• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Artificial Neural Networks for Prediction of COVID-19 in Saudi Arabia

    2021-12-16 06:39:56NawafHamadnehWaqarKhanWaqarAshrafSamerAtawnehIlyasKhanandBandarHamadneh
    Computers Materials&Continua 2021年3期

    Nawaf N.Hamadneh,Waqar A.Khan, Waqar Ashraf, Samer H.Atawneh,Ilyas Khanand Bandar N.Hamadneh

    1Department of Basic Sciences, College of Science and Theoretical Studies, Saudi Electronic University,Riyadh, 11673,Saudi Arabia

    2Department of Mechanical Engineering, College of Engineering, Prince Mohammad Bin Fahd University,Al Khobar, 31952,Saudi Arabia

    3Department of Mathematics and Natural Sciences, College of Sciences & Human Studies,Prince Mohammad Bin Fahd University, Al Khobar, 31952,Saudi Arabia

    4College of Computing and Informatics, Saudi Electronic University, Riyadh,11673,Saudi Arabia

    5Faculty of Mathematics and Statistics, Ton Duc Thang University, Ho Chi Minh City, 72915, Vietnam

    6King Abdullah University Hospital, University of Science and Technology, Irbid, 22110,Jordan

    Abstract: In this study, we have proposed an artificial neural network (ANN)model to estimate and forecast the number of confirmed and recovered cases of COVID-19 in the upcoming days until September 17,2020.The proposed model is based on the existing data (training data) published in the Saudi Arabia Coronavirus disease (COVID-19) situation—Demographics.The Prey-Predator algorithm is employed for the training.Multilayer perceptron neural network(MLPNN) is used in this study.To improve the performance of MLPNN, we determined the parameters of MLPNN using the prey-predator algorithm (PPA).The proposed model is called the MLPNN-PPA.The performance of the proposed model has been analyzed by the root mean squared error(RMSE)function,and correlation coefficient(R).Furthermore, we tested the proposed model using other existing data recorded in Saudi Arabia(testing data).It is demonstrated that the MLPNN-PPA model has the highest performance in predicting the number of infected and recovering in Saudi Arabia.The results reveal that the number of infected persons will increase in the coming days and become a minimum of 9789.The number of recoveries will be 2000 to 4000 per day.

    Keywords: COVID-19; ANN modeling; multilayer perceptron neural network;prey-predator algorithm

    1 Introduction

    The history of coronavirus(CoV) is not new in this world and has appeared with different names like Middle East Respiratory Syndrome Coronavirus (MERS-CoV), Severe Acute Respiratory Syndrome(SARS-CoV), etc.The first one was transmitted from civet cats to humans in 2002 in China, and the second virus was transmitted from dromedary camels to humans in 2012 in the Kingdom of Saudi Arabia(KSA)[1,2].Any virus can cause illness,starting from the common cold and reaches to more severe diseases.These viruses were not found as risky as the newly discovered COVID-19 in Wuhan City in December 2019 [3].After that, COVID-19 became an international outbreak, and this virus spread out almost all over the world.It was named as an acute respiratory syndrome coronavirus 2 (SARS-CoV-2) by the International Committee on Taxonomy of Viruses.In the second week of February 2020, it was identified as the causative virus by Chinese authorities [4-6].A common belief of COVID-19 origination is from the animals and seafood, as witnessed in the Wuhan city market.As this virus (COVID-19) transmits from an infected person to another healthy person through close contact without proper protection(human-to-human interaction).The primary source of COVID-2019 was the traveling of the public from city to city and country to country [7,8].In KSA, the first case of COVID-19 was registered on March 2,2020.The second COVID-19 case was reported a day after the first case,and then on March 5, three new cases were identified.All these five COVID-19 patients traveled from Iran to KSA via different routes.After that, the new cases were boosted exponentially.Several researchers from various fields, such as mathematics, physics, chemistry, economics, statistics, computer, geophysics, medical, etc.are working on COVID-19.However, nobody came up with the final decision.In addition, the symptoms of this disease are changing continuously.The initial symptoms of COVID-19 include cough, fever, and shortness of breath (breathing difficulties).In the next steps, the infection can cause pneumonia, severe acute respiratory syndrome, kidney failure, heart failure, and even death.In mathematics, the researchers working on biomathematics are mainly interested in studying the mathematical/physical aspects of this disease.However, due to the complex nature of the COVID-19 virus itself, the known information about this virus is fewer compared to the unknown data.It is also not easy to count all the infected people due to several reasons.Some of the basic ideas are: (i) The infected people afraid to go for a test and then to get admission in the hospital.(ii) A low number of screenings, mainly on “suspect” cases or those presenting significant symptoms, does not give a precise idea of the number of people who could potentially become infected without knowing them.This gap between the day of infection and the day of diagnosis can have severe consequences for the spread of the epidemic,etc.[9].

