• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Product Spacing of Stress-Strength under Progressive Hybrid Censored for Exponentiated-Gumbel Distribution

    2021-12-16 06:40:32AlshenawyMohamedSabryEhabAlmetwallyandHishamElomngy
    Computers Materials&Continua 2021年3期

    R.Alshenawy,Mohamed A.H.Sabry,Ehab M.Almetwallyand Hisham M.Elomngy

    1Department of Mathematics and Statistics, King Faisal University, Al-Ahsa, 31982, Saudi Arabia

    2Department of Applied Statistics and Insurance,Mansoura University, Mansoura,35516, Egypt

    3Department of Mathematical Statistics, Cairo University, Cairo, 12613,Egypt

    4Department of Statistics, Delta University for Science and Technology, Mansoura, 11152,Egypt

    Abstract:Maximum product spacing for stress-strength model based on progressive Type-II hybrid censored samples with different cases has been obtained.This paper deals with estimation of the stress strength reliability model R = P(Y <X)when the stress and strength are two independent exponentiated Gumbel distribution random variables with different shape parameters but having the same scale parameter.The stress-strength reliability model is estimated under progressive Type-II hybrid censoring samples.Two progressive Type-II hybrid censoring schemes were used, Case I: A sample size of stress is the equal sample size of strength, and same time of hybrid censoring, the product of spacing function under progressive Type-II hybrid censoring schemes.Case II: The sample size of stress is a different sample size of strength,in which the life-testing experiment with a progressive censoring scheme is terminated at a random time T ∈ (0,∞).The maximum likelihood estimation and maximum product spacing estimation methods under progressive Type-II hybrid censored samples for the stress strength model have been discussed.A comparison study with classical methods as the maximum likelihood estimation method is discussed.Furthermore, to compare the performance of various cases, Markov chain Monte Carlo simulation is conducted by using iterative procedures as Newton Raphson or conjugate-gradient procedures.Finally, two real datasets are analyzed for illustrative purposes, first data for the breaking strengths of jute fiber, and the second data for the waiting times before the service of the customers of two banks.

    Keywords: Exponentiated Gumbel distribution;stress-strength model;progressive Type-II hybrid censoring;maximum product spacing;maximum likelihood

    1 Introduction

    The stress-strength reliability R=P(Y <X) model is an important application in reliability theory.This model is used in many applications of physics and engineering such as strength failure and system collapse.In electrical and electronic systems R arise as a measure of system performance.Some Authors had used R as a general measure of the difference between two populations.Reference [1] used R as the inequality measure between income distributions.Reference [2] used it to express the evaluation of the area under the receiver operating characteristic (ROC) curve for diagnostic tests with continuous outcomes.For further details and Applications of R, see[3].

    Statistical inference about the reliability model has received great attention in the context of reliability.For P(Y <X), X is the strength of a system which is subjected to stress Y.The system fails when stress exceeds strength.Therefore, the stress-strength parameter R measures system reliability.Many authors have used different statistical inference methods to estimate R when samples drawn from the model are based on simple random samples (SRS).However, in recent years, statistical inferences about R model based on the Ranked set sample designs (RSS) have been considered by several researches.For example[4] considered estimation of the stress strength reliability model when the stress and strength are independent exponentiated pareto variables and the samples are drawn using median and ranked set sampling methods.

    Other researchers considered censored data when estimating R.Reference [5] discussed estimation of the reliability model for exponential populations using order statistics.Reference [6] proposed three estimators when X and Y are independent one-parameter exponential random variables.the case when stress and strength variables are independent Burr Type-XII distribution was investigated by Reference[7] when samples drawn using several modifications of ranked set sampling designs (RSS).Furthermore[8]discussed the estimation of the reliability model when X and Y independent Lindley populations.

    The estimation of R in exponential distributions under censored data has been investigated by Reference[9], and the stress-strength reliability of Weibull and inverse Weibull distributions has been studied under progressively censored data by [10,11].Reference [12] carried out the estimation of the stress-strength reliability R = P(Y <X) based on progressively Type-II censored samples when X and Y were two independent two parameter bathtub-shaped lifetime distributions.

    Many authors have discussed inference under progressive Type-II hybrid censoring using different lifetime distributions.Reference [13] presented the analysis of the Type-II progressively hybrid censored data of the Weibull distribution.Reference [14] discussed the maximum likelihood estimators and approximate maximum likelihood estimators of the parameters of the Weibull distribution with two different progressively hybrid censoring schemes.Reference [15] discussed the estimation and prediction problems for the Burr Type-III distribution under progressive Type-II hybrid censored data.Reference[16] discussed parameter estimation for the generalized Rayleigh distribution under the adaptive Type-II progressive censoring schemes by using maximum product spacing method.Reference [17] discussed statistical inference for the Gompertz distribution based on generalized progressively hybrid censored data.Reference [18] discussed adaptive Type-II progressive censoring schemes of maximum product spacing for Weibull parameters.Reference [19] discussed classical and Bayesian inferences for the generalized DUS exponential distribution under Type-I progressive hybrid censored data.

    Reference[20]introduced progressive Type-II hybrid censoring based on the maximum product spacing method for Power Lomax distribution.Reference[21]obtained inference for the stress strength reliability when X and Y are two independent Weibull distributions under progressively Type-II censored samples.Reference[22] obtained step-stress model with Type-II hybrid censored data from the Kumaraswamy Weibull distribution.Reference [23] considered the reliability analysis problem of a constant-stress life test model based on progressively Type-I hybrid censored data from Weibull distribution.Reference [24] discussed classical and Bayesian estimation procedures for stress-strength reliability parameter for Lomax distribution based on Type-II hybrid censored.Reference [25] discussed point and interval estimate of the stressstrength parameter, from both MLE and Bayesian under the Type-II hybrid progressive censoring scheme.Based on the observed sample x1:m:n<...<xm:m:nfrom a progressive Type-II hybrid censoring scheme,the MPS under progressive Type-II hybrid censoring scheme will be introduced depending on[26-29,16].

