• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Optimal Control Model for the Transmission of Novel COVID-19

    2021-12-16 06:41:04IsaAbdullahiBabaBashirAhmadNasidiandDumitruBaleanu
    Computers Materials&Continua 2021年3期

    Isa Abdullahi Baba,Bashir Ahmad Nasidi and Dumitru Baleanu

    1Department of Mathematical Sciences,Bayero University Kano,Nigeria

    2Department of Mathematics,Cankaya University,Ankara,06530,Turkey

    3Institute of Space Sciences,Bucharest,Romania

    4Department of Medical Research,China Medical University Hospital,Taichung,Taiwan

    Abstract:As the corona virus(COVID-19)pandemic ravages socio-economic activities in addition to devastating infectious and fatal consequences,optimal control strategy is an effective measure that neutralizes the scourge to its lowest ebb.In this paper, we present a mathematical model for the dynamics of COVID-19,and then we added an optimal control function to the model in order to effectively control the outbreak.We incorporate three main control efforts (isolation, quarantine and hospitalization) into the model aimed at controlling the spread of the pandemic.These efforts are further subdivided into five functions;u1(t)(isolation of the susceptible communities),u2(t)(contact track measure by which susceptible individuals with contact history are quarantined), u3(t) (contact track measure by which infected individualsare quarantined), u4(t) (control effort of hospitalizing the infected I1) and u5(t)(control effort of hospitalizing the infected I2).We establish the existence of the optimal control and also its characterization by applying Pontryaging maximum principle.The disease free equilibrium solution(DFE)is found to be locally asymptotically stable and subsequently we used it to obtain the key parameter;basic reproduction number.We constructed Lyapunov function to which global stability of the solutions is established.Numerical simulations show how adopting the available control measures optimally,will drastically reduce the infectious populations.

    Keywords: COVID-19; optimal control; Pontryaging maximum principle;mathematical model; existence of control; stability analysis

    1 Introduction

    The novel coronavirus pneumonia which was officially named as Corona Virus Disease 2019(COVID-19) by World Health Organization (WHO) was reported first in late December 2019, in Wuhan, China [1].The source of the virus is not yet known, but genetic investigation revealed that COVID-19 virus has the same genetic characteristics with SARS-CoV2 (which was likely to be originated from bats) [2].It is also found to be significantly less severe than the other two coronaviruses; Severe Acute Respiratory Syndrome (SARS-COV) and Middle East Respiratory Syndrome (MERS-COV) that caused an outbreak in 2002 and 2008 respectively [3].The most important routes of human to human transmission of COVID-19 are respiratory droplets and contact transmission [4].After the incubation period which is generally 2-14 days, the mild symptoms may persist from high degree fever, cough and shortness of breath to being severely ill and subsequently death [4].

    As scientists all over the world are busy trying to develop a cure and vaccine, all hands must be put together to support and comply with the standard recommendations that can lower the transmissions of the disease.This is why, the following measures must be taken; social distancing,self-isolation, use of personal protective equipment (such as face mask, hand globes, overall gown,etc.), regular hand washing using soap or sanitizer, avoid having contact with person showing the symptoms and report any suspected case.Moreover, relevant authorities must engage in widely public orientation exercise for sensitization and enlightenment, banning of social (or religious)gathering and local (or international) trip, contact tracing and isolation of infected individuals,providing sanitizers at public domains like markets and car parks, fumigating exercise, and to the large extent imposing lockdown.

    The scourge does not only cause apocalyptic proportion in terms of infection, morbidity and fatality, but also socio-economic consequences.To control the above mentioned problems, there is need to have better understanding on the transmission dynamics of the disease.This could be achieved by developing mathematical model that optimizes the possible control measures.

    Optimal control is considered as an effective mathematical tool used to optimize the control problems arising in different field including epidemiology, aeronautic engineering, economics,finance, robotics, etc [5].Mathematical model offers an insight in to the transmission and control of infectious disease [6-13].Zhao et al.[14] developed a Susceptible, Un-quarantined infected,Quarantined infected, Confirmed infected (SUQC) model to characterize the dynamics of COVID-19 and explicitly parameterize the intervention effects of control measures.Song et al.[15]established deterministic mathematical model (SEIHR) to suit Korean outbreak, in which he estimated the reproduction number and the effect of preventive measures.

    Tahir et al.[16] developed a mathematical model (for MERS) in form of nonlinear system of differential equations, in which he considered a camel to be the source of the infection.The virus is then spread to human population, then human to human transmission, then human to clinic center and then human to care center.They used Lyapunov function to investigate the global stability analyses of the equilibrium solutions and subsequently obtained the basic reproduction number or roughly, a key parameter describing transmission of the infection.