    Recently,several studies on COVID-19 have already been published on computational,mathematical,and statistical aspects of different viruses.On the mathematical side,different models are used to study the dynamics of COVID-19.One of the most used models for the dynamics of various diseases is Susceptible-Infectious-Recovered (SIR) model.This model provides the epidemic growth through a system of timedependent differential equations.The SIR model and its various modified versions have been used extensively by researchers to Ebola and AIDS diseases [10,11].Quite recently, such models were used to model the coronavirus epidemic spreading.Berger et al.[12] used the SEIR infectious disease model with testing and conditional quarantine.Iwata et al.[13] examined the potential secondary spread of Novel Coronavirus in an exported country using a stochastic epidemic SEIR model.Godio et al.[14] utilized an SEIR epidemiological model to study the recent SARS-CoV-2 outbreak with a particular focus on Italy.They applied the useful application of a stochastic approach in fitting the model parameters using a Particle Swarm Optimization (PSO) solver, to improve the reliability of predictions in the medium term (30 days).They compared their results with the data and forecasts of Spain and South Korea.Baleanu et al.[15] used a fractional differential equation model for the COVID-19 transmission by using the Caputo-Fabrizio derivative.Few other exciting studies on COVID-19 are also available in[16,17].

    The real number of COVID-19 data represents a series of observations, where methods used for time-series prediction are native to the statistics field, such as Machine learning-based methods (such as artificial neural networks), Meta-predictors, and Structure-based methods [18,19].ANNs are frequently employed for time series forecasting [20].One of the main advantages of ANN-based techniques over machine learning techniques is that it can be fueled with raw data and automatically find the required feature representation [21].Based on several factors like performance, accuracy, latency, speed,convergence,and size,ANN provides reliable results.It is important to note that this study is based on ANNs for the prediction of a time series problem to investigate the status of COVID-19 in KSA[22].Additionally,we used the prey-predator algorithm (PPA), which is a metaheuristic algorithm, to improve model performance by specifying the optimum value for model parameters[23,24].

    2 Structure

    Multilayer perceptron neural network (MLPNN) is a feed-forward neural network with three types of layers (input layer, hidden layers, and output layer), as shown in Fig.1 [25,26].In this study, we have used one hidden layer with ten hidden neurons, and the hidden activation function (sigmoid function),that is defined in the following equation.

    Figure 1: Structure of a multilayer perceptron neural network

    where xkis the value of input neuron i,wkiis the input weight and yiis the value of the hidden neuron i.

    In the output layer,we have two input neurons that represent the infected and recovered number of persons.Also,we have a hyperbolic tangent transfer function that has an output ranging from-1 to+1 Eq.(2).

    The supervised learning method of ANNs is the best technique using to determine the optimal values of all ANN parameters,which are the“input weights”and“output weights.”Therefore,finding the values of the parameters of an ANN leads to becoming an ANN model.This phase is known as the training ANNs via observed values (training data), and optimization algorithm (see Fig.2).The root means squared error(RMSE) function that is currently used as a fitness function for testing the performance of the ANNs,whereas the correlation coefficient (R) is used to enhance the performance.Following [27,28], these functions can be written as

    Figure 2: The training process of MLPNNs

    where n is the number of cases;∑O is the sum of all observed cases;∑E is the sum of all expected values;∑O2is the sum of all squared observed values; (∑O)2is the square of the sum of all observed values;∑E2is the sum of all squared expected values; (∑E)2is the square of the sum of all expected values.