    The two cases of the Type-II progressive hybrid censoring scheme are cases I(X1:m:n<...<Xm:m:n<T) and case II (Xh:m:n<T <Xh+1:m:n).If Xh:m:n<T <Xh+1:m:n, the progressive censoring sample {X1:m:n, ..., Xh:m:n}, is described by [20].Eq.(1) is referred as MPS under Type-II progressive hybrid censoring scheme in general form as follows:

    In this paper, estimation of the traditional stress-strength model R=P(Y <X) under progressive Type-II hybrid censoring schemes when X and Y are exponentiated Gumble (EG) random variables with cumulative distribution (cdf), probability density function (pdf) and quantile function respectively is investigated.

    and

    Maximum product of spacing(MPS)and maximum likelihood(MLE)estimation methods are used to estimate R and estimator’s performances and efficiencies are investigated through a Monte Carlo simulation study and a real data application will be used for illustrative purposes.Finally,the paper is concluded.

    2 Stress Strength Parameter

    Let X ~EG(α,σ ) and Y ~EG(β,σ) be two independent random variables with the same scale parameter σ and R=P(Y <X)is the stress-strength reliability model,then:

    3 Maximum Likelihood

    If Xh:m:n<T <Xh+1:m:n, the progressive censoring sample {X1:m:n, ..., Xh:m:n}, and if Yh:M:<T <Yw+1:M:, the progressive censoring sample {Y1:M:,..., Yh:M:} is described.According[30], the general likelihood function under progressive Type-II hybrid censoring schemes for stressstrength model can be written as:

    In case of stress and strength sample sizes are equal, and same time of hybrid censoring, the likelihood function of EG distribution under progressive Type-II hybrid censoring schemes for stressstrength model is:

    The general likelihood function of the EG distribution under progressive Type-II hybrid censoring schemes for stress-strength model is given as:

    According to Eq.(9),the log-likelihood function of the EG distribution under progressive Type-II hybrid censoring schemes for stress-strength model is given as:

    The MLE of α,β and σ are obtained by simultaneously solving the following normal equations:

    and

    4 Maximum Product of Spacing

    In case of sample size of stress is equal sample size of strength,and same time of hybrid censoring,the product of spacing function under progressive Type-II hybrid censoring schemes for stress-strength model as follows:

    where Ψ is a vector of parameters.The product of spacing function of the EG distribution under progressive Type-II hybrid censoring schemes for stress-strength model is given as:

    The MPS of α, β and σ are obtained by simultaneously solving the following normal equations:

    and

    5 Simulation Study

    In this section, a Monte-Carlo simulation is done to estimate the parameters of EG distribution under progressive Type-II hybrid censoring schemes for stress-strength model for MLE and MPS methods using R language is described as follows:

    Step 1:Generate 10000 random samples of size 30, 50 and 100 from the EG distribution under progressive Type-II hybrid censoring schemes for stress-strength model.

    Step 2:Using the quantile;0 <ui<1, where x are distributed as EG for different parameters (α,β,σ), Three sets of parameters values are selected as are(α,β,σ)= (1.75, 2, 1.5), (α,β,σ)= (0.75, 2, 1.5)and is (α,β,σ)= (0.75, 0.5, 1.5).

    Step 3:In progressive Type-II hybrid censoring schemes for stress-strength model, the effective of sample sizes (failure items) m are selected based on two levels of censoring for all sample size.Selected T are 1.5 and 5 and sets of different samples schemes.

    ●Scheme 1: R(1 )=R2=...=Rm-1=0, and Rm=n-m.It is Type-II scheme

    ●Scheme 2: R(2 )=n-m and R2=R3=...=Rm-1=0.

    ●Case 1:Sample size of stress is equal sample size of strength, and same time of hybrid censoring.

    ●Case 2:Sample size of stress is different sample size of strength,and same time of hybrid censoring.

    Step 4:The MLE and MPS of the model parameters are obtained by solving the non-linear equations based on progressive Type-II hybrid censoring schemes for stress-strength model.

    Step 5:The Bias and mean square errors(MSE)of the parameters are obtained as measures of efficiency.

    Step 6:The numerical results of parameters estimation of EG distribution under different censoring schemes are listed in Tabs.1 and 3.

    Table 1: MLE and MPS of EG distribution based on stress-strength model under different censoring schemes,Case 1:1: (α,β,σ)= (1.75, 2, 1.5)

    Table 1 (continued).T 1.5 5 n=m=M Scheme MLE MPS MLE MPS Bias MSE Bias MSE Bias MSE Bias MSE 100 65 I ^a 0.4347 0.2101 0.4447 0.2248 0.2121 0.0550 0.2528 0.0773^β 0.3341 0.1381 0.3563 0.1618 0.0441 0.0149 0.0969 0.0268^σ -0.3161 0.1024 -0.3935 0.1583 0.5179 0.3431 0.3130 0.1598^R 0.0169 0.0009 0.0157 0.0009 0.0232 0.0009 0.0219 0.0009 II ^a 0.0603 0.0510 0.0153 0.0485 0.0576 0.0492 0.0135 0.0474^β 0.0671 0.0727 0.0188 0.0722 0.0602 0.0700 0.0145 0.0701^σ -0.8107 0.6598 -0.8093 0.6474 -0.8018 0.6452 -0.8141 0.6465^R 0.0006 0.0019 0.0003 0.0019 0.0011 0.0018 0.0006 0.0019 85 I ^a 0.1579 0.0470 0.1494 0.0493 0.0324 0.0123 0.0579 0.0186^β 0.1154 0.0414 0.1189 0.0493 -0.0747 0.0206 -0.0305 0.0211^σ -0.6126 0.3770 -0.6624 0.4407 -0.2800 0.0901 -0.4039 0.1715^R 0.0077 0.0009 0.0062 0.0009 0.0142 0.00068 0.0120 0.0007 II ^a 0.0037 0.0307 -0.0298 0.0338 -0.0004 0.0297 -0.0319 0.0333^β 0.0038 0.0422 -0.0279 0.0479 -0.0039 0.0409 -0.0318 0.0471^σ -0.8002 0.6422 -0.8171 0.6695 -0.7917 0.6286 -0.8130 0.6626^R 0.0003 0.0013 -0.0005 0.0014 0.0007 0.00127 -0.0003 0.0013

