• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Hybrid Metamodel—NSGA-III—EDAS Based Optimal Design of Thin Film Coatings

    2021-12-15 12:47:50KamlendraVikramUvarajaRagavendranKanakKalitaRanjanKumarGhadaiandXiaoZhiGao
    Computers Materials&Continua 2021年2期

    Kamlendra Vikram, Uvaraja Ragavendran,Kanak Kalita,*,Ranjan Kumar Ghadai and Xiao-Zhi Gao

    1Department of Mechanical Engineering, Vel Tech Rangarajan Dr.Sagunthala R&D Institute of Science and Technology, Avadi,600062,India

    2Department of Electronics and Telecommunication Engineering,MPSTME SVKM’S Narsee Monjee Institute of Management Studies, Shirpur,425405, India

    3Department of Mechanical Engineering, Sikkim Manipal Institute of Technology, Sikkim Manipal University, Majhitar, 737136,India

    4School of Computing, University of Eastern Finland, Kuopio, 70211,Finland

    Abstract:In this work,diamond-like carbon (DLC) thin film coatings are deposited on silicon substrates by using plasma-enhanced chemical vapour deposition(PECVD) technique.By varying the hydrogen (H2) flow rate, CH4-Argon (Ar)flow rate and deposition temperature (Td) as per a Box-Behnken experimental design(BBD),15 DLC deposition experiments are carried out.The Young’s modulus(E)and the coefficient of friction(COF)for the DLCs are measured.By using a second-order polynomial regression approach,two metamodels are built for E and COF,that establish them as functions of H2 flow rate,CH4-Ar flow rate and Td.A non-dominated sorting genetic algorithm(NSGA-III)is used to obtain a set of Pareto solutions for the multi-objective optimization of E maximization and COF minimization.According to various practical scenarios, evaluation based on distance from average solution(EDAS)approach is used to identify the most feasible solutions out of the Pareto solution set.Confirmation experiments are conducted which shows the efficacy of the polynomial regression—NSGA-III—EDAS hybrid approach.The surface morphology of the DLCs deposited as per the optimal predictions is also studied by using atomic force microscopy.

    Keywords:Multi-objective optimization;regression analysis;thin-film coating

    1 Introduction

    The excellent mechanical, tribological and optical properties of diamond-like carbon (DLC) coatings offer a wide application in the automotive and electronic industries.DLC coating is a mixture of both graphite-like sp2 bond and diamond-like sp3 bonds which shows that the properties of DLCs depend on the number of bonds present within the coatings.DLCs are considered to be the hybrid form of carbon which holds both graphite-like sp2 bond and diamond-like sp3 bonds [1].It is well known that graphite(100%sp2)is having a zero-band gap whereas diamond(100%sp3 bond)has a bandgap of 5.5 eVand thus,by the synthesis of DLCs by using different methods the amount of sp3 and sp2 bonds can be altered[2].Due to the mixture of sp2 and sp3 bonds within the DLC films,it possesses characteristics of both graphite and diamond.The good electrical and electronic properties of DLC are due to the sp2 hybridized carbon whereas,the tribological and mechanical properties are due to the sp3 hybridized carbon[3,4].DLC films are also used for making surgical equipments,automotive engine parts,magnetic storage discs,micro-electromechanical devices(MEMS),etc.

    Various chemical vapour deposition(CVD)techniques are used for the deposition of thin-film coatings and out of all the CVD techniques, plasma-enhanced chemical vapour deposition (PECVD) technique is most widely used for the DLC coating synthesis because of its quality coating at low temperature [5-7].The different PECVD deposition parameters like gas flow rate, duty cycle, gas composition, deposition temperature, power supply etc.influence the properties of DLC thin films.In recent years, the selection of deposition parameters is a matter of prime concern for the researchers to get the desired properties of the films [8,9].Singh et al.[10] used a Taguchi technique to find the combination of PECVD deposition parameters like bias voltage (V), bias frequency (f), gas composition, deposition pressure (P) of DLC coatings with PECVD technique to get optimum response parameters, i.e., roughness and hardness.Ghadai et al.[11] used particle swarm optimization (PSO) techniques to optimize the PECVD process parameters to get high hardness of the DLC coating.In an extension to the previous work, Ghadai et al.[12]found that symbolic regression metamodels are superior to traditional polynomial regression metamodels.The symbolic regression metamodels were form-free and thus, were better at modelling the inherent non-linearity in the deposition process.Ghadai et al.[13] also used a genetic algorithm to fine-tune the DLC deposition parameters in APCVD process.

