• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Natural Convection in an H-Shaped Porous Enclosure Filled with a Nanofluid

    2021-12-16 06:41:36ZehbaRaizahandAbdelraheemAly
    Computers Materials&Continua 2021年3期

    Zehba A.S.Raizah and Abdelraheem M.Aly,2,*

    1Department of Mathematics,College of Science,King Khalid University,Abha,62529,Saudi Arabia

    2Department of Mathematics,South Valley University,Qena,83523,Egypt

    Abstract: This study simulates natural convection flow resulting from heat partitions in an H-shaped enclosure filled with a nanofluid using an incompressible smoothed particle hydrodynamics (ISPH) method.The right area of the H-shaped enclosure is saturated with non-Darcy porous media.The center variable partitions of the H-shaped enclosure walls are kept at a high-temperature Th.The left and right walls of the H-shaped enclosure are positioned at a low temperature Tc and the other walls are adiabatic.In ISPH method,the source term in pressure Poisson equation(PPE)is modified.The influences of the controlling parameters on the temperature distributions,the velocity field and average Nusselt number are discussed.The performed simulations proofed that the length of the heated partitions augments the velocity field and temperature distributions in an H-shaped enclosure.Rayleigh number rises the fluid velocity and heat transfer in an H-shaped enclosure.The porous layer on the right side of the H-shaped enclosure at a lower Darcy parameter causes a high resistance force for the fluid flow and heat transfer characteristic inside an H-shaped enclosure.Added nanoparticles reduces the velocity field and enhances the heat transfer inside an H-shaped enclosure.

    Keywords: H-shaped enclosure; ISPH; natural convection; nanofluid;porous medium

    1 Introduction

    Fundamental numerical studies on heat transfer in porous media by using finite element method have been introduced by Lewis et al.[1,2].In addition, due to the wide applications of using various shapes of cavities and their effects in the flow formations and performance of the heat transfer.Then, there are many studies in the convection flow and heat transfer inside different geometries of the cavities.Esfe et al.[3] introduced numerical studies for natural convection inside a T-shaped cavity.By using the Boussinesq approximation, Li et al.[4] studied two-phase mixed convection over four rotating cylinders in a porous H-shaped cavity filled with a non-Newtonian nanofluid.Bhowmick et al.[5] investigated the transient natural convection flow in a valley-shaped triangular cavity filled by stratified water.Bhowmick et al.[6] studied the natural convection in a V-shaped cavity heated from below.Ma et al.[7] used lattice Boltzmann method (LBM) to analyze the natural convection from a hot obstacle inside a U-shaped cavity filled with Al2O3-water or TiO2-water nanofluid.Simulation of natural convection in H-shaped cavity filled with nanofluid using lattice Boltzmann was introduced by Rahimi et al.[8].In addition, Izadi et al.[9] used LBM to investigate the natural convection in a ⊥shaped enclosure filled with a hybrid nanofluid.Ahmed et al.[10] simulated the magnetohydrodynamics (MHD) ferroconvective in an inclined double-lid driven L-shaped enclosure.The nanofluid thermo-gravitational convection inside aΓ-shaped enclosure was evaluated by Mohebbi et al.[11].Liu et al.[12] performed a numerical work on the serpentine microchannel including fan-shaped reentrant cavities.Purusothamana et al.[13] studied MHD free convection flow in a tilted V-shaped electronic assembly.Ma et al.[14] adopted LBM method to analyze the natural convection in I-shaped heat exchanger filled with a nanofluid.Aly [15] applied the finite volume method with a SIMPLE algorithm to study the impacts of thermo-diffusion on the buoyancy flow over two circular cylinders inside a porous cavity filled with a nanofluid.

    All of the previous studies are depending on the mesh numerical methods to solve the governing equations of the case study.But, there are some cases are requiring an effective method.One of these methods is the SPH method, which has been applied in the computational fluid dynamics.SPH method is a promising numerical method for simulating impact fluid flows, free surface flow and bouyancy forces [16-24].Shao [22] applied incompressible version of SPH method for simulating wave interactions with a porous medium.Kazemi et al.[23] introduced a novel SPH method for fluid flow in an open channel over natural porous beds.Kazemi et al.[24]developed SPH method to treat the interaction at an interface between free fluid flow with porous media.Ahmed et al.[25] used improved ISPH method to study the buoyancy-driven flow inside a nanofluid-filled enclosure including a cross shape.Aly et al.[26-34] modified the ISPH method to simulate several numerical problems concerning in heat and mass transfer inside different cavity shapes below different boundary conditions.

    The nanofluid flow over blockages has several engineering applications including nuclear fuel sub assembly with flow blockage, indoor building, storage and drying.The aim of this study is to perform numerical simulations of the natural convection flow in a nanofluid-filled H-shaped enclosure.A porous medium is filled the right area of the H-shaped enclosure and the heated partitions were positioned at the center of the H-shaped enclosure.The results showed that the length of the heated source can control the buoyancy force inside an H-shaped enclosure.An extra number of the cooled blockages reduces the fluid flow and heat transfer inside an H-shaped enclosure.Lower Darcy parameter strengths the porous resistance and consequently a decrease in Darcy parameter decreases the fluid intensity and temperature distributions inside the right side of the H-shaped enclosure.Rayleigh number plays an important role in enhancement heat transfer and strengths of fluid velocity inside an H-shaped enclosure.The average Nusselt number is affected by varying the length of the hot source, number of the cooled blockages and Darcy parameter.The average Nusselt number increases as Rayleigh number increases and it decreases as solid volume fraction increases.Adding nanoparticles until 5% reduces the velocity field in an H-shaped enclosure due to a higher viscosity.