    Table 2 (continued).T 1.5 5 n= m=M Scheme MLE MPS MLE MPS Bias MSE Bias MSE Bias MSE Bias MSE 85 I ^a -0.1330 0.2047 0.2394 0.0643 0.3079 0.1111 0.3268 0.1130^β 0.4362 0.4231 0.0923 0.0399 0.0724 0.0402 -0.0314 0.0213^σ -0.9935 1.0431 -0.6312 0.4002 -0.5009 0.2705 -0.4021 0.1705^R -0.0802 0.0237 0.0489 0.0031 0.0654 0.0059 0.08122 0.0072 II ^a -0.6082 0.4174 0.0002 0.0070 -0.5666 0.4064 0.0035 0.0070^β 0.4509 0.5741 -0.0282 0.0477 0.5042 0.5865 -0.0320 0.0471^σ -1.2305 1.4705 -0.8171 0.6695 -1.0297 0.2088 -0.8130 0.1625^R -0.2423 0.0161 0.0039 0.0010 -0.2373 0.0593 0.00516 0.0010

    Table 3: MLE and MPS of EG distribution based on stress-strength model under different censoring schemes,Case 1: (α,β,σ)= (1.75, 0.5, 1.5)

    ?

    Table 4: MLE and MPS of EG distribution based on stress-strength model under different censoring schemes,Case 2: (α,β,σ)= (0.75, 0.5, 1.5)

    Table 5 (continued).T 1.5 5(n,) (m, M) Scheme MLE MPS MLE MPS Bias MSE Bias MSE Bias MSE Bias MSE(25,30) I ^a -0.0145 0.2432 0.2684 0.0964 0.2543 0.1744 0.3182 0.1233^β 0.4652 0.7792 0.0253 0.0816 0.2079 0.2596 -0.0522 0.0620^σ -0.9399 0.9571 -0.5826 0.3468 -0.6305 0.4613 -0.4361 0.2072^R -0.0494 0.0238 0.0631 0.0062 0.0397 0.0118 0.0822 0.0087 II ^a -0.5318 0.4079 0.0309 0.0264 -0.4799 0.3709 0.0351 0.0261^β 0.5173 1.0547 -0.0178 0.1428 0.4905 0.9445 -0.0270 0.1370^σ -1.2620 1.6174 -0.7878 0.6270 -1.2343 1.5551 -0.7816 0.6162^R -0.1900 0.0529 0.0128 0.0035 -0.1742 0.0476 0.0148 0.0034(50, 60) (35,40) I ^a 0.5120 0.2919 0.5118 0.2780 0.6137 0.3929 0.5841 0.3538^β 0.4560 0.2820 0.2656 0.1175 0.1909 0.0726 0.1197 0.0437^σ -0.4942 0.2534 -0.3527 0.1308 0.0590 0.0791 0.0901 0.0673^R 0.0671 0.0065 0.0855 0.0083 0.1114 0.0137 0.1139 0.0139 II ^a -0.5751 0.4227 0.0278 0.0214 -0.5321 0.3927 0.0321 0.0212^β 0.4874 0.6643 0.0131 0.1144 0.4303 0.6100 0.0069 0.1107^σ -1.2748 1.6437 -0.8069 0.6556 -1.2538 1.5962 -0.8017 0.6468^R -0.2039 0.0549 0.0081 0.0026 -0.1896 0.0497 0.0098 0.0025(45,50) I ^a -0.2049 0.2464 0.1838 0.0476 0.1858 0.1083 0.2514 0.0751^β 0.5429 0.8201 0.1342 0.0781 0.2326 0.1607 0.0356 0.0420^σ -1.0368 1.1395 -0.6436 0.4180 -0.6210 0.4374 -0.4594 0.2232^R -0.1046 0.0292 0.0326 0.0024 0.0217 0.0077 0.0577 0.0045 II ^a -0.6046 0.4366 0.0140 0.0159 -0.5654 0.4103 0.0179 0.0156^β 0.4553 0.6189 -0.0213 0.0785 0.4593 0.6791 -0.0278 0.0760^σ -1.2802 1.6540 -0.8017 0.6463 -1.2593 1.6073 -0.7963 0.6373^R -0.2155 0.0558 0.0073 0.0020 -0.2029 0.0525 0.0090 0.0020(100,120)(60,85) I ^a 0.7483 0.5685 0.7306 0.5407 0.8241 0.6876 0.8032 0.6539^β 1.3329 1.8357 1.1585 1.3886 -0.0339 0.0135 -0.0343 0.0136^σ -0.0661 0.0088 0.0481 0.0083 0.3596 0.1981 0.2990 0.1449^R 0.0380 0.0019 0.0469 0.0026 0.1720 0.0302 0.1687 0.0290 II ^a -0.6789 0.4756 0.0149 0.0120 -0.5515 0.3935 0.0286 0.0121^β 0.9752 1.6817 0.2216 0.2035 0.3955 0.5150 0.0011 0.0464^σ -1.3120 1.7241 -0.8292 0.6908 -1.2437 1.5680 -0.8150 0.6662^R -0.2448 0.0624 -0.0131 0.0021 -0.1986 0.0497 0.0081 0.0014

    Table 6: MLE and MPS of EG distribution based on stress-strength model under different censoring schemes,Case 2: (α,β,σ)= (1.75, 2, 1.5)

