• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Design and Implementation of Wheel Chair Control System Using Particle Swarm Algorithm

    2021-12-15 12:48:44MousaAmrAlmaddahandAymanAly
    Computers Materials&Continua 2021年2期

    G.Mousa,Amr Almaddah and Ayman A.Aly

    1Mechanical Engineering Department, College of Engineering, King Abdulaziz University, Jeddah,21589,Saudi Arabia

    2Electrical and Computer Engineering, College of Engineering, King Abdulaziz University, Jeddah, 21589,Saudi Arabia

    3Mechanical Engineering Department, College of Engineering, Taif University, Taif, 21944,Saudi Arabia

    Abstract:About 10-20% of every country’s population is disable.There are at least 650 million people with a kind of disability worldwide.Assistance and support are perquisites for many handicap people for participating in society.Electric powered wheelchairs provide efficient mobility to motor impaired persons.In this paper a smart controller of a wheel chair mobile robot using Particle Swarm Optimization Proportional controller (PSO-P) was proposed where (PSO) algorithm was utilized to tune the proportional controller’s gains for each axis.Aiming to improve wheelchair tracking trajectory, a kinematic model of a robot with linear and angular velocities parameters was developed.The controller performance was examined using the system parameters with respect to trajectory references.A simulation of the proposed controller showed good correlation of the trajectory track under different loading conditions.

    Keywords:PSO;mobile robot;trajectory tracking;tracking control

    Nomenclature

    cijcenter parameters of the MFs

    E(i)cost functions forithparticle

    e1(i)1stjoint error

    e2(i)2ndjoint error

    Fgeneralized force.

    gbestglobal best position of particle

    Icchair moment of inertia.

    ithparticle sample

    Imwheel and motor moment of inertia around the wheel diameter.

    Iwwheel and motor moment of inertia around the wheel axis.

    jiteration number.

    Kp1control gain of axis1

    Kp2control gain of axis2

    lvector position of wheel chair frame and reference frame

    LLagrange function

    MAEmagnitude of the error

    mcmass the chair only.

    mwwheel and motor mass.

    Nsample number

    pbestbest position of particle

    piithparticle position

    qgeneralized coordinates

    Tckinematic energy of wheel chair

    tffinal time

    TwLleft axis kinematic.

    TwRright axis kinematic.

    Vpotential energy of wheel chair

    viithparticle velocity

    vLleft wheel velocity

    vRright wheel velocity

    (XI ;YI) motion reference frame

    (XR;YR) wheel chair frame

    θ angular position of wheel chair frame and reference frame

    ˙φ1speed of axis1

    ˙φ2speed of axis2

    ω system angular velocity

    σijdeviation parameters of the MFs

    ˙εtkinematic model for the wheel chair

    1 Introduction

    In Saudi Arabia, about 800,000 of the population suffer from moving disability.100,000 of those are with extreme disability conditions [1].According to the World Bank Organization 1 billon of the world population has some sort of disability.About 15% of those suffer significant disability conditions.This shows the importance of equipment and devices that are designed to deal with disabled people.In lack of such devices, social, economic conditions and important life matters interrupt severally.Electric wheelchair can ease such interruption where patents and alders can use it independently in their mobility.Electric carts are also becoming popular in tasks that are dangerous or troublesome for humans.It can replace workers in wide range of environments starting from factories to military and space exploration missions.Controllers differ with the verities of applications of carts.For instance, specifications of a warehouse trajectory are different than the trajectory of a warzone where maneuvering is needed to be precise.Such differences can be accumulated in the design of the controller.

    The effort of improving electric wheelchairs and carts control is continually developed by researchers.In Emam et al.[2-4]developed controllable dynamic models.In[5]a model that considers the incline surface was proposed.Kirby et al.[6,7]considered stability in their model and its effect in performance and handling.Brown et al.[8]produced a PID control that is currently an industry standard for joy-stick controls of electric powered mobile chairs where it provides better management, handling and control overall.

    Although the classical controllers have gained widespread usage across technological industries,it must also be pointed out that the unnecessary mathematical rigorosity,preciseness and accuracy involved with the design of controllers have been a major drawback.Designing and tuning a conventional controller appears to be conceptually intuitive,but can be hard in practice,if multiple objectives are to be achieved[9].However,it is quite difficult to determine its optimum gains where systems are usually non-linear.Non-conventional control methods have been used to select the optimum desired motion of a controlled system where the minimal settling time with no overshoot is needed[10].

    In this paper,proportional (P)controller tuning is attempted using thePSOalgorithm which was introduced by Kennedy et al.[11].The main advantage of this algorithm; it does not require detailed mathematical description of the process and finds the best possible control parameters based on the fitness function provided to guide the algorithm.A detailed study is presented with aPSO-Palgorithm using various inertia weights.