    3 Prey-Predator Algorithm

    Several algorithms have been used for the training to find the optimal values of the parameters,such as metaheuristic optimization algorithms[23,29-33].In this study,PPA is used for training because it is one of the most effective metaheuristic optimization algorithms[25].The principle of PPAwork came from the idea of inspired by prey-predator interaction of animals[24].The algorithm simulates how a predator works and chases its prey as each prey tries to stay inside a region(a feasible region)and find a place to hide(optimal solution).Therefore, the solutions of PPA are called prey and Predator.Note that, Predator is the solution(survival value) with the smallest performance value in terms of RMSE function.The best performance(highest survival value) is called the best prey.Note that in each iteration.The Predator searches for weak prey while the prey escapes to a suitable location and try to follow other prey.These explorations are based upon the direction and the step length.The aim of each solution can be determined as follows:

    where v is an algorithm parameter.

    Setting different values of v will affect the size of the jump for the solution xi.Moreover, the best direction is chosen from the paths generated to set the global solution.Step length is another problem with updating solutions.The second issue related to updating the solution is the step length for exploration λminand λmax(λmin<λmax).The procedure movement of the prey and the Predator can be summarized as follows[24,25,34].

    Movement of a common prey:

    i) If follow up probability is met,

    If the follow-up probability does not meet the criteria, then

    Movement of the best prey:

    Movement of Predator:

    4 Results and Discussions

    In this study, we have proposed an ANN model to predict and to offer a quantitative overview of the Status of COVID 19 in KSA during the period (June 22 to September 17, 2020).Note that using artificial inelegance is a new technique in the field of epidemiological studies.The observed data (infected and recovered) during the period (March 12 to June 16, 2020) trains the ANN model, as shown in Fig.3.The structure of the ANN model has one input neuron—ten hidden neurons—two output neurons.Note that the input value is “the requested date,” and the two output neurons; one represents the infected numbers(cases), and the second output neuron represents “recovered numbers.”

    Figure 3: The observed values,which have used for training and the corresponding values,which determine by ANN model

    We have used PPA for the training to determine the optimal values of the ANN model parameters(input weights and output weights).We have trained the ANN model in 20 trials,while the number of the iterations in PPA has been set for 1000, the number of population is equal 50, and the number of predators 8, local search directions 1, and the number of best prey 4, and then the best the values are reported.

    With a minimal value of RMSE(13%)and correlation coefficient R(93%),represents the values of the training data and the expected data of“infected.”Fig.4 represents all ANN model values from March 12 to September 17, 2020 (red color).Because of the (RMSE = 13%), the range of the expected values of“infected” will be bounded by 1.13* ANN model values (Purple color), and 0.87* ANN model values(green color).The blue color represents the testing data from June 17 to June 21, 2020.Where the study indicates that the minimum number of “infected” at the beginning (June 22, 2020) is closed to 4,000 (see Fig.5), moreover, the minimum number of expected daily “infected” after 87 from June 22 to September 17,2020, will approach 10,000(see Fig.5).

    Figure 4: ANN model results for 190 days(from March 12 to September 17,2020),and the observed values(testing values)from June 17 to June 21,2020

    Figure 5: ANN model results for 87 days(from June 22 to September 17,2020)

    On the other hand, to propose the ANN model for the number of recovered persons per day, we have used the observed data (training data) of “recovered” from June 22 to September 17, 2020.The best ANN model that we have proposed has RMSE=35%and correlation coefficient R =93.6%(see Fig.6).

    Figure 6: The observed values of“Recovered”which have used for training,and the corresponding values which determine by ANN model

    Fig.7 represents all ANN model values from March 29 to September 17,2020(red color).Because of the(RMSE=35%),the range of the expected values of“Recovered”will be bounded by 1.35*ANN model values(brown color),and 0.75*ANN model values(green color).The blue color represents the testing data from June 16 to June 21,2020.Where the study indicates that the minimum number of“Recovered”at the beginning (6/22/2020) is closed to 1800 (see Fig.7), moreover, the minimum number of expected daily“Recovered” after 87 from June 22 to September 17, 2020, will approach 2100 see Fig.8.The maximum number of expected daily“Recovered”will be more than 4000 per day.

    Figure 7: ANN model results for 186 days(from March 29 to September 17,2020),and the observed values(testing values)from June 16 to June 22,2020

    Figure 8: ANN model results of“recovered”for 87 days(from June 22 to September 17,2020)

    5 Conclusion

    In this study,we have proposed an artificial neural network(ANN)prediction model using a multilayer perceptron neural network (MLPNN) and a prey-predator algorithm (PPA).This model, called hybrid MLPNN-PPA, is applied as an artificial inelegance forecasting technique for COVID-19 in Saudi Arabia.PPA is used to improve the performance of the model by determining the optimal values for the model parameters.The proposed model has a high performance in predicting the number of infected (cases), and the number of recovered in terms of root means squared error and correlation coefficient.