    2 Mathematical Formulation

    Fig.1 presents the initial schematic diagram of the current physical models and their particle generation.The heated area with a high temperatureThis positioned at the center of the H-shaped enclosure with an equal variable lengthB.The other center walls and the horizontal walls are thermally insulated.The sidewalls of the H-shaped enclosure have a low-temperatureTc.H-cavity length isL= 1.4 and its height isW= 1.6.Center length and height of the H-shaped enclosure areLH=0.4 andWH=0.4, respectively.Model 2 shows the inner blockages with variable numbers inside an H-shaped enclosure.These blockages are maintained at a low temperatureTcwith an initial zero velocity.The blockages are taken as square shapes with a length 0.1 and their positions are settled in the center of the H-shaped enclosure.Tab.1 introduces the physical properties of the water as a base fluid and a copper as nanoparticles.

    Figure 1: Initial physical models and their particles generations.(a) Initial physical model (1).(b) Particles (mesh) model (1).(c) Initial physical model (2).(d) Particles (mesh) model (2)

    Table 1: Physical properties of the water and copper (Cu)

    In this study, one phase model and Brinkman’s-extended non-Darcy model are used for a nanofluid and a porous medium, respectively.The Lagrangian form of governing equations are written as [35,36]:

    where,

    KandFare Forchheimer’s coefficient:

    The properties of the nanofluid are defined as [37-40]:

    The Lagrangian form of the dimensionless equations are defined as:

    The dimensionless quantities are:

    2.1 Boundary Conditions

    In this study, the dimensionless boundary conditions are:

    On the outer side-walls of H-cavity:U=0;V=0;θ=0,

    On the center walls of H-cavity:U=0;V=0;θ=1,

    On the horizontal and center walls of H-cavity:U=0;V=0;=0,

    On the embedded square blockages:U=0;V=0;θ=0,

    The average Nusselt number is defined as:

    where n andLwis the normal vector and total length of the heated partition in the H-cavity.

    3 Numerical Method

    Here, the solving steps for the implicit scheme in the ISPH method are mainly depend in the projection method [41].Prediction step:

    where, Pors=δ.

    Pressure Poisson equations (PPE):

    where,γ:(0 ≤γ≤1)is a relaxation parameter.Hyder et al.[42] used a new framework for solvingχ-stochastic Poisson equation.

    The corrector step:

    Thermal equation:

    Update the particles positions:

    In this study, the shifting technique according to [43] is applied to avoid particles disorders:

    whereFis any hydrodynamic function andis a gradient of particle concentration.

    3.1 SPH Approach

    The concept of SPH method for calculating any fluid hydrodynamics properties is:

    Wis a kernel function:

    The divergence and gradient in SPH method can be approximated as:

    According to [44], the divergence of the velocity is corrected by a kernel gradient normalization as:

    The gradient of the pressure and the divergence of the velocity vector are:

    For the second derivative, Laplacian operator can be approximated as:

    Laplacian of velocity, pressure and temperature are approximated as:

    4 Validation Tests

    In order to prove the efficiency of the present ISPH method for simulating the natural convection flow in a partial layer porous cavity, a comparison of the temperature profiles along different horizontal lines with numerical and experimental data from Beckermann et al.[45] is performed.In Fig.2, ISPH results for the temperature profiles at three different positions in a partial layer porous cavity are agreeing well with the available numerical and experimental data from Beckermann et al.[45].For the mesh independence test, three different particle sizesd0=0.02, 0.01 and 0.005 were investigated.Tab.2 presents the average Nusselt number for three different particle sizesd0=0.02, 0.01 and 0.005.There are small variations in the value of average Nusselt number at three different particle sizes.Hence, the particle sized0=0.01 has been chosen for all the performed simulations in the current study.

    Figure 2: Comparison of the natural convection in a partitioned porous cavity between numerical and experimental data from Beckermann et al.[45] and present ISPH results

    Table 2: Mesh independence test for average Nusselt number when the hot source length B=0.2, solid volume fraction ?=0.01, Rayleigh number Ra=104, Darcy parameter Da=10-3,and porosity ε=0.6

    Table 2: Mesh independence test for average Nusselt number when the hot source length B=0.2, solid volume fraction ?=0.01, Rayleigh number Ra=104, Darcy parameter Da=10-3,and porosity ε=0.6

    Particle size d0=0.02 d0=0.01 d0=0.005 Nu 0.0237 0.0258 0.0261

    5 Results and Discussion

    In this work, the numerical simulations of the natural convection in an H-shaped enclosure under the impacts of the key physical parameters were presented in the temperature and velocity field distributions as well as average Nusselt number profiles.The partitions of the hot source in the center boundary of the H-shaped enclosure were varied from 0 to 0.6.Rayleigh number varies from 103to 105and the Darcy parameter varies from 10-2to 10-5.Different numbers of the cooled square blockages inside an H-shaped enclosure were considered.In addition, adding more concentration of nanoparticles inside an H-shaped enclosure was limited on 5% to avoid the solidification between the nanoparticles and a porous medium.This section is divided into four parts depending on the impacts of the physical parameters and thermal conditions.The first part will discuss the presence of the cooled square blockages inside an H-shaped enclosure with variations on the number of cooled blockages.The second part will check the impacts of the variable length of the hot source.Third part will investigate the effects of the augmented buoyancy force (greater values of the Rayleigh number) with increasing the porous resistance (lower values of the Darcy parameter) on the right side of the H-shaped enclosure.Finally, an enhancement of heat transfer by adding more nanoparticles concentration will be discussed.