    The purpose of the research is to achieve a good control trajectory performance in terms of the system error and robustness for the system uncertainties.In this article,the dynamic model of the wheelchair will be introduced in Section 2.Then APSO-Pcontrol strategy is suggested in Section 3.After that thePSOadjusting policy for theP-control is illustrated in Section 4.Finally the results and conclusion are described in last Sections of 5 and 6.

    2 Wheel Chair Model

    The wheel chair as shown in Fig.1 has 2 axes wheels.The center between the 2 axes is point P, the distance from point P to each wheel isl,θ is the angular position between wheel chair frame (XR; YR)and reference frame (XI;YI).Alsor,l,θ, and′˙φ1and′˙φ2are the speeds of the 2 axes.

    Figure 1:Wheel chair model

    To perform the controlled movement of the wheel chair, the dynamic model of the system should be known.The Lagrange dynamic approach is showed systematically derives the equations of system motion[12,13].

    Then the melody of the psalm burst forth,like the sound of the waters, and Jurgen saw that his foster parentsfrom the Hunsby dunes were there, also old merchant Bronne with hiswife and their daughter Clara, who gave him her hand

    Lagrange is a popular formulating approach for the governing equations of wheel chair motion.The general Lagrange equation is introduced by(1):

    where:L=Tc-V;Tis the kinematic energy of wheel chair;Vis the potential energy;Fis the generalized force.

    The generalized coordinatesqis chosen as:

    The kinetic energy is formulated as:

    where

    TwR:The right axis kinematic.

    TwL:The left axis kinematic.

    mc:The mass of the chair only.

    Ic:The chair moment of inertia.

    Iw:The wheel and motor moment of inertia around the wheel axis.

    Im:The wheel and motor moment of inertia around the wheel diameter.

    The axes velocities are formulated as:

    The coordinates of wheels can be presented as:

    From (3)to (8)overall kinematic energy of the system can be formulated as:

    2.1 Kinematic Model

    The wheeled chair moves on a horizontal level which is described by the position of the mobile chair and the angular difference [14].

    The rotation matrix of the chair position is formulated as:

    This rotation matrix describes the motion reference frame{XI;YI}to local frame{XR;YR}.The velocity of each driving wheel in the system can be the average of the left and right wheel velocities.

    Also the system angular velocities:

    Gathering the previous formulas, a kinematic model for the wheel chair can formulated as:

    3 Control Design

    The traditional method for finding the optimum tuning of control system parameters is to optimize the system model for each parameter and decide the characteristics of the system which give local optimum solution.This method may lead to solutions far away from the optimum as the method strongly depends on the peculiarities of the system and the intuition of the modeler.Thus, different approaches to optimize the control system to find global optimum solution are needed.

    Aly[15]implemented the Genetic Algorithm(GA)to optimize PID parameters.The controller was verified on the state space model of servovalve attached to a rotary hydraulic actuator which is highly nonlinear dynamic system.The appropriate specifications of the GA for the rotary position control of an actuator system were presented.It is found that the optimal values of the feedback gains can be obtained within 10 generations,which corresponds to about 200 experiments.Also this strategy was verified again to optimize the control parameters of fire tube boiler [16].The effect and violability of the Genetic-PID (GPID) control system and comparison with conventional control methods such as PID were investigated by nonlinear dynamic model simulation.In another challenge, the tuning of PD controller parameters for handling rigid spatial manipulators usingGAwas presented in [17].A new fitness function was implemented to optimize the feedback gains and its efficiency was verified for control such nonlinear coupled system.

    Compared withGAs, the information sharing mechanism inPSOis significantly different.InGAs,chromosomes share information with each other.So the whole population moves like a one group towards an optimal area [16].InPSO, onlygbestgives out the information to others.It is a one -way information sharing mechanism.The evolution only looks for the best solution.Compared withGA, all the particles tend to converge to the best solution quickly even in the local version in most cases.

    In this study,the control design has two steps.The first step is finding the P controller gains using PSO algorithm which is search algorithms.The second step is applying the designedPto the wheel chair system with different trajectories references to grantee the stability and vanish the error of the system.Fig.2 illustrates the system structure.The proposed control calculates the desired velocity (vd), angular velocity(ωd) according to the required position of the trajectory.The desired velocities (vd), and(ωd) will be the input to wheel chair dynamics which will use those values to produce the final velocities(v)and(ω)signals.In the next section, thePgains will be determined usingPSOalgorithm.In this section,PSOstrategy is as shown in Fig.3 to design P control parameters for a two axis robot to follow the reference trajectory.

    Figure 2:The overall system

    3.1 Particle Swarm Optimization

    Developmental computational strategy is dependent on the development and insight of multitudes searching for the most fertile feeding location.A “swarm” is an obviously disrupted assortment(populace) of moving individual that will in general bunch together while every individual is by all accounts moving an irregular way.It utilizes various specialists (particles) that establish a swarm moving around in the quest space searching for the best arrangement [12].Each particle is handled as a point in an n-dimensional space which modifies its “flying” as per its own flying experience just as the flying experience of different particles.Every molecule monitors its directions in the issue space which are related with the best arrangement (fitness) that has accomplished up until now.This value ispbest.Another best value that is followed by thePSOis the best value got so far by any particle in the neighbors of the particle.This value isgbest[13,14].

