• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Space-Time Cluster Analysis of Accidental Oil Spills in Rivers State, Nigeria,2011-2019

    2021-12-16 06:41:00SamiUllahHanitaDaudNoorainiZainuddinSaratDassAlamgirKhalilHadiFanaeeandIlyasKhan
    Computers Materials&Continua 2021年3期

    Sami Ullah,Hanita Daud, Nooraini Zainuddin,Sarat C.Dass,Alamgir Khalil, Hadi Fanaee-T and Ilyas Khan

    1Department of Fundamental & Applied Sciences, Universiti Teknologi PETRONAS, 32610,Seri Iskandar, Perak,Malaysia

    2School of Mathematical and Computer Sciences,Heriot-Watt University Malaysia, 62200,Putrajaya, Malaysia

    3Department of Statistics, University of Peshawar, Pakistan

    4Center for Applied Intelligent Systems Research(CAISR), Halmstad University, Halmstad, Sweden

    5Faculty of Mathematics and Statistics, Ton Duc Thang University, Ho Chi Minh City, 72915, Vietnam

    Abstract: Oil spills cause environmental pollution with a serious threat to local communities and sustainable development.Accidental oil spills can be modelled as a stochastic process where each oil spill event is described by its spatial locations and incidence-time and hence allow for space-time cluster analysis.Spacetime cluster analysis can detect space-time pattern distribution of oil spills which can be useful for implementing preventive measures and evidence-based decision making.This study aims to detect the space-time clusters of accidental oil spills in Rivers state, Nigeria through the Space-time Scan Statistic.The Space-time Scan Statistic was applied under the permutation model to the oil spill data (each for sabotage and operational oil spills) collected at Local Government Area(LGA)-level during the period from 2011 to 2019.The results show that the sabotage oil spill clusters have covered most of the LGAs in the southern part of the state at the start of the study period and then in 2018-2019,it moved to the west covering a single LGA.The operational oil spill clusters covered two neighboring LGAs in the south.In addition,the temporal cluster of sabotage oil spills was seen in 2019 and operational oil spills in 2011-2012.The sabotage oil spills show an increasing trend with the maximum in 2019 while the operational oil spills show a decreasing trend with the minimum in 2019.These findings assist in more effective decision-making for combating the environmental problems and controlling the future spill incidence in the cluster-regions.

    Keywords: Oil spills;space-time clusters;SaTScan?;permutation model;Nigeria

    1 Introduction

    Oil spills are frequently occurred in oil exploration,refining,and processing units[1],and thus exposing the nearby societies to environmental pollution [2].The oil spills are mainly caused by operational failure(pipeline erosion, production, poor infrastructure and maintenance, faults during oil processing phases),third-party interference(attempts of thievery or intentional sabotage)[3,4].Oil spills have an impact on soil and water, and consequently on the health of resident population and agricultural productions [5].Toxic contaminants (e.g., polycyclic aromatic hydrocarbons and heavy metals) contained in the oil, seep into the soil, reach the groundwater and hence damage the vulnerable ecosystems[6,7].

    Africa and especially Nigeria has suffered unprecedented pipeline interdictions.The Shell Petroleum Development Company (SPDC), Nigeria has been recording an average of 200 oil spill events each year since 2005[8].About 75%of the oil spills events during 2007-2013 were attributed to sabotage/theft [8].Indeed, the presence of gangs in some communities sabotages pipelines in order to impede operations of oil companies,while claiming compensation for the farmlands or rivers contaminated by oil spills[9].

    Although several studies have focused on oil spills detection and mapping[10-14],environmental,health and socioeconomic impacts of oil spills [15-21], and geospatial analysis of oil spill distribution[22,23] in different parts of Nigeria.However, space-time cluster analysis of oil spills at LGA-level seems to be lacking.The availability of spatially and temporally stamped information on oil spills in Nigeria allows for space-time cluster analysis of oil spill occurrence in the country.Spatiotemporal cluster analysis can detect important patterns in oil spill occurrence which could be helpful for oil spill management and environmental protection authorities in evidence-based interventions.In addition, it assists the officials of the oil industry in proper allocation of limited resources for quick response, cost and benefits distribution, exposure mitigation, and foster public-level involvement for sustainable development.