    5.1 Presence of Cooled Blockages

    Fig.3 presents the temperature distributions under the variations on the number of the cooled square blockages at Rayleigh numberRa=104, Darcy parameterDa=10-3,?=0.01, porosityε=0.6 and hot source lengthB=0.2.It is found that the number of the cooled square blockages plays an important role in decreasing the temperature distributions inside an H-shaped enclosure.It is seen that the cooled square blockages are reducing the temperature distributions in the center of the H-shaped enclosure.An extra number of the cooled square blockages (around eight blockages) reduces the temperature distributions beside the hot source inside an H-shaped enclosure.Fig.4 shows the velocity field distributions under the variations on the number of the cooled square blockages.In general, due to the porous resistance on the right side of the H-shaped enclosure, the velocity of the fluid flows on the right porous layer is lower than the velocity of the fluid flows on the left side (nanofluid layer) of the H-shaped enclosure.It seems that the velocity of the fluid flows is decreasing according to an increase in the number of the cooled square blockages.The time transitions from the unsteady state to steady-state for the temperature distributions under the variations on the number of the cooled square blockages have been shown in Fig.5.An extra number of the cooled blockages reduces the temperature distributions.

    Figure 3: Temperature distributions under different numbers of the cooled square blockages at Rayleigh number Ra=104, Darcy parameter Da=10-3, ?=0.01, porosity ε=0.6 and hot source length B=0.2.(a) Two blockages.(b) Three blockages.(c) Four blockages.(d) Eight blockages

    Figure 4: Velocity field distributions under different numbers of the cooled square blockages at Rayleigh number Ra=104, Darcy parameter Da=10-3, ?=0.01, porosity ε=0.6 and hot source length B=0.2.(a) Two blockages.(b) Three blockages.(c) Four blockages.(d) Eight blockages

    Figure 5: Time histories for the temperature distributions under different numbers of the cooled square blockages at Rayleigh number Ra=104, Darcy parameter Da=10-3, ?=0.01, porosity ε=0.6 and hot source length B=0.2.(a) Two blockages.(b) Eight blockages

    —Effects of the Hot Source Length

    Figs.6 and 7 show the temperature distributions under the impacts of the hot lengthBat Rayleigh numberRa=104, Darcy parameterDa=10-3,?=0.01 and porosityε=0.6.An increase on the length of the hot source augments the buoyancy force and consequently it rises the temperature distributions inside an H-shaped enclosure.When the length of the hot source is equal to 0.6, then the temperature distributions are fully filled out the both sides of the H-shaped enclosure.In addition, an increase in the length of the hot source augments the buoyancy force and consequently the velocities of the fluid flows inside an H-shaped enclosure are increasing.This behavior appears in Fig.7, in which the velocity fields in both sides of the H-shaped enclosure are increasing according to an increase in the length of the hot source.

    Figure 6: Temperature distributions under the impacts of hot source length B at Rayleigh number Ra=104, Darcy parameter Da=10-3, ? =0.01 and porosity ε =0.6.(a) B=0.(b) B=0.1.(c) B=0.3.(d) B=0.6

    Figure 7: Velocity field distributions under the impacts of hot source length B at Rayleigh number Ra=104, Darcy parameter Da=10-3, ?=0.01 and a porosity ε=0.6.(a) B=0.(b) B=0.1.(c) B=0.3.(d) B=0.6

    —Effects of Rayleigh and Darcy Parameter

    Figs.8 and 9 introduce the influences of Rayleigh and Darcy parameter on the temperature and velocity field distributions at?=0.01, porosityε=0.6 and hot lengthB=0.2.Generally,an increase in the Rayleigh number augments the buoyancy force and consequently both of the temperature distributions and strength of the velocity fields are increase.From Fig.8, as the Darcy parameter decreases fromDa=10-2to 10-5, the temperature distributions on the right side (porous layer) of the H-shaped enclosure are decreasing due to high porous resistance in this side for any value of Rayleigh number.Moreover, an increase on the Rayleigh number augments the temperature distributions and the physical reason returns to the high buoyancy force.From Fig.9, there are clear differences in the velocity fields between the left and right area of the H-shaped enclosure due to the presence of the porous layer on the right side.Hence, as the Darcy parameter decreases (higher porous resistance) leads to a strong decrease on the velocity fields on the right side (porous layer) of the H-shaped enclosure.

