• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Temporal Stability Analysis of Magnetized Hybrid Nanofluid Propagating through an Unsteady Shrinking Sheet:Partial Slip Conditions

    2021-12-15 12:48:34LiaquatAliLundZurniOmarSumeraDeroYumingChuIlyasKhanandKottakkaranSooppyNisar
    Computers Materials&Continua 2021年2期

    Liaquat Ali Lund,Zurni Omar,Sumera Dero,3, Yuming Chu, Ilyas Khanand Kottakkaran Sooppy Nisar

    1School of Quantitative Sciences, Universiti Utara Malaysia, 06010,Sintok, Kedah, Malaysia

    2KCAET Khairpur Mir’s, Sindh Agriculture University, Tandojam Sindh,70060, Pakistan

    3IICT, University of Sindh,Jamshoro, 76080, Pakistan

    4Department of Mathematics, Huzhou University, Huzhou, 313000,China

    5Hunan Provincial Key Laboratory of Mathematical Modeling and Analysis in Engineering, Changsha University of Science &Technology, Changsha, 410114,China

    6Faculty of Mathematics and Statistics, Ton Duc Thang University, Ho Chi Minh City, Vietnam

    7Department of Mathematics,College of Arts and Sciences,Prince Sattam bin Abdulaziz University,Wadi Aldawaser,Saudi Arabia

    Abstract: The unsteady magnetohydrodynamic(MHD)flow on a horizontal preamble surface with hybrid nanoparticles in the presence of the first order velocity and thermal slip conditions are investigated.Alumina (Al2O3) and copper (Cu)are considered as hybrid nanoparticles that have been dispersed in water in order to make hybrid nanofluid(Cu-Al2O3/water).The system of similarity equations is derived from the system of partial differential equations (PDEs) by using variables of similarity, and their solutions are gotten with shooting method in the Maple software.In certain ranges of unsteadiness and magnetic parameters, the presence of dual solutions can be found.Further,it is examined that layer separation is deferred due to the effect of the hybrid nanoparticles.Moreover,the capacity of the thermal enhancement of Cu-Al2O3/water hybrid nanofluid is higher as compared to Al2O3/water based nanofluid and enhancements in ?Cu are caused to rise the fluid temperature in both solutions.In the last, solutions stability analyzes were also carried out and the first solution was found to be stable.

    Keywords: Cu - Al2O3/H2O; hybrid nanofluid; magnetic field; slip conditions;dual solutions

    1 Introduction

    The topic of research in various engineering and industrial fields, such as air-conditioning,microelectronic, and power generation is energy sustainability and the optimizations of thermal systems performance.For energy sustainability, an inventive variety in thermodynamics was important [1].Throughout such engineering processes, the cooling systems operate on a fluid medium through a forced flux in the absence and presence of convective heat transfer.The thermal conductivity of the liquid is therefore worthwhile to be enhanced for a better engineering process.The nanofluid formation is created through scattering single nanoparticle into the normal fluids, for example, vegetable oil, glycol, water, or the combination of glycol with water.The nanoparticles can be classified as carbon (CNTs, MWCNT),metal oxides (Al2O3,Fe2O3,CuO), metal (Cu, Ag), and metal carbide and nitride.Many researchers dealt with the various kind of nanoparticle combinations for example metal oxides (Al2O3, CuO), metals (Al,Cu, Fe), and semiconductors (SiO2,TiO2) nanoparticles.The important references on nanofluid can be seen in the books of [2,3].On the other hand, comprehensive review papers on the nanofluid were written by[4-12].

    Recently, researchers introduced a new type of nanofluid, and they call it Hybrid nanofluid.Hybrid nanofluid helps the regular nanofluids to improve its thermal properties.It can be described as the hybrid nanofluid, which consists of two different kinds of nanoparticles together with new chemical and thermophysical properties that can improve the rate of heat transfer due to synergistic properties (see[13]).Esfe et al.[14] stated that the good heat transfer rate is gotten by hybridizing the small amount of the nanoparticles volume fraction in the base fluid.Yan et al.[15] stated that the rate of heat transfer of the hybridized nanofluid is more as compared to the normal water-based nanofluid during the examination of the Cu-Al2O3/water nanofluid.They found ranges of the existence of multiple solutions and also performed stability analysis of the solutions.Lund et al.[16] examined the MHD flow of Cu-Fe3O4/H2O hybrid nanofluid over non-linear stretching and shrinking parameters in the presence of the joule heating.Two solutions were found, and an unstable solution was recognized by without doing stability analysis due to the existence of the singularity in the second solution.Further, Waini et al.[17]obtained two solutions during the examination of the hybrid nanofluid over vertical sheet embedded in a permeable medium.They claimed that the non-uniqueness of solutions depends on the ranges of the mixed convection parameter.Waini et al.[18] continued the problem of [19] for the hybrid nanofluid and successfully found dual solutions in the ranges of the unsteadiness parameter.Due to various practical applications of the unsteady flow, the research of [19] was also extended by the [20] for the nanofluid by using of the double phase model and successfully found the dual solutions.The same paper was also extended by the [21] for the MHD unsteady flow of the Casson type nanofluid with effects of the slip conditions and Stefan blowing and noticed that dual solutions are also possible for the accelerated surface.Further, Lund et al.[22] considered the revised model of [18,19] for the unsteady incompressible MHD flow of the hybrid nanofluid in the existence of thermal radiation effects.It is now clear the importance of the unsteady model for the practical point of view.In this paper, we also extended the work of [18] and [22] for the hybrid nanofluid in the absence of the viscous dissipation and thermal radiation effect.To date, numerous review publications are present in the literature on the synthesis and preparation and hybrid nanofluids, such as [23-30].Besides, some significant research articles of hybrid nanofluids are also available in these references[31-38].