    ThePSOidea comprises of variation the speed(or its rate)of each particle toward itspbestand thegbestposition at each time step.Every particle attempts to adjust its present position and speed as per the distance between its present position andpbest, and the distance between its present position andgbestas demonstrated the following.At every progressionn, by utilizing the individual best position,pbest, and global best position,gbest,a new speed for theith particle is refreshed.

    The speed is restricted to the scope of[-vmax,+vmax].On the off chance that the speed disregards these cutoff points,it is compelled to its appropriate values.Changing speed by along these lines empowers theith particle to look for its topical best position,pbest, and global best position,gbest.In light of the refreshed speed, every particle updates its situation as:

    In Fig.4a,the particle position trip during the iteration process forKp1of the first control axis while in Fig.4b for the particle of second control axisKp2.

    Fig.5a shows the particle velocity trip during the iteration process forKp1of the first control axis and Fig.5b shows for the particle of second control axisKp2.It ought to be noticed that the estimations of an element in the particle may surpass its sensible range.This calculation is continued until most extreme cycle is attainable as illustrated in Fig.6.

    PSO look through the entirety of the forerunner and resulting parameters in 50 dimensional spaces.The order of a particle is illustrated as:

    where the σijandcijrepresent the center and deviation parameters of the MFs.The underlying estimations of particles are haphazardly created in the first generation.

    Figure 3:Flow diagram illustrating the PSO algorithm

    Figure 4:The particle position trip during the iteration process:(a) for Kp1;(b)for Kp2

    The important step in implementingPSOis to find the best fitness function which is utilized to estimate cost of every particle.While adjusting steps is running withPSO,Magnitude of the Error(MAE)is utilized as a cost function, which is illustrated in Fig.6.The cost functions forith particle are calculated as:

    wheree1(i)is the1st joint error,e2(i)is the2nd joint error ofith sample,Nis the sample number,jis the iteration number.

    The population size is chosen to be10particles for each axis for minimizing calculations effort,the cost function is computed for each particle andpbestandgbestare calculated for each final time(tf).A particle speed is computed for every particle and a particle position as follows:

    Figure 5:The particle velocity trip during the iteration process:(a) for Kp1;(b)for Kp2

    Figure 6:Fitness magnitude of the error (MAE)

    4 Results

    To illustrate the system behavior under the proposed controller several standard test commands such as fixed point,line,and circle inputs are applied to the system.The responses ofPSO-Pcontroller are illustrated below.The performance of the control system through a set of simulations was examined.The values ofkp1,andkp2,are found byPSOstrategy.

    For testing the controller performance,different three dynamic loads are used from references of[18-21]with different loads of 10 kg,55 kg and 125 kg respectively.The control was designed based on the dynamics of a Pioneer 2-DX wheel chair [13] weighing of 10 kg.Then the system performance was examined two times by change the dynamic load of the system to be 55 kg and 125 kg, which changes its dynamics behavior from that of the Pioneer 2-DX significantly.

    In the simulation, the mobile chair reaches fixed point from its original position, while another test is starting from its original position and moving to be closed with reference line and final test that the robot should follow a circular trajectory of reference.

    4.1 Fixed Point Input

    Fig.7 illustrates the response of the wheel chair system based onPSO-Pfor a reference fixed point input with test conditions of max linear velocity acceleration in both axis are 0.9 m/s and 0.5 m/s2while max rotation velocity of 1.9 rad/s.The obtained results for fixed point of (1.0 m, 1.0 m) has settling time about of (54 s for payload of 10 and 55 kg) while for the dynamic load of 125 kg the settling time increased.The steady state error changed from about zero second to be 0.066 m when the dynamics parameters of payload of 125 kg was implemented as presented in Fig.8.The Cartesian components of polar trajectory were illustrated at Figs.9a, 9b with steady state error in X axis is approximately 0.05 m and in y axis 0.043 m while the velocities were illustrated in Figs.10a, 10b for both of linear and rotary under the maximum designed values.

    Figure 7:The system response based on fixed point reference with different payloads

    Figure 8:The system response error based on fixed point reference with different payloads

    Figure 9:The system Cartesian response based on fixed point reference with different payloads:(a)X-axis;(b)Y axis

    Figure 10:The system velocities based on fixed point reference with different payloads:(a)Linear velocity;(b)Rotary velocity

    4.2 Line Input

    Figs.11,12 shows another test with path reference as line input(x=1)of the wheel chair system based onPSO-Pcontroller.The path tracking is closer to the input command with about zero for 10 kg,0.01 m for 55 kg and 0.072 m for 125 kg.The corresponding X and Y axis response are obtained in Fig.13.The velocities were illustrated in Figs.14a, 14b for both of linear and rotary.