    Yang et al.[17] proposed a mathematical model to investigate the current outbreak of the coronavirus disease (COVID-19) in Wuhan, China.The model described the multiple transmission pathways in the infection dynamics, and emphasized the role of environmental reservoir in the transmission and spread of the disease.However, the model employed non-constant transmission rates which change with the epidemiological status and environmental conditions and which reflect the impact of the ongoing disease control measures.

    Chen et al.[18] modeled (based on SEIR) the outbreak in Wuhan with individual reaction and governmental action (holiday extension, city lockdown, hospitalization and quarantine) in which they estimated the preliminary magnitude of different effect of individual reaction and governmental action.Sunhwa et al.[19] developed a Bats-Hosts-Reservoir-People (BHRP) transmission network model for the potential transmission from the infection source (probably bats) to the human, which focuses on calculatingR0.Elhia et al.[20] developed a mathematical model based on the epidemiology of COVID-19, incorporating the isolation of healthy people, confirmed cases and close contacts.

    Most of these models have a general shortcoming of not taking into consideration time dependent control strategies.For the model to be more realistic, it has to be time dependent [21-26].Here, we modified the work of Elhia et al.[20], by incorporating control functions with the aim of deriving optimal control that drastically minimizes the spread of the infection.

    The paper is arranged in the following order: Chapter 1 gives the introduction, Chapter 2 gives preliminary definitions and theorems, Chapter 3 is the model formulation, Chapter 4 discusses the formulation and analysis of optimal control, Chapter 5 presents local and global stability analyses of the solutions of the model and the derivation of the reproduction number and lastly Chapter 6 gives numerical simulation results and then the discussion follows.

    2 Preliminary Definitions and Theorem

    Definition 1 (Optimal Control) [27]: A fairly general continuous time optimal control problem can be defined as follows:

    Problem i:To find the control vector trajectoryu: [t0,tf] ∈R →Rnthat minimizes the performance index:

    Subject to:

    wherex=(x1,x2,x3,...,xn)T,f=(f1,f2,f3,...,fn)Tandφ: Rn× R →R is a terminal cost function.

    Problem ii:Findtfandu(t)to minimize:

    Subject to:

    This special type of optimal control problem is called the minimum time problem.

    Definition 2 (Hamiltonian): A time varying Lagrange’s multiplier functionλ: [t0,tf]→R, also known as the co-state define Hamiltonian functionHas:

    such that

    Theorem 1 (Pontryagin Maximum Principle): Ifis a solution of the optimal control problem Eqs.(1) and (2) then there exists a non-zero absolutely continuous functionλ(t)such thatλ(t),x*(t),u*(t)satisfy the system

    such that, for almost allthe function in Eq.(3) attains its maximum:

    and such that at terminal timetfthe conditions

    If the functionsλ(t),x(t),u(t)satisfy the relation Eqs.(5) and (6) (i.e.,x(t),u(t)are Portryagin extremals), then the condition

    M(t)=M(λ(t),x(t))=const.,λ0(t)=constholds.

    Remark 1: Becerra states that for a minimum, it is necessary for the stationary (optimality)condition to give:

    3 Model Formulation

    We know that most people are susceptible to COVID-19 and the patients in the incubation period can infect healthy people.We denote the population of susceptible people with S, the patients in the incubation period and the patients that are yet to be diagnosed by I, patients in the hospital by H, removed people by R, respectively.Here the infectivity of the patients in the incubation period and the patients that are yet to be diagnosed are assumed to be the same.

    After the outbreak of COVID-19, susceptible people are advised to lock themselves down at home, and all close contacts of infected individuals tracked are quarantined.Therefore, we divide the population of susceptible people into; susceptible people (S1), the quarantined susceptible people (by close contacts tracked measure) (S2) and general isolated susceptible people (due to community lockdown) (S3).Infected people population is divided into general infected people,including the patients in the incubation period and the infected people that are yet to be diagnosed(I1)and infected people that are quarantined(I2).Here we assume that all susceptible people isolated at home cannot be infected and all infected people isolated at home cannot infect healthy people.Thus, we establish the transmission dynamics of the disease as in Fig.1.

    The transmission dynamics can be described by the nonlinear system of first order differential equations as follows:

    Figure 1: Transmission dynamics of the disease

    where,

    S1(0)≥0,S2(0)≥0,S3(0)≥0,I1(0)≥0,I2(0)≥0,H(0)≥0,R(0)≥0.