    Despite the considerable amount of work done on DLC thin film coatings,only a handful of works are seen on the implementation of advance computational intelligence techniques like multi-objective optimization based on metamodels.This work attempts to address this lacuna by building metamodels that express two different DLC performance parameters (Young’s modulus and coefficient of friction) as functions of three DLC deposition process parameters (hydrogen flow rate, CH4-Argon flow rate and deposition temperature).The metamodels are then deployed in conjunction with the non-dominated sorting genetic algorithm(NSGA-III) for carrying out Pareto optimization.Finally, based on certain scenarios, a multi-criteria decision-making method called EDAS is used to identify the desirable solutions from the Pareto set.Surface morphologies of these optimal designs are studied by using atomic force microscopy.

    2 Materials and Methods

    2.1 Experimental Procedure

    In the work, the synthesis of DLC coatings over silicon (Si) was done by using PECVD deposition technique.To remove the oxide layer, the substrates were dipped into 2% HF solution for 4 min followed by ultrasonic cleaning in deionized water for 10 min.Tab.1 shows the details of input parameters like hydrogen (H2) flow rate, CH4-Argon (Ar) flow rate and temperature for the deposition (Td) of DLC coatings.The morphological analysis of the DLC coating is done with the help of Innova SPM atomic force microscope.The Young’s modulus (E) of the DLC coatings were calculated by using a nanohardness tester (NHTX-55-0019) of CSM Instruments having Berkovich indentor.The radius of curvature of the indentor (B-I 93) is 20 μm.The indentation was considered at three different locations and the average of that value is considered and the maximum load is taken as 10 mN.The Oliver-Pharr method[14] is applied for the calculation of Young’s modulus (E).The nano scratch tests were performed over the coating by using CSM instrument with a sphero-conical diamond indenter (R = 2 μm, SB-A63), by applying a load of 20 mN with a scratch speed of 1 mm/min over a 0.5 mm scratch length.

    Table 1:Experimental readings of Young’s modulus and coefficient of friction measured at selected BBD sample points

    2.2 Predictive Modeling with Polynomial Regression

    In this work, the metamodels for Young’s modulus and the coefficient of friction are built by fitting a second-order polynomial regression equation of the following form.

    Here β′sare the coefficients of regression.These coefficients of regression help in describing the response (yi) as a function of predictor variables (x′s).x1,x2andx3represent hydrogen (H2) flow rate,CH4-Argon (Ar) flow rate and deposition temperature(Td)respectively.

    Using the Box-Behnken experimental design in Tab.1, Eq.(1) is fitted based on multiple regression fitting scheme.The difference between the predicted value () and the actual experimental value (yi) of the response is called the residue[15].

    β′sin Eq.(1)are computed such that the residual sum of squared(RSS) is minimized.

    wherenis the number of experimental points in Tab.1.

    2.3 Optimization with NSGA-III

    In this work,non-dominated sorting genetic algorithm III(NSGA-III)[16,17]is used for carrying out the Pareto optimization.The multi-objective optimization problem is stated as,

    FindX=(x1,x2andx3)

    subject tox1l≤x1≤x1u;x2l≤x2≤x2u;x3l≤x3≤x3u

    In Eq.(4),Y1andY2are Young’s modulus(E)and coefficient of friction (COF) respectively.

    NSGA-III is realized in this work by using the following pseudo-code.

    3 Results and Discussion

    3.1 Predictive Modeling

    Using the training data listed in Tab.1,second-order polynomial regression metamodels are developed for the prediction of Young’s modulus(E)and the coefficient of friction(COF).The coefficients of regression for the metamodels of E and COF are mentioned in Tab.2.Fig.1 shows the variation of the predicted values of E and COF for their respective experimental values.It should be noted that closer the values are to the diagonal (identity) line in Fig.1, better are the estimations of the metamodel.In general, the metamodel for E is seen to have better performance than COF.To further analyze the utility of the two metamodels,the residuals in each case are evaluated against their respective predicted values, as shown in Fig.2.A random scatter is seen in both cases, which indicates that the residues do not show any trend with the predicted values.Thereby it can be concluded that the metamodels are appropriate as they can quantify the variance in the training data.Further analysis of the residuals is done by plotting their normal probability plots in Fig.3.No outliers are seen in Fig.3,which further confirms the efficacy of the metamodels.

    Table 2:Regression coefficients for the second-order metamodels

    3.2 Influence of Process Parameters on the Young’s Modulus

    Fig.4 shows the effect of H2and CH4-Ar flow rate on Young’s modulus(E)of the DLCs.It is seen that deposition temperature(Td)has a significant effect on the role that of H2and CH4-Argon flow rate plays on E.For example—at a lesser Td,the E of the DLCs increase with the increase in CH4-Argon flow rate but the E decreases with an increase in H2flow rate.The trend is the opposite when higher levels of Tdis considered.Similarly,Fig.5 shows the interactive effect of Tdand CH4-Ar flow rate on E at various levels of H2flow.It is observed that the E increases as the Tdand CH4-Argon flow rate increases.Fig.6 shows that the increase in H2flow,in general,decreases the E of the DLCs.