    The main objective of the current article is,therefore,to extend the works of[18,22]of MHD flow of the hybrid nanofluid on a shrinking sheet with the effect of the magnetic field, velocity, and thermal slip conditions.The alumina (Al2O3) and copper (Cu) are known to be hybrid nanoparticles here.The nanoparticles are then dispersed in order to develop the hybrid nanofluid (Cu-Al2O3/water).In order to validate the present results,current results are compared with the results of the previously published.

    2 Mathematical Formulation

    Let us take the MHD unsteady flow ofCu-Al2O3/water hybrid nanofluid over the shrinking sheet.The coordinate system and the physical representation of the problem are shown in Fig.1.Further,velocity and thermal partial slip conditions are also taken into account wherevw(x)=is the mass transfer.Besides, the flow is assumed to be subject to a transverse magnetic field =where constant magnetic field isB0.The infulence ofBon the shrinking sheet is applied perpendicular (see Fig.1).Tiwari and Das’s model are expressed as follows based on the considered assumptions[18,22]:

    Figure 1:Physical models and coordinate systems

    The subject to boundary conditions[21]

    where velocity of surface isuw(x,t)=followed in the present analysis.The thermophoresis property of Yan et al.[15] are

    Further,N1(x,t)=is velocity slip factor andD1(x,t)=is thermal slip factor whereN0andD0are the slip factors.Tabs.1 and 2 demonstrate these features of hybrid nanofluid.

    We employ the following variable of similarity transformation to convert the Eqs.(1)-(3)into a system of ODEs.

    Table 1:Thermophysical properties of hybrid nanofluid[22]

    Table 2:The thermo physical properties of the base fluid (water) and the nanoparticles [18,22]

    By applying Eq.(5)into Eqs.(1)-(3)then we have following non-dimensional form of ODEs

    Along with the boundary conditions

    The non-dimensional quantities are given as

    The coefficient of skin frictionCfand local Nusselt numberNuxare given as

    By employing Eq.(9)in Eq.(10),we get

    whereReis local Reynold number.

    3 Stability Analysis

    Merkin et al.[39-43] suggested for the stability analysis that the new non-dimensional variables of similarity transformation need to be introduced by considering τ=therefore, following new similarity transformation variables are introduced.

    By putting Eq.(12) in Eqs.(2) and(3), we get

    Along with boundary conditions

    According to Lund et al.[41], “to check the stability of steady flow solutions wheref(η )=f0(η ),andθ(η )=θ0(η )of satisfying the boundary value problem Eqs.(6)-(8)”,we have

    whereF(η ) andG(η ) are relatively small tof0(η ) and θ0(η ) and Y is called as unknown parameter of eigenvalue which need to be determined.Thus, we have the following linearized problems of eigenvalue,by replacing Eq.(16) in Eqs.(13)and (14) with τ=0.

    Subject to the boundary conditions

    According to Dero et al.[44-46], one boundary condition from two should be converted to initial boundary condition (relaxed) in order to achieve the smallest values of eigenvalue.Therefore,is relaxed into

    4 Results and Discussion

    The shooting method in Maple code with add of shootlib function has been employed to solve unsteady flow equations and bvp4c code in MATLAB software is used to solve the normalizing stability equations.The results of these codes are compared graphically and numerically with previously published works and found in the excellent agreements.In this study, η∞=4 is kept fxied during the computations but it is also noticed that η∞=1 and η∞=3 are tolerable for temperature and velocity profiles in order to satisfy the η →∞as shown in Figs.9 and 10, respectively.For the numerical compression, Tab.3 is construction for the magnitude off′′(0 ) and -θ′(0 ) with previously available results of [22].It is found that our results are showing a favorable agreement.Further, it can be observed from Tab.4 that the first(second) solution is stable (unstable) as the values of γ are positive (negative).The positive (negative)magnitude of γ should be noted as indicating an initial decay (growth)of disturbance.