    In this context,the main objective of this study is to identify the significant space-time clusters of oil spill events in the Rivers state, Nigeria during the period from 2011 to 2019 using Space-time Scan Statistic[24,25].The Space-time Scan Statistic is implemented in the freely available software called SaTScan?[26].It has been widely used in environmental studies such as clusters detection of forest fire events [27-29], and pollution [30].It has the additional advantage of detecting the cluster’s location and time-frame,while also evaluating its statistical significance as recommended for environmental studies by Tonini et al.[31] and Tuia et al.[32].A useful functionality of SaTScan?to assist decision making, is the integration of the model outputs and a geographic information system, for a map-visualization of the oil spill-prone regions.SaTScan?is a group of methods, applied in many domains to search for spatial,temporal, and space-time clusters.It was first developed for health sciences but nowadays it is used in a variety of fields such as environment[27,28],road traffic[33,34],criminology[35],and public health[36].

    2 Materials and Methods

    2.1 Study Area

    This study was carried out in the Rivers state located in the eastern part of the Niger Delta region of Nigeria.The total area of the Rivers state is 11,077 km2, making it the 26th largest state of the country[37].The total land area of the state is divided into twenty-three Local Government Areas (LGAs).It is surrounded on the north by Imo, Abia and Anambra state, on the east by Akwa-Ibom and Bayelsa states,on the west by Delta state and on the south by the Atlantic Ocean.Its geography ranges from plains, with a network of big rivers to tributaries.The inland area of the state is covered by tropical rainforest and the coastal area by mangrove swamps.The oil exploration activities in this area have severely affected the economic,cultural, and daily living conditions of the local communities [38].

    2.2 Oil Spill Data Collection

    The yearly data on oil spills in each LGA of the Rivers state,Nigeria were collected from the database of SPDC Nigeria [39].SPDC Nigeria, in collaboration with government officials, quickly responds to spill incidents and cleans up spills from its facilities.SPDC Nigeria provides the monthly record of oil spills publicly on its website under the sustainability report to enhance the transparency on spills in SPDC Joint Venture (SPDC-JV) facilities.The SPDC records the location, time, and cause of each oil spill incidence in the joint investigation report which is available publicly on its website[39].

    This study analyzes the oil spills due to each sabotage and operation separately, because these are the major causes of oil spills in Nigeria as shown in Fig.1.Two datasets each for sabotage and operational oil spills were collected.

    Figure 1: Oil spills graph in Nigeria [39]

    2.3 Space-Time Scan Statistic

    The Space-time Scan Statistic is characterized by a cylindrical scanning window with a circular base.The circular base of the scanning window is related to the spatial size and the height to the temporal length of the cluster.The cylindrical window visits each location as well as each time point (day, month,or year).The size of the cylinder continuously increases from zero up to a fixed value in both radius(space) and height (time).Hence, a large number of overlapping cylinders of different sizes are obtained that mutually cover the total study-area.Each of the cylinders denotes a possible candidate cluster.

    Events are supposed to be distributed with a Poisson model with a constant risk inside and outside all cylinders under the null hypothesis, and with different risk inside and outside at least one of the cylinders under the alternative hypothesis.For each possible cylinder, the observed and expected numbers of events inside and outside the cylinder are calculated.Based on these numbers, the likelihood is calculated for each cylinder and the one with the maximum Log-Likelihood Ratio (LLR) is considered to be the most likely cluster.The other cylinders with a higher LLR and with statistical significance are considered as the secondary clusters.The statistical significance of the detected clusters is evaluated by a Monte-Carlo simulation[40].

    The Poisson model requires a control-population for estimating the expected number of events inside each cylinder.However, for scenarios like ours, where the control population is not relevant or unknown,this problem is solved by using the Space-time Scan Statistic Permutation (STSSP) model [24].This model requires the input data on observed events only.Thus, the number of expected events is estimated on the basis of the observed events under the assumption of no space-time interaction in observed events.For instance, for a cylinder A, the expected number of events EAcan be calculated as the sum of μij(the expected counts for ithsub-region and jthtime-point)belonging to cylinder A as in Eq.(1).

    where μijcan be calculated as in Eq.(2)

    where Eijis the expected events for ithsub-region over the jthtime-point;Cijis the observed/reported events in the ithsub-region at the jthtime-point;C..is the grand total of the observed/reported events.

    Based on the observed and expected events,the Poisson Generalized Likelihood Ratio can be calculated according to Eq.(3).

    where cAis the observed/reported count in a cylinder,A is considered to follow the Poisson-distribution with mean, μA[31].

    The GLR is computed and maximized for each possible cylinder and the statistical significance is tested by Monte Carlo simulations.

    The STSSP model is a very useful statistical tool to analyze environmental data [29,31,32].Its main advantage is that it requires input data on the observed events instead of both: observed events and the control-population.In the context of oil spill events, the control-population is not relevant, limiting the application of other models in SaTScan?.Therefore, we used the STSSP model for detecting space-time clusters of oil spills in the Rivers state, Nigeria.The STSSP model was applied with the circular shape and with the default setting of maximum spatial and temporal window sizes [40].The Monte-Carlo method was used to test the statistical significance of the clusters.The clusters having a P-value of less than 0.05 were considered to be the significant clusters.