    3.3 Influence of Process Parameters on the Coefficient of Friction

    Fig.7 shows the effect of H2and CH4-Ar flow rate on the coefficient of friction(COF)of the DLCs.It is seen that the trend of the COF of the DLCs is also significantly affected by the Td.At low Td,the increase in H2and CH4-Argon flow rate increases the COF of the DLCs,whereas at higher levels of Td,the COF decreases with an increase in H2flow rate but CH4-Argon flow rate has a negligible effect on it.In Fig.8,the trend of COF with Tdand CH4-Argon flow rate is similar for mid and high level H2flow rate but is significantly different for low H2flow rate.At mid and high H2flow rate,the COF increases with a decrease in Td, but is not much affected by variation in CH4-Argon flow rate.However, as seen in Fig.9, the behaviour of the COF of the DLCs is similar at all levels of CH4-Argon flow rate.

    Figure 1:Predicted versus the experimental output responses.(a) Young’s modulus, (b) Coefficient of friction

    Figure 2:Variation of the residuals with predicted output responses.(a)Young’s modulus,(b)Coefficient of friction

    Figure 3:Normal probability plots for the residuals of the metamodels.(a)Young’s modulus,(b)Coefficient of friction

    Figure 4:Variation of Young’s modulus with H2 flow rate and CH4-Argon flow rate at different deposition temperatures.(a)Td =80°C (b)Td =100°C,and (c)Td =120°C

    Figure 5:Variation of Young’s modulus with deposition temperature and CH4-Argon flow rate at different H2 flow rates.(a) 20 sccm, (b)30 sccm,and (c) 40 sccm

    Figure 6:Variation of Young’s modulus with deposition temperature and H2 flow rate at different CH4-Argon flow rates.(a) 0.5 sccm,(b)1 sccm,and (c) 2 sccm

    Figure 7:Variation of the coefficient of friction with H2 flow rate and CH4-Argon flow rate at different deposition temperatures.(a)Td =80°C (b) Td =100°C (c)Td =120°C

    Figure 8:Variation of the coefficient of friction with deposition temperature and CH4-Argon flow rate at different H2 flow rates.(a) 20 sccm,(b) 30 sccm,and(c) 40 sccm

    Figure 9:Variation of the coefficient of friction with deposition temperature and H2 flow rate at different CH4-Argon flow rates.(a) 0.5 sccm,(b)1 sccm,and (c) 2 sccm

    3.4 Pareto Optimization

    Based on the discussion on the effect of the DLC deposition process parameters on Young’s modulus and COF in the previous two sections, it is seen that the optimal setting of the two response parameters has conflicting requirements in terms of process parameter settings.Thus, it is not possible to arbitrary decide the optimal parameter combination that would simultaneously maximize the E and minimize the COF.Thus, a Pareto optimization using non-dominated sorting genetic algorithm is carried out and depicted in Fig.10.The continuous Pareto front in Fig.10b shows that as the E of the DLCs improve,there is an increase in COF as well.Thus, each solution within the Pareto front in Fig.10b represents a possible compromise solution to the multi-objective problem.Since it is not possible to arbitrarily draw a particular solution out of the Pareto front to represent a feasible solution, a multi-criteria decision-making approach called EDAS is used to select the most plausible solutions pertaining to certain practical scenarios and are presented in Tab.3.

    3.5 Experimental Confirmation of Optimal Results

    Confirmation experiments as per the optimal process parameters are conducted and the experimental values are reported in Tab.3.The 3-D and 2-D atomic force microscopy (AFM) images of DLC coatings for the validation of optimal point of scenario (A/B/C), (D) and (E) are shown in Figs.11-13,respectively.The surface roughness (Ra) of the coatings for scenario (A/B/C), (D) and (E) are 15.5 nm,28 nm, and 32 nm respectively.From the figures, it is observed that small, agglomerated particles are formed for all the cases.The maximum and average particle size for the experimental results for scenario(A/B/C) is 7 nm and 1.5 nm, for scenario (D) the sizes are 15.4 nm and 3.4 nm, for scenario (E) the sizes are 44.2 nm and 7 nm respectively.In all the different scenarios the H2flow rate and deposition temperature are the same, however, the CH4-Argon flow rate is different.From the experimental results shown in Tab.3, it is observed that the COF of the DLC coating decreases with an increase in the CH4-Argon flow rate.From the AFM images, it is observed that the DLC coating having less COF has a smooth surface and result is confirmed from the Ravalue.Overall, the confirmation experiment values are seen to be close to the predicted optimal solutions.