    Figure 2:Conmparison with the 6th Fig.of [18]

    The preparation of a hybrid nanofluid has been shown in the studies of [15,17,22].They originally considered nanoparticles of alumina (Al2O3) into water base fulid and then, nanoparticles of copper (Cu)were mixed with the alumina (Al2O3) by considering the distant fractions of solid volume in order to make a hybrid nanofluid.This kind of hybrid nanofluid was called asCu-Al2O3/water.We also follow their works by keeping the=0.1 as constant in the whole article while the range of 0.001 ≤?Cu≤0.1 was kept for copper nanoparticles.

    Table 3:Values of f ′′ (0 )and θ′ (0 )for Cu-Al2O3/H2O hybrid nanofulid for A when M =δ=δt =0,S =2.1,Pr=6.2,?Cu =0.2 and ?Al2O3 =0.1

    Table 4:The smallest eigenvalues γ for the numerous values of magnetic parameter M at ?Cu = ?Al2O3 =0.1S =2, Pr=6.2, δ=δT =0.1 and A=-5

    We have water as a base fluid so Pr = 6.2 is kept as constant for the room temperature of 25°C.The graphical contrast with the sixth graph of [18] is demonstrated in Fig.2 in order to validate our numerical coding and its results.It can be concluded that our numerical coding is working properly and can be used in this study as the critical values of our figure is the same as given in the article of [18].

    Figs.3 and 4 display the coefficient of skin frictionf′′(0 ) and rate of heat transfer -θ′(0 ) ofCu-Al2O3/water nanofluid toMfor numerous estimations of ?Cu, respectively.Range of first and second solutions isM≥Mciwherei=1,2,3, whereas range of no solution isM<MciwhereMcishows the critical values of magnetic field for respective ?Cu=0.001, 0.01, 0.1.

    It should be noted that at the pint ofMci,fluid flow of boundary layer initiates converting from laminar flow to turbulent flow and it is noticed from the previous studies that this is possible only when fluid is flowing over the shrinking surface.Further, it is observed that dual solutions exist when the flow is deaccelerated which means that values of the unsteadiness parameter are negative.Moreover, the rate of heat transfer increases in the first solution for the rising effect of the magnetic field, while it decreases in the second solution.

    Figure 3:Variation of f″ (0)for ?Cu along with various values of M

    Figure 4:Variation of -θ′(0)for ?Cu along with various values of M

    Figs.5 and 6 show the significance of unsteadiness parameterAfor different values of suction parameterSonf′′(0 ) and -θ′(0 ), respectively.The coefficient of skin frictionf′′(0 ) improves in the first solution as suction increases, whereas it decreases in the second solution.The enhancement in thef′′( 0) is since suction generates the drag force inside the boundary layer.At the same time, the skin friction coefficient increases in both solutions as the unsteadiness parameter increases.Decreasing and increasing behavior of heat transfer rate observed in two solutions as unsteadiness parameter enhances.Further, the rate of heat transfer enhances in the first solution as suction increases, while dual nature is observed in the second solution.

    Variations off′′(0 ) against velocity slip factor δ for numerous values ofAis revealed in Fig.7.It is noticed that the dual solutions can be found in a specific range ofAwhich isAc≥A, while no solution is obtained asAc<A, whereAcis known as the critical points where existences of solutions are possible.It is perceived that the presence of slip effect delay the boundary layer separation whereAc2=-6.7138 andAc2=-5.8118 are the critical values of the δ=0.1 and δ=0.2, respectively.At the same time,magnitudes off′′(0 ) increase when δ >0 in the second solution, whereas there exist dual behaviors in the second solution.Fig.8 demonstrates the variation of -θ′(0 ) versus thermal slip condition δTfor many values ofA.It can be detected that dual behavior is noticed in the magnitude of the rate of heat transfer in the first solution as thermal slip condition δTis enhanced, while the rate of heat transfer declines in the second solution when δTincreases.It is also noticed that δT=0,0.1,0.2 has the same critical value which means that increments in the thermal slip do not affect boundary-layer separation.

    Figure 5:Variation of f″(0) for S along with various values of A

    Figure 6:Variation of-θ′(0)for S along with various values of A

    Effects of ?Cuon profiles of velocityf′(η ) and temperature θ(η ) are illustrated in Figs.9 and 10,respectively.In comparison, the capacity of the thermal enhancement ofCu-Al2O3/water hybrid nanofluid is more toAl2O3/water-based nanofluid.