    3 Results and Discussion

    3.1 Sabotage Oil Spill Clusters

    The Space-time Scan Statistic under permutation model detected three significant clusters of sabotage oil spills in the Rivers state,Nigeria during the year 2011 to 2019 as given in Tab.1).

    Table 1: Space-time clusters of sabotage oil spills in Rivers state,Nigeria, 2011-2019

    The geographic locations of the statistically significant clusters of sabotage oil spills in the Rivers state are shown in Fig.2.The most-likely cluster was viewed in the western LGA(Ahoada-West)for two-years,2018-2019.The six LGAs (Bonny, Andoni, Gokana, Ogu-Bolo, Opobo-Nkoro, Okrika) in the south-East appeared as a 1st secondary cluster for three years 2013-2015.The 2nd secondary cluster was seen in two LGAs (Asari-Toru, Degema) in the south for the first three years of the study period (2011-2013).These three clusters are statistically significant (P-value <0.05)as shown in Tab.1.

    Figure 2: Locations of sabotage oil spills clusters in Rivers state,Nigeria

    Moreover,the results show that during the start of the study-period(2011-2013),the cluster of sabotage oil spill occurred in the two LGAs in the south, and then in 2013-2015, it moved toward the neighboring LGAs in East covering six LGAs.In the years 2016-2017, no cluster was detected, and then during the last two years of the study-period, it appeared again with a higher intensity in the western part covering a single LGA.These three clusters of the sabotage oil spill are not persistent geographically, i.e., they have not occurred repeatedly in the same sites.

    The most likely cluster is still present until the end of the study period identifying an important target for the possible interventions of oil and gas officials to control the current sabotage oil spills in this area and to reduce the environmental pollution.In addition,this most likely cluster can identify the areas susceptible to spills contamination(Fig.2)which provide clues for the environment protection agencies to combat the oil spill pollution in the targeted area.Moreover, the results show that the potential sabotage oil spill clusters covered the LGAs mostly in the south-Eastern part of the Rivers state which might be due to the presence of gangs or poor pipeline maintenance in these areas.Also, the easy access to crude oil through waterways and streams in these LGAs may give rise to the theft of crude oil.

    The resulting temporal graph showing the purely temporal cluster of sabotage oil spills is given in Fig.3.The year 2019 was detected as a potential temporal cluster of sabotage oil spills in the study area.The temporal graph shows that the sabotage oil spills have increased from 2011 to 2012, declined from 2012 to 2016 to the minimum, and then increased from 2016 to 2019 to the maximum (Fig.3).The increasing trend in the later year may be associated to the surveillance efforts that might be less consistent than in previous years.

    Figure 3: Temporal cluster of Sabotage oil spills in Rivers state, Nigeria

    3.2 Operational Oil Spill Clusters

    In the operational oil spill dataset,the Space-time Scan Statistic under the permutation model identified a total of two significant space-time clusters(Tab.2).The most likely cluster was seen in Bonny LGA for two years 2017-2018,and the secondary cluster in Degema for one-year 2011.These two clusters are statistically significant(P-value <0.05).Both operational oil spill clusters occurred in the southern part of the Rivers state covering each a single LGA.These clusters have disappeared before the end of the study period and no present cluster of operational oil spills was seen at the end of the study period.

    Table 2: Space-time clusters of operational oil spills in Rivers state,Nigeria,2011-2019

    The geographic sites of the significant clusters of operational oil spills in the Rivers state are shown in Fig.4.The geographic sites in Fig.4 show that during the first year of the study period(2011),the cluster of operational oil spill occurred in one LGA in the south, and then in 2017-2018, it moved toward the neighboring LGA in the East.Similar to the sabotage oil spill clusters,the operational oil spill clusters are not geographically persistent.

    Figure 4: Locations of operational oil spills clusters in Rivers state,Nigeria

    The resulting temporal graph showing the temporal cluster of operational oil spills is given in Fig.5.The period(2011-2012)was detected as a potential temporal cluster of operational oil spills in the study area.The temporal graph shows a decreasing trend in operational oil spills from 2011 to 2019 with a maximum in the year 2011 and minimum in 2019.This substantial decrease in the operational oil spill might be due to the efficient control strategies for operational oil spills in the study area.