    The proposed model has a high performance in predicting the number of infected and recovered persons within 87 days(from June 22 to September 17, 2020).According to the promising results obtained by the MLPNN-PPA model, the number of infected persons will increase in the coming days and become a minimum of 9789.The number of recoveries will be 2000 to 4000 per day.

    Funding Statement:The author(s) received no specific funding for this study.

    Conflicts of Interest:The authors declare that they have no conflicts of interest to report regarding the present study.

    精品国产超薄肉色丝袜足j| 我的老师免费观看完整版| 黑人欧美特级aaaaaa片| 国产精品亚洲美女久久久| 老熟妇乱子伦视频在线观看| 中文字幕久久专区| 欧美乱码精品一区二区三区| 国产色爽女视频免费观看| 99久久精品国产亚洲精品| 亚洲人与动物交配视频| 免费看日本二区| 亚洲人与动物交配视频| 欧美极品一区二区三区四区| 久久国产精品人妻蜜桃| 日韩欧美在线乱码| 99久久九九国产精品国产免费| 精品国产亚洲在线| 午夜福利在线在线| 男女下面进入的视频免费午夜| 亚洲精品色激情综合| 噜噜噜噜噜久久久久久91| 天堂动漫精品| 亚洲av一区综合| 免费看十八禁软件| 狂野欧美白嫩少妇大欣赏| 人妻久久中文字幕网| 亚洲在线观看片| 观看免费一级毛片| 亚洲成av人片在线播放无| 亚洲av二区三区四区| 欧美一区二区精品小视频在线| 搡老岳熟女国产| 国产高清视频在线观看网站| 在线观看美女被高潮喷水网站 | 波多野结衣高清作品| 亚洲狠狠婷婷综合久久图片| 久久天躁狠狠躁夜夜2o2o| 国产成人aa在线观看| 亚洲国产中文字幕在线视频| 成人欧美大片| 成人国产综合亚洲| 一区二区三区高清视频在线| 国产精品久久久久久久电影 | 两人在一起打扑克的视频| www.熟女人妻精品国产| 一级毛片高清免费大全| 老司机在亚洲福利影院| 日韩欧美 国产精品| 97人妻精品一区二区三区麻豆| 日本精品一区二区三区蜜桃| 日本免费a在线| 欧美黑人欧美精品刺激| 一个人免费在线观看电影| 久久九九热精品免费| 首页视频小说图片口味搜索| 久久人妻av系列| 国产成+人综合+亚洲专区| 亚洲电影在线观看av| 日韩成人在线观看一区二区三区| 88av欧美| 两个人视频免费观看高清| 国产淫片久久久久久久久 | 三级毛片av免费| 亚洲不卡免费看| 午夜免费男女啪啪视频观看 | 免费高清视频大片| 两个人视频免费观看高清| 欧美日韩一级在线毛片| 精品99又大又爽又粗少妇毛片 | 一级作爱视频免费观看| 熟女少妇亚洲综合色aaa.