    Table 6 (continued).T 1.5 5(n,) (m, M) Scheme MLE MPS MLE MPS Bias MSE Bias MSE Bias MSE Bias MSE(50, 60) (35,40) I ^a 0.3548 0.1687 0.3197 0.1527 0.1659 0.0494 0.1692 0.0555^β 0.3428 0.1639 0.3190 0.1576 0.0999 0.0330 0.1205 0.0437^σ -0.3744 0.1448 -0.4197 0.1827 0.2294 0.1220 0.0877 0.0647^R 0.0065 0.0012 0.0049 0.0012 0.0104 0.0008 0.0084 0.0008 II ^a 0.0916 0.1110 0.0186 0.0987 0.0887 0.1080 0.0154 0.0962^β 0.0941 0.1263 0.0133 0.1145 0.0870 0.1212 0.0070 0.1107^σ -0.8167 0.6717 -0.8072 0.6563 -0.8090 0.6589 -0.8018 0.6470^R 0.0013 0.0034 0.0010 0.0033 0.0017 0.0033 0.0014 0.0032(45,50) I ^a 0.1045 0.0551 0.0625 0.0537 -0.0066 0.0263 -0.0171 0.0323^β 0.1841 0.0890 0.1496 0.0865 0.0293 0.0335 0.0361 0.0420^σ -0.6313 0.4021 -0.6601 0.4400 -0.3762 0.1571 -0.4603 0.2238^R -0.0074 0.0017 -0.0091 0.0018 -0.0045 0.0011 -0.0068 0.0012 II ^a 0.0339 0.0676 -0.0269 0.0673 0.0292 0.0653 -0.0306 0.0660^β 0.0435 0.0782 -0.0206 0.0790 0.0340 0.0741 -0.0276 0.0761^σ -0.7996 0.6431 -0.8018 0.6466 -0.7909 0.6292 -0.7964 0.6375^R -0.0006 0.0026 -0.0012 0.0025 -0.0001 0.0025 -0.0009 0.0025(100,120)(60,85) I ^a 0.5631 0.3438 0.5761 0.3661 0.3400 0.1270 0.3877 0.1656^β 0.1989 0.0563 0.2271 0.0741 -0.0871 0.0166 -0.0334 0.0132^σ -0.3261 0.1086 -0.4074 0.1691 0.5073 0.3218 0.2953 0.1396^R 0.0458 0.0026 0.0440 0.0026 0.0554 0.0034 0.0541 0.0033 II ^a 0.0799 0.0599 0.0319 0.0560 0.0774 0.0578 0.0306 0.0549^β 0.0399 0.0447 0.0055 0.0478 0.0325 0.0427 0.0011 0.0464^σ -0.8051 0.6505 -0.8201 0.6750 -0.7963 0.6363 -0.8151 0.6663^R 0.0057 0.0017 0.0033 0.0018 0.0063 0.0017 0.0037 0.0018(85,100)I ^a 0.1608 0.0484 0.1557 0.0517 0.0229 0.0121 0.0529 0.0183^β 0.1342 0.0422 0.1472 0.0521 -0.0642 0.0169 -0.0108 0.0176^σ -0.5972 0.3586 -0.6526 0.4279 -0.2350 0.0682 -0.3708 0.1466^R 0.0057 0.0008 0.0035 0.0009 0.0114 0.0006 0.0088 0.0006 II ^a 0.0099 0.0321 -0.0227 0.0351 0.0061 0.0310 -0.0246 0.0345^β -0.0014 0.0341 -0.0263 0.0389 -0.0088 0.0333 -0.0296 0.0385^σ -0.7953 0.6344 -0.8158 0.6673 -0.7877 0.6223 -0.8127 0.6620^R 0.0015 0.0013 2.2E-07 0.0013 0.0019 0.0012 0.0002 0.0013

    The simulation study showed that the bias and MSE of all estimators for different cases decrease when sample size of stress or/and strength increases.Furthermore, model efficiency increases when the effective sample size of the censored scheme increases.In this study, we noted that scheme I of the progressive Type-II hybrid censoring was found to be superior to scheme II.Moreover, the results showed that efficiency of the MPS estimators are over MLE’s which means that MPS estimation method is good alternative to MLE method.

    6 Applications

    We discuss a stress-strength reliability of EG distribution using real data set to illustrate estimation methods of EG distribution based on stress-strength reliability model provides significant improvements over.

    Data Set 1:The real data sets of the waiting times before service of the customers of two banks A and B,respectively have been used.These data sets have been discussed by Reference[31]for estimating the stressstrength reliability in case of the Generalized Lindley distribution.

    Data of Bank A:0.8,0.8,1.3,1.5,1.8,1.9,1.9,2.1,2.6,2.7,2.9,3.1,3.2,3.3,3.5,3.6,4.0,4.1,4.2,4.2,4.3,4.3,4.4,4.4,4.6,4.7,4.7,4.8,4.9,4.9,5.0,5.3,5.5,5.7,5.7,6.1,6.2,6.2,6.2,6.3,6.7,6.9,7.1,7.1,7.1,7.1,7.4,7.6,7.7,8.0,8.2,8.6,8.6,8.6,8.8,8.8,8.9,8.9,9.5,9.6,9.7,9.8,10.7,10.9,11.0,11.0,11.1,11.2,11.2,11.5,11.9,12.4,12.5,12.9,13.0,13.1,13.3,13.6,13.7,13.9,14.1,15.4,15.4,17.3,17.3,18.1,18.2,18.4,18.9,19.0,19.9,20.6,21.3, 21.4,21.9,23.0,27.0,31.6,33.1,38.5.

    Data of Bank B:0.1,0.2,0.3,0.7,0.9,1.1,1.2,1.8,1.9,2.0,2.2,2.3,2.3,2.3,2.5,2.6,2.7,2.7,2.9,3.1,3.1,3.2,3.4,3.4,3.5,3.9,4.0,4.2,4.5,4.7,5.3,5.6,5.6,6.2,6.3,6.6,6.8,7.3,7.5,7.7,7.7,8.0,8.0,8.5,8.5,8.7, 9.5,10.7,10.9,11.0,12.1,12.3, 12.8,12.9,13.2,13.7,14.5,16.0,16.5,28.0.

    Fig.1 Shows plots of the fitted pdf,cdf and p-p plot of the EG distribution for these data and the results of MLE estimates of R along with the value of standard error, Kolmogorov-Smirnov and the p-value are confirmed in Tab.7, while Tab.8 provides the MLE estimates of R for the Bank data based on stressstrength model under different Censoring Schemes.

    Figure 1: Plots of the fitted pdf, cdf and p-p plot of the EG distribution for banking data

    For this data,MPS method can’t be used since there are equal observation in the data,so the spacing will be zero and hence the product will also be zero a.Despite the effectiveness of the MPS method,this problem hinders their use in the estimation process(for more information of this method see[16,18,20].