    Figure 10:Multi-objective optimization of Young’s modulus and COF(a)Dominated and non-dominated solutions,(b)Enlarged view of Pareto frontier

    Table 3:EDAS selected optimal solution from the Pareto front

    Figure 12:AFM images of deposited DLCs as per scenario D

    Figure 13:AFM images of deposited DLCs as per scenario E

    4 Conclusion

    Finding an optimal combination of process parameters that enhances the performance of a process is a realistic goal with tremendous practical implications.In this work, such an effort for optimizing the DLC deposition process parameters is undertaken to suitably enhance Young’s modulus and coefficient of friction of DLC thin film coatings.Based on the study the following conclusion are made

    ? Second-order polynomial regressions can serve as reliable metamodels for DLC process modelling that can be subsequently used for process parameter effect study or in case of optimization scenarios.

    ? Non-dominated sorting genetic algorithm(NSGA-III)is a viable tool for Pareto optimization of such critical processes.Improvement in Young’s modulus of the DLCs was in general accompanied by worsening of the coefficient of friction.Thus, given such conflicting process performance, the Pareto set, as opposed to single-objective solutions, can provide the designer with a lot of flexibility regarding setting the preferred process parameters.

    ? In general,a higher level of hydrogen flow rate and deposition temperature was found to be suitable in augmenting the young’s modulus of the DLCs.

    ? Confirmation experiments conducted as per the optimal process parameters showed that the polynomial regression—NSGA-III—EDAS approach is reliable and accurate.

    Acknowledgement:Authors acknowledge the support of COE, Manipal University in carrying out the characterizations.

    Funding Statement:This research was partially funded by TMA Pai University Research Fund, Manipal Group,India(Grant No.6100/SMIT/R&D/Project/08/2018).

    Conflicts of Interest:The authors declare that they have no conflicts of interest to report regarding the present study.