| 可以在线观看毛片的网站| 老熟妇乱子伦视频在线观看| 久久精品人妻少妇| 国产精品久久久久久精品电影| 久久久久久大精品| 欧美在线一区亚洲| 美女 人体艺术 gogo| 精品人妻一区二区三区麻豆 | 亚洲人成网站在线播放欧美日韩| 女人高潮潮喷娇喘18禁视频| 深夜精品福利| 99国产精品一区二区蜜桃av| bbb黄色大片| 国产高清videossex| 亚洲国产欧美网| 成人特级黄色片久久久久久久| 在线视频色国产色| 哪里可以看免费的av片| 夜夜爽天天搞| xxxwww97欧美| 欧美一级a爱片免费观看看| 成人国产综合亚洲| 国模一区二区三区四区视频| 高清毛片免费观看视频网站| 成年女人毛片免费观看观看9| 脱女人内裤的视频| 免费无遮挡裸体视频| 国产精品影院久久| 在线免费观看的www视频| 18禁美女被吸乳视频| 亚洲人成电影免费在线| 精品久久久久久久久久久久久| 天堂av国产一区二区熟女人妻| 久久国产精品影院| 一级a爱片免费观看的视频| 国产一区二区激情短视频| 性色avwww在线观看| 免费看日本二区| 亚洲中文日韩欧美视频| 成人特级黄色片久久久久久久| 欧美bdsm另类| 中文字幕熟女人妻在线| 国产精品嫩草影院av在线观看 | 国产精品一区二区三区四区免费观看 | 亚洲欧美日韩东京热| 好男人电影高清在线观看| 亚洲av美国av| 国产成人av教育| 国产色爽女视频免费观看| 少妇高潮的动态图| 波多野结衣高清无吗| 国产成年人精品一区二区| 天天躁日日操中文字幕| 成年免费大片在线观看| 亚洲av中文字字幕乱码综合| 亚洲成人免费电影在线观看| 亚洲精品亚洲一区二区| 国产精品久久久人人做人人爽| 午夜亚洲福利在线播放| 美女 人体艺术 gogo| 看免费av毛片| 欧美区成人在线视频| 3wmmmm亚洲av在线观看| 国产精品爽爽va在线观看网站| 1024手机看黄色片| www.熟女人妻精品国产| 欧美激情久久久久久爽电影| 亚洲真实伦在线观看| 女生性感内裤真人,穿戴方法视频| 男插女下体视频免费在线播放| 精品99又大又爽又粗少妇毛片 | 一级黄片播放器| 啦啦啦韩国在线观看视频| 午夜两性在线视频| 男人舔女人下体高潮全视频| 观看美女的网站| 老司机午夜十八禁免费视频| 99热这里只有是精品50| 亚洲一区二区三区不卡视频| 大型黄色视频在线免费观看| www.色视频.com| 两个人视频免费观看高清| 欧美黄色淫秽网站| 久久精品国产综合久久久| 国内少妇人妻偷人精品xxx网站| 国产免费av片在线观看野外av| 日日干狠狠操夜夜爽| 欧美3d第一页| 中文字幕av在线有码专区| 一进一出抽搐gif免费好疼| 亚洲美女视频黄频| 99国产精品一区二区蜜桃av| 蜜桃亚洲精品一区二区三区| 香蕉久久夜色| 国产精品久久久久久亚洲av鲁大| 久久精品影院6| 毛片女人毛片| 一本精品99久久精品77| av福利片在线观看| 热99在线观看视频| 久久久久久久精品吃奶| 精品日产1卡2卡| 欧美乱色亚洲激情| 人人妻人人澡欧美一区二区| 亚洲无线在线观看| 在线观看日韩欧美| 人妻丰满熟妇av一区二区三区| 国产精品亚洲一级av第二区| www.色视频.com| 欧美在线一区亚洲| 亚洲av电影不卡..在线观看| 天天一区二区日本电影三级| 日韩欧美精品v在线| 超碰av人人做人人爽久久 | 色老头精品视频在线观看| 亚洲国产精品999在线| 俄罗斯特黄特色一大片| av片东京热男人的天堂| 久久久久久久久中文| 国产三级中文精品| 90打野战视频偷拍视频| bbb黄色大片| 少妇的逼水好多| 91久久精品电影网| 久久香蕉国产精品| 久99久视频精品免费| 中文字幕久久专区| 一区二区三区高清视频在线| 床上黄色一级片| 午夜精品久久久久久毛片777| 中文字幕久久专区| 日韩欧美 国产精品| 国产成人福利小说| 亚洲人与动物交配视频| 看黄色毛片网站| 男人舔奶头视频| 舔av片在线| 99久久精品国产亚洲精品| 日韩欧美在线乱码| 欧美又色又爽又黄视频| 噜噜噜噜噜久久久久久91| 国产视频内射| 人人妻人人看人人澡| 久久精品人妻少妇| 舔av片在线| 国产精品亚洲av一区麻豆| 欧美日韩国产亚洲二区| 日韩欧美精品v在线| 