    It is gained that fluid velocity declines in the first solution as ?Cuenhances and as a resulting thickness of the hydrodynamic layer decreases.After all, velocity increases at first and then starts to decrease in the second solution.Further, enhancements in ?Cuare caused to raise the temperature of the fluid in both solutions as shown in Fig.10.

    Figure 7:Variation of f″(0) for δ along with various values of A

    Figure 8:Variation of -θ′(0) for δ T along with various values of A

    Figure 9:Variation of f″ (η) for φCu

    Figure 10:Variation of θ (η)for φCu

    5 Conclusion

    In the current examination,the papers of[18,22]are extended in order to inspect the effects of MHD and slip for a hybrid nanofluid case.The current findings were checked for verification with previously reported data and an agreement between those findings is outstanding.Dual solutions have been found in some ranges of magnetic and unsteadiness parameter.The range of the first and second solutions isM≥Mciwherei=1,2,3, whereas range of no solution isM<MciwhereMcishows magnetic critical values for respective values of ?Cu=0.001, 0.01, 0.1.Further, the magnitude of the rate of heat transfer is increased in the first solution as thermal slip condition δTis enhanced, while the heat transfer rate declines in the second solution as δTincreases.The coefficient of skin frictionf′′0( ) enhances in the first solution as suction increases, while it decreases in the second solution.Stability analyzes are carried out and the results suggest that the first solution is stable.

    Funding Statement:This project was supported by the Natural Science Foundation of China (Grant Nos.61673169,11701176,11626101,11601485).

    Conflicts of Interest:The authors declare that they have no conflicts of interest to report regarding the present study.