    4.3 Circle Input

    The circular trajectory with radius=1 mis a popular test in measuring the performance of wheel chair control System.Fig.15 shows the circle input response applied to thePSO-Pcontroller.The tracking response is closer to the input command.The final obtained errors are increased with increasing the dynamic load from approximately 0 to 0.075 m with 10 kg and 55 kg and finally 0.09 for 125.The results show a better performance compared with Martins et al.[22] with trajectory tracking error exhibits a steady-state value of 0.17 m for payload about 10 kg.Also the results show better circuitry shape than the work of Shojaei et al.[23].Fig.16 shows the system response error based on circular trajectory with different payloads.While Figs.17a, 17b illustrates the system Cartesian response based on circular trajectory.Also by comparing the obtained results with the study of Tiep et al.[24] for 10 kg.payload we found little improvement at x-axis steady state error from 0.01136 to 0.001 and nearly similar value in y-axis (about 0.004).Finally Figs.18a, 18b represents the system velocities based on circular trajectory with different payloads.The previous results of the simulation cleared that PSO strategy can be implemented to adjust control parameters to minimize the system trajectory error successfully.A restriction of the proposed tuning technique is that it depends on the information on the robot dynamic model.In this way,the quality of the tuning results relies upon the nature of the robot model.

    Figure 11:The system response based on fixed line path with different payloads

    Figure 12:The system response error based on fixed line path with different payloads

    Figure 13:The system Cartesian response based on fixed line path with different payloads:(a)X-axis;(b)Yaxis

    Figure 14:The system velocities based on fixed line reference with different payloads:(a)Linear velocity;(b)Rotary velocity

    Figure 15:The system response based on circular trajectory with different payloads

    Figure 16:The system response error based on circular trajectory with different payloads

    Figure 17:The system Cartesian response based on circular trajectory:(a) X-axis; (b)Y axis

    Figure 18:The system velocities based on circular trajectory with different payloads:(a) Linear velocity;(b)Rotary velocity

    5 Conclusions

    This article presented a tuning method based on thePSOalgorithm for tune classical proportional control to track the given wheel chair reference motion.The gain concerning the proportional control was adjusted utilizingPSOmethodology.In order to evaluate effects dynamic load variations, three different payloads were employed with the samePSO-Pcontrol gain.The presence of steady state error is found with different trajectories references.Therefore, thePSO-Pcontroller can accomplish good accuracy with 10 kg and 55 kg loads.It is assured that thePSO-Pcontrol has effective performance in control of wheel chair system and provides a better performance compared with the previous similar work.Besides,application of the proportional control adjusting withPSOis a lot simpler than the customary strategies in light of the fact that there is need neither derivative calculations nor complex mathematical computations.

    It has the advantages of rapid respond, tracking accuracy and good anti-interference, so thePSO-Pcontroller is the appropriate choice for path tracking control of mobile robots with differential drive

    The future work for this study is verifying experimentally the proposed control algorithm to assure its performance with non-predicted dynamic parameters.

    Funding Statement:The authors would like to thank the Deanship of Scientific Research at King Abdul-Aziz University for the grant received for this research.This research was supported by King Abdul-Aziz University with research grant C:8-135-1440, G.Mousa, and A.Almaddah, https://dsr.kau.edu.sa/Default-305-EN.

    Conflicts of Interest:The authors declare that they have no conflicts of interest.