    中文欧美无线码| 久久精品久久精品一区二区三区| 菩萨蛮人人尽说江南好唐韦庄| 22中文网久久字幕| 我的老师免费观看完整版| 制服丝袜香蕉在线| 亚洲第一区二区三区不卡| 三级男女做爰猛烈吃奶摸视频| 亚洲,欧美,日韩| 国产男女超爽视频在线观看| 久久久久久久久久成人| 亚洲欧美日韩东京热| 伊人久久精品亚洲午夜| 人妻一区二区av| 午夜精品国产一区二区电影 | 青春草国产在线视频| 国产片特级美女逼逼视频| 97热精品久久久久久| 一区二区三区乱码不卡18| 男人和女人高潮做爰伦理| 午夜激情福利司机影院| 91精品伊人久久大香线蕉| 肉色欧美久久久久久久蜜桃 | 国内揄拍国产精品人妻在线| 亚洲av日韩在线播放| 日韩成人伦理影院| 欧美潮喷喷水| 欧美变态另类bdsm刘玥| 久热这里只有精品99| 国产午夜精品一二区理论片| 亚洲av中文字字幕乱码综合| 中文资源天堂在线| 国产毛片在线视频| 熟女av电影| 99re6热这里在线精品视频| 国产黄片美女视频| 国产老妇女一区| 成年女人看的毛片在线观看| 天天一区二区日本电影三级| 亚洲性久久影院| 欧美激情国产日韩精品一区| 亚洲,欧美,日韩| 欧美+日韩+精品| 内地一区二区视频在线| 欧美精品国产亚洲| 精品人妻视频免费看| 久久国产乱子免费精品| 22中文网久久字幕| 亚洲真实伦在线观看| 亚洲激情五月婷婷啪啪| 国产爱豆传媒在线观看| 久久99精品国语久久久| 亚洲国产av新网站| 又大又黄又爽视频免费| 精品国产三级普通话版| 国产男女内射视频| 99久久中文字幕三级久久日本| 国产精品无大码| 日韩av在线免费看完整版不卡| 99久久九九国产精品国产免费| 不卡视频在线观看欧美| 内射极品少妇av片p| 人妻 亚洲 视频| 老师上课跳d突然被开到最大视频| 91精品国产九色| 久久精品国产亚洲av天美| 免费看日本二区| 特大巨黑吊av在线直播| 色视频www国产| a级毛色黄片| 熟女人妻精品中文字幕| a级毛色黄片| 亚洲国产精品成人久久小说| 婷婷色综合www| 内地一区二区视频在线| 国产成人精品久久久久久| 我的女老师完整版在线观看| 下体分泌物呈黄色| 男人添女人高潮全过程视频| 亚洲精品日韩在线中文字幕| 一级毛片久久久久久久久女| 蜜桃亚洲精品一区二区三区| 熟女电影av网| 精品久久久久久久久av| 欧美3d第一页| 亚洲最大成人中文| 一本—道久久a久久精品蜜桃钙片 精品乱码久久久久久99久播 | 久久人人爽人人片av| 亚洲人成网站在线观看播放| 国产一区二区三区av在线| 观看美女的网站| 极品教师在线视频| 美女脱内裤让男人舔精品视频| 菩萨蛮人人尽说江南好唐韦庄| 国产免费一区二区三区四区乱码| 欧美潮喷喷水| 97人妻精品一区二区三区麻豆| 久久久久久久精品精品| 国产乱人偷精品视频| 九九在线视频观看精品| a级毛片免费高清观看在线播放| 在线免费观看不下载黄p国产| 亚洲人成网站在线观看播放| 26uuu在线亚洲综合色| 午夜福利视频精品| 黄色欧美视频在线观看| 只有这里有精品99| 精品少妇久久久久久888优播| 蜜桃亚洲精品一区二区三区| 你懂的网址亚洲精品在线观看| 五月玫瑰六月丁香| 欧美3d第一页| 少妇高潮的动态图| 日韩大片免费观看网站| 狂野欧美激情性bbbbbb| 伦精品一区二区三区| 少妇丰满av| 六月丁香七月| 久久这里有精品视频免费| 永久免费av网站大全| 久久久成人免费电影| 亚洲精品日韩在线中文字幕| 精品99又大又爽又粗少妇毛片| 国产 一区 欧美 日韩| 成人综合一区亚洲| 午夜免费男女啪啪视频观看| 久久热精品热| 国精品久久久久久国模美| 内地一区二区视频在线| 欧美xxⅹ黑人| 丰满乱子伦码专区| 熟妇人妻不卡中文字幕| 免费观看在线日韩| 国产综合精华液| 亚洲精品国产av蜜桃| 99视频精品全部免费 在线| 精品午夜福利在线看| 简卡轻食公司| 国产成人freesex在线| 日韩伦理黄色片| 王馨瑶露胸无遮挡在线观看| 赤兔流量卡办理| 精品人妻视频免费看| 久久午夜福利片| 免费少妇av软件| 男人舔奶头视频| 少妇裸体淫交视频免费看高清| 亚洲美女搞黄在线观看| 永久网站在线| 日本av手机在线免费观看| 尤物成人国产欧美一区二区三区| 亚洲一区二区三区欧美精品 | 久久久精品免费免费高清| 欧美亚洲 丝袜 人妻 在线| 久久97久久精品| 高清在线视频一区二区三区| 