    Data Set 2:The analysis of a pair of real data sets is presented for illustrative purposes.These data show the breaking strengths of jute fiber at two different gauge lengths.These two data sets were used by [32]where X is the breaking strength of jute fibre with 10 mm, and Y is the breaking strength of jute fibre with 20 mm.These data sets have been discussed by Reference [33] for estimating the stress-strength reliability under progressive Type-II censoring scheme in case of the exponential distribution.

    Table 7: Estimate,stander error,Kolmogorov-Smirnov test and reliability for EG distribution for banking data

    Table 8: MLE of EG distribution based on stress-strength model under different censoring schemes for banking data

    Breaking strength of jute fibre of gauge length 10 mm are 693.73, 704.66, 323.83, 778.17, 123.06,637.66, 383.43, 151.48, 108.94, 50.16, 671.49, 183.16, 257.44, 727.23, 291.27, 101.15, 376.42, 163.40,141.38,700.74,262.90,353.24, 422.11, 43.93,590.48,212.13, 303.90,506.60,530.55,177.25.

    Breaking strength of jute fibre of gauge length 20 mm are 71.46, 419.02, 284.64, 585.57, 456.60,113.85, 187.85, 688.16, 662.66, 45.58, 578.62, 756.70, 594.29, 166.49, 99.72, 707.36, 765.14, 187.13,145.96,350.70,547.44,116.99,375.81,581.60,119.86,48.01,200.16,36.75,244.53,83.55.

    The fitted pdf,cdf and p-p plot of the EG distribution for the breaking strengths of jute fiber are presented in Fig.2, while the results of MLE estimates of two variables along with the value of standard error,Kolmogorov-Smirnov and the p-value are given in Tabs.9, 10 provide the MLE and MPS estimates of R for the breaking strength of jute fibre.

    Figure 2: Plots of the fitted pdf,cdf and p-p plot of the EG distribution for fibre data

    Table 9: Estimate,stander error,Kolmogorov-Smirnov test and reliability for EG distribution for fibre data

    Table 10: MLE and MPS of EG distribution based on stress-strength model under different censoring schemes for fibre data

    ?

    From these two applications we observe that the standard error(SE)of most estimators in decreases as the sample’s sizes increase and that MPS estimators are mostly have lower SE than MLE estimators.Moreover, the progressive Type-II censoring Scheme I provide estimators with lower SE that those estimators under Scheme II.To more applications of progressive Type-II censoring scheme see[34].

    7 Conclusions

    In this paper,the MPS method was introduced as an alternative estimation method for the estimation of stress-strength model of EG distribution under progressive Type-II hybrid censoring scheme.Two different schemes of progressive Type-II hybrid censoring were proposed and used to estimate the reliability parameter using MPS and MLE methods.Because the MLE and MPS cannot be obtained in a closed form for EG distribution to estimate parameters, iterative procedures as conjugate-gradient are done by using R program.The MPS method can be used as an alternative method for the MLE method.In the case of EG distribution based on the stress-strength model under the progressive Type-II hybrid censoring scheme, the estimators based on the MPS method are better than the estimators based on the MLE.We can conclude that the MPS method is a good alternative method to the usual MLE method when progressive hybrid censoring schemes are used.

    Funding Statement:The author(s) received no specific funding for this study.

    Conflicts of Interest:The authors declare that they have no conflicts of interest to report regarding the present study.