    亚洲婷婷狠狠爱综合网| 中国美女看黄片| 丰满乱子伦码专区| 国产高清有码在线观看视频| av卡一久久| 一区二区三区免费毛片| 18禁黄网站禁片免费观看直播| 黄片无遮挡物在线观看| 国产精品无大码| 日韩中字成人| 变态另类丝袜制服| 综合色丁香网| 免费人成视频x8x8入口观看| 久久人人爽人人爽人人片va| 国产高清激情床上av| 日本黄大片高清| 一本精品99久久精品77| 久久精品夜色国产| 亚洲精品粉嫩美女一区| 亚洲自拍偷在线| 亚洲,欧美,日韩| 亚洲人成网站在线播| 一本久久中文字幕| 国产一区二区三区在线臀色熟女| 久久99热这里只有精品18| 国产av在哪里看| 免费看光身美女| 可以在线观看毛片的网站| 18禁裸乳无遮挡免费网站照片| 亚洲av熟女| 男女下面进入的视频免费午夜| 我的老师免费观看完整版| 少妇高潮的动态图| 啦啦啦观看免费观看视频高清| 成熟少妇高潮喷水视频| 一边摸一边抽搐一进一小说| 丰满乱子伦码专区| 日韩制服骚丝袜av| 日韩人妻高清精品专区| 欧美最新免费一区二区三区| 美女被艹到高潮喷水动态| 赤兔流量卡办理| 伦精品一区二区三区| 婷婷亚洲欧美| 男的添女的下面高潮视频| 久久99蜜桃精品久久| 国产精品福利在线免费观看| 免费电影在线观看免费观看| 搡老妇女老女人老熟妇| 欧美色欧美亚洲另类二区| 国内精品宾馆在线| 嘟嘟电影网在线观看| 国产精品麻豆人妻色哟哟久久 | 99热这里只有精品一区| 国产高清三级在线| 伦理电影大哥的女人| 12—13女人毛片做爰片一| 亚洲真实伦在线观看| 一个人看视频在线观看www免费| 国产久久久一区二区三区| 毛片女人毛片| 男插女下体视频免费在线播放| 成人漫画全彩无遮挡| 热99在线观看视频| 人人妻人人澡人人爽人人夜夜 | 久久久久久久久中文| 日本爱情动作片www.在线观看| 免费大片18禁| 精品一区二区三区视频在线| 国产综合懂色| 伊人久久精品亚洲午夜| 国产欧美日韩精品一区二区| 久久亚洲国产成人精品v| 国产精品1区2区在线观看.| 亚洲欧美成人精品一区二区| 亚洲电影在线观看av| 国产三级在线视频| 亚州av有码| 日本五十路高清| 亚洲国产高清在线一区二区三| 国产女主播在线喷水免费视频网站 | 日本黄大片高清| 1000部很黄的大片| 3wmmmm亚洲av在线观看| 自拍偷自拍亚洲精品老妇| 国产一区二区在线观看日韩| 激情 狠狠 欧美| 久久久久九九精品影院| 久久久久久伊人网av| 日本色播在线视频| av视频在线观看入口| 国产单亲对白刺激| 成人永久免费在线观看视频| 18禁黄网站禁片免费观看直播| 欧美日本亚洲视频在线播放| 网址你懂的国产日韩在线| 久久久久久久亚洲中文字幕| 久久久a久久爽久久v久久| 国产精品久久电影中文字幕| 欧美成人精品欧美一级黄| 国产黄色视频一区二区在线观看 | 国产精品久久久久久精品电影| 久久这里只有精品中国| 国产精品无大码| 国产不卡一卡二| 在线观看av片永久免费下载| 在线观看av片永久免费下载| 不卡视频在线观看欧美| 亚洲在久久综合| 亚洲经典国产精华液单| 欧美精品一区二区大全| 久久精品国产亚洲av香蕉五月| a级毛片免费高清观看在线播放| 免费人成视频x8x8入口观看| 99九九线精品视频在线观看视频| 最近视频中文字幕2019在线8| 色综合站精品国产| 国产av不卡久久| 国产成年人精品一区二区| 国产成年人精品一区二区| 国产精品日韩av在线免费观看| 亚洲精品国产成人久久av| 色综合站精品国产| 中文精品一卡2卡3卡4更新| 黑人高潮一二区| 一边亲一边摸免费视频| 黑人高潮一二区| 久久精品夜夜夜夜夜久久蜜豆| av在线蜜桃| 欧美最新免费一区二区三区| 久久久久久大精品| 自拍偷自拍亚洲精品老妇| 免费观看人在逋| 免费搜索国产男女视频| 国产精品久久久久久久久免| 日韩欧美国产在线观看| 一个人看视频在线观看www免费| 成年女人看的毛片在线观看| 日本熟妇午夜| 欧美bdsm另类| 国产一区二区三区在线臀色熟女| 久久久国产成人免费| 亚洲国产精品国产精品| 天堂av国产一区二区熟女人妻| 99热精品在线国产| 18禁裸乳无遮挡免费网站照片| 毛片一级片免费看久久久久| 欧美zozozo另类| a级毛片免费高清观看在线播放| 美女黄网站色视频| 久久久成人免费电影| 久久婷婷人人爽人人干人人爱| 久久精品久久久久久噜噜老黄 | 亚洲美女搞黄在线观看| 