免费高清在线观看视频在线观看| 一级毛片我不卡| 联通29元200g的流量卡| 五月伊人婷婷丁香| 久久久色成人| 国产成人一区二区在线| 亚州av有码| 久久久久国产精品人妻一区二区| 亚洲av二区三区四区| 国产成人精品婷婷| 免费黄网站久久成人精品| 亚洲国产高清在线一区二区三| 国产亚洲午夜精品一区二区久久 | 99久久精品热视频| 亚洲欧美日韩另类电影网站 | 精品国产露脸久久av麻豆| 麻豆国产97在线/欧美| 天堂俺去俺来也www色官网| 国产白丝娇喘喷水9色精品| 精品午夜福利在线看| a级毛色黄片| 一个人看的www免费观看视频| 欧美精品国产亚洲| 99热这里只有精品一区| 中文字幕av成人在线电影| 亚洲精品国产色婷婷电影| 亚洲人与动物交配视频| 国产伦精品一区二区三区四那| 久久精品人妻少妇| 国产成年人精品一区二区| 一区二区三区乱码不卡18| 国产精品久久久久久精品古装| 大又大粗又爽又黄少妇毛片口| 国产精品一区二区三区四区免费观看| 婷婷色麻豆天堂久久| 最近最新中文字幕免费大全7| 综合色丁香网| 国产精品久久久久久精品电影小说 | 亚洲色图av天堂| 国产爱豆传媒在线观看| 在线观看三级黄色| 97热精品久久久久久| 熟妇人妻不卡中文字幕| 国产成人精品福利久久| 26uuu在线亚洲综合色| 欧美日韩国产mv在线观看视频 | 国内少妇人妻偷人精品xxx网站| 免费观看性生交大片5| 成人综合一区亚洲| 菩萨蛮人人尽说江南好唐韦庄| 狂野欧美激情性bbbbbb| 免费观看在线日韩| 91精品伊人久久大香线蕉| 美女被艹到高潮喷水动态| 美女主播在线视频| 亚洲精品成人av观看孕妇| 色综合色国产| 成人漫画全彩无遮挡| 国产乱人偷精品视频| 国产极品天堂在线| 毛片女人毛片| av福利片在线观看| 黄色怎么调成土黄色| 精品久久久噜噜| 亚洲精品日韩av片在线观看| 成年人午夜在线观看视频| 日本熟妇午夜| 夫妻午夜视频| 国产色爽女视频免费观看| 免费高清在线观看视频在线观看| 好男人在线观看高清免费视频| 十八禁网站网址无遮挡 | 久久99热这里只有精品18| 国产美女午夜福利| 亚洲成色77777| 久久ye,这里只有精品| 久久精品国产鲁丝片午夜精品| 国产极品天堂在线| 久久久久精品性色| 全区人妻精品视频| 色播亚洲综合网| 秋霞伦理黄片| 99久久精品热视频| 亚洲av不卡在线观看| av网站免费在线观看视频| av卡一久久| 国产精品不卡视频一区二区| 麻豆国产97在线/欧美| 日本三级黄在线观看| 亚洲精品久久久久久婷婷小说| 性色avwww在线观看| 在线精品无人区一区二区三 | 国产人妻一区二区三区在| www.av在线官网国产| 夫妻午夜视频| 欧美97在线视频| 亚洲欧美成人综合另类久久久| 亚洲欧美日韩另类电影网站 | freevideosex欧美| 国产老妇伦熟女老妇高清| 看免费成人av毛片| 99九九线精品视频在线观看视频| 精品久久久噜噜| 男女下面进入的视频免费午夜| 免费黄色在线免费观看| 欧美三级亚洲精品| 18禁在线无遮挡免费观看视频| 尾随美女入室| 久久精品综合一区二区三区| 国产成人a区在线观看| 男女下面进入的视频免费午夜| 国产中年淑女户外野战色| 精品国产一区二区三区久久久樱花 | 午夜激情久久久久久久| 尤物成人国产欧美一区二区三区| 中文欧美无线码| 在线观看美女被高潮喷水网站| 在线观看人妻少妇| 搡女人真爽免费视频火全软件| 国产美女午夜福利| 国产男女超爽视频在线观看| xxx大片免费视频| 亚洲精品成人av观看孕妇| av.在线天堂| 国产黄a三级三级三级人| 韩国av在线不卡| 大话2 男鬼变身卡| 大香蕉97超碰在线| 最近中文字幕2019免费版| 嫩草影院精品99| 欧美 日韩 精品 国产| 欧美人与善性xxx| 亚洲欧美成人综合另类久久久| 亚洲最大成人手机在线| 久久久欧美国产精品| 婷婷色综合大香蕉| 五月天丁香电影| 中文资源天堂在线| 日本色播在线视频| 好男人视频免费观看在线| 99热这里只有是精品50| 欧美精品人与动牲交sv欧美| 国产精品精品国产色婷婷| 精品99又大又爽又粗少妇毛片| 日本免费在线观看一区| 日韩av免费高清视频| 国产视频内射| 看十八女毛片水多多多| 日韩大片免费观看网站| 国产精品一区www在线观看| 亚洲精华国产精华液的使用体验| 亚洲精品日韩av片在线观看| 插阴视频在线观看视频| 欧美潮喷喷水| 黄片wwwwww| 成年人午夜在线观看视频| 中国美白少妇内射xxxbb| 精品午夜福利在线看| 日日啪夜夜爽| 2021天堂中文幕一二区在线观| 天美传媒精品一区二区| 新久久久久国产一级毛片| 国产高潮美女av| 日本爱情动作片www.