    久久精品亚洲熟妇少妇任你| 亚洲国产欧美一区二区综合| 国产男人的电影天堂91| 人妻人人澡人人爽人人| 亚洲精品国产区一区二| 欧美老熟妇乱子伦牲交| av超薄肉色丝袜交足视频| 日韩大片免费观看网站| 国产亚洲精品一区二区www | 九色亚洲精品在线播放| 午夜福利一区二区在线看| 亚洲欧美精品自产自拍| 国产精品亚洲av一区麻豆| 国产成人免费无遮挡视频| 在线观看www视频免费| 考比视频在线观看| 1024视频免费在线观看| 久久国产精品人妻蜜桃| 亚洲精品国产区一区二| 国产一区二区激情短视频 | 国产亚洲精品第一综合不卡| 久久久国产精品麻豆| 日本av免费视频播放| 正在播放国产对白刺激| 国产亚洲av高清不卡| 一区二区日韩欧美中文字幕| 纵有疾风起免费观看全集完整版| www.精华液| 又黄又粗又硬又大视频| 男女无遮挡免费网站观看| 少妇裸体淫交视频免费看高清 | 悠悠久久av| 一本一本久久a久久精品综合妖精| 午夜福利在线观看吧| 亚洲avbb在线观看| 国产精品久久久久久精品电影小说| 天天躁狠狠躁夜夜躁狠狠躁| 亚洲av日韩在线播放| 亚洲成国产人片在线观看| 男男h啪啪无遮挡| 午夜视频精品福利| 久久精品人人爽人人爽视色| 国产国语露脸激情在线看| 一区二区三区四区激情视频| 亚洲 国产 在线| av有码第一页| 十分钟在线观看高清视频www| 天天躁日日躁夜夜躁夜夜| 丝瓜视频免费看黄片| 19禁男女啪啪无遮挡网站| 波多野结衣一区麻豆| 人人妻人人添人人爽欧美一区卜| 亚洲 国产 在线| 国产精品.久久久| 一区在线观看完整版| 淫妇啪啪啪对白视频 | av网站免费在线观看视频| 亚洲avbb在线观看| 又紧又爽又黄一区二区| 国产精品二区激情视频| 国产精品秋霞免费鲁丝片| 免费一级毛片在线播放高清视频 | 亚洲av电影在线进入| 热99re8久久精品国产| 国产免费视频播放在线视频| 12—13女人毛片做爰片一| 巨乳人妻的诱惑在线观看| 国产一卡二卡三卡精品| 精品少妇黑人巨大在线播放| 美女脱内裤让男人舔精品视频| 欧美精品一区二区大全| 丰满少妇做爰视频| 97精品久久久久久久久久精品| 国产深夜福利视频在线观看| 他把我摸到了高潮在线观看 | 两个人免费观看高清视频| 久久久水蜜桃国产精品网| 女人久久www免费人成看片| 黄色视频,在线免费观看| av网站免费在线观看视频| 热99re8久久精品国产| 亚洲欧洲日产国产| 国产1区2区3区精品| 无限看片的www在线观看| 国产精品99久久99久久久不卡| 国产一区二区 视频在线| 国产熟女午夜一区二区三区| 在线看a的网站| 又大又爽又粗| 成人国语在线视频| 亚洲av电影在线观看一区二区三区| 99久久综合免费| 少妇 在线观看| 狠狠精品人妻久久久久久综合| 久久精品熟女亚洲av麻豆精品| 亚洲精品一二三| 亚洲久久久国产精品| 久久国产精品大桥未久av| 亚洲人成77777在线视频| 美女高潮到喷水免费观看| 99国产精品一区二区蜜桃av | 亚洲全国av大片| 两个人免费观看高清视频| 19禁男女啪啪无遮挡网站| 男女免费视频国产| 国产欧美日韩一区二区精品| 一级片'在线观看视频| 国产一区二区 视频在线| 我要看黄色一级片免费的| 国产亚洲av高清不卡| 涩涩av久久男人的天堂| 亚洲精品美女久久久久99蜜臀| 欧美精品一区二区大全| av片东京热男人的天堂| 窝窝影院91人妻| 一区二区三区精品91| 亚洲精品美女久久久久99蜜臀| 成人亚洲精品一区在线观看| 亚洲美女黄色视频免费看| 国产国语露脸激情在线看| 看免费av毛片| 曰老女人黄片| 不卡一级毛片| 精品人妻1区二区| 精品一品国产午夜福利视频| 女性生殖器流出的白浆| 亚洲欧美精品自产自拍| 欧美日韩视频精品一区| 十分钟在线观看高清视频www| 窝窝影院91人妻| 热99国产精品久久久久久7| 欧美亚洲日本最大视频资源| 国产在线观看jvid| 精品少妇黑人巨大在线播放| 国产精品 国内视频| 成年女人毛片免费观看观看9 | 国产免费福利视频在线观看| 欧美精品av麻豆av| 自线自在国产av| 少妇裸体淫交视频免费看高清 | 久久狼人影院| 美女主播在线视频| 丝袜脚勾引网站| 蜜桃在线观看..