲欧美熟女 | www.精华液| 一a级毛片在线观看| 校园春色视频在线观看| 精品国产美女av久久久久小说| 午夜成年电影在线免费观看| 国产主播在线观看一区二区| 国产高清国产精品国产三级| 99精品欧美一区二区三区四区| 亚洲情色 制服丝袜| 久久久国产一区二区| 波多野结衣av一区二区av| 两人在一起打扑克的视频| 人人妻,人人澡人人爽秒播| aaaaa片日本免费| 九色亚洲精品在线播放| 淫秽高清视频在线观看| 久久人妻福利社区极品人妻图片| 精品国产一区二区久久| 欧美日韩精品网址| 啦啦啦 在线观看视频| 操美女的视频在线观看| av免费在线观看网站| 亚洲性夜色夜夜综合| 亚洲avbb在线观看| 老汉色∧v一级毛片| 高清黄色对白视频在线免费看| 国产精品电影一区二区三区| 国产真人三级小视频在线观看| 国产成人影院久久av| 91九色精品人成在线观看| 在线永久观看黄色视频| 在线观看日韩欧美| 少妇 在线观看| 狠狠狠狠99中文字幕| xxxhd国产人妻xxx| 村上凉子中文字幕在线| 黄片大片在线免费观看| 女性被躁到高潮视频| 亚洲精品美女久久久久99蜜臀| 精品久久蜜臀av无| 99久久久亚洲精品蜜臀av| 一个人观看的视频www高清免费观看 | 黄色 视频免费看| 亚洲一码二码三码区别大吗| 黑人欧美特级aaaaaa片| 精品国内亚洲2022精品成人| 91精品国产国语对白视频| 国产精品国产av在线观看| 两人在一起打扑克的视频| 亚洲午夜精品一区,二区,三区| 人人妻人人爽人人添夜夜欢视频| 亚洲一区高清亚洲精品| 精品电影一区二区在线| 亚洲五月天丁香| 成人精品一区二区免费| 欧美老熟妇乱子伦牲交| 久久久久精品国产欧美久久久| 在线视频色国产色| 中文欧美无线码| 精品福利观看| 亚洲狠狠婷婷综合久久图片| 正在播放国产对白刺激| 人人妻,人人澡人人爽秒播| 国产精品成人在线| 免费日韩欧美在线观看| 久久这里只有精品19| 99久久综合精品五月天人人| 韩国精品一区二区三区| 国产精品偷伦视频观看了| 亚洲欧美日韩另类电影网站| 叶爱在线成人免费视频播放| 欧美中文综合在线视频| 97超级碰碰碰精品色视频在线观看| 真人做人爱边吃奶动态| av欧美777| 在线av久久热| 老司机靠b影院| 欧美精品一区二区免费开放| 午夜两性在线视频| 免费人成视频x8x8入口观看| 久久精品国产综合久久久| 国产黄a三级三级三级人| 日韩大尺度精品在线看网址 | 女人高潮潮喷娇喘18禁视频| 免费在线观看亚洲国产| 亚洲av成人不卡在线观看播放网| 日韩大码丰满熟妇| 亚洲国产精品合色在线| www.999成人在线观看| 级片在线观看| 亚洲精品国产区一区二| 午夜精品久久久久久毛片777| 亚洲 欧美 日韩 在线 免费| 香蕉丝袜av| 人妻丰满熟妇av一区二区三区| 精品一品国产午夜福利视频| 久久精品国产99精品国产亚洲性色 | 免费不卡黄色视频| 激情在线观看视频在线高清| 久久精品国产亚洲av高清一级| 女性被躁到高潮视频| 国产精品日韩av在线免费观看 | 国产高清videossex| 80岁老熟妇乱子伦牲交| www.