国产精品麻豆人妻色哟哟久久 | 最近最新中文字幕大全电影3| 亚洲欧美日韩东京热| 天堂中文最新版在线下载 | 国产综合懂色| 国产高清不卡午夜福利| 91麻豆精品激情在线观看国产| 男人的好看免费观看在线视频| 女人被狂操c到高潮| 人人妻人人看人人澡| 久久亚洲国产成人精品v| 一进一出抽搐gif免费好疼| 波多野结衣高清作品| 卡戴珊不雅视频在线播放| 如何舔出高潮| 黄色日韩在线| 日本五十路高清| 美女黄网站色视频| 乱系列少妇在线播放| 蜜桃久久精品国产亚洲av| 久久久久国产网址| 村上凉子中文字幕在线| 我要搜黄色片| 别揉我奶头 嗯啊视频| 大香蕉久久网| 3wmmmm亚洲av在线观看| 一区二区三区免费毛片| 日本一本二区三区精品| 亚洲人成网站在线播放欧美日韩| 菩萨蛮人人尽说江南好唐韦庄 | 成人高潮视频无遮挡免费网站| 国产午夜精品久久久久久一区二区三区| 中文字幕熟女人妻在线| 成人鲁丝片一二三区免费| 99精品在免费线老司机午夜| 边亲边吃奶的免费视频| 丰满人妻一区二区三区视频av| 插阴视频在线观看视频| 日韩一区二区视频免费看| 国产午夜福利久久久久久| www.色视频.com| 狠狠狠狠99中文字幕| 我的女老师完整版在线观看| 久久久久久久亚洲中文字幕| 午夜精品国产一区二区电影 | 国产精品人妻久久久影院| 国产成人影院久久av| 少妇的逼水好多| 男女下面进入的视频免费午夜| 成人av在线播放网站| 日韩国内少妇激情av| 免费不卡的大黄色大毛片视频在线观看 | 国产国拍精品亚洲av在线观看| 一级av片app| 不卡一级毛片| 18禁在线无遮挡免费观看视频| 日韩一区二区视频免费看| 五月伊人婷婷丁香| 韩国av在线不卡| 欧美最新免费一区二区三区| 国产精品女同一区二区软件| 美女被艹到高潮喷水动态| 欧美bdsm另类| 最近的中文字幕免费完整| 成年版毛片免费区| 色哟哟·www| 亚洲精品乱码久久久v下载方式| 三级国产精品欧美在线观看| 国产黄片视频在线免费观看| 波多野结衣巨乳人妻| 草草在线视频免费看| 一进一出抽搐动态| 午夜福利在线观看免费完整高清在 | 一本精品99久久精品77| 看非洲黑人一级黄片| 国产片特级美女逼逼视频| 日本熟妇午夜| 激情 狠狠 欧美| 老师上课跳d突然被开到最大视频| 免费看a级黄色片| 毛片女人毛片| 国产高清不卡午夜福利| 日日摸夜夜添夜夜爱| 欧美一级a爱片免费观看看| 欧美日本亚洲视频在线播放| 一进一出抽搐动态| 人妻夜夜爽99麻豆av| 亚洲国产精品成人综合色| 小蜜桃在线观看免费完整版高清| 国产成年人精品一区二区| 精品日产1卡2卡| ponron亚洲| 夜夜爽天天搞| 国产免费男女视频| 青春草亚洲视频在线观看| 老师上课跳d突然被开到最大视频| 亚洲乱码一区二区免费版| 好男人在线观看高清免费视频| 少妇熟女aⅴ在线视频| 97在线视频观看| 级片在线观看| 婷婷六月久久综合丁香| 嘟嘟电影网在线观看| 中文字幕av成人在线电影| 久久久久九九精品影院| 免费av不卡在线播放| av在线天堂中文字幕| 真实男女啪啪啪动态图| 成人国产麻豆网| 精品无人区乱码1区二区| 永久网站在线| 男插女下体视频免费在线播放| 国产精品乱码一区二三区的特点| 精品午夜福利在线看| 国产亚洲精品久久久com| 青春草国产在线视频 | 亚洲内射少妇av| 免费人成视频x8x8入口观看| 欧美高清性xxxxhd video| 国产黄片美女视频| 搡女人真爽免费视频火全软件| 亚洲欧美日韩卡通动漫| 亚洲美女搞黄在线观看| 全区人妻精品视频| 高清日韩中文字幕在线| 一本久久精品| 直男gayav资源| 高清午夜精品一区二区三区 | 中文字幕人妻熟人妻熟丝袜美| www.色视频.com| 久久精品夜色国产| 夫妻性生交免费视频一级片| 亚洲欧美日韩卡通动漫| 一个人看视频在线观看www免费| 国产成人福利小说| 精品久久久久久久久久免费视频| 精品久久久久久久久亚洲| 51国产日韩欧美| 国产精品久久久久久久电影| 一边摸一边抽搐一进一小说| 国内精品一区二区在线观看| 国产亚洲91精品色在线| 直男gayav资源| 18禁黄网站禁片免费观看直播| 秋霞在线观看毛片| 天天躁夜夜躁狠狠久久av| 一级毛片我不卡| 亚洲最大成人中文| 超碰av人人做人人爽久久| 国产精品电影一区二区三区| 亚洲18禁久久av| 亚洲国产精品久久男人天堂| 97人妻精品一区二区三区麻豆| 狂野欧美白嫩少妇大欣赏| 亚洲一区二区三区色噜噜| 午夜福利在线观看吧| 黄色配什么色好看| 一夜夜www| 国产伦理片在线播放av一区 | 日本在线视频免费播放| 少妇丰满av| 国产日本99.