    When patients go to hospital and are diagnosed (I1+I2), by the close contacts tracked measure, susceptible people (q1) and infected people (q2) are quarantined by the proposition b.Here the number of quarantined susceptible people (q1) and quarantined infected people (q2)are less than the number of susceptible people (S1) and infected people (I1) respectively.Then

    After the isolation of 14 daysthe quarantined susceptible individuals become susceptible.When quarantined infected people have symptoms, they are hospitalized and diagnosed(I2).After the time of treatmentthey are removed from the hospital.The communities are isolated and healthy people are also advised to isolate themselves at home unless they have something urgent to deal with.ThenμS1andα2S3denote the weak movements of population from susceptible to isolated susceptible and from isolated susceptible to susceptible, respectively.

    4 Optimal Control

    Here the detail formulation and analysis of the optimal control problem with respect to the model Eqs.(8)-(14) is given.

    4.1 Formation of an Optimal Control

    The aim of the control strategy is to prevent the susceptible population from becoming infected and reduce the infected population by increasing hospitalization which eventually reduces the number of new cases.

    Let the control functions

    u1(t)∈[0,u1(t)max] be the rate at which susceptible communities are isolated.

    u2(t)∈[0,u2(t)max] be the contact track measure by which susceptible individuals with contact history are quarantined.

    u3(t)∈ [0,u3(t)max] be the contact track measure by which infected individuals are quarantined.

    u4(t)∈[0,u4(t)max] be the control effort of hospitalizing the infectedI1.

    u5(t)∈[0,u5(t)max] be the control effort of hospitalizing the infectedI2.

    The dynamics of control system can be described by the following system of nonlinear ODE;

    For a fixed terminal timetf, the problem to minimize the objective functional associated to system Eq.(15) through Eq.(21) is

    where,

    Ai≥0,i=1,2,...,10 denote the weights parameters that balanced the size of the terms.

    We seek for optimal controlu*such that

    where

    Uis the set of admissible controls defined by

    U={ui(t): 0 ≤ui(t)≤1,i=1,2,...,10,ui(t) is Lebesgue measurable}.

    4.2 Existence of Optimal Control

    The system of nonlinear ODE Eqs.(15)-(21) can be written as,

    where,

    Theorem 3: The optimal control system Eq.(23) is Lipschitz continuous.

    Proof

    where,

    4.3 Characterization of Optimal Control

    To formulate the optimal control strategy, we define the Hamiltonian as:

    Theorem 4: Letx(t)=(S1(t),S2(t),S3(t),I1(t),I2(t),H(t),R(t))with associated optimal control variablesu1,u2,u3,u4,u5, then there exists a co-state variable satisfying:

    Proof:

    Applying the co-state (adjoint) condition of Eq.(5) yield

    subject to the following transversality conditions;

    Applying the optimality conditions, we get

    Solving the optimality system requires initial and transversality conditions together with characterization obtained in Eqs.(38)-(42), in addition, from the Largrangian equation

    we can see that the second derivative with respect tou1,u2,u3,u4,and u5is positive.This shows that the optimal control problem is minimum at controlsu1,u2,u3,u4,and u5respectively.

    Now by substituting Eqs.(38)-(42) into the system Eqs.(15)-(21) we have;

    5 Stability Analysis

    In this chapter, two equilibrium points; Disease Free and Endemic Equilibria are found.Basic reproduction ratio is obtained.Global stability analyses of the equilibrium solutions are carried out.

    5.1 Equilibria

    Since there does not appear the state variableRin Eq.(15) through Eq.(21), it suffices to analyze the system Eq.(15) through Eq.(20).

    Disease free equilibriumE0is obtained by substitutingI1=I2=H=0 into Eqs.(15)-(20),thus we have

    The endemic equilibriumis obtained whenI10,I20,H0, thus

    Since the endemic equilibrium is positive, then0 i.e.,

    α1γ bu3-(γ+u5)(γ bu2+γ+u4)>0,

    or

    α1γ bu3>(γ+u5)(γ bu2+γ+u4).

    Also

    5.2 Local Stability of the Equilibria

    We construct the Jacobian matrix from Eqs.(15)-(20) as:

    where,

    Theorem 5: The disease free equilibriumE0is locally asymptotically stable.

    Proof:

    The eigenvalue is obtained from;

    det||JE0-KI||=0.

    This implies;

    K1=-μ-u1,

    K2=-α1,

    K3=-α2-μ-u1,

    K4=-γ-u4,

    K5=-δ,K6=0.

    5.3 Basic Reproduction Number

    For the DFE to be locally asymptotically stable, the eigenvalueK4must be negative.That is:

    or

    Now, define the basic reproduction ratio (R0) to be:

    5.4 Global Stability Analysis

    Here the global stability analyses of the two equilibrium points are carried out.