    Figure 5: Temporal cluster of operational oil spills in Rivers state,Nigeria

    Our data analysis does differentiate the temporal and space-time clusters where oil spill accidents were frequent.The space-time cluster analysis shows that in both datasets (sabotage and Operational oil spills)most of the potential clusters occurred in the southern LGAs.However, the temporal graphs show opposite trends in both datasets (Figs.3 and 5).The operational oil spills seem to be controlled while controlling the sabotage oil spills in the study area is still a challenge.

    4 Conclusion

    The Space-time Scan Statistic approach detected temporaneous hotspots of oil spills in the Rivers state,Nigeria,thus provides clues for policymakers for better designing and targeting oil spill pre-suppression and control facilities at the local level.The results of the space-time cluster analyses provide useful information regarding the characteristics and occurrence-structure of the oil spill clusters in the study area.Most of the space-time clusters(sabotage and operational)have occurred in the southern part of the state.However,one potential cluster of sabotage oil spill occurred in the western LGA(Ahoada West)which is still present at end of the study period highlighting a current oil spill pollution hotspot for an immediate intervention of the oil spill control and environmental protection authorities.Similarly,the temporal graph of the sabotage oil spill also shows a tremendous increase at the end of the study period alerting the oil spill control and environmental protection authorities for taking preventive measures.Moreover, the detection of oil spill clusters could be a starting point for the deeper analysis of observing the social and environmental factors of oil spills in the study area.

    Acknowledgement:The authors are grateful to Universiti Teknologi PETRONAS for providing facilities for conducting this study.

    Funding Statement:This article was funded by a Yayasan Universiti Teknologi PETRONAS-Fundamental Research Grant(YUTP-FRG) with a cost center of 015LC0-013.

    Conflicts of Interest:The authors declare no conflicts of interest.