| 国产熟女午夜一区二区三区| 男人爽女人下面视频在线观看| kizo精华| 亚洲欧美成人综合另类久久久| 午夜91福利影院| 久久精品熟女亚洲av麻豆精品| 超色免费av| 真人做人爱边吃奶动态| 12—13女人毛片做爰片一| 极品少妇高潮喷水抽搐| 国产在视频线精品| 美女国产高潮福利片在线看| 一区二区三区乱码不卡18| 精品卡一卡二卡四卡免费| 一本久久精品| 好男人电影高清在线观看| 女性生殖器流出的白浆| 亚洲黑人精品在线| 午夜激情久久久久久久| 丝袜脚勾引网站| 欧美精品高潮呻吟av久久| 欧美黑人欧美精品刺激| 一级片免费观看大全| 亚洲av男天堂| 一区二区三区激情视频| 国产亚洲精品久久久久5区| av一本久久久久| 中文字幕制服av| 久久精品国产亚洲av高清一级| 久久国产精品人妻蜜桃| 巨乳人妻的诱惑在线观看| 青草久久国产| 热99国产精品久久久久久7| 热99久久久久精品小说推荐| 99国产精品一区二区蜜桃av | 国产成人精品无人区| 国产伦人伦偷精品视频| 久久性视频一级片| 国产欧美日韩综合在线一区二区| 少妇的丰满在线观看| 日韩免费高清中文字幕av| 国产免费av片在线观看野外av| 99香蕉大伊视频| 超碰成人久久| 19禁男女啪啪无遮挡网站| 欧美一级毛片孕妇| 国精品久久久久久国模美| 亚洲精品成人av观看孕妇| 美女视频免费永久观看网站| 久久狼人影院| 国产有黄有色有爽视频| 三级毛片av免费| 黄色毛片三级朝国网站| 亚洲欧美激情在线| 欧美在线黄色| 精品国产乱码久久久久久男人| 国产av又大| 成人影院久久| 777久久人妻少妇嫩草av网站| 精品亚洲成a人片在线观看| 91成年电影在线观看| 国产男女内射视频| 国产在线一区二区三区精| 母亲3免费完整高清在线观看| 精品国产乱子伦一区二区三区 | 熟女少妇亚洲综合色aaa.| 12—13女人毛片做爰片一| 高清黄色对白视频在线免费看| xxxhd国产人妻xxx| 亚洲国产看品久久| 精品一区二区三区四区五区乱码| 亚洲精品成人av观看孕妇| 国产一区二区三区在线臀色熟女 | 大香蕉久久网| av天堂久久9| 97在线人人人人妻| 亚洲人成电影免费在线| 国产亚洲av高清不卡| 亚洲性夜色夜夜综合| 欧美另类一区| 免费黄频网站在线观看国产| 日本一区二区免费在线视频| 建设人人有责人人尽责人人享有的| 美女脱内裤让男人舔精品视频| 青春草亚洲视频在线观看| 新久久久久国产一级毛片| 中国美女看黄片| 国产日韩一区二区三区精品不卡| 国产精品秋霞免费鲁丝片| bbb黄色大片| 50天的宝宝边吃奶边哭怎么回事| 欧美精品高潮呻吟av久久| 国产欧美日韩一区二区精品| 欧美成人午夜精品| 高清黄色对白视频在线免费看| 久久 成人 亚洲| 国产精品久久久人人做人人爽| 精品国产一区二区久久| 一边摸一边做爽爽视频免费| 国产成人精品久久二区二区91| 日日夜夜操网爽| 午夜免费观看性视频| 老司机午夜十八禁免费视频| 国产欧美日韩一区二区三区在线| 免费人妻精品一区二区三区视频| 欧美国产精品va在线观看不卡| 一二三四社区在线视频社区8| 国产精品免费大片| 国产一区有黄有色的免费视频| 午夜精品久久久久久毛片777| 9热在线视频观看99| 老司机影院毛片| 黑人欧美特级aaaaaa片| 亚洲视频免费观看视频| 久久久国产一区二区| 老熟女久久久| 国产福利在线免费观看视频| 国产人伦9x9x在线观看| 亚洲欧洲精品一区二区精品久久久| 久久久久视频综合| 女人爽到高潮嗷嗷叫在线视频| 91成人精品电影| 少妇裸体淫交视频免费看高清 | 国产成人免费观看mmmm| 免费在线观看影片大全网站| 免费人妻精品一区二区三区视频| 一级黄色大片毛片| 国产成人精品久久二区二区91| 色播在线永久视频| 五月开心婷婷网| 欧美大码av| 午夜影院在线不卡| 亚洲成国产人片在线观看| 久久久久久人人人人人| 日韩大码丰满熟妇| 久久久久国产精品人妻一区二区| 最近最新中文字幕大全免费视频| 欧美 亚洲 国产 日韩一| 啦啦啦 在线观看视频| 成人影院久久| 欧美午夜高清在线| 高清在线国产一区| 久久久精品免费免费高清| 亚洲精品乱久久久久久| 午夜免费成人在线视频| av福利片在线| 午夜视频精品福利| 久久香蕉激情| 少妇粗大呻吟视频| 纵有疾风起免费观看全集完整版| 久久99热这里只频精品6学生| 美女午夜性视频免费| 一区二区三区精品91| 久久午夜综合久久蜜桃| 久久久久久久大尺度免费视频| 五月开心婷婷网| 女人精品久久久久毛片| av电影中文网址| 国产精品久久久av美女十八| 男女下面插进去视频免费观看| 大片电影免费在线观看免费| 在线 av 中文字幕| 无遮挡黄片免费观看| 