免费观看| 色哟哟哟哟哟哟| 亚洲第一电影网av| 夜夜看夜夜爽夜夜摸| 国国产精品蜜臀av免费| 极品教师在线视频| 国产精品一区二区性色av| 亚洲七黄色美女视频| 亚洲丝袜综合中文字幕| av在线观看视频网站免费| 18禁裸乳无遮挡免费网站照片| 久久久久免费精品人妻一区二区| 我的女老师完整版在线观看| 99热这里只有是精品在线观看| 亚洲第一区二区三区不卡| 一个人免费在线观看电影| 国产高清三级在线| 91av网一区二区| 男人和女人高潮做爰伦理| 久久这里有精品视频免费| 成人国产麻豆网| 最近的中文字幕免费完整| 天天一区二区日本电影三级| 99热网站在线观看| 99riav亚洲国产免费| 麻豆一二三区av精品| 一本—道久久a久久精品蜜桃钙片 精品乱码久久久久久99久播 | 午夜福利高清视频| 国产亚洲av嫩草精品影院| 亚洲人成网站在线播放欧美日韩| 亚洲欧美清纯卡通| av.在线天堂| 欧美成人a在线观看| 国产精品乱码一区二三区的特点| 欧美zozozo另类| 免费看光身美女| 欧美性感艳星| 免费看光身美女| 免费大片18禁| 18+在线观看网站| 综合色av麻豆| 麻豆成人av视频| 国产视频首页在线观看| kizo精华| 欧美性猛交╳xxx乱大交人| 国产在线男女| 国产精品爽爽va在线观看网站| 国产精品电影一区二区三区| 国产一区二区在线av高清观看| 亚洲在线自拍视频| 国产黄a三级三级三级人| 联通29元200g的流量卡| 亚洲精品粉嫩美女一区| 欧美高清成人免费视频www| 国产一区二区激情短视频| 久久久a久久爽久久v久久| 久久亚洲精品不卡| 级片在线观看| 精品久久久久久久久亚洲| 麻豆av噜噜一区二区三区| 日韩av不卡免费在线播放| 成人av在线播放网站| 我的老师免费观看完整版| av女优亚洲男人天堂| 精品一区二区三区人妻视频| 好男人在线观看高清免费视频| av在线蜜桃| 亚洲欧美日韩高清专用| 精品一区二区三区人妻视频| 欧美xxxx性猛交bbbb| 亚洲精品日韩在线中文字幕 | 国产蜜桃级精品一区二区三区| 亚洲久久久久久中文字幕| 看非洲黑人一级黄片| 蜜桃久久精品国产亚洲av| 久久精品久久久久久噜噜老黄 | 一级黄色大片毛片| 亚洲精品影视一区二区三区av| 三级经典国产精品| 春色校园在线视频观看| 色哟哟哟哟哟哟| 国产精品嫩草影院av在线观看| 高清午夜精品一区二区三区 | 久久人人精品亚洲av| 性欧美人与动物交配| 只有这里有精品99| 国产v大片淫在线免费观看| 日韩中字成人| 精品人妻一区二区三区麻豆| 国产一区亚洲一区在线观看| 亚洲av中文字字幕乱码综合| 久久久精品欧美日韩精品| 少妇的逼水好多| 日韩强制内射视频| 免费看光身美女| 久久6这里有精品| 亚洲经典国产精华液单| 日本一二三区视频观看| 边亲边吃奶的免费视频| 麻豆精品久久久久久蜜桃| 久久人人精品亚洲av| 极品教师在线视频| 久久精品国产亚洲av香蕉五月| 中文字幕人妻熟人妻熟丝袜美| 久久久久久久久久黄片| 赤兔流量卡办理| 欧美性感艳星| 大香蕉久久网| 高清毛片免费观看视频网站| 国产免费一级a男人的天堂| 乱系列少妇在线播放| 日韩精品青青久久久久久| 欧美丝袜亚洲另类| 欧美bdsm另类| 丝袜喷水一区| 丰满乱子伦码专区| 天天一区二区日本电影三级| 亚洲五月天丁香| 久久精品91蜜桃| 国内精品宾馆在线| 日日啪夜夜撸| 欧美极品一区二区三区四区| 日韩欧美三级三区| 乱码一卡2卡4卡精品| 亚洲欧美成人综合另类久久久 | 嘟嘟电影网在线观看| 精品一区二区三区人妻视频| 卡戴珊不雅视频在线播放| 中文字幕av在线有码专区| 91麻豆精品激情在线观看国产| 校园春色视频在线观看| av天堂在线播放| 国产真实乱freesex| 欧美最新免费一区二区三区| 精品免费久久久久久久清纯| 97超碰精品成人国产| 一边亲一边摸免费视频| 亚洲三级黄色毛片| 国产精品免费一区二区三区在线| 午夜福利成人在线免费观看| 亚洲精品日韩在线中文字幕 | 夜夜夜夜夜久久久久| 日本五十路高清| 午夜精品国产一区二区电影 | 国产v大片淫在线免费观看| 国产精品av视频在线免费观看| 又黄又爽又刺激的免费视频.