    中文字幕人妻丝袜一区二区| 精品久久久久久,| 久久精品国产综合久久久| 亚洲第一欧美日韩一区二区三区| 成人午夜高清在线视频| 亚洲av免费在线观看| 欧美日韩乱码在线| 一区二区三区高清视频在线| 99久久99久久久精品蜜桃| 蜜桃久久精品国产亚洲av| 欧美日韩福利视频一区二区| 超碰av人人做人人爽久久 | 国产主播在线观看一区二区| 亚洲一区高清亚洲精品| 色播亚洲综合网| 哪里可以看免费的av片| 亚洲真实伦在线观看| 亚洲专区国产一区二区| 波多野结衣巨乳人妻| 午夜福利成人在线免费观看| 国产久久久一区二区三区| 国产在视频线在精品| 午夜福利成人在线免费观看| 麻豆成人午夜福利视频| 69av精品久久久久久| 久久香蕉国产精品| 一区福利在线观看| 99久久久亚洲精品蜜臀av| 国产毛片a区久久久久| 国产伦精品一区二区三区四那| 欧美极品一区二区三区四区| tocl精华| 搡老妇女老女人老熟妇| 亚洲精品美女久久久久99蜜臀| 美女大奶头视频| 每晚都被弄得嗷嗷叫到高潮| 欧美不卡视频在线免费观看| 脱女人内裤的视频| 久久久国产成人精品二区| 久久久久九九精品影院| 免费观看人在逋| 欧美zozozo另类| 99在线人妻在线中文字幕| www日本黄色视频网| 在线观看免费视频日本深夜| 久久精品亚洲精品国产色婷小说| 国产高清三级在线| 成熟少妇高潮喷水视频| 黄色片一级片一级黄色片| 在线观看午夜福利视频| 欧美成人一区二区免费高清观看| 亚洲成人精品中文字幕电影| 手机成人av网站| 久久精品夜夜夜夜夜久久蜜豆| 亚洲美女视频黄频| 我要搜黄色片| 一级作爱视频免费观看| 亚洲天堂国产精品一区在线| 国产精品乱码一区二三区的特点| 精品人妻1区二区| 长腿黑丝高跟| 一区二区三区免费毛片| 久久精品国产99精品国产亚洲性色| 色播亚洲综合网| 亚洲熟妇熟女久久| 国产av在哪里看| 国产精品99久久久久久久久| 99久久成人亚洲精品观看| bbb黄色大片| 欧美激情在线99| 天堂动漫精品| 亚洲国产精品sss在线观看| 亚洲av二区三区四区| 国产aⅴ精品一区二区三区波| 国产中年淑女户外野战色| 午夜免费观看网址| 中文字幕久久专区| 欧美色欧美亚洲另类二区| 日本 欧美在线| 久久精品影院6| 3wmmmm亚洲av在线观看| 亚洲精品色激情综合| 精品人妻1区二区| 三级男女做爰猛烈吃奶摸视频| 国产精品电影一区二区三区| 亚洲一区高清亚洲精品| 嫁个100分男人电影在线观看| 国产成人福利小说| 一级a爱片免费观看的视频| 精品人妻偷拍中文字幕| 亚洲精品在线美女| 国产精品久久久久久久电影 | 久久久久久大精品| 88av欧美| 天堂动漫精品| 噜噜噜噜噜久久久久久91| 18禁美女被吸乳视频| 日韩欧美精品免费久久 | 欧美性猛交黑人性爽| 欧美av亚洲av综合av国产av| 身体一侧抽搐| 国产一级毛片七仙女欲春2| 网址你懂的国产日韩在线| 久久精品国产亚洲av涩爱 | 丰满的人妻完整版| 国内揄拍国产精品人妻在线| 一级a爱片免费观看的视频| 免费看a级黄色片| 99国产极品粉嫩在线观看| 在线观看av片永久免费下载| 精品一区二区三区人妻视频| 国产午夜福利久久久久久| 欧美区成人在线视频| 色老头精品视频在线观看| 91九色精品人成在线观看| 一级毛片高清免费大全| 国产在线精品亚洲第一网站| 色尼玛亚洲综合影院| 欧美中文综合在线视频| 亚洲精品456在线播放app | 国产免费一级a男人的天堂| 九九在线视频观看精品| 免费无遮挡裸体视频| 岛国在线观看网站| 国产成+人综合+亚洲专区| 亚洲午夜理论影院| 人人妻人人看人人澡| av专区在线播放| 成人一区二区视频在线观看| 欧美最黄视频在线播放免费| 免费人成在线观看视频色| 脱女人内裤的视频| 99久久精品一区二区三区| 波多野结衣巨乳人妻| 看黄色毛片网站| 欧美日本视频| 成人精品一区二区免费| 啦啦啦韩国在线观看视频| 脱女人内裤的视频| 真人做人爱边吃奶动态| 美女被艹到高潮喷水动态| 国产激情偷乱视频一区二区| 国产欧美日韩精品一区二区| 一本综合久久免费| 国产免费男女视频| 亚洲欧美日韩东京热| 波多野结衣巨乳人妻| 男女视频在线观看网站免费| 国产伦人伦偷精品视频| 国产激情欧美一区二区| 最近最新中文字幕大全电影3| 中文字幕人妻熟人妻熟丝袜美 | 日本 av在线| 他把我摸到了高潮在线观看| 午夜免费观看网址| 99精品欧美一区二区三区四区| 