在线观看| tube8黄色片| 我的老师免费观看完整版| 国产精品女同一区二区软件| 久久精品久久久久久久性| 久久久久久久久久久免费av| 中文精品一卡2卡3卡4更新| 国产精品一区www在线观看| 国产精品99久久久久久久久| 亚洲伊人久久精品综合| 一本一本综合久久| 中国美白少妇内射xxxbb| 国产精品秋霞免费鲁丝片| 丝袜脚勾引网站| 国产毛片a区久久久久| 爱豆传媒免费全集在线观看| 精品人妻熟女av久视频| 岛国毛片在线播放| 在线观看三级黄色| 国内精品宾馆在线| 一个人看视频在线观看www免费| 最近最新中文字幕免费大全7| 韩国av在线不卡| 国产精品.久久久| 五月玫瑰六月丁香| 午夜激情福利司机影院| 三级经典国产精品| 五月玫瑰六月丁香| 日本黄色片子视频| 国产av码专区亚洲av| 国产视频首页在线观看| 精品99又大又爽又粗少妇毛片| 国产免费一级a男人的天堂| 亚洲精品国产成人久久av| 精品99又大又爽又粗少妇毛片| 亚洲精品aⅴ在线观看| 在线观看美女被高潮喷水网站| 国产一区有黄有色的免费视频| av播播在线观看一区| 亚洲婷婷狠狠爱综合网| 久久亚洲国产成人精品v| 中国三级夫妇交换| 中文字幕人妻熟人妻熟丝袜美| 精品一区二区免费观看| 国产综合懂色| 一本色道久久久久久精品综合| 国产在线一区二区三区精| 日韩伦理黄色片| 亚洲av不卡在线观看| 日韩欧美精品v在线| 国产亚洲一区二区精品| 日本色播在线视频| 亚洲人成网站在线播| 3wmmmm亚洲av在线观看| 日本三级黄在线观看| 亚洲怡红院男人天堂| 免费黄网站久久成人精品| 男女下面进入的视频免费午夜| 午夜精品国产一区二区电影 | 黄色视频在线播放观看不卡| 亚洲av日韩在线播放| 国产精品嫩草影院av在线观看| 最近中文字幕2019免费版| 精品久久久精品久久久| 寂寞人妻少妇视频99o| 免费观看的影片在线观看| 亚洲第一区二区三区不卡| 午夜福利视频1000在线观看| 国产女主播在线喷水免费视频网站| 国产精品嫩草影院av在线观看| 亚洲av日韩在线播放| 国产片特级美女逼逼视频| 国内精品美女久久久久久| 男人和女人高潮做爰伦理| 三级国产精品欧美在线观看| 麻豆成人午夜福利视频| 国产黄色免费在线视频| 天堂俺去俺来也www色官网| 国产黄频视频在线观看| 久久久久久久大尺度免费视频| 国产真实伦视频高清在线观看| 一级av片app| 婷婷色综合大香蕉| 国产乱人偷精品视频| 我的女老师完整版在线观看| 日韩视频在线欧美| 久久久久久久午夜电影| 亚洲,欧美,日韩| av国产精品久久久久影院| 女人久久www免费人成看片| 嫩草影院入口| 你懂的网址亚洲精品在线观看| 亚洲av免费高清在线观看| 国产女主播在线喷水免费视频网站| 人妻少妇偷人精品九色| 日日啪夜夜撸| 欧美 日韩 精品 国产| 成人国产麻豆网| 尤物成人国产欧美一区二区三区| 欧美精品国产亚洲| 国产又色又爽无遮挡免| 国产黄片视频在线免费观看| 久久久久久久久久久免费av| 午夜福利视频1000在线观看| 日韩人妻高清精品专区| 欧美3d第一页| 国产伦精品一区二区三区视频9| 亚洲天堂国产精品一区在线| 国产国拍精品亚洲av在线观看| 国产在线男女| 视频中文字幕在线观看| 一个人看的www免费观看视频| 一本久久精品| 欧美精品人与动牲交sv欧美| 欧美3d第一页| 亚洲怡红院男人天堂| 国产色爽女视频免费观看| 一边亲一边摸免费视频| 色5月婷婷丁香| 久久99热这里只频精品6学生| 亚洲色图av天堂| 久久久久九九精品影院| av网站免费在线观看视频| 日韩一区二区三区影片| 久久精品久久久久久噜噜老黄| 国产欧美另类精品又又久久亚洲欧美| 97在线人人人人妻| 大片电影免费在线观看免费| 精品久久久久久久人妻蜜臀av| 18禁在线播放成人免费| 网址你懂的国产日韩在线| 久久久久九九精品影院| 91午夜精品亚洲一区二区三区| 热re99久久精品国产66热6| 少妇丰满av| 国产精品伦人一区二区| 汤姆久久久久久久影院中文字幕| 在线免费十八禁| 你懂的网址亚洲精品在线观看| 欧美xxxx黑人xx丫x性爽| 免费观看在线日韩| 