    Figure 8: Effects of Rayleigh and Darcy parameter on the temperature distributions at ?=0.01,porosity ?=0.6 and hot length B=0.2

    Figure 9: Effects of Rayleigh and Darcy parameter on the velocity field distributions at ?=0.01,porosity ?=0.6 and hot length B=0.2

    Higher buoyancy force at higher Rayleigh number augments the strength of the velocity fields and the distributions of the velocity fields inside an H-shaped enclosure.It is seen that the maximum values of the velocity fields are 1.82, 15.79 and 84.31 when the Rayleigh number equalsRa=103, 104and 105, respectively.From these results, the Rayleigh number is considering the main factor in the enhancement of heat transfer and fluid flows inside an H-shaped enclosure.Fig.10 presents the average Nusselt number under the impacts of Rayleigh and Darcy parameter at?=0.01, porosityε=0.6 and hot lengthB=0.2.It seems that the highest value of the average Nusselt number appears at Rayleigh numberRa=105.As Darcy parameter rises from 10-5to 10-2, the average Nusselt number decreases when Rayleigh number equals toRa=105.At lower values of the Rayleigh numberRa≤104, the average Nusselt number has slight changes under the impact of a Darcy parameter.

    Figure 10: Effects of Rayleigh and Darcy parameter on the average Nusselt number at φ=0.01,porosity ?=0.6 and hot length B=0.2

    5.2 Effects of Solid Volume Fraction

    Figs.11 and 12 introduce the distributions of the temperature inside H-enclusre under the effects of solid volume fraction?at Rayleigh numberRa=104, Darcy parameterDa=10-3,porosityε=0.6 and hot source lengthB=0.2.In Fig.11, an increase in the solid volume fraction?enhances the temperature distributions.In Fig.12, adding nanoparticles augments the viscosity of the fluid and consequently the velocity fields were declined.In the current simulations, adding nanoparticles is limited to 5% to avoid the solidification within the porous medium.

    Figure 11: Temperature distributions under the effects of solid volume fraction ? at Rayleigh number Ra=104, Darcy parameter Da=10-3, porosity ε=0.6 and hot source length B=0.2.(a) φ=0.(b) φ=0.03.(c) φ=0.05

    Figure 12: Velocity fields distributions under the effects of solid volume fraction ? at Rayleigh number Ra=104, Darcy parameter Da=10-3, porosity ε=0.6 and hot source length B=0.2.(a) φ=0, (b) φ=0.03, (c) φ=0.05

    Tab.3 presents the average Nusselt numberfor different values of blockages numbers,hot source lengthBand solid volume fraction?at Rayleigh numberRa=104, Darcy parameterDa=10-3and porosityε=0.6.Here, the average Nusselt number is varying as the number of the square blockages is increasing from 2 to 8.There is one peak in the average Nusselt number when the number of the square blockages is equal to four.The description of the peak is appeared when the number of blockages is increasing from two to four and from four to eight blockages.Average Nusselt number is decreasing as the length of the hot sourceBis increasing from 0 to 0.1.While,asBis increasing from 0.1 to 0.3, the average Nusselt number rises.There is a slight decrease on the average Nusselt number as the hot lengthBincreases from 0.3 to 0.6.In addition, adding more concentration of the nanoparticles from 0 to 5% moderates the average Nusselt number.

    Table 3: Average Nusselt number for different values of blockages numbers, hot source length B and solid volume fraction ? at Rayleigh number Ra=104, Darcy parameter Da=10-3, and porosity ε=0.6

    Table 3: Average Nusselt number for different values of blockages numbers, hot source length B and solid volume fraction ? at Rayleigh number Ra=104, Darcy parameter Da=10-3, and porosity ε=0.6

    Blockages numberB?Average Nusselt numberNu 2 0.2 0.01 0.0134 3 0.0832 4 0.0862 8 0.0379 0 0 0.0494 0.1 0.0065 0.3 0.0338 0.6 0.0233 0.2 0 0.0265 0.01 0.0258 0.03 0.0233 0.05 0.0195

    6 Conclusion

    The improved ISPH method presented in this paper is a simple approach to simulate the natural convection from the heated partitions in a nanofluid-filled H-shaped enclosure saturated with a partial layer porous medium.ISPH method is modified in terms of the solving pressure Poisson equation and corrected the first derivative of the velocity.The simulations showed that the length of the hot source augments the buoyancy force and consequently the distributions of the velocity field and temperature are increased.An extra number of the cooled square blockages reduces the distributions of the temperature and velocity field inside an H-shaped enclosure.The Rayleigh number plays an important factor in the augmentation of the velocity field and temperature distributions inside an H-shaped enclosure.Due to the porous resistance on the right side of the H-shaped enclosure, there is clear difference in the velocity field between the left and right sides of the H-shaped enclosure.As the Darcy parameter decreases, then there is almost no fluid flow inside the right side (porous layer) of the H-shaped enclosure.The average Nusselt number is increasing as the Rayleigh number increases and it declines according to an increase in Darcy parameter.Adding nanoparticles until 5% reduces the velocity field and enhances the heat transfer inside an H-shaped enclosure.

    Acknowledgement:The authors would like to extend their appreciations to the Deanship of Scientific Research at King Khalid University, Abha, Saudi Arabia, for funding this work through the Research Group Project under Grant Number (R.G.P 2/70/41).

    Funding Statement:Deanship of Scientific Research at King Khalid University, Abha, Saudi Arabia funded this work through project number (R.G.P 2/70/41).

    Conflicts of Interest:The authors declare that they have no conflicts of interest to report regarding the present study.