88av欧美| 久久香蕉国产精品| 露出奶头的视频| 国内毛片毛片毛片毛片毛片| 一夜夜www| 欧美激情在线99| 欧美成人a在线观看| 午夜老司机福利剧场| 欧美黑人巨大hd| 国产成人影院久久av| 午夜福利视频1000在线观看| 久久午夜亚洲精品久久| 国产精品美女特级片免费视频播放器| 精品无人区乱码1区二区| 国产成人啪精品午夜网站| 午夜精品一区二区三区免费看| 真实男女啪啪啪动态图| 成人一区二区视频在线观看| 午夜日韩欧美国产| 99国产精品一区二区三区| 国产乱人伦免费视频| 免费av不卡在线播放| 国产午夜福利久久久久久| 好男人电影高清在线观看| 人人妻人人澡欧美一区二区| 91av网一区二区| 他把我摸到了高潮在线观看| 中文字幕人妻丝袜一区二区| 综合色av麻豆| 岛国在线免费视频观看| 久久久久国内视频| 毛片女人毛片| 三级毛片av免费| 国产v大片淫在线免费观看| 亚洲第一电影网av| 免费在线观看日本一区| 丁香六月欧美| 国产成+人综合+亚洲专区| 国产精品99久久99久久久不卡| 欧美日韩黄片免| 少妇高潮的动态图| 一个人看视频在线观看www免费 | АⅤ资源中文在线天堂| 日韩欧美三级三区| 黄片小视频在线播放| 久久久成人免费电影| 国产精品香港三级国产av潘金莲| 一a级毛片在线观看| 久久精品国产自在天天线| 少妇丰满av| 在线观看一区二区三区| 亚洲片人在线观看| 丰满的人妻完整版| 日韩欧美三级三区| 岛国视频午夜一区免费看| 十八禁网站免费在线| 免费高清视频大片| 亚洲内射少妇av| 亚洲熟妇熟女久久| 欧美一区二区国产精品久久精品| 亚洲无线在线观看| 听说在线观看完整版免费高清| 欧美性感艳星| 成人午夜高清在线视频| 午夜亚洲福利在线播放| 亚洲性夜色夜夜综合| 国产高清有码在线观看视频| 99久久无色码亚洲精品果冻| 午夜福利在线观看吧| 国产亚洲av嫩草精品影院| 欧美色视频一区免费| 热99re8久久精品国产| x7x7x7水蜜桃| 成年女人毛片免费观看观看9| 亚洲欧美精品综合久久99| 国产亚洲精品av在线| 亚洲色图av天堂| 又粗又爽又猛毛片免费看| 久久精品国产清高在天天线| av视频在线观看入口| 99热6这里只有精品| 国产探花在线观看一区二区| 欧美区成人在线视频| av欧美777| 69人妻影院| 99热6这里只有精品| 成人欧美大片| 欧美日韩精品网址| 美女被艹到高潮喷水动态| 人人妻人人看人人澡| 99视频精品全部免费 在线| 国产三级在线视频| 五月玫瑰六月丁香| 亚洲av熟女| 少妇人妻精品综合一区二区 | 内射极品少妇av片p| 一区二区三区激情视频| 在线视频色国产色| 88av欧美| 亚洲国产精品成人综合色| 别揉我奶头~嗯~啊~动态视频| 99久国产av精品| 啦啦啦韩国在线观看视频| 国产精品国产高清国产av| 免费在线观看影片大全网站| 中文字幕人成人乱码亚洲影| 国产av不卡久久| 免费人成视频x8x8入口观看| 国产美女午夜福利| 99久久成人亚洲精品观看| 欧美乱码精品一区二区三区| 精品不卡国产一区二区三区| 女人高潮潮喷娇喘18禁视频| 亚洲精品色激情综合| 欧美成人性av电影在线观看| 久99久视频精品免费| 亚洲国产精品久久男人天堂| netflix在线观看网站| 好男人在线观看高清免费视频| 两人在一起打扑克的视频| 看黄色毛片网站| 婷婷精品国产亚洲av| 亚洲美女黄片视频| 国产三级黄色录像| 男插女下体视频免费在线播放| 国产v大片淫在线免费观看| 一区二区三区国产精品乱码| 夜夜看夜夜爽夜夜摸| 亚洲精品成人久久久久久| 一个人免费在线观看的高清视频| 成年人黄色毛片网站| svipshipincom国产片| 国产精品99久久久久久久久| 日本免费一区二区三区高清不卡| 国产91精品成人一区二区三区| av视频在线观看入口| 日本撒尿小便嘘嘘汇集6| 国产探花在线观看一区二区| 精品不卡国产一区二区三区| www日本黄色视频网| 久久久精品欧美日韩精品| 欧美色视频一区免费| 国产在视频线在精品| 国产精品一区二区三区四区免费观看 | 欧美日本亚洲视频在线播放| av国产免费在线观看| 淫秽高清视频在线观看| 欧美色视频一区免费| 久久人妻av系列| 波野结衣二区三区在线 | 哪里可以看免费的av片| 黄片大片在线免费观看| 日韩欧美在线二视频| 欧美+日韩+精品| 国产精品久久久久久亚洲av鲁大| 老汉色av国产亚洲站长工具| 