    Theorem 6: The disease free equilibrium is globally asymptotically stable.

    Proof:

    Let the Lyapunov candidate function be,

    Clearly the above functionV(S1,S2,S3,I1,I2,H)>0.

    Clearly,

    Theorem 7: The endemic equilibrium is globally asymptotically stable.

    Proof:

    Let the Lyapunov candidate function be,

    Clearly,W(S1,S2,S3,I1,I2,H)≥0.

    AlsoW(S1,S2,S3,I1,I2,H)=0, if(S1,S2,S3,I1,I2,H)=

    Clearly,

    6 Numerical Simulations

    In this chapter numerical simulations are carried out to support the analytic results and to show the significance of the controller.Most of the data used in the simulation for the parameters and the variables is from china as in [7].The values can be found in Tabs.1 and 2 below.

    Table 1: Model variables, descriptions and values

    Table 2: Model parameters, descriptions and values

    It can be seen from Fig.2, that when no any control measure is observed and people were allowed to behave as usual the number of infected individuals will escalate.On the other hand if the control measures were observed optimally, that is; susceptible communities are isolated,susceptible individuals that have contact with infected individuals are quarantined, asymptomatic individuals are quarantined, and infected individuals are traced and hospitalized, then the number of infected individuals will drastically be reduced as shown in Fig.3.

    Figure 2: Dynamics of the infected population when there is no control

    Although these control measures aren’t easy to be observed but their significance can easily be seen from the above graphs.It is clearly shown that when individuals and governments at various levels put hands together the spread of the disease will be curbed.From the above two graphs it can be seen that the number of people that will be removed from the population (either by death or by natural recovery) will be reduced from about 2.5×108when there is no control to less than 9000 people when control is observed optimally.

    Figure 3: Dynamics of the infected population when all control measures are optimally observed

    Acknowledgement:We thank the reviewers for their valuable contributions.

    Funding Statement:The author(s) received no specific funding for this study.

    Conflicts of Interest:The authors declare that they have no conflicts of interest to report regarding the present study.