    免费人成视频x8x8入口观看| 久久国产精品人妻蜜桃| 精品国内亚洲2022精品成人| 亚洲三级黄色毛片| 给我免费播放毛片高清在线观看| 国内少妇人妻偷人精品xxx网站| 不卡视频在线观看欧美| 欧美绝顶高潮抽搐喷水| 亚洲成av人片在线播放无| 啦啦啦韩国在线观看视频| 日日夜夜操网爽| 在线观看66精品国产| 日韩精品中文字幕看吧| ponron亚洲| 国产私拍福利视频在线观看| 亚洲欧美清纯卡通| 级片在线观看| 女同久久另类99精品国产91| 国产免费av片在线观看野外av| 少妇裸体淫交视频免费看高清| 成年人黄色毛片网站| 欧美成人免费av一区二区三区| 国产亚洲精品综合一区在线观看| 此物有八面人人有两片| 综合色av麻豆| 亚洲人与动物交配视频| 日日夜夜操网爽| 日本-黄色视频高清免费观看| 一a级毛片在线观看| 亚洲av成人av| 99精品久久久久人妻精品| 天堂影院成人在线观看| 黄色一级大片看看| 五月伊人婷婷丁香| 91在线精品国自产拍蜜月| 日本黄色片子视频| 99久久精品一区二区三区| 一区二区三区激情视频| 丰满人妻一区二区三区视频av| 免费搜索国产男女视频| 欧美国产日韩亚洲一区| 亚洲精品一卡2卡三卡4卡5卡| 亚洲自拍偷在线| 国产精品自产拍在线观看55亚洲| 午夜激情福利司机影院| 联通29元200g的流量卡| 嫩草影视91久久| 男女做爰动态图高潮gif福利片| 一夜夜www| 热99re8久久精品国产| 国产伦精品一区二区三区四那| 成年女人看的毛片在线观看| 欧美黑人欧美精品刺激| www.www免费av| 国内久久婷婷六月综合欲色啪| 精品福利观看| 国产蜜桃级精品一区二区三区| 亚洲欧美日韩卡通动漫| 欧洲精品卡2卡3卡4卡5卡区| 看十八女毛片水多多多| 一区福利在线观看| 精品久久久久久久末码| 亚洲男人的天堂狠狠| 搡老熟女国产l中国老女人| 午夜影院日韩av| 亚洲无线在线观看| 三级毛片av免费| 可以在线观看毛片的网站| 国产午夜福利久久久久久| 亚州av有码| 最后的刺客免费高清国语| 在线播放国产精品三级| 身体一侧抽搐| 亚洲av免费在线观看| 亚洲va在线va天堂va国产| 中文字幕人妻熟人妻熟丝袜美| 亚洲经典国产精华液单| 97超视频在线观看视频| 国产精品美女特级片免费视频播放器| 亚洲午夜理论影院| 日韩欧美精品v在线| 偷拍熟女少妇极品色| 美女xxoo啪啪120秒动态图| 精品一区二区三区视频在线| 联通29元200g的流量卡| 久久人人精品亚洲av| 免费看美女性在线毛片视频| 国产亚洲欧美98| 尾随美女入室| 热99在线观看视频| 久久九九热精品免费| 日本一本二区三区精品| 欧美+亚洲+日韩+国产| 久久久久久久午夜电影| 特大巨黑吊av在线直播| 亚洲成人免费电影在线观看| 国产成人福利小说| 美女 人体艺术 gogo| 看黄色毛片网站| 日日啪夜夜撸| 啪啪无遮挡十八禁网站| 国产精品一区二区免费欧美| 波多野结衣高清无吗| 露出奶头的视频| 国内精品久久久久久久电影| 黄色一级大片看看| 天堂动漫精品| x7x7x7水蜜桃| 天天一区二区日本电影三级| 免费av毛片视频| 午夜老司机福利剧场| 日韩欧美国产在线观看| 亚洲国产高清在线一区二区三| 日韩欧美三级三区| 精品无人区乱码1区二区| 亚洲午夜理论影院| 午夜a级毛片| 午夜老司机福利剧场| 国产色爽女视频免费观看| 亚洲一区二区三区色噜噜| 99在线人妻在线中文字幕| 国产人妻一区二区三区在| 高清在线国产一区| 亚洲中文字幕一区二区三区有码在线看| 国产成年人精品一区二区| 男人和女人高潮做爰伦理| 成人综合一区亚洲| 91久久精品电影网| 丰满乱子伦码专区| 精品99又大又爽又粗少妇毛片 | 91久久精品电影网| 婷婷色综合大香蕉| 亚洲av日韩精品久久久久久密| 嫩草影院入口| 欧美成人a在线观看| 日韩亚洲欧美综合| 桃色一区二区三区在线观看| 国产综合懂色| 国产精品不卡视频一区二区| 小说图片视频综合网站| 国产精品福利在线免费观看| 深夜精品福利| 国产精品人妻久久久影院| 精品一区二区三区人妻视频| 在线观看66精品国产| 夜夜看夜夜爽夜夜摸| ponron亚洲| 欧美日本亚洲视频在线播放| 亚洲av.av天堂| 女生性感内裤真人,穿戴方法视频| www.www免费av| 欧美色欧美亚洲另类二区| 老女人水多毛片| 熟妇人妻久久中文字幕3abv| 变态另类成人亚洲欧美熟女| 