男女免费视频国产| 多毛熟女@视频| 久久久久国产精品人妻一区二区| 另类亚洲欧美激情| 中文字幕人妻熟女乱码| 亚洲国产欧美日韩在线播放| 国产一区二区三区av在线| 亚洲欧美精品综合一区二区三区| 午夜福利在线免费观看网站| 亚洲天堂av无毛| 成年美女黄网站色视频大全免费| 国产激情久久老熟女| 99久久人妻综合| 久久久久国内视频| 99九九在线精品视频| 亚洲精品久久成人aⅴ小说| 午夜老司机福利片| 色老头精品视频在线观看| 成年人免费黄色播放视频| 亚洲精品国产一区二区精华液| 麻豆乱淫一区二区| 国产精品av久久久久免费| 大片电影免费在线观看免费| 精品国产超薄肉色丝袜足j| 91av网站免费观看| 脱女人内裤的视频| 亚洲国产看品久久| 99久久国产精品久久久| 手机成人av网站| 老司机影院毛片| www.熟女人妻精品国产| 老熟女久久久| 欧美精品一区二区免费开放| 久久久久网色| 国产成人精品在线电影| 欧美久久黑人一区二区| 日韩电影二区| 精品一区二区三区四区五区乱码| 天堂俺去俺来也www色官网| 亚洲av日韩在线播放| 窝窝影院91人妻| 欧美黑人精品巨大| 最新在线观看一区二区三区| 每晚都被弄得嗷嗷叫到高潮| 大型av网站在线播放| 国产成人a∨麻豆精品| 在线精品无人区一区二区三| 亚洲avbb在线观看| 男人舔女人的私密视频| 男女下面插进去视频免费观看| 精品国产乱子伦一区二区三区 | 午夜福利在线观看吧| 欧美日韩国产mv在线观看视频| 亚洲成av片中文字幕在线观看| 午夜久久久在线观看| av天堂在线播放| 午夜精品久久久久久毛片777| 97精品久久久久久久久久精品| 大香蕉久久网| 欧美日韩亚洲国产一区二区在线观看 | 亚洲成av片中文字幕在线观看| 国产高清国产精品国产三级| 高清视频免费观看一区二区| 日日夜夜操网爽| www.av在线官网国产| 啦啦啦中文免费视频观看日本| 国产又色又爽无遮挡免| 十八禁人妻一区二区| 黄频高清免费视频| 日本猛色少妇xxxxx猛交久久| 丰满饥渴人妻一区二区三| 亚洲av日韩在线播放| 丝袜美足系列| 日韩,欧美,国产一区二区三区| 国产激情久久老熟女| 午夜精品国产一区二区电影| 美女大奶头黄色视频| 免费在线观看日本一区| 亚洲国产看品久久| 一本—道久久a久久精品蜜桃钙片| 老熟妇仑乱视频hdxx| 又大又爽又粗| 老熟妇乱子伦视频在线观看 | 美女大奶头黄色视频| 成人18禁高潮啪啪吃奶动态图| 午夜精品国产一区二区电影| 亚洲av欧美aⅴ国产| 天堂8中文在线网| 极品少妇高潮喷水抽搐| 国产精品成人在线| 国产高清视频在线播放一区 | 美女中出高潮动态图| 亚洲国产中文字幕在线视频| 欧美老熟妇乱子伦牲交| av在线播放精品| 成人亚洲精品一区在线观看| 国产精品久久久久成人av| 国产伦人伦偷精品视频| av免费在线观看网站| 久久精品成人免费网站| 超碰97精品在线观看| 欧美日韩视频精品一区| 18禁观看日本| 亚洲成国产人片在线观看| 国产真人三级小视频在线观看| 亚洲精品国产一区二区精华液| 欧美变态另类bdsm刘玥| 青青草视频在线视频观看| 日韩,欧美,国产一区二区三区| 91精品伊人久久大香线蕉| 国产精品av久久久久免费| 亚洲va日本ⅴa欧美va伊人久久 | 免费日韩欧美在线观看| 母亲3免费完整高清在线观看| 欧美成人午夜精品| 亚洲人成电影免费在线| 久久久国产欧美日韩av| 一级片'在线观看视频| 国产av一区二区精品久久| 青春草亚洲视频在线观看| 十八禁网站免费在线| 美女福利国产在线| 亚洲精品中文字幕一二三四区 | 考比视频在线观看| 一级毛片女人18水好多| 成人av一区二区三区在线看 | 久久国产精品男人的天堂亚洲| 国产男女内射视频| 高清视频免费观看一区二区| 丝袜美足系列| 男女下面插进去视频免费观看| 又紧又爽又黄一区二区| 欧美日韩一级在线毛片| 亚洲少妇的诱惑av| 2018国产大陆天天弄谢| 久久亚洲精品不卡| 淫妇啪啪啪对白视频 | 精品国产乱子伦一区二区三区 | 欧美精品亚洲一区二区| 亚洲色图 男人天堂 中文字幕| 亚洲 国产 在线| 国产精品亚洲av一区麻豆| 亚洲精品久久成人aⅴ小说| 精品第一国产精品| 欧美日韩中文字幕国产精品一区二区三区 | 两个人看的免费小视频| 成人亚洲精品一区在线观看| 成年人午夜在线观看视频| 久久精品成人免费网站| 久久久久久久国产电影| 各种免费的搞黄视频| 久热这里只有精品99| 