欧美成人性av电影在线观看| 老司机福利观看| 亚洲精品一卡2卡三卡4卡5卡| 国产精品久久久久久精品电影| 欧美高清成人免费视频www| 久久精品91蜜桃| 一二三四社区在线视频社区8| 精品熟女少妇八av免费久了| 国产激情偷乱视频一区二区| 麻豆久久精品国产亚洲av| 国产一区二区在线av高清观看| 18禁黄网站禁片午夜丰满| 18+在线观看网站| 女人高潮潮喷娇喘18禁视频| 性色av乱码一区二区三区2| 成熟少妇高潮喷水视频| 国语自产精品视频在线第100页| 欧美午夜高清在线| 国产精品嫩草影院av在线观看 | 麻豆国产97在线/欧美| 中文字幕精品亚洲无线码一区| 欧美高清成人免费视频www| 日韩成人在线观看一区二区三区| 成人午夜高清在线视频| 成人18禁在线播放| 亚洲精品在线美女| АⅤ资源中文在线天堂| 非洲黑人性xxxx精品又粗又长| 国产精品亚洲美女久久久| 色噜噜av男人的天堂激情| 最近视频中文字幕2019在线8| 国产亚洲欧美98| 欧美激情久久久久久爽电影| 精品国产美女av久久久久小说| 桃红色精品国产亚洲av| 成人一区二区视频在线观看| 国产精品影院久久| 亚洲七黄色美女视频| 亚洲不卡免费看| 动漫黄色视频在线观看| 国产一区二区激情短视频| 最新在线观看一区二区三区| 欧美激情久久久久久爽电影| 国产私拍福利视频在线观看| 别揉我奶头~嗯~啊~动态视频| 欧美高清成人免费视频www| 一级a爱片免费观看的视频| 欧美xxxx黑人xx丫x性爽| 国内精品久久久久精免费| 97碰自拍视频| 91在线精品国自产拍蜜月 | 高清日韩中文字幕在线| 99精品久久久久人妻精品| 亚洲无线观看免费| 少妇丰满av| a在线观看视频网站| 国产伦精品一区二区三区四那| 国产野战对白在线观看| 亚洲国产精品成人综合色| 亚洲人成网站高清观看| 91字幕亚洲| 两个人视频免费观看高清| 久久人妻av系列| 97碰自拍视频| 丝袜美腿在线中文| 久久久精品大字幕| av天堂在线播放| 久久亚洲真实| 午夜精品一区二区三区免费看| 午夜免费成人在线视频| 丝袜美腿在线中文| 亚洲欧美日韩高清在线视频| 亚洲精品亚洲一区二区| 久久6这里有精品| 观看免费一级毛片| 亚洲av成人不卡在线观看播放网| 日日干狠狠操夜夜爽| 国产高清三级在线| 成人国产一区最新在线观看| 91在线精品国自产拍蜜月 | 亚洲熟妇中文字幕五十中出| 99热6这里只有精品| 国内精品一区二区在线观看| 国产成年人精品一区二区| xxxwww97欧美| 欧美日韩综合久久久久久 | 免费一级毛片在线播放高清视频| 91av网一区二区| 18禁裸乳无遮挡免费网站照片| 怎么达到女性高潮| 成人三级黄色视频| 十八禁人妻一区二区| 久久精品国产综合久久久| 99久久精品热视频| 国产美女午夜福利| 日韩精品中文字幕看吧| 亚洲熟妇中文字幕五十中出| 欧美中文日本在线观看视频| 麻豆成人av在线观看| 国产一区二区亚洲精品在线观看| 精品午夜福利视频在线观看一区| 亚洲中文字幕日韩| 嫩草影院精品99| 亚洲第一电影网av| 日韩免费av在线播放| 亚洲av第一区精品v没综合| 制服人妻中文乱码| 亚洲精品一区av在线观看| 一区二区三区免费毛片| 一级毛片高清免费大全| 搡女人真爽免费视频火全软件 | 国产精品久久久久久久久免 | 白带黄色成豆腐渣| 亚洲av成人av| 蜜桃亚洲精品一区二区三区| 亚洲一区二区三区色噜噜| 超碰av人人做人人爽久久 | 嫩草影视91久久| 亚洲精品影视一区二区三区av| 看片在线看免费视频| 在线观看一区二区三区| 成人性生交大片免费视频hd| www.av在线官网国产| 日本猛色少妇xxxxx猛交久久| 久久草成人影院| 国产免费一级a男人的天堂| 日本爱情动作片www.