    丰满人妻一区二区三区视频av| 久久久久久久久久成人| 一级毛片aaaaaa免费看小| 精品一品国产午夜福利视频| 国产在线免费精品| 欧美xxⅹ黑人| 深夜a级毛片| 国产成人91sexporn| xxx大片免费视频| 国产精品欧美亚洲77777| 亚洲精品色激情综合| av又黄又爽大尺度在线免费看| 免费大片18禁| 六月丁香七月| 久久精品夜色国产| 青春草国产在线视频| 国产乱人偷精品视频| 精品亚洲成a人片在线观看| 夜夜爽夜夜爽视频| 亚洲不卡免费看| 乱码一卡2卡4卡精品| 人人妻人人看人人澡| 人人妻人人澡人人爽人人夜夜| 人妻夜夜爽99麻豆av| 看非洲黑人一级黄片| 亚洲欧洲国产日韩| 97在线视频观看| 精品少妇内射三级| 狂野欧美激情性bbbbbb| 嘟嘟电影网在线观看| 91成人精品电影| 狠狠精品人妻久久久久久综合| 内地一区二区视频在线| 少妇的逼水好多| 国产熟女欧美一区二区| a级毛片在线看网站| 3wmmmm亚洲av在线观看| 成人国产麻豆网| 亚洲精品日韩av片在线观看| 日本色播在线视频| 色吧在线观看| 久久ye,这里只有精品| 91久久精品国产一区二区成人| 国产精品久久久久成人av| 国产中年淑女户外野战色| 久久久久久久大尺度免费视频| 精品亚洲乱码少妇综合久久| 91成人精品电影| 午夜福利,免费看| 国产有黄有色有爽视频| 亚洲精品自拍成人| 深夜a级毛片| 青春草亚洲视频在线观看| 精品少妇久久久久久888优播| 99九九在线精品视频 | 久久6这里有精品| 王馨瑶露胸无遮挡在线观看| 狂野欧美白嫩少妇大欣赏| 欧美成人午夜免费资源| a级一级毛片免费在线观看| 国产精品99久久久久久久久| av.在线天堂| 大陆偷拍与自拍| 久久99精品国语久久久| 亚洲自偷自拍三级| 久久久久久久精品精品| 大香蕉97超碰在线| 亚洲成人一二三区av| 精品久久久噜噜| 看免费成人av毛片| 肉色欧美久久久久久久蜜桃| 一本—道久久a久久精品蜜桃钙片| 国产在视频线精品| 秋霞伦理黄片| av播播在线观看一区| 欧美日韩视频高清一区二区三区二| 国产精品国产三级国产专区5o| 国产伦理片在线播放av一区| 亚洲美女黄色视频免费看| www.色视频.com| 99九九线精品视频在线观看视频| 国产黄片视频在线免费观看| 国产精品久久久久成人av| 亚洲欧美中文字幕日韩二区| 青春草国产在线视频| 自线自在国产av| 欧美人与善性xxx| 精品久久久久久久久亚洲| av在线播放精品| 亚洲国产成人一精品久久久| 插逼视频在线观看| 丰满乱子伦码专区| 久热久热在线精品观看| 美女脱内裤让男人舔精品视频| 桃花免费在线播放| 日韩 亚洲 欧美在线| 日韩在线高清观看一区二区三区| av福利片在线| av不卡在线播放| 免费人成在线观看视频色| 欧美精品人与动牲交sv欧美| 色视频在线一区二区三区| 午夜精品国产一区二区电影| 三级国产精品欧美在线观看| 在线观看美女被高潮喷水网站| 免费看日本二区| 伦理电影大哥的女人| 人人妻人人澡人人看| 性色avwww在线观看| 国产日韩欧美在线精品| 亚洲一区二区三区欧美精品| 91精品伊人久久大香线蕉| 国产乱人偷精品视频| 天堂中文最新版在线下载| 午夜久久久在线观看| 免费黄色在线免费观看| 国产黄片美女视频| 一本色道久久久久久精品综合| 女性被躁到高潮视频| 久久精品熟女亚洲av麻豆精品| 日韩人妻高清精品专区| 国产成人免费无遮挡视频| 十八禁高潮呻吟视频 | 日本欧美国产在线视频| 欧美高清成人免费视频www| 黄片无遮挡物在线观看| 久久午夜福利片| 国产亚洲av片在线观看秒播厂| 寂寞人妻少妇视频99o| 97在线视频观看| 啦啦啦啦在线视频资源| 成人亚洲精品一区在线观看| 有码 亚洲区| 99热全是精品| .国产精品久久| 在线观看三级黄色| 秋霞在线观看毛片| 波野结衣二区三区在线| 男女边吃奶边做爰视频| 国产91av在线免费观看| 最近中文字幕2019免费版| 自拍欧美九色日韩亚洲蝌蚪91 | av福利片在线| 久久久久精品性色| 伦理电影大哥的女人| 爱豆传媒免费全集在线观看| 最近的中文字幕免费完整| 麻豆成人av视频| 欧美bdsm另类| 人妻少妇偷人精品九色| 久久鲁丝午夜福利片| 99热网站在线观看| 韩国av在线不卡| 亚洲中文av在线| 女人精品久久久久毛片| 三级国产精品片| 色94色欧美一区二区| 午夜激情久久久久久久| 欧美 日韩 精品 国产| 黑丝袜美女国产一区| 久久人人爽人人爽人人片va| 国产一级毛片在线| 亚洲欧美一区二区三区黑人 | 国产精品.