午夜福利18| 九九久久精品国产亚洲av麻豆| 亚洲最大成人av| 夜夜爽天天搞| 亚洲一区高清亚洲精品| 精品国内亚洲2022精品成人| 亚洲一区二区三区色噜噜| avwww免费| 天堂av国产一区二区熟女人妻| 在线免费观看不下载黄p国产 | 欧美日韩中文字幕国产精品一区二区三区| 哪里可以看免费的av片| 最近中文字幕高清免费大全6 | 国产精品不卡视频一区二区| 色哟哟哟哟哟哟| av国产免费在线观看| 国产精品一区二区三区四区久久| 精品免费久久久久久久清纯| 欧美xxxx性猛交bbbb| 高清在线国产一区| 日韩,欧美,国产一区二区三区 | 久久精品国产清高在天天线| 午夜精品在线福利| 国产久久久一区二区三区| 中文资源天堂在线| 丰满人妻一区二区三区视频av| 国产美女午夜福利| 亚洲专区国产一区二区| a级毛片免费高清观看在线播放| 成熟少妇高潮喷水视频| 久久热精品热| 18禁裸乳无遮挡免费网站照片| 麻豆一二三区av精品| 精华霜和精华液先用哪个| 春色校园在线视频观看| 国产精品99久久久久久久久| 国产av不卡久久| 欧美丝袜亚洲另类 | 在现免费观看毛片| 亚洲av五月六月丁香网| 亚洲精品粉嫩美女一区| 国产精品一区www在线观看 | 两个人的视频大全免费| 亚洲一区高清亚洲精品| 亚洲av免费在线观看| 成人特级av手机在线观看| av国产免费在线观看| 88av欧美| 中出人妻视频一区二区| 三级国产精品欧美在线观看| 欧美黑人巨大hd| 日日摸夜夜添夜夜添小说| 在线观看一区二区三区| 国产亚洲欧美98| 在线天堂最新版资源| av在线天堂中文字幕| 黄色丝袜av网址大全| 日日啪夜夜撸| 麻豆成人午夜福利视频| 99视频精品全部免费 在线| 淫秽高清视频在线观看| 亚洲人成网站高清观看| 国产伦精品一区二区三区视频9| 国产精品美女特级片免费视频播放器| 全区人妻精品视频| 一夜夜www| 免费在线观看日本一区| 婷婷六月久久综合丁香| 久久久国产成人精品二区| 免费无遮挡裸体视频| 日本 av在线| 97热精品久久久久久| 日日摸夜夜添夜夜添小说| 日韩欧美国产一区二区入口| 色吧在线观看| 国产日本99.免费观看| 久久香蕉精品热| 免费看美女性在线毛片视频| 尤物成人国产欧美一区二区三区| 日韩精品青青久久久久久| 国产高清有码在线观看视频| 99久久成人亚洲精品观看| 国产老妇女一区| 午夜a级毛片| 国产精品精品国产色婷婷| 午夜福利成人在线免费观看| 91久久精品电影网| 欧美日韩乱码在线| 国产色婷婷99| 午夜免费成人在线视频| 国产亚洲精品久久久com| 午夜视频国产福利| 国产高清激情床上av| 国产麻豆成人av免费视频| 国产精品不卡视频一区二区| 国产精品人妻久久久影院| 热99re8久久精品国产| 中文亚洲av片在线观看爽| 亚洲熟妇中文字幕五十中出| 国产精品伦人一区二区| 老熟妇仑乱视频hdxx| 久久久久久国产a免费观看| 嫩草影院入口| 精品一区二区三区av网在线观看| 国产精品一区www在线观看 | 国产伦人伦偷精品视频| 国产极品精品免费视频能看的| 成人国产综合亚洲| 变态另类成人亚洲欧美熟女| 波多野结衣高清无吗| 麻豆国产97在线/欧美| videossex国产| 色尼玛亚洲综合影院| 中文资源天堂在线| 国内少妇人妻偷人精品xxx网站| 成年女人永久免费观看视频| 午夜福利在线观看吧| 国产亚洲欧美98| 黄色一级大片看看| 国产三级在线视频| www.色视频.com| 亚洲精华国产精华精| 久久精品国产亚洲av天美| 看十八女毛片水多多多| 亚洲欧美日韩无卡精品| 国产欧美日韩一区二区精品| 全区人妻精品视频| 日本a在线网址| 小蜜桃在线观看免费完整版高清| 国产一区二区在线观看日韩| 简卡轻食公司| 九九在线视频观看精品| 久久精品综合一区二区三区| 精品久久久久久久久久久久久| 国产av在哪里看| av女优亚洲男人天堂| 人妻制服诱惑在线中文字幕| 日本a在线网址| 高清在线国产一区| 亚洲精品日韩av片在线观看| 嫩草影院精品99| 亚洲在线观看片| 自拍偷自拍亚洲精品老妇| 久99久视频精品免费| 婷婷亚洲欧美| 国产精品女同一区二区软件 | 亚洲一区二区三区色噜噜| 少妇裸体淫交视频免费看高清| 午夜视频国产福利| 美女黄网站色视频| 一本精品99久久精品77| 亚洲精品成人久久久久久| 在线免费观看不下载黄p国产 | 久久久色成人| 