    国产激情久久老熟女| xxx96com| 一本大道久久a久久精品| 亚洲国产欧美日韩在线播放| 欧美黄色片欧美黄色片| 亚洲精品久久国产高清桃花| 熟女少妇亚洲综合色aaa.| 热re99久久国产66热| 在线观看www视频免费| 巨乳人妻的诱惑在线观看| 听说在线观看完整版免费高清| 两性夫妻黄色片| 午夜成年电影在线免费观看| 在线观看66精品国产| 国产真人三级小视频在线观看| 亚洲狠狠婷婷综合久久图片| 成年免费大片在线观看| 91九色精品人成在线观看| 老汉色∧v一级毛片| 男人舔女人下体高潮全视频| av超薄肉色丝袜交足视频| 中出人妻视频一区二区| 亚洲国产日韩欧美精品在线观看 | 18禁美女被吸乳视频| 三级毛片av免费| 怎么达到女性高潮| 亚洲成人久久性| 欧美黄色片欧美黄色片| av福利片在线| 欧美一级a爱片免费观看看 | 亚洲精品粉嫩美女一区| 国产精品美女特级片免费视频播放器 | 国产av一区二区精品久久| 亚洲七黄色美女视频| 99久久精品国产亚洲精品| 看片在线看免费视频| 亚洲精品国产区一区二| 亚洲精品粉嫩美女一区| 99久久精品国产亚洲精品| 看黄色毛片网站| 日韩欧美 国产精品| 日本精品一区二区三区蜜桃| bbb黄色大片| 成人一区二区视频在线观看| 自线自在国产av| 美女高潮到喷水免费观看| 后天国语完整版免费观看| 久久热在线av| 午夜视频精品福利| 亚洲九九香蕉| 欧美成人免费av一区二区三区| 亚洲一区二区三区不卡视频| 亚洲真实伦在线观看| 亚洲狠狠婷婷综合久久图片| 成人三级做爰电影| 一级a爱视频在线免费观看| 草草在线视频免费看| 欧美zozozo另类| 亚洲av电影不卡..在线观看| 国产亚洲av高清不卡| 一进一出好大好爽视频| 中亚洲国语对白在线视频| 欧美日韩亚洲国产一区二区在线观看| 久久国产精品影院| 亚洲av成人av| 在线观看免费午夜福利视频| 香蕉久久夜色| 久久精品国产亚洲av香蕉五月| 日韩av在线大香蕉| 日本三级黄在线观看| 国产精品99久久99久久久不卡| 国产蜜桃级精品一区二区三区| 亚洲五月天丁香| 欧洲精品卡2卡3卡4卡5卡区| 亚洲精品在线美女| 欧美 亚洲 国产 日韩一| 亚洲美女黄片视频| 日本a在线网址| 成人国语在线视频| 一本综合久久免费| 无遮挡黄片免费观看| 日本免费a在线| 亚洲第一欧美日韩一区二区三区| 天天一区二区日本电影三级| 久久天堂一区二区三区四区| 俺也久久电影网| 观看免费一级毛片| 亚洲精品国产区一区二| 天天添夜夜摸| 成人亚洲精品av一区二区| 曰老女人黄片| 波多野结衣高清作品| 好男人在线观看高清免费视频 | 成在线人永久免费视频| 久久香蕉激情| 欧美性长视频在线观看| 国产精品,欧美在线| 午夜福利视频1000在线观看| 日日夜夜操网爽| 大型黄色视频在线免费观看| 亚洲av第一区精品v没综合| 欧美成人免费av一区二区三区| 美女国产高潮福利片在线看| 久久久久久久久久黄片| 女警被强在线播放| 成人国产综合亚洲| 变态另类丝袜制服| 国产精品亚洲av一区麻豆| 欧美性长视频在线观看| 日本精品一区二区三区蜜桃| 欧美丝袜亚洲另类 | 中文字幕av电影在线播放| 国产精品久久久久久亚洲av鲁大| 大型av网站在线播放| 伦理电影免费视频| 亚洲三区欧美一区| 黄色视频不卡| 久久草成人影院| 手机成人av网站| 国产欧美日韩一区二区三| 91国产中文字幕| 啦啦啦韩国在线观看视频| 日韩精品青青久久久久久| 欧美日韩亚洲综合一区二区三区_| 成年女人毛片免费观看观看9| 一级作爱视频免费观看| 亚洲欧美激情综合另类| 国产99久久九九免费精品| 韩国av一区二区三区四区| 丝袜在线中文字幕| 国产精品99久久99久久久不卡| 亚洲精品一卡2卡三卡4卡5卡| 神马国产精品三级电影在线观看 | 黄片小视频在线播放| 欧美激情高清一区二区三区| 香蕉av资源在线| 亚洲欧美精品综合久久99| 国产aⅴ精品一区二区三区波| 亚洲天堂国产精品一区在线| 久热爱精品视频在线9| 国产主播在线观看一区二区| 国产欧美日韩一区二区精品| 日韩国内少妇激情av| 亚洲精品一区av在线观看| 免费高清在线观看日韩| 国产精品永久免费网站| 精品少妇一区二区三区视频日本电影| 久久中文看片网| 亚洲五月天丁香| 中文在线观看免费www的网站 | 久久久精品欧美日韩精品| 午夜老司机福利片| 无限看片的www在线观看| 久久狼人影院| 一本一本综合久久| 中文字幕久久专区| 成人三级黄色视频| 亚洲国产欧美一区二区综合| 日日摸夜夜添夜夜添小说| 免费看a级黄色片| 成人午夜高清在线视频 | 老司机午夜十八禁免费视频| 香蕉久久夜色| 在线免费观看的www视频| 亚洲人成电影免费在线| 欧美不卡视频在线免费观看 | 免费搜索国产男女视频| 制服人妻中文乱码| 国产男靠女视频免费网站| 亚洲一码二码三码区别大吗| 脱女人内裤的视频| 欧美黑人精品巨大| 一级作爱视频免费观看| 欧美激情久久久久久爽电影| 国产黄a三级三级三级人| 亚洲成a人片在线一区二区| 精品福利观看| 亚洲无线在线观看| 久久久久精品国产欧美久久久| 精品不卡国产一区二区三区| 天天添夜夜摸| 淫妇啪啪啪对白视频| 久久欧美精品欧美久久欧美| 久久精品成人免费网站| 成人精品一区二区免费| 亚洲欧美日韩无卡精品| 最近在线观看免费完整版| 亚洲中文日韩欧美视频| 国产蜜桃级精品一区二区三区| 亚洲一卡2卡3卡4卡5卡精品中文| 在线十欧美十亚洲十日本专区| 国产免费av片在线观看野外av| 精品欧美国产一区二区三| 在线国产一区二区在线| 久久精品夜夜夜夜夜久久蜜豆 | 99热6这里只有精品| 成人永久免费在线观看视频| 亚洲熟妇中文字幕五十中出| 亚洲欧美精品综合久久99| 亚洲熟女毛片儿| 国产亚洲欧美在线一区二区| 国产精品 欧美亚洲| 午夜视频精品福利| 免费搜索国产男女视频| 黑人操中国人逼视频| av在线播放免费不卡| 