在线观看| 国产高清三级在线| 国产真实伦视频高清在线观看| 欧美成人精品欧美一级黄| 国产熟女欧美一区二区| 欧美一区二区亚洲| 在线观看人妻少妇| 2021天堂中文幕一二区在线观| 一区二区三区乱码不卡18| 人妻一区二区av| 亚洲18禁久久av| 国产精品蜜桃在线观看| 国产爱豆传媒在线观看| 大片免费播放器 马上看| 亚洲精华国产精华液的使用体验| 亚洲av男天堂| 成人二区视频| 男的添女的下面高潮视频| 色播亚洲综合网| 免费看不卡的av| 免费电影在线观看免费观看| 日本黄色片子视频| 国产免费福利视频在线观看| 天美传媒精品一区二区| 亚洲三级黄色毛片| 亚洲欧美成人综合另类久久久| 久久精品夜色国产| 高清午夜精品一区二区三区| 日本av手机在线免费观看| 久久精品熟女亚洲av麻豆精品 | 亚洲最大成人手机在线| 日韩国内少妇激情av| 国产精品三级大全| 尤物成人国产欧美一区二区三区| 国产精品福利在线免费观看| 在线 av 中文字幕| 国产精品一区二区在线观看99 | 精品久久久久久成人av| 神马国产精品三级电影在线观看| 久久午夜福利片| 亚洲在久久综合| 欧美另类一区| 午夜久久久久精精品| 日本色播在线视频| 成人性生交大片免费视频hd| 色网站视频免费| 国产黄色小视频在线观看| 久久这里有精品视频免费| 高清日韩中文字幕在线| 欧美 日韩 精品 国产| 国产黄色免费在线视频| 午夜福利视频1000在线观看| 少妇高潮的动态图| 青春草亚洲视频在线观看| 精品一区二区三卡| 亚洲av成人精品一二三区| 最近的中文字幕免费完整| 夜夜看夜夜爽夜夜摸| 国产免费视频播放在线视频 | 一个人免费在线观看电影| 午夜免费观看性视频| 国产精品一及| 亚洲av电影不卡..在线观看| av在线观看视频网站免费| 亚洲国产精品成人久久小说| 精品国产一区二区三区久久久樱花 | 天堂俺去俺来也www色官网 | 青青草视频在线视频观看| 国产欧美日韩精品一区二区| 高清日韩中文字幕在线| 狠狠精品人妻久久久久久综合| 免费看a级黄色片| 午夜福利视频1000在线观看| 免费无遮挡裸体视频| 午夜亚洲福利在线播放| 免费看不卡的av| 日韩av免费高清视频| 国产在视频线在精品| 欧美bdsm另类| 女人被狂操c到高潮| 精品人妻偷拍中文字幕| 99久国产av精品国产电影| 免费av不卡在线播放| 日本av手机在线免费观看| 国产精品人妻久久久久久| 久久久国产一区二区| 十八禁国产超污无遮挡网站| 免费播放大片免费观看视频在线观看| 欧美丝袜亚洲另类| 中文天堂在线官网| 亚洲四区av| 精品不卡国产一区二区三区| 国精品久久久久久国模美| 亚洲无线观看免费| 激情五月婷婷亚洲| 美女被艹到高潮喷水动态| 日韩三级伦理在线观看| 精品亚洲乱码少妇综合久久| 美女主播在线视频| 亚洲一区高清亚洲精品| 男女边摸边吃奶| 午夜爱爱视频在线播放| 日本黄大片高清| 高清欧美精品videossex| 人人妻人人澡人人爽人人夜夜 | av线在线观看网站| 国产黄频视频在线观看| 少妇熟女欧美另类| 国产乱人视频| 成人av在线播放网站| 亚洲av日韩在线播放| 毛片女人毛片| 肉色欧美久久久久久久蜜桃 | 国产中年淑女户外野战色| 麻豆久久精品国产亚洲av| 国产亚洲精品久久久com| 久久久久久久久久人人人人人人| 国产成人免费观看mmmm| 精品久久久久久成人av| 黄片wwwwww| 如何舔出高潮| 亚洲熟女精品中文字幕| 欧美3d第一页| 亚洲乱码一区二区免费版| 三级国产精品片| 日韩一本色道免费dvd| 精品人妻熟女av久视频| 91久久精品电影网| av女优亚洲男人天堂| 成人毛片60女人毛片免费| 99久国产av精品国产电影| 日本-黄色视频高清免费观看| 午夜免费激情av| 高清午夜精品一区二区三区| 性色avwww在线观看| 人体艺术视频欧美日本| 成人无遮挡网站| 国产男女超爽视频在线观看| 欧美成人a在线观看| h日本视频在线播放| 91精品伊人久久大香线蕉| 国产精品.