日韩精品中文字幕看吧| 亚洲av一区综合| 十八禁国产超污无遮挡网站| 高清日韩中文字幕在线| 老司机福利观看| 午夜福利18| 免费观看人在逋| 亚洲在线观看片| www日本黄色视频网| 在线看三级毛片| 婷婷亚洲欧美| 国产精品久久久久久av不卡| 免费av观看视频| 国产一区二区激情短视频| 春色校园在线视频观看| 久久久久国产精品人妻aⅴ院| 2021天堂中文幕一二区在线观| 久久精品国产自在天天线| 欧美日韩国产亚洲二区| 小说图片视频综合网站| 亚洲美女黄片视频| 欧美日韩乱码在线| 人妻丰满熟妇av一区二区三区| 国产精品久久久久久亚洲av鲁大| 精品久久久久久,| 欧美xxxx黑人xx丫x性爽| 久久人妻av系列| 在线观看66精品国产| 国产精品三级大全| 国产精品嫩草影院av在线观看 | 97热精品久久久久久| 国产精品久久电影中文字幕| 黄色一级大片看看| 无遮挡黄片免费观看| 亚洲精品粉嫩美女一区| 18禁黄网站禁片午夜丰满| 联通29元200g的流量卡| 亚洲精品亚洲一区二区| 亚洲aⅴ乱码一区二区在线播放| 91麻豆av在线| av福利片在线观看| 婷婷六月久久综合丁香| 午夜福利在线观看吧| 啦啦啦观看免费观看视频高清| 婷婷精品国产亚洲av在线| 免费大片18禁| 97超级碰碰碰精品色视频在线观看| 麻豆av噜噜一区二区三区| 在线播放无遮挡| 日韩欧美 国产精品| 九九久久精品国产亚洲av麻豆| a级毛片a级免费在线| 日韩精品有码人妻一区| 欧美日韩黄片免| 久久精品国产自在天天线| 亚洲黑人精品在线| 日韩亚洲欧美综合| 久9热在线精品视频| 国产欧美日韩精品一区二区| 午夜福利18| 免费搜索国产男女视频| 亚洲图色成人| 2021天堂中文幕一二区在线观| 欧美性感艳星| 尤物成人国产欧美一区二区三区| 亚洲最大成人中文| 国产av不卡久久| 欧美色欧美亚洲另类二区| 在线观看免费视频日本深夜| 在线免费观看的www视频| 午夜精品在线福利| 天堂影院成人在线观看| 一区二区三区高清视频在线| 嫩草影院入口| 日韩一区二区视频免费看| 少妇人妻一区二区三区视频| 日本欧美国产在线视频| 麻豆一二三区av精品| 亚洲综合色惰| 中文字幕精品亚洲无线码一区| 亚洲va日本ⅴa欧美va伊人久久| 国产91精品成人一区二区三区| 一本久久中文字幕| 淫妇啪啪啪对白视频| 精品国内亚洲2022精品成人| 少妇高潮的动态图| 人人妻人人看人人澡| 久久99热这里只有精品18| 美女高潮的动态| 精品一区二区三区视频在线观看免费| 国产高清激情床上av| 日本撒尿小便嘘嘘汇集6| 大又大粗又爽又黄少妇毛片口| 自拍偷自拍亚洲精品老妇| 国产精品自产拍在线观看55亚洲| 狠狠狠狠99中文字幕| 亚洲欧美日韩高清专用| 色av中文字幕| 国产精品98久久久久久宅男小说| 哪里可以看免费的av片| 中文字幕精品亚洲无线码一区| 伊人久久精品亚洲午夜| 国产精品一及| 欧美极品一区二区三区四区| 999久久久精品免费观看国产| 日韩强制内射视频| 午夜日韩欧美国产| 天堂√8在线中文| 天堂av国产一区二区熟女人妻| 久久婷婷人人爽人人干人人爱| 国产aⅴ精品一区二区三区波| 亚洲18禁久久av| 国产aⅴ精品一区二区三区波| 国产男人的电影天堂91| 日本在线视频免费播放| 草草在线视频免费看| 干丝袜人妻中文字幕| 亚洲精品一卡2卡三卡4卡5卡| 日韩欧美三级三区| 亚洲国产精品sss在线观看| 国产精品女同一区二区软件 | 欧美另类亚洲清纯唯美| 欧美三级亚洲精品| АⅤ资源中文在线天堂| 99久国产av精品| 可以在线观看毛片的网站| 成人国产麻豆网| 在线免费十八禁| 不卡视频在线观看欧美| 国国产精品蜜臀av免费| 色av中文字幕| 欧美又色又爽又黄视频| 欧美成人a在线观看| 成人国产综合亚洲| 色播亚洲综合网| 国产熟女欧美一区二区| av女优亚洲男人天堂| 日韩欧美 国产精品| xxxwww97欧美| av天堂在线播放| 欧美成人免费av一区二区三区| 亚洲精品成人久久久久久| 色尼玛亚洲综合影院| 在线免费观看的www视频| 亚洲av成人精品一区久久| 亚洲av日韩精品久久久久久密| 国产欧美日韩精品一区二区| 18禁在线播放成人免费| 亚洲精华国产精华液的使用体验 | 色哟哟哟哟哟哟| 亚洲av免费高清在线观看| 99久久久亚洲精品蜜臀av| 给我免费播放毛片高清在线观看| 久久九九热精品免费| 中文亚洲av片在线观看爽| 