国产精华一区二区三区| 欧美 亚洲 国产 日韩一| 一进一出好大好爽视频| 狂野欧美激情性xxxx| 女同久久另类99精品国产91| 俄罗斯特黄特色一大片| 黄片播放在线免费| 国产又爽黄色视频| 可以在线观看的亚洲视频| 欧美 亚洲 国产 日韩一| 亚洲五月天丁香| АⅤ资源中文在线天堂| 国产精品二区激情视频| 99国产精品一区二区蜜桃av| 伦理电影免费视频| 国内少妇人妻偷人精品xxx网站 | 国产一区二区三区在线臀色熟女| 观看免费一级毛片| 久久久国产欧美日韩av| 麻豆av在线久日| 日韩大尺度精品在线看网址| 免费看a级黄色片| 人人妻人人澡欧美一区二区| 好男人在线观看高清免费视频 | 亚洲一码二码三码区别大吗| 看片在线看免费视频| www日本黄色视频网| 久久天躁狠狠躁夜夜2o2o| 日日夜夜操网爽| 美女大奶头视频| 日韩高清综合在线| 亚洲国产欧美网| av在线播放免费不卡| 成人手机av| 日本三级黄在线观看| 亚洲人成网站在线播放欧美日韩| 午夜福利免费观看在线| 两人在一起打扑克的视频| 欧美激情久久久久久爽电影| 美女高潮到喷水免费观看| 色av中文字幕| 人人妻,人人澡人人爽秒播| 最近最新免费中文字幕在线| 香蕉久久夜色| 免费高清视频大片| 亚洲国产精品久久男人天堂| 波多野结衣av一区二区av| 禁无遮挡网站| 婷婷精品国产亚洲av| 国产三级黄色录像| 两个人看的免费小视频| avwww免费| 无人区码免费观看不卡| 亚洲精品在线美女| 99久久无色码亚洲精品果冻| 午夜日韩欧美国产| 波多野结衣高清作品| 中出人妻视频一区二区| 午夜福利在线在线| 男人操女人黄网站| 日本成人三级电影网站| 满18在线观看网站| 国产伦在线观看视频一区| 1024香蕉在线观看| 色av中文字幕| 亚洲国产精品999在线| 1024手机看黄色片| 在线观看免费视频日本深夜| 满18在线观看网站| 欧美乱色亚洲激情| 成在线人永久免费视频| 国产99久久九九免费精品| 日韩精品免费视频一区二区三区| 国产精品亚洲av一区麻豆| 亚洲中文字幕一区二区三区有码在线看 | 欧美国产日韩亚洲一区| 亚洲国产精品sss在线观看| 好男人在线观看高清免费视频 | 久9热在线精品视频| 欧美性长视频在线观看| 久久中文字幕一级| 亚洲中文日韩欧美视频| 久久精品影院6| √禁漫天堂资源中文www| 波多野结衣高清无吗| 桃红色精品国产亚洲av| 国产精品99久久99久久久不卡| 国产精品av久久久久免费| 欧美日韩瑟瑟在线播放| 亚洲成av片中文字幕在线观看| 国产单亲对白刺激| 女人高潮潮喷娇喘18禁视频| 三级毛片av免费| 日韩中文字幕欧美一区二区| 日韩av在线大香蕉| 两性午夜刺激爽爽歪歪视频在线观看 | 大型黄色视频在线免费观看| 在线观看免费日韩欧美大片| 熟女电影av网| 男女视频在线观看网站免费 | 91字幕亚洲| 日韩高清综合在线| 女同久久另类99精品国产91| 久久精品91无色码中文字幕| 美女国产高潮福利片在线看| 18禁美女被吸乳视频| 亚洲中文日韩欧美视频| 色综合站精品国产| 成人一区二区视频在线观看| 亚洲国产欧洲综合997久久, | 国产一区二区激情短视频| 精品久久久久久久久久久久久 | 美女 人体艺术 gogo| 少妇 在线观看| 丝袜美腿诱惑在线| netflix在线观看网站| 亚洲久久久国产精品| 国产片内射在线| 啦啦啦免费观看视频1| 午夜激情福利司机影院| 12—13女人毛片做爰片一| 久久久久九九精品影院| 侵犯人妻中文字幕一二三四区| 国产伦人伦偷精品视频| 亚洲一区二区三区不卡视频| 久久中文字幕人妻熟女| 欧美乱码精品一区二区三区| or卡值多少钱| 久久久久久久久中文| 亚洲久久久国产精品| 久久午夜综合久久蜜桃| 国产91精品成人一区二区三区| www.精华液| 亚洲国产精品sss在线观看| 日本撒尿小便嘘嘘汇集6| 999精品在线视频| 十八禁人妻一区二区| 欧美激情久久久久久爽电影| 亚洲aⅴ乱码一区二区在线播放 | 在线永久观看黄色视频| √禁漫天堂资源中文www| 99re在线观看精品视频| 国产精品久久电影中文字幕| 久久狼人影院| 熟女少妇亚洲综合色aaa.| 亚洲自拍偷在线| 非洲黑人性xxxx精品又粗又长| 18禁观看日本| 一进一出抽搐动态| 男人舔女人的私密视频| 人人妻人人澡人人看| 999精品在线视频| 91国产中文字幕| 又紧又爽又黄一区二区| 1024视频免费在线观看| 亚洲五月色婷婷综合| 亚洲黑人精品在线| 免费无遮挡裸体视频| 亚洲欧美一区二区三区黑人| 国产精品乱码一区二三区的特点| 精品免费久久久久久久清纯| 国产精品乱码一区二三区的特点| 人成视频在线观看免费观看| 亚洲专区国产一区二区| a在线观看视频网站| 婷婷精品国产亚洲av| 久久亚洲真实| 侵犯人妻中文字幕一二三四区| 久久天躁狠狠躁夜夜2o2o| 一二三四在线观看免费中文在| 亚洲一码二码三码区别大吗| 一二三四在线观看免费中文在| 中亚洲国语对白在线视频| 白带黄色成豆腐渣| 午夜福利在线观看吧| 国语自产精品视频在线第100页| 久久亚洲真实| 黄网站色视频无遮挡免费观看| 亚洲精品久久国产高清桃花| 亚洲成人免费电影在线观看| 欧美乱妇无乱码| 在线观看免费视频日本深夜| 精品欧美国产一区二区三| 国产午夜福利久久久久久| 后天国语完整版免费观看| 一区二区三区高清视频在线| 一进一出抽搐动态| 午夜福利18| 最新在线观看一区二区三区| 午夜影院日韩av| 久久草成人影院| 欧美在线黄色| 国产精品 欧美亚洲| 男女做爰动态图高潮gif福利片| 伦理电影免费视频| 老汉色av国产亚洲站长工具| 午夜日韩欧美国产| 亚洲精品中文字幕一二三四区| 亚洲专区字幕在线| 大型av网站在线播放| 免费无遮挡裸体视频| 视频在线观看一区二区三区| 日本黄色视频三级网站网址| 欧美人与性动交α欧美精品济南到| 国产成人欧美| 