久久久| 免费观看无遮挡的男女| 精品酒店卫生间| 日韩av在线大香蕉| 成人亚洲精品一区在线观看 | 国产高清不卡午夜福利| 一区二区三区免费毛片| 亚洲成人av在线免费| 丰满少妇做爰视频| 色网站视频免费| 国产在视频线精品| 免费观看av网站的网址| 2021少妇久久久久久久久久久| 欧美xxⅹ黑人| 精品一区二区三区视频在线| av网站免费在线观看视频 | 欧美激情国产日韩精品一区| 少妇裸体淫交视频免费看高清| 高清视频免费观看一区二区 | 丰满人妻一区二区三区视频av| 十八禁国产超污无遮挡网站| av又黄又爽大尺度在线免费看| 国产色婷婷99| 国产黄a三级三级三级人| 99久久精品一区二区三区| 久久久久久久午夜电影| 国产伦精品一区二区三区四那| 丰满乱子伦码专区| 国产午夜精品一二区理论片| 听说在线观看完整版免费高清| 亚洲国产日韩欧美精品在线观看| 免费大片18禁| 久久精品国产亚洲av涩爱| 一夜夜www| 免费大片黄手机在线观看| 在线观看免费高清a一片| 波野结衣二区三区在线| 精品久久久精品久久久| 精品国产露脸久久av麻豆 | 久久久精品免费免费高清| 久久久精品欧美日韩精品| 亚洲性久久影院| 欧美激情在线99| 在线a可以看的网站| 毛片女人毛片| 国产永久视频网站| 免费黄色在线免费观看| 黄片无遮挡物在线观看| 亚洲国产成人一精品久久久| 国产精品av视频在线免费观看| 中文在线观看免费www的网站| 亚洲自偷自拍三级| 99久久精品一区二区三区| 久久久精品欧美日韩精品| 亚洲在久久综合| 六月丁香七月| 成年女人看的毛片在线观看| 国产精品久久久久久精品电影小说 | 国产淫片久久久久久久久| 日韩av不卡免费在线播放| 99热全是精品| av免费观看日本| 别揉我奶头 嗯啊视频| 亚洲av免费在线观看| 秋霞伦理黄片| 免费看美女性在线毛片视频| 久久久久久久久久成人| 91久久精品国产一区二区成人| 夫妻性生交免费视频一级片| 亚洲四区av| 亚洲精品自拍成人| 国产一级毛片在线| 精品一区二区免费观看| 午夜精品一区二区三区免费看| 丰满乱子伦码专区| 久久精品国产亚洲av涩爱| 亚洲精品影视一区二区三区av| 亚洲第一区二区三区不卡| 亚洲人与动物交配视频| 深夜a级毛片| 欧美成人午夜免费资源| 国产精品人妻久久久影院| 欧美变态另类bdsm刘玥| 国产黄色小视频在线观看| 夫妻性生交免费视频一级片| 久久久久网色| 日本与韩国留学比较| 久久久久久久大尺度免费视频| 七月丁香在线播放| a级一级毛片免费在线观看| 欧美日韩视频高清一区二区三区二| 国产白丝娇喘喷水9色精品| 国产在视频线精品| 男女边摸边吃奶| 国产精品蜜桃在线观看| 日韩大片免费观看网站| 欧美潮喷喷水| 超碰av人人做人人爽久久| 国产精品一区二区在线观看99 | 欧美日本视频| 欧美zozozo另类| 午夜福利在线观看免费完整高清在| 水蜜桃什么品种好| 哪个播放器可以免费观看大片| videos熟女内射| 色综合站精品国产| 国产探花极品一区二区| 丰满少妇做爰视频| 中文字幕av成人在线电影| 国产v大片淫在线免费观看| 免费电影在线观看免费观看| 欧美变态另类bdsm刘玥| 欧美激情在线99| 亚洲欧美一区二区三区黑人 | 国产久久久一区二区三区| 久久人人爽人人爽人人片va| 尾随美女入室| 欧美成人a在线观看| 欧美精品一区二区大全| 国产一级毛片在线| 日韩欧美三级三区| 亚洲人成网站在线观看播放| 嫩草影院新地址| 天堂中文最新版在线下载 | 国产亚洲精品久久久com| 日产精品乱码卡一卡2卡三| 国产久久久一区二区三区| 国产黄a三级三级三级人| 伊人久久精品亚洲午夜|