高清毛片免费观看视频网站| 亚洲第一欧美日韩一区二区三区| 9191精品国产免费久久| 亚洲成人久久性| 美女高潮喷水抽搐中文字幕| 午夜福利在线观看吧| 午夜福利成人在线免费观看| 国产精品亚洲美女久久久| 日韩欧美国产一区二区入口| 19禁男女啪啪无遮挡网站| 亚洲精品久久国产高清桃花| 国产成人欧美在线观看| 欧美日本视频| 人人妻,人人澡人人爽秒播| 国产三级黄色录像| 别揉我奶头~嗯~啊~动态视频| 国产成人a区在线观看| 亚洲人成网站在线播放欧美日韩| 久久这里只有精品中国| 日本a在线网址| 欧美中文日本在线观看视频| 欧美日韩国产亚洲二区| 婷婷精品国产亚洲av在线| 老汉色av国产亚洲站长工具| 久久久久九九精品影院| 内地一区二区视频在线| 久久久久国产精品人妻aⅴ院| 男女午夜视频在线观看| 乱人视频在线观看| 老司机午夜十八禁免费视频| 国产欧美日韩精品一区二区| 人妻夜夜爽99麻豆av| 中文字幕人妻丝袜一区二区| 国产亚洲精品久久久com| 级片在线观看| 一个人看的www免费观看视频| 午夜福利欧美成人| 亚洲性夜色夜夜综合| aaaaa片日本免费| 午夜免费男女啪啪视频观看 | 精品电影一区二区在线| 亚洲精品粉嫩美女一区| 欧美日韩一级在线毛片| 99久久精品一区二区三区| 欧美绝顶高潮抽搐喷水| 久久欧美精品欧美久久欧美| 女人十人毛片免费观看3o分钟| 麻豆成人午夜福利视频| 两个人看的免费小视频| 亚洲专区国产一区二区| 中文字幕人成人乱码亚洲影| 国产精品精品国产色婷婷| 久99久视频精品免费| 99热这里只有是精品50| 国产黄片美女视频| 国产三级在线视频| 九九热线精品视视频播放| 午夜精品久久久久久毛片777| 久久人妻av系列| 免费av不卡在线播放| 欧美bdsm另类| 少妇裸体淫交视频免费看高清| 国产真实乱freesex| 国产精品一区二区免费欧美| 国产精品99久久99久久久不卡| 少妇丰满av| 亚洲欧美一区二区三区黑人| 国产视频内射| 免费av观看视频| 亚洲av成人不卡在线观看播放网| www.999成人在线观看| 嫁个100分男人电影在线观看| 内地一区二区视频在线| 757午夜福利合集在线观看| 成人国产一区最新在线观看| 有码 亚洲区| 99在线视频只有这里精品首页| 日本一本二区三区精品| 熟女电影av网| 亚洲,欧美精品.| 成人无遮挡网站| 99久久成人亚洲精品观看| 在线观看66精品国产| 亚洲美女视频黄频| 美女cb高潮喷水在线观看| 国产免费男女视频| 日本精品一区二区三区蜜桃| 十八禁人妻一区二区| 国产综合懂色| 国产亚洲精品久久久久久毛片| 午夜免费观看网址| 黄片大片在线免费观看| 国产在线精品亚洲第一网站| 欧美+亚洲+日韩+国产| 天美传媒精品一区二区| 亚洲精品乱码久久久v下载方式 | 90打野战视频偷拍视频| 亚洲欧美精品综合久久99| 又紧又爽又黄一区二区| 久久精品综合一区二区三区| 91麻豆av在线| 每晚都被弄得嗷嗷叫到高潮| 亚洲欧美一区二区三区黑人| 日本一本二区三区精品| 日韩成人在线观看一区二区三区| 色精品久久人妻99蜜桃| 国产激情欧美一区二区| 男女下面进入的视频免费午夜| 1024手机看黄色片| 欧美乱码精品一区二区三区| 亚洲美女视频黄频| 国产欧美日韩一区二区精品| 欧美乱码精品一区二区三区| 一区福利在线观看| 最近在线观看免费完整版| 欧美高清成人免费视频www| 少妇丰满av| www.www免费av| 中文字幕av在线有码专区| 久久人人精品亚洲av| 亚洲欧美一区二区三区黑人| 两个人看的免费小视频| 婷婷精品国产亚洲av在线| 99久久无色码亚洲精品果冻| 日韩大尺度精品在线看网址| 欧美日本亚洲视频在线播放| 国模一区二区三区四区视频| a级一级毛片免费在线观看| 日韩 欧美 亚洲 中文字幕| 久久久久九九精品影院| 久久久久久久久中文| 热99在线观看视频| 别揉我奶头~嗯~啊~动态视频| 无限看片的www在线观看| 午夜免费观看网址| 三级毛片av免费| 国产黄片美女视频| 亚洲内射少妇av| 午夜福利成人在线免费观看| 国产一级毛片七仙女欲春2| 最近视频中文字幕2019在线8| 国产精品 欧美亚洲| 日本免费一区二区三区高清不卡| 亚洲欧美一区二区三区黑人| 亚洲人成网站高清观看| 欧美日本亚洲视频在线播放| 久99久视频精品免费| 香蕉久久夜色| 他把我摸到了高潮在线观看| 热99re8久久精品国产| 欧美不卡视频在线免费观看| 