人人妻人人澡人人看| 亚洲真实伦在线观看| 国产精品亚洲av一区麻豆| 美女午夜性视频免费| 亚洲avbb在线观看| 1024香蕉在线观看| 丁香六月欧美| 国产亚洲精品久久久久5区| 成人永久免费在线观看视频| 国产成人精品无人区| 亚洲欧美精品综合一区二区三区| 午夜免费激情av| 国产午夜福利久久久久久| 国产真实乱freesex| 亚洲 国产 在线| 最新在线观看一区二区三区| 欧美黑人精品巨大| 九色国产91popny在线| 99精品欧美一区二区三区四区| 精品国产乱子伦一区二区三区| 国产精品九九99| 看黄色毛片网站| av在线天堂中文字幕| 在线十欧美十亚洲十日本专区| 免费人成视频x8x8入口观看| 午夜两性在线视频| 亚洲一卡2卡3卡4卡5卡精品中文| 国产亚洲精品第一综合不卡| 亚洲国产精品久久男人天堂| 免费高清视频大片| 久久久久免费精品人妻一区二区 | 亚洲中文日韩欧美视频| 久久精品国产亚洲av高清一级| 亚洲片人在线观看| 国产精品永久免费网站| 88av欧美| 91在线观看av| 老鸭窝网址在线观看| 亚洲人成网站在线播放欧美日韩| 亚洲成人免费电影在线观看| 精品欧美国产一区二区三| 欧美+亚洲+日韩+国产| 少妇的丰满在线观看| 日韩精品免费视频一区二区三区| 亚洲在线自拍视频| 91成年电影在线观看| 亚洲va日本ⅴa欧美va伊人久久| 精品久久久久久久末码| 国产一区二区三区视频了| 国产精品美女特级片免费视频播放器 | 精品国内亚洲2022精品成人| 免费高清在线观看日韩| 又黄又爽又免费观看的视频| 午夜免费激情av| 亚洲专区中文字幕在线| 性欧美人与动物交配| 久久99热这里只有精品18| 91老司机精品| 亚洲av电影在线进入| 日本熟妇午夜| 18禁裸乳无遮挡免费网站照片 | 久久久久国内视频| 一区二区三区高清视频在线| www国产在线视频色| 久久精品aⅴ一区二区三区四区| 我的亚洲天堂| 日韩欧美免费精品| 变态另类成人亚洲欧美熟女| 中文字幕人妻熟女乱码| 无遮挡黄片免费观看| 在线播放国产精品三级| 在线天堂中文资源库| 久久久久免费精品人妻一区二区 | 99国产精品一区二区三区| 欧美黑人巨大hd| 悠悠久久av| xxxwww97欧美| 亚洲片人在线观看| 国产激情欧美一区二区| 欧美日韩乱码在线| 亚洲 欧美 日韩 在线 免费| 久久这里只有精品19| 巨乳人妻的诱惑在线观看| 欧美久久黑人一区二区| 精品久久久久久久毛片微露脸| 欧美日韩瑟瑟在线播放| 国产欧美日韩一区二区精品| 亚洲自拍偷在线| 欧美大码av| 久久久久久久午夜电影| 欧美激情久久久久久爽电影| 麻豆国产av国片精品| 免费看a级黄色片| 高清在线国产一区| 国产精品日韩av在线免费观看| 老司机深夜福利视频在线观看| 午夜福利在线观看吧| 男人舔女人的私密视频| 欧美中文综合在线视频| АⅤ资源中文在线天堂| 757午夜福利合集在线观看| 嫁个100分男人电影在线观看| 国产精品影院久久| 亚洲欧洲精品一区二区精品久久久| 在线天堂中文资源库| 少妇熟女aⅴ在线视频| 黄片大片在线免费观看| 91成人精品电影| 成人18禁在线播放| 国产精品爽爽va在线观看网站 | 制服丝袜大香蕉在线| 日本成人三级电影网站| 国产日本99.免费观看| 一进一出好大好爽视频| 国产亚洲精品av在线| 一级片免费观看大全| 一进一出抽搐gif免费好疼| www国产在线视频色| 99精品欧美一区二区三区四区| 国产精品亚洲美女久久久| 亚洲五月婷婷丁香| 久久人人精品亚洲av| 正在播放国产对白刺激| 亚洲狠狠婷婷综合久久图片| 少妇 在线观看| 很黄的视频免费| 国产免费av片在线观看野外av| 亚洲精品av麻豆狂野| 亚洲国产精品成人综合色| 国产成人欧美| 欧美日韩亚洲国产一区二区在线观看| 欧美激情极品国产一区二区三区| 欧美日韩精品网址| 可以在线观看的亚洲视频| 亚洲精品久久成人aⅴ小说| 99国产精品99久久久久| 亚洲黑人精品在线| 此物有八面人人有两片| 中文字幕最新亚洲高清| 成在线人永久免费视频| 日本黄色视频三级网站网址| www国产在线视频色| 亚洲精品美女久久久久99蜜臀| 一本大道久久a久久精品| 后天国语完整版免费观看| 中文字幕人成人乱码亚洲影| 精品国内亚洲2022精品成人| 欧美黑人巨大hd| 亚洲精品在线观看二区| 亚洲欧洲精品一区二区精品久久久| 国产精品精品国产色婷婷| 亚洲电影在线观看av| 久久久国产成人精品二区| 亚洲精品美女久久久久99蜜臀| 国产精品国产高清国产av| 国产国语露脸激情在线看| 久热这里只有精品99| 精品国产国语对白av| 91国产中文字幕| 啦啦啦免费观看视频1| 免费一级毛片在线播放高清视频| 亚洲精华国产精华精| 最好的美女福利视频网| 高潮久久久久久久久久久不卡| 一夜夜www| 久久久久久九九精品二区国产 | 变态另类成人亚洲欧美熟女| 夜夜夜夜夜久久久久| 99热只有精品国产| 欧美绝顶高潮抽搐喷水| 男人操女人黄网站| 一区二区日韩欧美中文字幕| 看黄色毛片网站| 黄片大片在线免费观看| 巨乳人妻的诱惑在线观看| 真人做人爱边吃奶动态| 高清毛片免费观看视频网站| 亚洲国产精品sss在线观看| 日日爽夜夜爽网站| www.www免费av| 村上凉子中文字幕在线| 午夜免费鲁丝| a级毛片在线看网站| 精品人妻1区二区| 黄色a级毛片大全视频| 国产高清有码在线观看视频 | 亚洲国产精品999在线| 中文字幕av电影在线播放| 在线观看午夜福利视频| 一级a爱片免费观看的视频| 久久青草综合色| 老鸭窝网址在线观看| 国产亚洲精品第一综合不卡| 啦啦啦韩国在线观看视频| av超薄肉色丝袜交足视频| 精品人妻1区二区| 啦啦啦观看免费观看视频高清| 亚洲五月天丁香| 日韩成人在线观看一区二区三区| 亚洲精品av麻豆狂野| 高清毛片免费观看视频网站| 亚洲国产看品久久| 一区二区三区国产精品乱码| 成人手机av|