熟女人妻精品国产| 久久国产乱子伦精品免费另类| 99热国产这里只有精品6| 久久久久久人人人人人| 日韩大码丰满熟妇| 又黄又粗又硬又大视频| 99国产精品一区二区蜜桃av| 国产成+人综合+亚洲专区| 叶爱在线成人免费视频播放| 国产亚洲精品一区二区www| 国内毛片毛片毛片毛片毛片| 一本大道久久a久久精品| 午夜福利在线免费观看网站| 美女福利国产在线| 亚洲av美国av| 美女扒开内裤让男人捅视频| 久热这里只有精品99| 69精品国产乱码久久久| 日韩中文字幕欧美一区二区| 高清黄色对白视频在线免费看| 免费在线观看视频国产中文字幕亚洲| 国产精品日韩av在线免费观看 | 国产精品一区二区在线不卡| 国产成年人精品一区二区 | 亚洲精品中文字幕在线视频| 最近最新免费中文字幕在线| 亚洲欧美精品综合一区二区三区| 久久精品国产亚洲av高清一级| 又黄又粗又硬又大视频| 亚洲性夜色夜夜综合| 看片在线看免费视频| 19禁男女啪啪无遮挡网站| 国产高清国产精品国产三级| 国产在线观看jvid| 桃色一区二区三区在线观看| 97碰自拍视频| 日韩一卡2卡3卡4卡2021年| 日韩精品青青久久久久久| 在线观看免费午夜福利视频| 麻豆久久精品国产亚洲av | 亚洲成人免费电影在线观看| 亚洲精华国产精华精| 9热在线视频观看99| 大型av网站在线播放| 不卡av一区二区三区| 99国产综合亚洲精品| 中文字幕精品免费在线观看视频| 大陆偷拍与自拍| 窝窝影院91人妻| 成年人免费黄色播放视频| 中文字幕av电影在线播放| 99在线人妻在线中文字幕| 日日夜夜操网爽| 美女高潮到喷水免费观看| 看黄色毛片网站| 久久久精品欧美日韩精品| 91九色精品人成在线观看| 老鸭窝网址在线观看| 欧美亚洲日本最大视频资源| 国产成人欧美在线观看| 99国产精品免费福利视频| 日韩国内少妇激情av| 青草久久国产| 精品人妻1区二区| 91大片在线观看| 免费高清在线观看日韩| 中文亚洲av片在线观看爽| 亚洲欧美激情综合另类| 两个人免费观看高清视频| 免费一级毛片在线播放高清视频 | 国产精品永久免费网站| av有码第一页| 9热在线视频观看99| 国产精品美女特级片免费视频播放器 | 亚洲精品一二三| 亚洲国产欧美网| 日韩大码丰满熟妇| 国产av在哪里看| 正在播放国产对白刺激| 久久中文字幕一级| 亚洲人成网站在线播放欧美日韩| 欧美黄色淫秽网站| 宅男免费午夜| 又黄又粗又硬又大视频| 欧美乱妇无乱码| 欧美在线黄色| 国产精品电影一区二区三区| 一级片免费观看大全| 老熟妇仑乱视频hdxx| 日本三级黄在线观看| 国产成人精品在线电影| 老司机深夜福利视频在线观看| 午夜亚洲福利在线播放| 国产麻豆69| 看免费av毛片| 黄片小视频在线播放| 午夜久久久在线观看| 在线永久观看黄色视频| 日本三级黄在线观看| 日韩欧美一区二区三区在线观看| 最新美女视频免费是黄的| 人人妻人人爽人人添夜夜欢视频| 国产精品电影一区二区三区| 久久精品人人爽人人爽视色| 好看av亚洲va欧美ⅴa在| 亚洲七黄色美女视频| 一级黄色大片毛片| 在线观看午夜福利视频| 在线观看www视频免费| 国产国语露脸激情在线看| 国产三级在线视频| 欧美日韩亚洲国产一区二区在线观看| 国产不卡一卡二| 黄片播放在线免费| 国产精品九九99| 91在线观看av| 母亲3免费完整高清在线观看| 在线观看66精品国产| 成年人黄色毛片网站| 91字幕亚洲| 老司机福利观看| 国产真人三级小视频在线观看| 欧美大码av| 女生性感内裤真人,穿戴方法视频| 久久精品亚洲精品国产色婷小说| 国产成人精品久久二区二区91| 久久国产精品影院| 日韩有码中文字幕| 亚洲成人精品中文字幕电影 | 麻豆久久精品国产亚洲av | 啦啦啦 在线观看视频| 水蜜桃什么品种好| 日韩一卡2卡3卡4卡2021年| 99国产精品免费福利视频| a级毛片黄视频| 99久久精品国产亚洲精品| 国产成年人精品一区二区 | 日本一区二区免费在线视频| 丰满的人妻完整版| 无限看片的www在线观看| 一区在线观看完整版| 国产精品久久久人人做人人爽| 免费在线观看视频国产中文字幕亚洲| 中文字幕人妻熟女乱码|