久久久| 国产欧美另类精品又又久久亚洲欧美| 亚洲成人一二三区av| 亚洲成人av在线免费| 精品久久久久久久久av| 精品99又大又爽又粗少妇毛片| 中文字幕人妻丝袜制服| 欧美另类一区| 97在线人人人人妻| 亚洲一区二区三区欧美精品| 插阴视频在线观看视频| 久热这里只有精品99| 日本色播在线视频| 国产精品一区www在线观看| 久久久久久久久久成人| 97超视频在线观看视频| 三级国产精品片| av天堂中文字幕网| 9色porny在线观看| 亚洲av成人精品一区久久| 亚洲av中文av极速乱| 亚洲欧美日韩卡通动漫| 99久久精品一区二区三区| 深夜a级毛片| 高清欧美精品videossex| 国产精品国产av在线观看| 亚洲伊人久久精品综合| 日韩强制内射视频| 伦理电影免费视频| 大片免费播放器 马上看| 亚洲精品国产av成人精品| 亚洲av免费高清在线观看| 男人狂女人下面高潮的视频| 一级爰片在线观看| av视频免费观看在线观看| 免费av不卡在线播放| 边亲边吃奶的免费视频| 欧美日韩精品成人综合77777| 中国三级夫妇交换| 国产精品欧美亚洲77777| av国产久精品久网站免费入址| 免费在线观看成人毛片| 久久这里有精品视频免费| 国产成人精品福利久久| 亚洲精品,欧美精品| 成人18禁高潮啪啪吃奶动态图 | 日韩av不卡免费在线播放| 久久国产乱子免费精品| 国产精品国产三级国产av玫瑰| 亚洲精品久久午夜乱码| 美女内射精品一级片tv| 99热6这里只有精品| h视频一区二区三区| 久久免费观看电影| 欧美另类一区| 午夜激情福利司机影院| av视频免费观看在线观看| 日本免费在线观看一区| 亚洲怡红院男人天堂| 王馨瑶露胸无遮挡在线观看| 97在线人人人人妻| 国产一区二区三区综合在线观看 | 伦理电影免费视频| 一二三四中文在线观看免费高清| 亚洲欧美日韩另类电影网站| 少妇被粗大的猛进出69影院 | 成人亚洲欧美一区二区av| 伦理电影免费视频| 99热这里只有是精品50| 少妇被粗大猛烈的视频| a级毛色黄片| 肉色欧美久久久久久久蜜桃| 久久青草综合色| 久久狼人影院| 日韩大片免费观看网站| 成人二区视频| 最新的欧美精品一区二区| 性色avwww在线观看| 国产成人一区二区在线| 国产精品三级大全| 国产免费又黄又爽又色| 精品国产乱码久久久久久小说| 曰老女人黄片| 在线天堂最新版资源| 黄色怎么调成土黄色| 久久狼人影院| 免费不卡的大黄色大毛片视频在线观看| 另类精品久久| 亚洲av国产av综合av卡| 午夜福利影视在线免费观看| 三级经典国产精品| 9色porny在线观看| 18+在线观看网站| 各种免费的搞黄视频| 在线亚洲精品国产二区图片欧美 | 美女xxoo啪啪120秒动态图| 久久久久久久亚洲中文字幕| 少妇人妻 视频| 韩国av在线不卡| 亚洲第一区二区三区不卡| 最近中文字幕高清免费大全6| 午夜免费观看性视频| 国产精品秋霞免费鲁丝片| 青春草国产在线视频| 我的老师免费观看完整版| 91久久精品国产一区二区成人| 国产精品人妻久久久久久| 成人国产av品久久久| 午夜视频国产福利| 国产亚洲欧美精品永久| 一个人免费看片子| 七月丁香在线播放| 高清在线视频一区二区三区| 搡女人真爽免费视频火全软件| 韩国高清视频一区二区三区| 亚洲av中文av极速乱| 国产精品熟女久久久久浪| 亚洲经典国产精华液单| 国产av国产精品国产| 日韩电影二区| 亚洲真实伦在线观看| 亚洲国产精品一区三区| 亚洲四区av| 久久精品国产鲁丝片午夜精品| 人人妻人人澡人人爽人人夜夜| av免费在线看不卡| 99久久精品国产国产毛片| 久久精品熟女亚洲av麻豆精品| 色网站视频免费| 亚洲美女黄色视频免费看| 国产亚洲欧美精品永久| 亚洲va在线va天堂va国产| 免费看日本二区| 国产在线男女| 人妻夜夜爽99麻豆av| 黑人高潮一二区| 91精品伊人久久大香线蕉| 欧美3d第一页| 久久久久久久久久久免费av| 中国三级夫妇交换| 99久国产av精品国产电影| 又黄又爽又刺激的免费视频.| 久久久国产精品麻豆| 欧美日韩在线观看h| 噜噜噜噜噜久久久久久91| 熟女人妻精品中文字幕| 男女无遮挡免费网站观看| 国产精品一区二区在线观看99| 国产精品.