99在线视频只有这里精品首页| 欧美最新免费一区二区三区| 亚洲欧美日韩高清专用| 国产女主播在线喷水免费视频网站 | 亚洲欧美日韩东京热| 亚洲av.av天堂| 国产av麻豆久久久久久久| 日韩精品有码人妻一区| 九九爱精品视频在线观看| 国产精品国产三级国产av玫瑰| 观看免费一级毛片| 久久中文看片网| 大又大粗又爽又黄少妇毛片口| 天堂动漫精品| 淫妇啪啪啪对白视频| 最近视频中文字幕2019在线8| 国产精品福利在线免费观看| 欧洲精品卡2卡3卡4卡5卡区| 久久精品影院6| 国产精品人妻久久久久久| 露出奶头的视频| 婷婷亚洲欧美| 99在线视频只有这里精品首页| 国产三级在线视频| 国产欧美日韩一区二区精品| 1000部很黄的大片| 亚洲四区av| 又爽又黄a免费视频| 中文字幕人妻熟人妻熟丝袜美| 国产男靠女视频免费网站| 欧美xxxx黑人xx丫x性爽| 尾随美女入室| 久久久久久久久大av| 久久九九热精品免费| 观看免费一级毛片| 亚洲国产精品sss在线观看| 18禁在线播放成人免费| 亚洲精品乱码久久久v下载方式| 男女啪啪激烈高潮av片| 天堂动漫精品| 欧美另类亚洲清纯唯美| 日韩人妻高清精品专区| 91在线精品国自产拍蜜月| 欧美日韩国产亚洲二区| 国产免费av片在线观看野外av| 在现免费观看毛片| 少妇高潮的动态图| 69人妻影院| 99久久成人亚洲精品观看| 欧美日本亚洲视频在线播放| 麻豆av噜噜一区二区三区| 91av网一区二区| 中文在线观看免费www的网站| 日韩强制内射视频| 一个人看视频在线观看www免费| 男人的好看免费观看在线视频| av中文乱码字幕在线| 亚洲精品456在线播放app | 乱系列少妇在线播放| 少妇人妻一区二区三区视频| 成人亚洲精品av一区二区| 免费高清视频大片| 99久久成人亚洲精品观看| 有码 亚洲区| 婷婷亚洲欧美| 午夜免费激情av| 国产三级在线视频| 精品午夜福利视频在线观看一区| 国产精品人妻久久久影院| 亚洲无线观看免费| 天天躁日日操中文字幕| 欧美+亚洲+日韩+国产| 亚洲一区高清亚洲精品| 日本精品一区二区三区蜜桃| 波多野结衣巨乳人妻| 亚洲精华国产精华精| 波多野结衣高清无吗| 蜜桃亚洲精品一区二区三区| 97超视频在线观看视频| av专区在线播放| 女人十人毛片免费观看3o分钟| 亚洲经典国产精华液单| 亚洲人成伊人成综合网2020| 人人妻人人澡欧美一区二区| 欧美xxxx性猛交bbbb| .国产精品久久| 天堂动漫精品| av视频在线观看入口| 国产精品野战在线观看| 高清日韩中文字幕在线| 精品久久久久久久久久久久久| 国产一区二区三区av在线 | 18+在线观看网站| 国产精品一区二区三区四区久久| 黄色欧美视频在线观看| 搡女人真爽免费视频火全软件 | 三级国产精品欧美在线观看| 国产精品嫩草影院av在线观看 | 欧美最新免费一区二区三区| 男女之事视频高清在线观看| 日韩在线高清观看一区二区三区 | 国产伦人伦偷精品视频| 国产精品99久久久久久久久| 久久久精品欧美日韩精品| 日韩国内少妇激情av| 99在线人妻在线中文字幕| 特级一级黄色大片| 亚洲av熟女| 欧美最新免费一区二区三区| 欧美zozozo另类| 中国美白少妇内射xxxbb| 免费av不卡在线播放| 国产高清有码在线观看视频| 成人高潮视频无遮挡免费网站| 国产一区二区亚洲精品在线观看| 久久国产精品人妻蜜桃| 国产精品,欧美在线| 99热这里只有精品一区| 九九久久精品国产亚洲av麻豆| 亚洲国产精品久久男人天堂| 我的女老师完整版在线观看| 国产aⅴ精品一区二区三区波| 国产国拍精品亚洲av在线观看| 久久人妻av系列| 国产精品,欧美在线| 亚洲欧美精品综合久久99| 亚洲自拍偷在线| 免费看日本二区| 97人妻精品一区二区三区麻豆| 如何舔出高潮| 搡老岳熟女国产| 成人性生交大片免费视频hd| 亚洲精品一区av在线观看| 国内精品久久久久久久电影| 成人三级黄色视频| 欧美日韩亚洲国产一区二区在线观看| 久久久久久伊人网av| 国产久久久一区二区三区| 欧美黑人欧美精品刺激| 久久精品国产亚洲av天美| av国产免费在线观看| 午夜久久久久精精品| 国产一区二区激情短视频| 国产熟女欧美一区二区| 免费在线观看成人毛片| 欧美精品国产亚洲| 在线国产一区二区在线| 禁无遮挡网站| 精品国产三级普通话版| 国产精品电影一区二区三区| 日韩高清综合在线|