我的亚洲天堂| 亚洲av电影在线进入| 在线十欧美十亚洲十日本专区| 久久精品成人免费网站| 天天躁夜夜躁狠狠躁躁| 精品久久蜜臀av无| 欧美老熟妇乱子伦牲交| 少妇猛男粗大的猛烈进出视频| 国产伦人伦偷精品视频| 亚洲中文字幕日韩| 久久这里只有精品19| 国产真人三级小视频在线观看| 久久午夜综合久久蜜桃| 一个人免费在线观看的高清视频 | 黄色视频,在线免费观看| 国产精品久久久久久精品电影小说| 欧美日韩成人在线一区二区| 国产精品影院久久| 国产精品 欧美亚洲| 在线精品无人区一区二区三| 午夜福利影视在线免费观看| 久久久久国内视频| 日韩制服丝袜自拍偷拍| 欧美另类亚洲清纯唯美| 日本黄色日本黄色录像| 欧美性长视频在线观看| 桃红色精品国产亚洲av| 97在线人人人人妻| 国产高清videossex| av有码第一页| 手机成人av网站| 日本av免费视频播放| av在线app专区| 一级毛片电影观看| 日韩熟女老妇一区二区性免费视频| 免费日韩欧美在线观看| 国产一区二区三区av在线| 女人高潮潮喷娇喘18禁视频| 正在播放国产对白刺激| 日韩欧美免费精品| 亚洲中文字幕日韩| 免费不卡黄色视频| 蜜桃在线观看..| 亚洲中文日韩欧美视频| 亚洲国产欧美一区二区综合| 国产欧美日韩一区二区三区在线| 成人三级做爰电影| 欧美日本中文国产一区发布| 一本综合久久免费| 日韩大码丰满熟妇| 97在线人人人人妻| 国产片内射在线| 久久久国产精品麻豆| 丝袜脚勾引网站| 别揉我奶头~嗯~啊~动态视频 | 国产精品一区二区免费欧美 | 亚洲专区国产一区二区| 热99re8久久精品国产| 午夜免费观看性视频| 日日摸夜夜添夜夜添小说| 亚洲欧美一区二区三区黑人| 蜜桃国产av成人99| 亚洲第一欧美日韩一区二区三区 | 国产av精品麻豆| 亚洲专区国产一区二区| 亚洲国产av影院在线观看| 久久亚洲精品不卡| 男男h啪啪无遮挡| 电影成人av| 久久人人97超碰香蕉20202| 欧美中文综合在线视频| 久久久国产精品麻豆| 九色亚洲精品在线播放| 久久这里只有精品19| 国产av一区二区精品久久| 中文字幕高清在线视频| av网站免费在线观看视频| 狠狠精品人妻久久久久久综合| 美女扒开内裤让男人捅视频| 女人久久www免费人成看片| 久久久久网色| 操出白浆在线播放| 国产淫语在线视频| 日日摸夜夜添夜夜添小说| av网站免费在线观看视频| 18禁观看日本| 久久久精品94久久精品| 91成年电影在线观看| 又紧又爽又黄一区二区| e午夜精品久久久久久久| 久久亚洲国产成人精品v| 国产1区2区3区精品| 亚洲精华国产精华精| 欧美日韩亚洲高清精品| 亚洲国产中文字幕在线视频| 色94色欧美一区二区| 又紧又爽又黄一区二区| 国产区一区二久久| 美女高潮喷水抽搐中文字幕| 欧美性长视频在线观看| 99香蕉大伊视频| 午夜免费观看性视频| 亚洲av成人一区二区三| 亚洲五月婷婷丁香| 天天影视国产精品| 亚洲色图综合在线观看| 日韩人妻精品一区2区三区| 国产精品影院久久| 丰满迷人的少妇在线观看| 天堂中文最新版在线下载| 不卡一级毛片| 免费久久久久久久精品成人欧美视频| 亚洲av日韩精品久久久久久密| 777久久人妻少妇嫩草av网站| 国产一区二区在线观看av| 国产伦理片在线播放av一区| 又黄又粗又硬又大视频| 别揉我奶头~嗯~啊~动态视频 | 91精品国产国语对白视频| 久久精品成人免费网站| 丝袜喷水一区| 国精品久久久久久国模美| 色精品久久人妻99蜜桃| 亚洲少妇的诱惑av| 高潮久久久久久久久久久不卡| 国产成人精品久久二区二区91| 男人舔女人的私密视频| 91大片在线观看| 少妇裸体淫交视频免费看高清 | 国产黄频视频在线观看| 啦啦啦免费观看视频1| 美女福利国产在线| 超色免费av| 日韩视频在线欧美| 日日摸夜夜添夜夜添小说| 这个男人来自地球电影免费观看| 精品亚洲成a人片在线观看| 亚洲精品久久午夜乱码| 男女下面插进去视频免费观看| 丝瓜视频免费看黄片| 9色porny在线观看| 最近最新中文字幕大全免费视频| 嫩草影视91久久| 久久人人爽av亚洲精品天堂| 欧美精品一区二区大全| 新久久久久国产一级毛片| 久久青草综合色| 久久精品成人免费网站| 亚洲第一av免费看| 真人做人爱边吃奶动态| 国产精品偷伦视频观看了| 日韩电影二区| 搡老熟女国产l中国老女人| 午夜精品久久久久久毛片777| 他把我摸到了高潮在线观看 | 男女无遮挡免费网站观看|