| 精品久久国产蜜桃| 一个人看视频在线观看www免费| 少妇猛男粗大的猛烈进出视频 | 亚洲一区高清亚洲精品| 久久99热这里只有精品18| 国产在线精品亚洲第一网站| 亚洲无线在线观看| 国产毛片a区久久久久| 男人的好看免费观看在线视频| 成人毛片60女人毛片免费| 国产片特级美女逼逼视频| 免费看a级黄色片| 人妻久久中文字幕网| 一本—道久久a久久精品蜜桃钙片 精品乱码久久久久久99久播 | 日韩欧美一区二区三区在线观看| 啦啦啦观看免费观看视频高清| 美女xxoo啪啪120秒动态图| 国产精品国产高清国产av| 男人的好看免费观看在线视频| 亚洲激情五月婷婷啪啪| 欧美极品一区二区三区四区| 日韩三级伦理在线观看| 国产伦理片在线播放av一区 | 国产伦一二天堂av在线观看| 国产精品久久久久久av不卡| 亚洲第一区二区三区不卡| 麻豆乱淫一区二区| 热99在线观看视频| av专区在线播放| 亚洲七黄色美女视频| 欧美三级亚洲精品| 免费在线观看成人毛片| 国产蜜桃级精品一区二区三区| 国产色婷婷99| 日韩成人av中文字幕在线观看| 波野结衣二区三区在线| 狂野欧美白嫩少妇大欣赏| 精华霜和精华液先用哪个| 国产色爽女视频免费观看| 丰满乱子伦码专区| 一个人看的www免费观看视频| 国产淫片久久久久久久久| 成人三级黄色视频| 亚洲国产精品久久男人天堂| 国产国拍精品亚洲av在线观看| av在线亚洲专区| 能在线免费看毛片的网站| 国产爱豆传媒在线观看| 非洲黑人性xxxx精品又粗又长| 国内揄拍国产精品人妻在线| av专区在线播放| 搡老妇女老女人老熟妇| 亚洲中文字幕一区二区三区有码在线看| 麻豆精品久久久久久蜜桃| 一区福利在线观看| 国产一级毛片在线| 国产男人的电影天堂91| 天天一区二区日本电影三级| 好男人在线观看高清免费视频| 少妇人妻一区二区三区视频| 成人美女网站在线观看视频| 欧美一区二区亚洲| 插逼视频在线观看| 色视频www国产| www.色视频.com| 免费一级毛片在线播放高清视频| 两个人视频免费观看高清| 色哟哟哟哟哟哟| 又爽又黄无遮挡网站| 99热只有精品国产| 看黄色毛片网站| 国产精品久久视频播放| 又粗又爽又猛毛片免费看| 日本三级黄在线观看| 亚洲av成人av| 国产精品国产高清国产av| 欧美色视频一区免费| 欧美日韩精品成人综合77777| 国产综合懂色| 一级毛片电影观看 | 两个人的视频大全免费| 中文字幕制服av| 长腿黑丝高跟| 婷婷亚洲欧美| 三级毛片av免费| 丰满的人妻完整版| kizo精华| 男插女下体视频免费在线播放| 村上凉子中文字幕在线| 国产成人精品一,二区 | 亚洲中文字幕日韩| 亚洲成a人片在线一区二区| 亚洲一级一片aⅴ在线观看| 尾随美女入室| 亚洲av免费高清在线观看| 亚洲精品成人久久久久久| 欧美最黄视频在线播放免费| 少妇猛男粗大的猛烈进出视频 | 欧美成人精品欧美一级黄| 国产国拍精品亚洲av在线观看| 大香蕉久久网| 国产成人aa在线观看| 国产蜜桃级精品一区二区三区| 在线播放无遮挡| 免费观看的影片在线观看| 国产av在哪里看| 国产成人a区在线观看| 两个人视频免费观看高清| 在线观看av片永久免费下载| 亚洲不卡免费看| 成人特级av手机在线观看| 精品不卡国产一区二区三区| 美女 人体艺术 gogo| 我的女老师完整版在线观看| 搞女人的毛片| 麻豆国产av国片精品| eeuss影院久久| 国产av麻豆久久久久久久| 国产精品久久视频播放| 久久人人精品亚洲av| 精品久久久久久久久久免费视频| 亚洲av熟女| 日本免费一区二区三区高清不卡| 精品久久久久久久久久久久久| 中文字幕熟女人妻在线| 亚洲第一区二区三区不卡| 91精品国产九色| 久久久久久久午夜电影| 免费av不卡在线播放| 桃色一区二区三区在线观看| 国产亚洲91精品色在线| 三级经典国产精品| 久久99热6这里只有精品| 黑人高潮一二区| 伦理电影大哥的女人| 麻豆精品久久久久久蜜桃| 97超视频在线观看视频| 黄色一级大片看看| 人妻系列 视频| 国产亚洲91精品色在线| 白带黄色成豆腐渣| 久久99热6这里只有精品| 亚洲18禁久久av| 网址你懂的国产日韩在线| 麻豆av噜噜一区二区三区| 国产成人福利小说| 在线观看免费视频日本深夜| 欧美成人精品欧美一级黄| 九九热线精品视视频播放| 在线观看免费视频日本深夜| 亚洲欧美精品综合久久99| 久久人人爽人人爽人人片va| 在线观看66精品国产|