久久久| 国产欧美日韩综合在线一区二区 | 三上悠亚av全集在线观看 | av在线app专区| 国产一区二区在线观看日韩| 欧美3d第一页| 亚洲熟女精品中文字幕| 少妇熟女欧美另类| 一级,二级,三级黄色视频| 国产老妇伦熟女老妇高清| 一级毛片黄色毛片免费观看视频| 最近手机中文字幕大全| 精品国产露脸久久av麻豆| 91精品伊人久久大香线蕉| 欧美日本中文国产一区发布| 啦啦啦中文免费视频观看日本| 亚洲精华国产精华液的使用体验| 免费av中文字幕在线| 美女中出高潮动态图| 久久久久视频综合| 国产一区有黄有色的免费视频| 精品久久久久久电影网| 中文字幕人妻熟人妻熟丝袜美| 少妇丰满av| 特大巨黑吊av在线直播| 国产极品粉嫩免费观看在线 | 久久久a久久爽久久v久久| 人人妻人人澡人人看| 欧美日韩亚洲高清精品| 国产一区二区在线观看日韩| 国产爽快片一区二区三区| 欧美日韩精品成人综合77777| 久久精品久久久久久久性| 亚洲一区二区三区欧美精品| 人妻系列 视频| 亚洲一区二区三区欧美精品| 三级国产精品片| freevideosex欧美| 建设人人有责人人尽责人人享有的| 欧美最新免费一区二区三区| av又黄又爽大尺度在线免费看| 国产精品熟女久久久久浪| 国产精品麻豆人妻色哟哟久久| 成人毛片60女人毛片免费| 亚洲精品色激情综合| 麻豆成人午夜福利视频| 久久精品熟女亚洲av麻豆精品| 天天躁夜夜躁狠狠久久av| 亚洲精品久久午夜乱码| 免费看日本二区| 国产欧美亚洲国产| 在线观看三级黄色| 国产 精品1| 久久鲁丝午夜福利片| 日本wwww免费看| av不卡在线播放| 赤兔流量卡办理| 国产欧美日韩综合在线一区二区 | tube8黄色片| 国内揄拍国产精品人妻在线| 老司机影院成人| 亚洲av日韩在线播放| 女性被躁到高潮视频| 高清黄色对白视频在线免费看 | 一区二区三区精品91| 久久人人爽人人片av| 欧美精品人与动牲交sv欧美| 免费在线观看成人毛片| 欧美日韩视频精品一区| 国产爽快片一区二区三区| 亚洲精品,欧美精品| 最近手机中文字幕大全| 日韩欧美一区视频在线观看 | 插阴视频在线观看视频| 丝瓜视频免费看黄片| 免费观看在线日韩| 视频中文字幕在线观看| 男女无遮挡免费网站观看| 菩萨蛮人人尽说江南好唐韦庄| 欧美日韩亚洲高清精品| 日本av免费视频播放| 麻豆精品久久久久久蜜桃| 在线观看av片永久免费下载| 99久国产av精品国产电影| 国产熟女欧美一区二区| 精品国产国语对白av| 岛国毛片在线播放| 天堂8中文在线网| 日韩成人伦理影院| 国产高清国产精品国产三级| av在线老鸭窝| 亚洲精品日韩av片在线观看| 欧美 亚洲 国产 日韩一| a级片在线免费高清观看视频| 国产真实伦视频高清在线观看| 国内精品宾馆在线| 大香蕉久久网| 各种免费的搞黄视频| 人妻少妇偷人精品九色| 伊人久久精品亚洲午夜| 一级毛片 在线播放| 老司机亚洲免费影院| 成人美女网站在线观看视频| 久久久亚洲精品成人影院| 亚洲av电影在线观看一区二区三区| 黄色视频在线播放观看不卡| 麻豆成人av视频| 日本vs欧美在线观看视频 | 亚洲第一区二区三区不卡| 人人妻人人添人人爽欧美一区卜| 亚洲av成人精品一区久久| 久久精品国产自在天天线| 国产美女午夜福利| 色网站视频免费| 天堂8中文在线网| 又黄又爽又刺激的免费视频.| 一级,二级,三级黄色视频| 久久影院123| 99久久人妻综合| 最新的欧美精品一区二区| 91精品国产国语对白视频| 国产精品麻豆人妻色哟哟久久| 国产精品国产三级专区第一集| 最近的中文字幕免费完整| 亚洲欧美精品专区久久| 内地一区二区视频在线| 日韩中文字幕视频在线看片| 国产又色又爽无遮挡免| 精品少妇久久久久久888优播| 久久久国产精品麻豆| 丰满少妇做爰视频| av网站免费在线观看视频| 亚洲精品成人av观看孕妇| 欧美精品一区二区免费开放| 亚洲图色成人| 亚洲内射少妇av| 亚洲无线观看免费| 亚洲婷婷狠狠爱综合网| 亚洲精品aⅴ在线观看| 麻豆精品久久久久久蜜桃| 欧美bdsm另类| 在线观看一区二区三区激情| 精品一区在线观看国产| 不卡视频在线观看欧美| 人人澡人人妻人| 亚洲经典国产精华液单| 国产淫片久久久久久久久| 男人舔奶头视频| 超碰97精品在线观看| 国产伦精品一区二区三区视频9| 国产日韩欧美在线精品| 99九九线精品视频在线观看视频| 国产黄片美女视频| 亚洲国产精品成人久久小说| 国产精品福利在线免费观看| 高清在线视频一区二区三区| 国产精品三级大全| 亚洲国产日韩一区二区| 大香蕉97超碰在线| 国产精品偷伦视频观看了| 亚洲美女搞黄在线观看| 亚洲怡红院男人天堂| 国产精品麻豆人妻色哟哟久久| 成人特级av手机在线观看| 亚洲欧美日韩东京热| 一区二区三区乱码不卡18| 亚洲av欧美aⅴ国产| 成人二区视频| 国产精品国产三级国产av玫瑰| 少妇被粗大的猛进出69影院 | 亚洲熟女精品中文字幕| 在线观看人妻少妇| 国产精品一区二区在线不卡| .