亚洲18禁久久av| 99久国产av精品| 国产99白浆流出| 日本免费a在线| 夜夜躁狠狠躁天天躁| 亚洲成人中文字幕在线播放| 亚洲av免费高清在线观看| 内射极品少妇av片p| 亚洲熟妇中文字幕五十中出| 欧美一级毛片孕妇| 一区二区三区高清视频在线| 丝袜美腿在线中文| 一级毛片高清免费大全| 国产蜜桃级精品一区二区三区| 在线免费观看不下载黄p国产 | 两个人视频免费观看高清| 日韩大尺度精品在线看网址| 成人三级黄色视频| 1024手机看黄色片| 国内精品一区二区在线观看| 国产精品三级大全| 国内久久婷婷六月综合欲色啪| 午夜福利在线在线| 给我免费播放毛片高清在线观看| 国产精品亚洲美女久久久| 男人舔女人下体高潮全视频| 亚洲熟妇中文字幕五十中出| 亚洲色图av天堂| 一个人免费在线观看的高清视频| 最新美女视频免费是黄的| 成人三级黄色视频| 欧美日韩一级在线毛片| 黄色日韩在线| 久久久精品欧美日韩精品| xxx96com| 国产真人三级小视频在线观看| 女警被强在线播放| 欧美区成人在线视频| 亚洲七黄色美女视频| 麻豆一二三区av精品| 国产精品,欧美在线| 久久草成人影院| 嫩草影视91久久| 国产亚洲精品久久久com| 欧美不卡视频在线免费观看| 嫩草影院精品99| 啦啦啦观看免费观看视频高清| 热99在线观看视频| 首页视频小说图片口味搜索| 色哟哟哟哟哟哟| 日本 欧美在线| 搞女人的毛片| 国产一区二区激情短视频| 亚洲天堂国产精品一区在线| 亚洲精品成人久久久久久| 无人区码免费观看不卡| 亚洲成人免费电影在线观看| 女人十人毛片免费观看3o分钟| 免费av观看视频| 九色成人免费人妻av| 国产又黄又爽又无遮挡在线| 3wmmmm亚洲av在线观看| 97超级碰碰碰精品色视频在线观看| 人妻夜夜爽99麻豆av| 18禁裸乳无遮挡免费网站照片| 岛国在线观看网站| 国产精品精品国产色婷婷| 免费人成在线观看视频色| 日韩欧美三级三区| 法律面前人人平等表现在哪些方面| 亚洲美女黄片视频| 国产成人av教育| 免费在线观看影片大全网站| 高清毛片免费观看视频网站| 国产精品国产高清国产av| av在线天堂中文字幕| 日日夜夜操网爽| 国产成年人精品一区二区| 丰满人妻熟妇乱又伦精品不卡| 啦啦啦免费观看视频1| 亚洲成a人片在线一区二区| 人人妻,人人澡人人爽秒播| 99在线视频只有这里精品首页| 熟女电影av网| 成人午夜高清在线视频| 国产伦一二天堂av在线观看| 欧美日韩中文字幕国产精品一区二区三区| 中文字幕人妻熟人妻熟丝袜美 | 午夜精品久久久久久毛片777| 一区二区三区激情视频| 最近最新免费中文字幕在线| 又黄又爽又免费观看的视频| 欧美日韩乱码在线| 香蕉久久夜色| 99国产综合亚洲精品| 国产亚洲精品综合一区在线观看| 成年女人永久免费观看视频| 窝窝影院91人妻| 变态另类丝袜制服| 免费观看精品视频网站| 宅男免费午夜| 九色国产91popny在线| 国产私拍福利视频在线观看| 欧洲精品卡2卡3卡4卡5卡区| 国产精品香港三级国产av潘金莲| 99久国产av精品| 搡老岳熟女国产| 欧美丝袜亚洲另类 | 国产成人av教育| 久久精品人妻少妇| 狂野欧美白嫩少妇大欣赏| 亚洲 国产 在线| 午夜免费激情av| 波野结衣二区三区在线 | 51国产日韩欧美| 1000部很黄的大片| 给我免费播放毛片高清在线观看| 在线a可以看的网站| 男女视频在线观看网站免费| 亚洲国产精品合色在线| 搡老妇女老女人老熟妇| 一本综合久久免费| 欧美性感艳星| 韩国av一区二区三区四区| 亚洲av日韩精品久久久久久密| 可以在线观看毛片的网站| 亚洲熟妇中文字幕五十中出| 精品不卡国产一区二区三区| 国产毛片a区久久久久| 综合色av麻豆| 亚洲av中文字字幕乱码综合| 九色成人免费人妻av| 精品国内亚洲2022精品成人| www.999成人在线观看| 国产精品一区二区免费欧美| 国产精品,欧美在线| 制服人妻中文乱码| 国产精品一及| 久久国产精品人妻蜜桃| 丰满人妻一区二区三区视频av | 小蜜桃在线观看免费完整版高清| 女生性感内裤真人,穿戴方法视频| 欧美最黄视频在线播放免费| 老汉色av国产亚洲站长工具| 精品国内亚洲2022精品成人| 亚洲熟妇熟女久久| 可以在线观看毛片的网站| 九色成人免费人妻av| 99久久精品一区二区三区| 欧美日韩中文字幕国产精品一区二区三区| 国产伦精品一区二区三区四那| 色综合站精品国产|