韩国av在线不卡| 3wmmmm亚洲av在线观看| 日本一本二区三区精品| 99热网站在线观看| 高清毛片免费看| 亚洲美女视频黄频| 久久精品国产亚洲av天美| 久久精品国产自在天天线| 国产精品久久久久久久久免| 国产黄色免费在线视频| 少妇人妻精品综合一区二区| 制服丝袜香蕉在线| 一区二区三区乱码不卡18| 成人亚洲精品一区在线观看 | 免费高清在线观看视频在线观看| 一本一本综合久久| 插逼视频在线观看| 亚洲,一卡二卡三卡| 久久亚洲国产成人精品v| 啦啦啦在线观看免费高清www| 国产大屁股一区二区在线视频| 日韩中字成人| 韩国av在线不卡| 日韩av不卡免费在线播放| 日韩免费高清中文字幕av| 看十八女毛片水多多多| 午夜免费鲁丝| 少妇的逼水好多| 精品久久国产蜜桃| 日韩电影二区| 日韩大片免费观看网站| 尤物成人国产欧美一区二区三区| 日韩不卡一区二区三区视频在线| 中文字幕亚洲精品专区| av在线观看视频网站免费| 国产乱来视频区| 男人舔奶头视频| 国产精品国产三级国产专区5o| 91午夜精品亚洲一区二区三区| 水蜜桃什么品种好| 午夜福利高清视频| 亚洲国产精品成人久久小说| 国产乱人视频| 亚洲精品成人久久久久久| 国产精品秋霞免费鲁丝片| 男人狂女人下面高潮的视频| 男人舔奶头视频| 成人二区视频| av在线观看视频网站免费| 视频中文字幕在线观看| 国产又色又爽无遮挡免| 免费av毛片视频| 在线观看人妻少妇| 一边亲一边摸免费视频| a级一级毛片免费在线观看| 国产成年人精品一区二区| 国产大屁股一区二区在线视频| freevideosex欧美| 国产精品99久久99久久久不卡 | 草草在线视频免费看| 真实男女啪啪啪动态图| 国产男女内射视频| 午夜精品一区二区三区免费看| 91久久精品国产一区二区三区| 久久久久久久久久成人| av国产精品久久久久影院| 久久久久久久久久人人人人人人| 日韩亚洲欧美综合| 日韩人妻高清精品专区| 美女高潮的动态| 少妇丰满av| 久久久a久久爽久久v久久| xxx大片免费视频| 国产在线男女| 一级毛片电影观看| 十八禁网站网址无遮挡 | 久久久亚洲精品成人影院| 少妇人妻精品综合一区二区| 国产真实伦视频高清在线观看| 免费黄网站久久成人精品| 各种免费的搞黄视频| 午夜免费观看性视频| 国产国拍精品亚洲av在线观看| 国产色爽女视频免费观看| 国产黄a三级三级三级人| 18+在线观看网站| 美女xxoo啪啪120秒动态图| 一个人看视频在线观看www免费| 精品少妇久久久久久888优播| 久久久久国产网址| 久久韩国三级中文字幕| 亚洲成人av在线免费| 18禁裸乳无遮挡免费网站照片| 免费观看在线日韩| 在线免费十八禁| 久久精品人妻少妇| 韩国高清视频一区二区三区| av国产免费在线观看| 亚洲美女搞黄在线观看| 亚洲av.av天堂| 男女无遮挡免费网站观看| 亚洲精品国产色婷婷电影| 在线精品无人区一区二区三 | 日韩欧美精品免费久久| 精品熟女少妇av免费看| 亚洲欧美一区二区三区国产| 亚洲精品,欧美精品| 18禁动态无遮挡网站| 九九久久精品国产亚洲av麻豆| 日本一本二区三区精品| 欧美国产精品一级二级三级 | 免费观看的影片在线观看| 永久免费av网站大全| 97精品久久久久久久久久精品| 神马国产精品三级电影在线观看| 欧美 日韩 精品 国产| 99久久精品热视频| videos熟女内射| 日本wwww免费看| 国产一区有黄有色的免费视频| 在线观看三级黄色| 国产精品国产av在线观看| 18禁在线播放成人免费| 大香蕉久久网| 亚洲va在线va天堂va国产| 交换朋友夫妻互换小说| 在线免费观看不下载黄p国产| av播播在线观看一区| 熟妇人妻不卡中文字幕| 亚洲精品色激情综合| 午夜视频国产福利| 黄色怎么调成土黄色| 国产男女超爽视频在线观看| 色婷婷久久久亚洲欧美| 蜜臀久久99精品久久宅男| 成人亚洲精品av一区二区| 亚洲精品乱久久久久久| 少妇的逼水好多| 国产高清有码在线观看视频| 欧美区成人在线视频| 国产 精品1| 亚洲天堂av无毛| 精品人妻一区二区三区麻豆| 一边亲一边摸免费视频| 中文资源天堂在线| 最近手机中文字幕大全| 婷婷色综合大香蕉| 国产精品人妻久久久久久| 国产精品熟女久久久久浪| 搡女人真爽免费视频火全软件| 亚洲国产精品999| 在线免费十八禁| 日日撸夜夜添| 国产成人freesex在线| 在线免费十八禁|