国产精品久久| 丝袜脚勾引网站| 亚洲美女黄色视频免费看| 亚洲精品一区蜜桃| a级毛片免费高清观看在线播放| 国产成人freesex在线| 亚洲精品国产av成人精品| 亚洲精品日韩在线中文字幕| 黑人巨大精品欧美一区二区蜜桃 | 国产成人免费观看mmmm| 99久久精品一区二区三区| 啦啦啦中文免费视频观看日本| 日本免费在线观看一区| 韩国高清视频一区二区三区| 国产成人免费观看mmmm| 日韩在线高清观看一区二区三区| 美女内射精品一级片tv| 亚洲激情五月婷婷啪啪| 高清毛片免费看| 有码 亚洲区| 人妻制服诱惑在线中文字幕| 亚洲精品日本国产第一区| 国产真实伦视频高清在线观看| 中文在线观看免费www的网站| av一本久久久久| 国产黄片美女视频| 亚洲人与动物交配视频| 精品国产一区二区久久| 欧美变态另类bdsm刘玥| 六月丁香七月| 亚洲av中文av极速乱| 久久精品国产亚洲av天美| 精品久久国产蜜桃| 伦理电影大哥的女人| 曰老女人黄片| 久久精品久久久久久噜噜老黄| 青春草视频在线免费观看| 久久99热这里只频精品6学生| 欧美三级亚洲精品| 色视频www国产| 亚洲怡红院男人天堂| videos熟女内射| 一本色道久久久久久精品综合| 少妇精品久久久久久久| 亚洲自偷自拍三级| 日本欧美视频一区| 一本色道久久久久久精品综合| 一个人免费看片子| 丰满人妻一区二区三区视频av| 又爽又黄a免费视频| 99热网站在线观看| 久久久国产欧美日韩av| 国产欧美另类精品又又久久亚洲欧美| 亚洲第一av免费看| 又粗又硬又长又爽又黄的视频| h视频一区二区三区| av一本久久久久| 熟女av电影| 免费观看性生交大片5| 女人久久www免费人成看片| 王馨瑶露胸无遮挡在线观看| 国产有黄有色有爽视频| 热99国产精品久久久久久7| 亚洲国产精品一区二区三区在线| 亚洲国产色片| 午夜日本视频在线| 国产69精品久久久久777片| 日本午夜av视频| 亚洲av在线观看美女高潮| 18禁裸乳无遮挡动漫免费视频| 成年女人在线观看亚洲视频| 国产视频首页在线观看| 国产伦在线观看视频一区| 久久97久久精品| 黄色日韩在线| 久久国产亚洲av麻豆专区| 国产一区二区三区综合在线观看 | av天堂中文字幕网| 亚洲国产色片| 日本av免费视频播放| 97在线人人人人妻| 久久人人爽人人爽人人片va| 久久久精品免费免费高清| 中国国产av一级| 国产成人一区二区在线| 久久久久久久精品精品| 性高湖久久久久久久久免费观看| 亚洲高清免费不卡视频| 精品酒店卫生间| 日本爱情动作片www.在线观看| 人妻一区二区av| av天堂久久9| 人妻一区二区av| 国产高清国产精品国产三级| 国产欧美日韩精品一区二区| 中文精品一卡2卡3卡4更新| 久久久精品免费免费高清| 男女边吃奶边做爰视频| 精品一区二区三卡| 午夜激情久久久久久久| 一级毛片aaaaaa免费看小| 国产男人的电影天堂91| 成人午夜精彩视频在线观看| 久久影院123| 女人久久www免费人成看片| 婷婷色综合www| 我的老师免费观看完整版| 国产精品久久久久久精品电影小说| 男女边摸边吃奶| 热re99久久精品国产66热6| 国产极品粉嫩免费观看在线 | 99久国产av精品国产电影| 男女啪啪激烈高潮av片| 另类精品久久| 精品国产一区二区久久| 日韩视频在线欧美| 我要看日韩黄色一级片| 伦理电影大哥的女人| 亚洲四区av| a级毛片在线看网站| 日韩一区二区三区影片| 中文欧美无线码| 久久久久久人妻| 18禁裸乳无遮挡动漫免费视频| 99久久精品一区二区三区| 在线观看美女被高潮喷水网站| 久久久久国产网址| 亚洲va在线va天堂va国产| 精品人妻偷拍中文字幕| 欧美丝袜亚洲另类| 亚洲av成人精品一二三区|